
ARTICLE TEMPLATE

Designing Parametric Linear Quadratic Regulators for Parametric

LTI Systems via LMIs

G. Chesia and T. Shenb

aDepartment of Electrical and Electronic Engineering, The University of Hong Kong.
bSchool of Information Science and Engineering, Central South University, and Department
of Electronic Information Engineering, Hunan Normal University.

ARTICLE HISTORY

Compiled September 16, 2020

ABSTRACT

This paper addresses the problem of determining parametric linear quadratic reg-
ulators (LQRs) for continuous-time linear-time invariant (LTI) systems affected by
parameters through rational functions. Three situations are considered, where the
sought controller has to minimize the best cost, average cost, and worst cost, respec-
tively, over the set of admissible parameters. It is shown that candidates for such
controllers can be obtained by solving convex optimization problems with linear ma-
trix inequality (LMI) constraints. These candidates are guaranteed to approximate
arbitrarily well the sought controllers by sufficiently increasing the size of the LMIs.
In particular, the candidate that minimizes the average cost approximates arbitrar-
ily well the true LQR over the set of admissible parameters. Moreover, conditions
for establishing the optimality of the found candidates are provided. Some numerical
examples illustrate the proposed methodology.
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1. Introduction

It is well-known that linear quadratic regulators (LQRs) play a key role in control sys-
tems. Specifically, these regulators are state-feedback linear controllers that minimize
the sum of the weighted energies of the state and of the input. Given a linear-time in-
variant (LTI) system, the LQR can be found by solving the algebraic Riccati equation
(ARE), which is a quadratic matrix equation. See for instance [12, 14, 3, 13].

LQRs have been studied in numerous contexts. For instance, [10, 1] have studied
the case of singular control problems. Also, [21] has provided a parametrization of
the solution set of the ARE and the algebraic Riccati inequality. Then, [17, 25] have
addressed LQRs for time-varying systems. In [19], the design of LQRs has been studied
for nonlinear systems. Recently, [5] has considered LQR with random input gains.

In the context of uncertain systems, the LQR has been studied from different view-
points. In particular, in [15], it has been considered for pulse width modulation (PWM)
converters modeled by a polytopic family. Also, in [24, 23], it has been addressed using
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reinforcement learning. More recently, in [4], it has been investigated with a modified
Riccati equation.

A problem that remains open is finding a parametric LQR for systems affected by
parameters. This problem is important because real systems often present parameters
(e.g., for tuning purpose), and the LQR depends on these parameters. But how? What
is the expression of the LQR as a function of the parameters?

Clearly, one may think to obtain the parametric LQR by solving the parametric
ARE. Unfortunately, the parametric ARE cannot be solved because there does not
exist an analytic solution of the ARE, and numerical methods cannot be used if the
matrices of the systems are parameterized. Of course, a possibility would be to solve
the ARE through numerical methods for frozen parameters for all admissible values of
the parameters and store somewhere the solutions obtained, however, this is impossible
because the number of admissible values is not finite. Also, another possibility would
be to solve online (i.e., during the control of the process) the ARE, however, this is
generally impossible because would require hardware and software for solving the ARE
online, which are generally not allowed in real systems.

This paper addresses the problem of finding parametric LQRs for continuous-time
LTI systems affected by parameters through rational functions. Three situations are
considered, where the sought controller has to minimize the best cost, average cost, and
worst cost, respectively, over the set of admissible parameters. It is shown that can-
didates for such controllers can be obtained by solving convex optimization problems
with linear matrix inequality (LMI) constraints. These candidates are guaranteed to
approximate arbitrarily well the sought controllers by sufficiently increasing the size
of the LMIs. In particular, the candidate that minimizes the average cost approxi-
mates arbitrarily well the true LQR over the set of admissible parameters. Moreover,
conditions for establishing the optimality of the found candidates are provided. Some
numerical examples illustrate the proposed methodology.

The paper is organized as follows. Section 2 introduces the notation and problem
formulation. Section 3 describes the proposed approach. Section 4 presents the exam-
ples. Lastly, Section 5 concludes the paper with some final remarks. A preliminary
conference version of this paper (where only the worst cost is considered, and where
the system is only a polynomial function of the parameters) appeared as reported in
[26].

2. Preliminaries

The notation is as follows. The sets of nonnegative integers and real numbers are
denoted by N and R. The symbols 0 and I denote the null matrix and the identity
matrix of size specified by the context. The symbol ⊗ denotes the Kronecker’s
product. The notation A′ denotes the transpose of A, and he(A) denotes A+A′. The
notation A ≥ 0 (respectively, A > 0) denotes that a symmetric matrix A is positive
semidefinite (respectively, definite). For a real number x, ⌈x⌉ denotes the smallest
integer not smaller than x. The notation ‖x‖p denotes the p-norm of a vector x. For
vectors x and y of same dimension, the notation xy denotes the quantity xy1

1 xy2

2 · · · .
Unless specified otherwise, xi denotes the i-th entry of x. The symbol ⋆ denotes a
corresponding block in a symmetric matrix. The notation “s.t.” stands for “subject to”.
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Let us consider the parametric LTI system











ẋ(t) = A(p)x(t) +B(p)u(t)

x(0) = x0

p ∈ P

(1)

where t ∈ R is the time, x(t) ∈ R
n is the state, u(t) ∈ R

m is the input, x0 ∈ R
n is

the initial condition, p ∈ R
q is the time-invariant parameter vector, A(p) and B(p)

are given rational matrix functions, and P is the set of admissible parameter vectors
given by

P = {p ∈ R
q : ‖p‖∞ ≤ 1} . (2)

It is supposed that A(p) and B(p) are continuous over P. The LQR problem for (1)
consists of solving

J#(p) = inf
u(t)

∫

∞

0

(

x′(t)Qx(t) + u′(t)Ru(t)
)

dt (3)

where Q ∈ R
n×n and R ∈ R

m×m are symmetric positive definite matrices. The control
input that achieves J#(p) is given by

u(t) = K#(p)x(t) (4)

where K#(p) ∈ R
m×n is given by

K#(p) = −R−1B(p)′V #(p) (5)

and V #(p) ∈ R
n×n is the solution of the ARE

0 = Q+A(p)′V #(p) + V #(p)A(p)− V #(p)B(p)R−1B(p)′V #(p). (6)

In order to estimate J#(p) and K#(p), we consider that the system (1) is controlled
in closed-loop via the state-feedback control law

u(t) = K(p)x(t) (7)

where K(p) ∈ R
m×n is a controller to determine in order to minimize the cost

J(K(p), p) =

∫

∞

0

(

x′(t)Qx(t) + u′(t)Ru(t)
)

dt

=

∫

∞

0
x′(t)

(

Q+K(p)′RK(p)
)

x(t)dt.

(8)

The problems addressed in this paper are as follows.
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Problem 1. Find K(p) that minimizes the best cost J(K(p), p) over P, i.e., a mini-
mizer of

Jbst = inf
K(p)

inf
p∈P

J(K(p), p) (9)

Problem 2. Find K(p) that minimizes the average cost J(K(p), p) over P, i.e., a
minimizer of

Javg = inf
K(p)

∫

p∈P

J(K(p), p)dp. (10)

Problem 3. Find K(p) that minimizes the worst cost J(K(p), p) over P, i.e., a min-
imizer of

Jwst = inf
K(p)

sup
p∈P

J(K(p), p). (11)

Let us observe that the minimizer of Problem 2 is the parametric optimal controller
K#(p) in (5) independently on the initial condition of (1). Indeed, for any fixed p,
K#(p) is the controller that achieves the minimum cost and, hence, K#(p) is also the
controller that achieves the minimum average cost over P. This means that, by solving
Problem 2, one obtains the parametric optimal controller K#(p). See also Section 4
where this property is shown graphically for some numerical examples.

Also, let us observe that the minimizers of Problems 1 and 3 are controllers that
coincide with the parametric optimal controller K#(p) for values of the parameters
that determine the optimum in these problems. These values depend on the initial
condition of (1) for definition of the cost J#(p) in (3).

3. Proposed Approach

This section presents the proposed approach. Specifically, Section 3.1 describes the
ideas and solutions for addressing Problem 1, while Sections 3.2–3.3 present their
extensions for addressing Problems 2–3. The dependence on t of the various quantities
will be omitted in the sequel for ease of notation unless specified otherwise.

3.1. Solution For Problem 1

In order to solve the problems introduced in the previous section, we start by in-
troducing a quadratic Lyapunov function candidate depending polynomially on the
parameter vector p, specifically of the form

v(x, p) = x′V (p)x (12)

where V (p) ∈ R
n×n is a symmetric matrix polynomial to determine of degree not

greater than dV . It is worth mentioning that polynomially-dependent quadratic Lya-
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punov functions have been exploited for addressing various problems in control sys-
tems, in particular establishing robust stability of uncertain systems, see for instance
[2, 9, 20, 16]. Let us express A(p) and B(p) as















A(p) =
Ā(p)

zA(p)

B(p) =
B̄(p)

zB(p)

(13)

where Ā(p) and B̄(p) are matrix polynomials, and zA(p) and zB(p) are polynomials.
Since A(p) and B(p) are continuous over P, it is reasonable to suppose that zA(p) and
zB(p) can be chosen positive over P. Let z(p) be any polynomial such that

{

z(p) = zA(p)z1(p)

z(p) = zB(p)z2(p)
(14)

for some polynomials z1(p) and z2(p) positive over P. For instance, one can simply
choose z(p) = zA(p)zB(p), z1(p) = zB(p) and z2(p) = zA(p). Let γ ∈ R be a scalar
to determine, and let us define the symmetric matrix polynomial Gi(p) ∈ R

li×li ,
i = 1, 2, 3, given by



















G1(p) =

(

z1(p)he(V(p)Ā(p)) + z(p)Q z2(p)V (p)B̄(p)

⋆ z(p)R

)

G2(p) = V (p)

G3(p) = x′0V (p)x0 − γ

(15)

where











l1 = n+m

l2 = n

l3 = 1,

(16)

Let us define







δi =

⌈

deg(Gi(p))

2

⌉

di = δi − 1

∀i = 1, 2, 3. (17)

Let Hi,j(p) ∈ R
li×li , i = 1, 2, 3 and j = 1, . . . , q, be symmetric matrix polynomials to

determine of degree not greater than 2di (if di < 0, then we set Hi,j(p) = 0). Let us
define the symmetric matrix polynomials Si(p) ∈ R

li×li given by

Si(p) = Gi(p)−

q
∑

j=1

(1− p2j)Hi,j(p). (18)

Let us observe that

deg(Si(p)) ≤ 2δi. (19)
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Hence, we can express Si(p) as

Si(p) = (b(p, δi)⊗ I)′ S̄i (b(p, δi)⊗ I) (20)

where b(p, δi) ∈ R
c(q,δi) is a vector whose entries are monomials in p of degree not

greater than δi, the quantity c(q, δi) is the number of these monomials given by

c(q, δi) =
(q + δi)!

q!δi!
, (21)

and S̄i ∈ R
c(q,δi)li×c(q,δi)li is a symmetric matrix to determine. Similarly, let us express

Hi,j(p) as

Hi,j(p) = (b(p, di)⊗ I)′ H̄i,j (b(p, di)⊗ I) (22)

where H̄i,j ∈ R
c(q,di)li×c(q,di)li is a symmetric matrix to determine. Lastly, let us express

V (p) as

V (p) = V̄ (b(p, dV )⊗ I) (23)

where V̄ ∈ R
n×c(q,dV )n is a symmetric matrix to determine under the constraint

V (p) = V (p)′. (24)

Let us define

f = −γ (25)

and the semidefinite program (SDP)

inf
γ,V̄ ,S̄i,H̄i,j

f

s.t.



















(15)–(24) hold

S̄i ≥ 0

H̄i,j ≥ 0

∀i = 1, 2, 3 ∀j = 1, . . . , q

(26)

(if di < 0, then we set H̄i,j = 0 in the SDP (26) since Hi,j(p) = 0). Let γ∗ and V̄ ∗ be
the optimal values of γ and V̄ in the SDP (26), and let V ∗(p) be V (p) evaluated for
V̄ = V̄ ∗. Let us define the controller

K∗(p) = −R−1B(p)′V ∗(p). (27)

Theorem 3.1. For all dV one has

γ∗ ≤ Jbst ≤

(

inf
p∈P

J(K∗(p), p)

)

. (28)
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Moreover, for all ε > 0 there exists d∗V such that, for all dV ≥ d∗V ,







Jbst − ε ≤ γ∗ ≤ Jbst

Jbst ≤

(

inf
p∈P

J(K∗(p), p)

)

≤ Jbst + ε.
(29)

Proof. Let us start by considering the case where Jbst < ∞. First, let us prove (28).
Let S̄∗

i and H̄∗
i,j be the optimal values of S̄i and H̄i,j in the SDP (26). From the LMIs

in (26) one has S̄∗
i ≥ 0 and H̄∗

i,j ≥ 0. Let S∗
i (p) and H∗

i,j(p) be Si(p) and Hi,j(p)

evaluated for S̄i = S̄∗
i and H̄i,j = H̄∗

i,j. From (20) and (22) it follows that S∗
i (p) ≥ 0

and H∗
i,j(p) ≥ 0 for all p ∈ R

q. Since (20) holds, it follows that

S∗
i (p) = G∗

i (p)−

q
∑

j=1

(1− p2j)H
∗
i,j(p)

where G∗
i (p) is Gi(p) evaluated for γ = γ∗ and V (p) = V (p)∗. Let p̄ ∈ P. It follows

0 ≤ S∗
i (p̄)

= G∗
i (p̄)−

q
∑

j=1

(1− p̄2j)H
∗
i,j(p̄)

≤ G∗
i (p̄)

since 1− p̄2j ≥ 0 and H∗
i,j(p̄) ≥ 0. Hence, G∗

i (p) ≥ 0 for all p ∈ P. This implies

γ∗ ≤ inf
p∈P

x′0V
∗(p)x0.

Let us observe that G∗
1(p) ≥ 0 implies

0 ≤ Q+ he(V∗(p)A(p))−V∗(p)B(p)R−1B(p)′V∗(p).

From [3] one has

x′0V
∗(p)x0 ≤ J#(p)

and, hence,

inf
p∈P

x′0V
∗(p)x0 ≤ Jbst.

Consequently,

γ∗ ≤ Jbst.

Also, let us observe from (9) that

Jbst ≤

(

inf
p∈P

J(K∗(p), p)

)
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since K(p) in (9) can be any matrix function. Therefore, (28) follows. Finally, let us
observe that the solution of (26) does exist because its feasible set of (26) is closed
and the objective is bounded from below since

f = −γ ≥ −Jbst

and Jbst is finite. Second, let us prove (29). Let ε > 0, and let γ and V (p) be such that



















Gi(p) > 0 ∀p ∈ P

Jbst − ε ≤ γ
(

inf
p∈P

J(K(p), p)

)

≤ Jbst + ε

with K(p) = −R−1B(p)′V (p). Such γ and V (p) do exist, for instance one can choose
γ = Jbst− ε1 and V (p) = (1− ε2)V

#(p) where V #(p) is the solution of the parametric
ARE (6), ε2 is a sufficiently small positive scalar, and ε1 ∈ (0,max{ε, ε2x

′
0x0}). Since P

is compact, V (p) can be approximated arbitrarily well by a matrix polynomial over P.
In particular, there exists a matrix polynomial V (p) such that Gi(p) > 0 over P. Since
P is compact and the polynomials 1−p21, . . ., 1−p2q have even degree and their highest
degree forms are simultaneously zero only for p = 0, it follows from [18] that there exist
Hi,j(p) such that Si(p) and Hi,j(p) are sums of squares of matrix polynomials. Hence,
there exist S̄i ≥ 0 and H̄i,j ≥ 0 such that (20) and (22) hold, see for instance [6] and
references therein. Therefore, (29) holds. Moreover, d∗V is given by the smallest integer
dV such that dV ≥ deg(V (p)) and 2di ≥ deg(Hi,j(p)). Lastly, let us observe that, for
all dV ≥ d∗V , (29) still holds because the matrix polynomials V (p) and Hi,j(p) obtained
for d∗V can be obtained for larger values of d∗V by introducing higher degree monomials
with null coefficients. Lastly, let us consider the case where Jbst 6< ∞. It follows
that (28) holds independently on γ∗. Moreover, (29) can be proved as done in the
previous case by observing that, for all γ > 0, there exists V (p) such that Gi(p) ≥ 0. �

Theorem 3.1 states that the SDP (26) provides a lower bound γ∗ of Jbst for
any chosen dV . Moreover, for all dV sufficiently large, the lower bound γ∗ and the
controller K∗(p) approximate arbitrarily well the solution of Problem 1.

At this point, a question arises: is a found lower bound γ∗ tight, i.e., γ∗ = Jbst? In
order to provide an answer to this question, let us define the set

Z = {p ∈ R
q : det(S∗

i (p)) = 0 ∀i = 1, 3} . (30)

Theorem 3.2. Let us suppose Jbst < ∞. The upper bound γ∗ satisfies

Jbst = γ∗ (31)

if and only if there exists p∗ ∈ R
q such that

{

p∗ ∈ Z ∩ P

det(G∗
i (p

∗)) = 0 ∀i = 1, 3.
(32)
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Moreover, for such p∗,

Jbst = J(K∗(p∗), p∗). (33)

Proof. (Sufficiency) Suppose that there exists p∗ ∈ R
q such that (32). Since

det(G∗
1(p

∗)) = 0 and det(G∗
3(p

∗)) = 0, it follows that G∗
1(p

∗) and G∗
3(p

∗) are singular,
and this implies that V ∗(p∗) is the maximizer of

sup
W

x′0Wx0

s.t.

{

0 < W

0 < Q+ he(WA(p∗))−WB(p∗)R−1B(p∗)′W.

From [3] this means that

γ∗ = x′0V
∗(p∗)x0 = J(K∗(p∗), p∗) = J#(p∗).

From (9) it follows that

Jbst ≤ γ∗

and from Theorem 3.1 we also have

γ∗ ≤ Jbst.

(Necessity) Suppose that Jbst = γ∗. Let p∗ be the minimizer of p in (9). We have

{

p∗ ∈ P

J#(p∗) = Jbst.

It follows that G∗
1(p

∗) and G∗
3(p

∗) are singular because the opposite would imply that
γ∗ 6= Jbst. Let w ∈ R

l1 , w 6= 0, be such that G∗
1(p

∗)w = 0. As proved in the proof of
Theorem 3.1, one has S∗

i (p) ≥ 0 and H∗
i,j(p) ≥ 0 for all p ∈ R

q. This implies that

0 ≤ w′S∗
1(p

∗)w

= w′



G∗
1(p

∗)−

q
∑

j=1

(1− (p∗j )
2)H∗

1,j(p
∗)



w

≤ w′G∗
1(p

∗)w

= 0.

Hence, S∗
1(p

∗) is singular, i.e., p∗ ∈ Z. Therefore, (32) holds. Let us observe that

0 = G∗
3(p

∗)

= x′0V
∗(p∗)x0 − γ∗.
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Since G∗
1(p

∗) is singular, it also follows that

x′0V
∗(p)x0 = J(K∗(p∗), p∗).

Hence, (33) holds. �

Theorem 3.2 provides a sufficient and necessary condition for establishing whether
the found lower bound γ∗ and the found controller K∗(p) solve Problem 1. In order
to check this condition, one can firstly determine the set Z in (30). This can be done
by observing that det(S∗

i (p)) = 0 if and only if there exists p such that

(b(p, δi)⊗ I) ∈ ker
(

S̄∗
i

)

(34)

where S̄∗
i is the optimal value of S̄i in the SDP (26). As explained in [8, 7], determining

the vectors p that solve (34) can be done through linear algebra operations. Once that
Z has been determined, one checks whether the vectors in this set satisfy (32).

3.2. Solution For Problem 2

Let us redefine G3(p) in (15) as

G3(p) =

(
∫

P

x′0V (p)x0dp

)

− γ. (35)

Theorem 3.3. Let us replace G3(p) in (15) with (35). For all dV one has

γ∗ ≤ Javg ≤

(
∫

P

J(K∗(p), p)dp

)

. (36)

Moreover, for all ε > 0 there exists d∗V such that, for all dV ≥ d∗V ,







Javg − ε ≤ γ∗ ≤ Javg

Javg ≤

(
∫

P

J(K∗(p), p)dp

)

≤ Javg + ε.
(37)

Proof. Let us start by considering the case where Javg < ∞. First, let us prove (36).
As in the proof of Theorem 3.1, one gets G∗

i (p) ≥ 0 for all p ∈ P. This implies

γ∗ ≤

∫

p∈P

x′0V
∗(p)x0dp.

From [3] one has

∫

p∈P

x′0V
∗(p)x0dp ≤ Javg

and, hence,

γ∗ ≤ Javg.
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Also, let us observe from (10) that

Javg ≤

(∫

p∈P

J(K∗(p), p)dp

)

since K(p) in (9) can be any matrix function. Hence, (36) follows. Finally, let us
observe that the solution of (26) does exist because its feasible set of (26) is closed
and the objective is bounded from below since

f = −γ ≥ −Javg

and Javg is finite. Second, let us prove (37). Let ε > 0, and let γ and V (p) be such
that



















Gi(p) > 0 ∀p ∈ P

Javg − ε ≤ γ
(∫

p∈P

J(K(p), p)dp

)

≤ Javg + ε

with K(p) = −R−1B(p)′V (p). As in the proof of Theorem 3.1, it follows that (37)
holds for all dV ≥ d∗V where d∗V is a sufficiently large integer. Lastly, the case where
Javg 6< ∞ can be addressed as done in the proof of Theorem 3.1. �

Theorem 3.3 explains how one can modify the SDP (26) in order for γ∗ to be a
lower bound of Javg for any chosen dV . Moreover, for all dV sufficiently large, the
lower bound γ∗ and the controller K∗(p) approximate arbitrarily well the solution of
Problem 2.

As said at the end of Section 2, the minimizer of Problem 2 is the parametric
optimal controller K#(p) in (5) independently on the initial condition of (1). This
means that Theorem 3.3 allows one to approximate arbitrarily well the parametric
optimal controller K#(p) with K∗(p), and, similarly, the solution of the parametric
ARE V #(p) with V ∗(p). See also Section 4 where this property is shown graphically
for some numerical examples.

3.3. Solution For Problem 3

Let z̄(p) be any polynomial such that

{

z̄(p) = zA(p)z3(p)

z̄(p) = zB(p)
2z4(p)

(38)
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for some polynomials z3(p), z4(p). Let us redefine Gi(p) in (15) as



































G1(p) =

(

g1(p) −z̄(p)V (p)

⋆ z̄(p)Q−1

)

G2(p) = V (p)

G3(p) =

(

γ x′0
⋆ V (p)

)

g1(p) = z4(p)B̄(p)R−1B̄(p)′ − z3(p)he(Ā(p)V(p)),

(39)

li in (16) as











l1 = 2n

l2 = n

l3 = n+ 1,

(40)

and f in (25) as

f = γ. (41)

Also, let us redefine the controller K∗(p) in (27) as

K∗(p) = −R−1B(p)′V ∗(p)−1. (42)

Theorem 3.4. Let us replace (15), (16), (25) and (27) with (39), (40), (41) and (42).
For all dV one has

Jwst ≤

(

sup
p∈P

J(K∗(p), p)

)

≤ γ∗. (43)

Moreover, for all ε > 0 there exists d∗V such that, for all dV ≥ d∗V ,

Jwst ≤

(

sup
p∈P

J(K∗(p), p)

)

≤ γ∗ ≤ Jwst + ε. (44)

Proof. Let us start by considering the case where Jwst < ∞. First, let us prove (43).
As in the proof of Theorem 3.1, one gets G∗

i (p) ≥ 0 for all p ∈ P. This implies

γ∗ ≥ sup
p∈P

x′0V
∗(p)−1x0.

Let us observe that G∗
1(p) ≥ 0 implies

0 ≤ B(p)R−1B(p)′ − he(V∗(p)A(p)′)−V∗(p)QV∗(p).

From [3] one has

x′0V
∗(p)−1x0 ≥ J#(p)
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and, hence,

sup
p∈P

x′0V
∗(p)−1x0 ≥ Jwst.

Consequently,

γ∗ ≥ Jwst.

Also, let us observe from (11) that

Jwst ≤

(

sup
p∈P

J(K∗(p), p)

)

since K(p) in (11) can be any matrix function. Moreover,

x′0V
∗(p)−1x0 ≥ J(K∗(p), p).

Therefore, (43) follows. Finally, let us observe that the solution of (26) does exist
because its feasible set of (26) is closed and the objective is bounded from below since

f = γ ≥ Jwst

and Jwst is finite. Second, let us prove (44). Let ε > 0, and let γ and V (p) be such
that











Gi(p) > 0 ∀p ∈ P

Jwst ≤

(

sup
p∈P

J(K(p), p)

)

≤ γ ≤ Jwst + ε

with K(p) = −R−1B(p)′V (p)−1. Such γ and V (p) do exist, for instance one can choose
γ = Jwst+ε1 and V (p) = (1−ε2)V

#(p) where V #(p) is the solution of the parametric
ARE (6), ε2 is a sufficiently small positive scalar, and ε1 ∈ (Jwstε2/(1 − ε2), ε). As
in the proof of Theorem 3.1, it follows that (44) holds for all dV ≥ d∗V where d∗V is a
sufficiently large integer. Lastly, let us consider the case where Jwst 6< ∞. From the
previous case it directly follows that the feasible set of (26) is empty. Hence, (43)–(44)
hold. �

Theorem 3.4 explains how one can modify the SDP (26) in order for γ∗ to be an
upper bound of Jwst for any chosen dV . Moreover, for all dV sufficiently large, the
upper bound γ∗ and the controller K∗(p) approximate arbitrarily well the solution of
Problem 3.

Theorem 3.5. Let us suppose Jwst < ∞. Let us replace (15), (16) and (25) with

(39), (40) and (41). The lower bound γ∗ satisfies

Jwst = γ∗ (45)
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if and only if there exists p∗ ∈ R
q such that (32) holds. Moreover, for such p∗,

Jwst = J(K∗(p∗), p∗). (46)

Proof. (Sufficiency) Suppose that there exists p∗ ∈ R
q such that (32). It follows that

G∗
1(p

∗) and G∗
3(p

∗) are singular, and this implies that V ∗(p∗) is the minimizer of

inf
W

x′0W
−1x0

s.t.

{

0 < W

0 < B(p∗)R−1B(p∗)′ − he(WA(p∗)′)−WQW.

From [3] this means that

γ∗ = x′0V
∗(p∗)−1x0 = J(K∗(p∗), p∗) = J#(p∗).

From (11) it follows that

Jwst ≥ γ∗

and from Theorem 3.1 we also have

γ∗ ≥ Jwst.

(Necessity) Suppose that Jwst = γ∗. Let p∗ be the maximizer of p in (11). We have

{

p∗ ∈ P

J#(p∗) = Jwst.

It follows that G∗
1(p

∗) and G∗
3(p

∗) are singular because the opposite would imply that
γ∗ 6= Jwst. As proved in the proof of Theorem 3.2, one has that S∗

1(p
∗) is singular, i.e.,

p∗ ∈ Z. Therefore, (32) holds. Let us observe that the singularity of G∗
3(p

∗) implies

γ∗ = x′0V
∗(p∗)−1x0.

Moreover, the singularity of G∗
1(p

∗) implies

x′0V
∗(p)−1x0 = J(K∗(p∗), p∗).

Hence, (46) holds. �

Theorem 3.5 provides a sufficient and necessary condition for establishing whether
the upper bound γ∗ and the controller K∗(p) found with Theorem 3.2 solve Problem
3.
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4. Examples

In this section we present some illustrative examples of the proposed methodology. The
SDP (26) is solved with the toolbox SeDuMi [22] for Matlab on a standard computer
with Windows 10, Intel Core i7, 3.4 GHz, 8 GB RAM.

For comparison, the method in [15] is considered, which addresses the problem
of finding a robust LQR (i.e., an LQR independent on the parameters that achieve
a guaranteed upper bound on the cost for all parameters) in the case of polytopic
systems (i.e., systems affected linearly by parameters constrained into a polytope).
This problem is a subproblem of our Problem 3, since in the latter the LQR is allowed
to be parametric.

4.1. Example 1

In this first example we consider a simple model for illustrating the proposed results,
in particular







ẋ(t) =

(

0 1
−1− 2p −1 + p

)

x(t) +

(

0
1

)

u(t)

p ∈ [−1, 1].

The goal is to solve Problems 1–3 with the choice

Q =

(

2 0
0 1

)

, R = 1/2, x0 =

(

1
1

)

.

4.1.1. Solving Problem 1

Using dV = 0 we find the lower bound γ∗ = 2.233 and the controller

K∗(p) = (−0.539,−0.491)

which are guaranteed to satisfy (28) from Theorem 3.1. We also obtain Z = {0},
however p∗ = 0 does not satisfy (32). From Theorem 3.2 we conclude that the found
lower bound is not tight.

In order to get less conservative results, we increase dV . Using dV = 1 we find the
lower bound γ∗ = 3.759 and the controller

K∗(p) = (0.615p − 1.135,−0.271p − 1.294).

We also obtain Z = {0.681}, however p∗ = 0.681 does not satisfy (32).
Hence, we use dV = 2, finding the lower bound γ∗ = 3.791 and the controller

K∗(p) = (0.087p2 + 0.681p − 1.173, 0.11p2 − 0.39p − 1.293).

We also obtain Z = {0.316}, and p∗ = 0.316 satisfies (32). From Theorem 3.2 we
conclude that the found lower bound is tight, i.e., Jbst = 3.791.

Figure 1 shows, for dV = 0, 1, 2, the lower bound γ∗ and the cost J(K∗(p), p)
for some values of the parameter. The figure also shows the true cost J#(p) in (3)
found by brute force. The number of LMI scalar variables with dV = 2 is 51 and the
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computational time is less than 1 second.
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p

Figure 1. Example 1, Problem 1. Lower bound γ∗ (solid line) and cost J(K∗(p), p) (“×” mark) for dV = 0
(red color), dV = 1 (green color) and dV = 2 (blue color). The figure also shows the true cost J#(p) (black
“◦” mark).

4.1.2. Solving Problem 2

Using dV = 0 we find the lower bound γ∗ = 4.467 and the controller

K∗(p) = (−0.539,−0.491)

which are guaranteed to satisfy (36) from Theorem 3.3.
In order to get less conservative results, we increase dV . Using dV = 1 we find the

lower bound γ∗ = 7.956 and the controller

K∗(p) = (1.024p − 1.225,−0.125p − 1.305).

Also, using dV = 2 we find the lower bound γ∗ = 9.521 and the controller

K∗(p) = (−0.592p2 + 1.212p − 1.215,−0.299p2 − 0.13p − 1.3).

Figure 2 shows, for dV = 0, 1, 2, the cost J(K∗(p), p) for some values of the
parameter. The figure also shows the true cost J#(p) in (3) found by brute force. The
number of LMI scalar variables with dV = 2 is 51 and the computational time is less
than 1 second.

Figure 3 shows, for dV = 0, . . . , 4, the controller K∗(p) for some values of the
parameter. The figure also shows the true controller K#(p) in (5) found by brute force.
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Figure 2. Example 1, Problem 2. Cost J(K∗(p), p) (“×” mark) for dV = 0 (red color), dV = 1 (green color)
and dV = 2 (blue color). The figure also shows the true cost J#(p) (black “◦” mark).

As we can see, the controller K∗(p) approximates arbitrary well K#(p) as dV increases.

4.1.3. Solving Problem 3

Using dV = 0 we find the upper bound γ∗ = 11.176 and the controller

K∗(p) = (−3.332,−3.557)

which are guaranteed to satisfy (43) from Theorem 3.4. We also obtain Z = ∅. From
Theorem 3.5 we conclude that the found upper bound is not tight.

In order to get less conservative results, we increase dV . Using dV = 1 we find the
upper bound γ∗ = 9.105 and the controller

K∗(p) =
(9.632p − 11.056, 3.259p − 7.472)

−0.085p2 − 2.744p + 3.693
.

As in the previous case, we also obtain Z = ∅.
Hence, we use dV = 2, finding the upper bound γ∗ = 8.950 and the controller

K∗(p) =

(

−5.153p2 + 12.689p − 9.783
−0.263p2 + 4.065p − 8.746

)′

−0.506p4 + 0.626p3 + 2.191p2 − 3.784p + 3.693
.

We also obtain Z = {−1}, and p∗ = −1 satisfies (32). From Theorem 3.5 we conclude
that the found upper bound is tight, i.e., Jwst = 8.950.

Figure 4 shows, for dV = 0, 1, 2, the upper bound γ∗ and the cost J(K∗(p), p)
for some values of the parameter. The figure also shows the true cost J#(p) in (3)
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Figure 3. Example 1, Problem 2. Controller K∗(p) = (k1, k2) for some values of the parameter (“×” mark)
for dV = 0 (red color), dV = 1 (green color), dV = 2 (blue color), dV = 3 (cyan color) and dV = 4 (magenta
color). The figure also shows the true controller K#(p) = (k1, k2) (black “◦” mark).

found by brute force. The number of LMI scalar variables with dV = 2 is 87 and the
computational time is less than 1 second.

For comparison, we consider the method in [15] as said at the beginning of this
section, which looks for a robust LQR (i.e., an LQR independent on the parameters
that achieve a guaranteed upper bound on the cost for all parameters). We find that
the cost guaranteed by the robust LQR found by this method is 17.901. This means
that the proposed approach provides a less conservative robust LQR in this case,
indeed, as we have seen above, for dV = 0 the cost guaranteed by the found LQR
(which is robust since independent on the parameters) is 11.176.

4.2. Example 2

In this second example we consider the model of an electric motor, specifically [11]

{

Jθ̈ + bθ̇ + sθ = Cia

Lai̇a +Raia = va −Dθ̇

where θ is the angle, ia is the current, J is the inertia, b is the friction, s is the stiffness,
C and D are coupling coefficients, La is the inductance, Ra is the resistance, and va
is the input voltage. Let us choose the plausible values

b = 0.3, s = 0.5, C = 0.6, La = 0.5, Ra = 2
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Figure 4. Example 1, Problem 3. Upper bound γ∗ (solid line) and cost J(K∗(p), p) (“×” mark) for dV = 0
(red color), dV = 1 (green color) and dV = 2 (blue color). The figure also shows the true cost J#(p) (black
“◦” mark).

and let us consider J and D parameters in some intervals, specifically

J ∈ [3, 7], D ∈ [0.5, 1.5].

By defining

{

x1 = θ, x2 = θ̇, x3 = ia, u = va

p1 = 0.5(J − 5), p2 = 2(D − 1),

the electric motor can be described as in (1) with

A(p) =





0 p1 + 2.5 0
−0.25 −0.15 0.3

0 −p1p2 − 2p1 − 2.5p2 − 5 −4p1 − 10





p1 + 2.5
, B(p) =





0
0
2



 .

We choose

Q = I, R = 1, x0 =





1
0
1



 .

Let us start by considering Problem 2. Using dV = 0, . . . , 3 we find the lower
bounds γ∗ = 12.253, 17.067, 18.602, 18.686. Figure 5 shows, for dV = 0, . . . , 3, the
controller K∗(p) for some values of the parameters. The figure also shows the true
controller K#(p) in (5) found by brute force. As we can see, the controller K∗(p)
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approximates arbitrary well K#(p) as dV increases.
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Figure 5. Example 2, Problem 2. Controller K∗(p) = (k1, k2, k3) for some values of the parameter (“×”
mark) for dV = 0 (red color), dV = 1 (green color), dV = 2 (blue color) and dV = 3 (cyan color). The figure
also shows the true controller K#(p) = (k1, k2, k3) (black “◦” mark).

Next, let us consider Problem 3. Using dV = 0, 1 we find the upper bounds
γ∗ = 9.016, 6.062. For dV = 1 we also obtain Z = {(1,−1)}, and p∗ = (1,−1)
satisfies (32). From Theorem 3.5 we conclude that the found upper bound is tight,
i.e., Jwst = 6.062.

In this example, we do not consider the method in [15] because it can be used only
in the case of polytopic systems, and the electric motor under investigation is not a
polytopic system since A(p) is not a linear function of p.

5. Conclusions

The problem of determining parametric LQRs for continuous-time LTI systems af-
fected by parameters has been addressed. Three situations of interest have been con-
sidered, where the sought controller has to minimize the best cost, average cost, and
worst cost, respectively, over the set of admissible parameters. It has been shown that
candidates for such controllers can be obtained by solving convex optimization prob-
lems with LMI constraints. These candidates are guaranteed to approximate arbitrarily
well the sought controllers by sufficiently increasing the size of the LMIs. In particular,
the candidate that minimizes the average cost approximates arbitrarily well the true
LQR over the set of admissible parameters. Moreover, conditions for establishing the
optimality of the found candidates have been provided.

Several directions could be explored in future work. For instance, one could in-
vestigate the extension of the proposed methodology to discrete-time LTI systems or
nonlinear systems.
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