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ABSTRACT

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids
as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and
philosophy behind PYSCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement
their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state
simulations. Finally, we describe the growing ecosystem of projects that use PYSCF across the domains of quantum chemistry, materials

science, machine learning, and quantum information science.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006074

. INTRODUCTION

This article describes the current status of the Python Simu-
lations of Chemistry Framework, also known as PYSCF, as of ver-
sion 1.7.1. The PySCF project was originally started in 2014 by
Sun, then in the group of Chan, in the context of developing a
tool to enable ab initio quantum embedding calculations. However,
it rapidly outgrew its rather specialized roots to become a general
purpose development platform for quantum simulations and elec-
tronic structure theory. The early history of PYSCF is recounted
in Ref. 1. Now, PYSCF is a production ready tool that implements
many of the most commonly used methods in molecular quan-
tum chemistry and solid-state electronic structure. Since its incep-
tion, PYSCF has been a free and open-source package hosted on
Github’ and is now also available through pip,’ conda,” and a num-
ber of other distribution platforms. It has a userbase numbering
in the hundreds and over 60 code contributors. Beyond chem-
istry and materials science, it has also found use in the areas of
data science,”” machine learning,” "’ and quantum computing'* '®
in both academia and industry. To mark its transition from a
code developed by a single group to a broader community effort,
the leadership of PySCF was expanded in 2019 to a board of
directors.”

While the fields of quantum chemistry and solid-state elec-
tronic structure are rich with excellent software,'* > the develop-
ment of PYSCF is guided by some unique principles in the order of
priority as follows:

1. PySCF should be more than a computational tool; it should be
a development platform. We aim for users to be empowered
to modify the code, implement their own methods without the
assistance of the original developers, and incorporate parts of
the code in a modular fashion into their own projects.

2. Unlike many packages that focus on either molecular chem-
istry or materials science applications, PYSCF should support
both equally, allowing calculations on molecules and materials
to be carried out in the same numerical framework and with
the same theoretical approximations.

3. PySCF should enable users outside of the chemical sciences
(such as workers in machine learning and quantum informa-
tion theory) to carry out quantum chemistry simulations.

In the remainder of this article, we elaborate on these guid-
ing principles of PYSCF, describing how they have impacted the
program design and implementation and how they can be used
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to implement a new functionality in new projects. We provide a
brief summary of the implemented methods and conclude with an
overview of the PYSCF ecosystem in different areas of science.

Il. THE DESIGN PHILOSOPHY BEHIND PySCF

All quantum simulation workflows naturally require some level
of programming and customization. This may arise in simple tasks,
such as scanning a potential energy surface, tabulating results, or
automating input generation, or in more advanced use cases that
include more substantial programming, such as with complex data
processing, incorporating logic into the computational workflow, or
when embedding customized algorithms into the computation. In
either case, the ability to program with and extend one’s simulation
software greatly empowers the user. PySCF is designed to serve as a
basic program library that can facilitate custom computational tasks
and workflows as well as form the starting point for the development
of new algorithms.

To enable this, PYSCF is constructed as a library of modular
components with a loosely coupled structure. The modules provide
easily reusable functions with (where possible) simple implementa-
tions, and hooks are provided within the code to enable extensibility.
Optimized and competitive performance is, as much as possible, sep-
arated out into a small number of lower level components that do not
need to be touched by the user. We elaborate on these design choices
below.

A. Reusable functions for individual suboperations

It is becoming common practice to provide a Python script-
ing interface for input and simulation control. However, PYSCF goes
beyond this by providing a rich set of Python APIs (Application Pro-
gramming Interfaces) not only for the simulation models but also
for many of the individual sub-operations that compose the algo-
rithms. For example, after input parsing, a mean-field Hartree-Fock
(HF) or density functional theory (DFT) algorithm comprises many
steps, including integral generation, guess initialization, assembling
components of the Fock matrix and diagonalizing, and accelerat-
ing iterations to self-consistent convergence. All of these suboper-
ations are exposed as PYSCF APIs, enabling one to rebuild or modify
the self-consistent algorithm at will. Similarly, APIs are exposed for
other essential components of electronic structure algorithms, such
as integral transformations, density fitting, Hamiltonian manipula-
tion, various many-electron and Green’s functions solvers, compu-
tation of derivatives, relativistic corrections, and so forth, in essence
across all the functionality of PYSCF. The package provides a large
number of examples to demonstrate how these APIs can be used in
customized calculations or methodology development.

With at most some simple initialization statements, the PyYSCF
APIs can be executed at any place and in any order within a code
without side-effects. This means that when implementing or extend-
ing the code, the user does not need to retain information on the
program state and can focus on the physical theory of interest. For
instance, using the above example, one can call the function to build
a Fock matrix from a given density matrix anywhere in the code,
regardless of whether the density matrix in question is related to
a larger simulation. From a programming design perspective, this
is because within PYSCF, no implicit global variables are used and

ARTICLE scitation.org/journalljcp

functions are implemented free of side effects (or with minimal side
effects) in a largely functional programming style. The PySCF func-
tion APIs generally follow the Numpy/Scipy API style. In this conven-
tion, the input arguments are simple Python built-in datatypes or
Nuwmpy arrays, avoiding the need to understand complex objects and
structures.

B. Simple implementations

Python is among the simplest of the widely used programming
languages and is the main implementation language in PySCF. Apart
from a few performance critical functions, over 90% of PYSCF is
written in Python, with dependencies on only a small number of
common external Python libraries (Numpy, Scipy, and H5pY).

Implementation language does not hide organizational com-
plexity, however, and structural simplicity in PYSCF is achieved via
additional design choices. In particular, PYSCF uses a mixed object
oriented/functional paradigm: complex simulation data (e.g., data
on the molecular geometry or cell parameters) and simulation mod-
els (e.g., whether a mean-field calculation is a HF or DFT one)
are organized in an object oriented style, while individual function
implementations follow a functional programming paradigm. Deep
object inheritance is rarely used. Unlike packages where external
input configuration files are used to control a simulation, the sim-
ulation parameters are simply held in the member variables of the
simulation model object.

Where possible, PYSCF provides multiple implementations of
the same algorithm with the same API: one is designed to be easy
to read and simple to modify, and another is for optimized per-
formance. For example, the full configuration interaction module
contains both a slower but simpler implementation and heavily opti-
mized implementations, specialized for specific Hamiltonian sym-
metries and spin types. The optimized algorithms have components
that are written in C. This dual level of implementation mimics the
Python convention of having modules in both pure Python and C
with the same API (such as the proriLE and cProriLe modules of the
Python standard library). It also reflects the PYSCF development
cycle, where often a simple reference Python implementation is first
produced before being further optimized.

C. Easily modified runtime functionality

In customized simulations, it is often necessary to modify the
underlying functionality of a package. This can be complicated in
a compiled program due to the need to consider detailed types
and compilation dependencies across modules. In contrast, many
parts of PYSCF are easy to modify due to the design of PYSCF
as well as the dynamic runtime resolution of methods and “duck
typing” of Python. Generally speaking, one can modify the func-
tionality in one part of the code without needing to worry about
breaking other parts of the package. For example, one can mod-
ify the HF module with a custom Hamiltonian without consider-
ing whether it will work in a DFT calculation; the program will
continue to run so long as the computational task involves HF
and post-HF methods. Furthermore, Python “monkey patching”
(replacing functionality at runtime) means that core PySCF rou-
tines can be overwritten without even touching the code base of the
library.
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D. Competitive performance

In many simulations, performance is still the critical considera-
tion. This is typically the reason for implementing code in compiled
languages such as Forrran or C/C++. In PySCF, the performance
gap between Python and compiled languages is partly removed by
a heavy reliance on Nuwmpy and Scipy, which provide Python APIs
to optimized algorithms written in compiled languages. Additional
optimization is achieved in PYSCF with custom C implementations
where necessary. Performance critical spots, which occur primar-
ily in the integral and tensor operations, are implemented in C and
heavily optimized. The use of additional C libraries also allows us
to achieve thread-level parallelism via OpenMP, bypassing Python’s
intrinsic multithreading limitations. Since a simulation can often
spend over 99% of its runtime in the C libraries, the overhead due to
the remaining Python code is negligible. The combination of Python
with C libraries ensures that PySCF achieves leading performance in
many simulations.

111. A COMMON FRAMEWORK FOR MOLECULES
AND CRYSTALLINE MATERIALS

Electronic structure packages typically focus on either molec-
ular or materials simulations and are thus built around numerical
approximations adapted to either case. A central goal of PYSCF
is to enable molecules and materials to be simulated with com-
mon numerical approximations and theoretical models. Originally,
PySCF started as a Gaussian atomic orbital (AO) molecular code
and was subsequently extended to enable simulations in a crystalline
Gaussian basis. Much of the seemingly new functionality required
in a crystalline materials simulation is, in fact, analogous to the
functionality in a molecular implementation, such as

1. Using a Bloch basis. In PYSCF, we use a crystalline Gaussian
AO basis, which is analogous to a symmetry adapted molecular
AO basis.

2. Exploiting translational symmetry by enforcing momentum
conservation. This is analogous to handling molecular point
group symmetries.

3. Handling complex numbers, given that the matrix elements
between Bloch functions are generally complex. This is anal-
ogous to the requirements of a molecular calculation with
complex orbitals.

Other modifications are unique to the crystalline material set-
ting, including

1. Techniques to handle divergences associated with the long-
ranged nature of the Coulomb interaction, since the classi-
cal electron-electron, electron—-nuclear, and nuclear-nuclear
interactions are separately divergent. In PySCF, this is han-
dled via the density fitting integral routines (see below) and
by evaluating certain contributions using Ewald summation
techniques.

2. Numerical techniques special to periodic functions, such as
the fast Fourier transform (FFT), as well as approximations
tailored to plane-wave implementations, such as certain pseu-
dopotentials. PYSCF supports mixed crystalline Gaussian and
plane-wave expressions using analytic integrals as well as FFT
on grids.
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3. Techniques to accelerate convergence to the thermodynamic
limit. In PySCF, such corrections are implemented at the
mean-field level by modifying the treatment of the exchange
energy, which is the leading finite-size correction.

4. Additional crystal lattice symmetries. Currently, PyYSCF con-
tains only experimental support for additional lattice symme-
tries.

In PySCF, we identify the three-index density fitted integrals
as the central computational intermediate that allows us to largely
unify molecular and crystalline implementations. This is because

1. three-center “density-fitted” Gaussian integrals are key to fast
implementations;

2. the use of the FFT to evaluate the potential of a pair density
of AO functions, which is needed in fast DFT implementa-
tions with pseudopotentials,” is formally equivalent to density
fitting with plane-waves;

3. the density fitted integrals can be adjusted to remove the
Coulomb divergences in materials;”’ and

4. three-index Coulomb intermediates are sufficiently compact
that they can be computed even in the crystalline setting.

PySCF provides a unified density fitting API for both molecules
and crystalline materials. In molecules, the auxiliary basis is assumed
to be Gaussian AOs, while in the periodic setting, different types
of auxiliary bases are provided, including plane-wave functions [in
the FFTDF (Fast Fourier Transform Density Fitting) module], crys-
talline Gaussian AOs [in the GDF (Gaussian Density Fitting) mod-
ule], and mixed plane-wave-Gaussian functions [in the MDF (Gaus-
sian and Planewave Mixed Density Fitting) module].” Different
auxiliary bases are provided in periodic calculations as they are
suited to different AO basis sets: FFTDF is efficient for smooth AO
functions when used with pseudopotentials, GDF is more efficient
for compact AO functions, and MDF allows a high accuracy treat-
ment of the Coulomb problem, regardless of the compactness of the
underlying atomic orbital basis.

Using the above ideas, the general program structure, imple-
mentation, and simulation workflow for molecular and materials
calculations become very similar. Figure 1 shows an example of the
computational workflow adopted in PySCF for performing molec-
ular and periodic post-HF calculations. The same driver functions
can be used to carry out generic operations such as solving the
HF equations or coupled cluster amplitude equations. However,
the implementations of methods for molecular and crystalline sys-
tems bifurcate when evaluating k-point dependent quantities, such
as the three-center density-fitted integrals, Hamiltonians, and wave-
functions. Nevertheless, if only a single k-point is considered (and
especially at the ' point where all integrals are real), most molecu-
lar modules can be used to perform calculations in crystals without
modification (see Sec. V).

IV. DEVELOPING WITH PySCF: CASE STUDIES

In this section, we walk through some case studies that illus-
trate how the functionality of PySCF can be modified and extended.
We focus on cases that might be encountered by the average user
who does not want to modify the source code but wishes to assemble
different existing PySCF APIs to implement a new functionality.
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build molecule
mol=gto.Mole()

;

generate 3-center integrals
ints=df.DF (mol)
build SCF object
mf=scf.HF (mol)
mf.with_df=ints

|

v

start SCF iterations
scf.kernel(mf)

l

build unit cell
mol=pbc.gto.Cell()
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generate 3-center integrals for
unique k-point triplets
ints=pbc.df.DF(mol, kpts)
build SCF object
mf=pbc.scf. KHF (mol,kpts)
mf.with_df=ints

v

build Fock matrix _ Yes . % No
mf.with_df.get jk() [fmeleculos

build Fock matrix
——>» for each k point
mf.with_df.get_jk()

v

diagonalize Fock matrix;
update density matrix

if No

converged?

Yesl

converged SCF

|

v

build post-HF object
mycc=cc.CCSD(mf)

v

build post-HF object
mycc=pbc.cc.KCCSD(mf)

|

No for unique k-point triplets:

if molecule?

iYes

AO-to-MO tranformation
mycc._scf.with_df.ao2mo()

—>» AO-to-MO transformation
mycc._scf.with_df.ao2mo()

l

iteratively solve for
—» wavefunctions
cc.kernel(mycc)

Yes
converged post-HF «——

Yes

update wavefunctions
— cc.update_amps(mycc)

.

if
converged?

lNo

if molecule or No
cell with
single k point?

for each k point or
unique k-point triplets:
update wavefunctions
pbc.cc.kcesd.update_amps(mycc)

FIG. 1. lllustration of the program workflow for molecular and periodic calculations. The orange and purple boxes indicate functions that are k-point independent and k-point
dependent, respectively; the blue boxes indicate generic driver functions that can be used in both molecular and periodic calculations.
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A. Case study: Modifying the Hamiltonian independently of any specific Hamiltonian with up to two-body
interactions. Consequently, the Hamiltonian under study can be
In PySCF, simulation models (i.e., different wavefunction easily customized by the user, which is useful for studying model

approximations) are always implemented such that they can be used problems or, for example, when trying to interface to different

import numpy
import pyscf

mol = pyscf.M()

n = 10
mol.nelectron = n

# Define model Hamiltonian: tight binding on a ring
hl = numpy.zeros((n, n))
for i in range(n-1):
hi[i, i+1] = hi[i+1, i] = -1.
hi[n-1, 0] = h1[0, n-1] = -1.

# Build the 2-electron interaction tensor starting from a random 3-index tensor.
tensor = numpy.random.rand(2, n, n)

tensor = tensor + tensor.transpose(0, 2, 1)

eri = numpy.einsum(’xpq,xrs->pqrs’, tensor, tensor)

# SCF for the custom Hamiltonian

mf = mol.HF()

mf.get_hcore = lambda *args: hil

mf .get_ovlp = lambda *args: numpy.eye(n)

# Option 1: overwrite the attribute mf._eri for the 2-electron interactions
mf._eri = eri
mf .run()

# Option 2: introduce the 2-electron interaction through the Cholesky decomposed tensor.
dfmf = mf.density_£fit()

dfmf.with_df._cderi = tensor

dfmf . run()

# Option 3: define a custom HF potential method

def get_veff(mol, dm):
J = numpy.einsum(’xpq,xrs,pq->rs’, tensor, tensor, dm)
K = numpy.einsum(’xpq,xrs,qr->ps’, tensor, tensor, dm)
return J - K * .5

mf.get_veff = get_veff

mf .run()

# Call the second order SCF solver in case converging the DIIS-driven HF method
# without a proper initial guess is difficult.
mf = mf.newton().run()

# Run post-HF methods based on the custom SCF object
mf .MP2() .run()

mf.CISD() .run()

mf .CCSD() .run()

mf .CASSCF (4, 4).run()

mf.CASCI(4, 4).run().NEVPT2() .run()

mf . TDHF () .run()

mf.CCSD() .run() .EOMIP() .run()

mc = shci.SHCISCF(mf, 4, 4).run()

mc = dmrgscf.DMRGSCF(mf, 4, 4).run()

FIG. 2. Hamiltonian customization and post-HF methods for customized Hamiltonians.
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numerical basis approximations. Figure 2 shows several different
ways to define one-electron and two-electron interactions in the
Hamiltonian followed by subsequent ground and excited state cal-
culations with the custom Hamiltonian. Note that if a method is not
compatible with or well defined using the customized interactions,
for instance, in the case of solvation corrections, PYSCF will raise a
Python runtime error in the place where the requisite operations are
ill-defined.

B. Case study: Optimizing orbitals of arbitrary
methods

The PYSCF MCSCF module provides a general purpose quasi-
second order orbital optimization algorithm within orbital sub-
spaces (e.g., active spaces) as well as over the complete orbital space.
In particular, it is not limited to the built-in CASCI, CASSCF, and
multi-reference correlation solvers but allows orbital optimization
of any method that provides energies and one- and two-particle

ARTICLE scitation.org/journalljcp

density matrices. For this reason, PYSCF is often used to carry
out active space orbital optimization for DMRG (density matrix
renormalization group), selected configuration interaction, and full
configuration interaction quantum Monte Carlo wavefunctions via
its native interfaces to Block” (DMRG), CheMPS2’’ (DMRG),
Dice’' ** (selected CI), Arrow’ """ (selected CI), and NECI’”
[FCIQMC (full configuration interaction quantum Monte Carlo)].

In addition, it is easy for the user to use the MCSCF module
to optimize orbitals in electronic structure methods for which the
orbital optimization API is not natively implemented. For exam-
ple, although orbital-optimized MP2" is not explicitly provided in
PYSCF, a simple version of it can easily be performed using a short
script, as shown in Fig. 3. Without any modifications, the orbital
optimization will use a quasi-second order algorithm. We see that
the user only needs to write a simple wrapper to provide two func-
tions, namely, make_rdm12, which computes the one- and two-
particle density matrices, and kernel, which computes the total
energy.

import numpy
import pyscf
class MP2AsFCISolver (object):

def kernel(self, hl, h2, norb, nelec, ciO=None, ecore=0, **kwargs):
# Kernel takes the set of integrals from the current set of orbitals

fakemol = pyscf.M(verbose=0)
fakemol.nelectron = sum(nelec)
fake_hf = fakemol.RHF()
fake_hf._eri = h2

fake_hf.get_hcore = lambda *args: hl
fake_hf.get_ovlp = lambda *args: numpy.eye(norb)

# Build an SCF object fake_hf without SCF iterations to perform MP2

fake_hf.mo_coeff = numpy.eye(norb)
fake_hf.mo_occ = numpy.zeros(norb)

fake_hf.mo_occ[:fakemol.nelectron//2] = 2

self.mp2 = fake_hf.MP2().run()

return self.mp2.e_tot + ecore, self.mp2.t2

def make_rdmi2(self, t2, norb, nelec):

dml = self.mp2.make_rdml(t2)
dm2 self .mp2.make_rdm2(t2)
return dml, dm2

mol = pyscf.M(atom="H 0 0 O; F 0 0 1.1°, basis=’ccpvdz’)

mf = mol.RHF().run()

# Put in the active space all orbitals of the system
mc = pyscf.mcscf.CASSCF(mf, mol.nao, mol.nelectron)

mc.fcisolver = MP2AsFCISolver()

# Internal rotation inside the active space needs to be enabled

mc.internal_rotation = True
mc.kernel ()

FIG. 3. Using the general CASSCF solver to implement an orbital-optimized MP2 method.
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C. Case study: Implementing an embedding model we define an embedding Hamiltonian for the fragment in the pres-

- . ence of the atoms in the environment as
As a more advanced example of customization using PySCF, we

now illustrate how a simple script with standard APIs enables PYSCF

to carry out geometry optimization for a wavefunction in Hartree- Hemb = Reftfrag + Veefrag>
Fock (WFT-in-HF) embedding model, as shown in Fig. 4 with a
configuration interaction with single and double excitations (CISD) hegtfrag = Pcore,frag + (Pcoreenv + Vegt[penv])

solver. Given the Hamiltonian of a system, expressed in terms of the

Hamiltonians of a fragment and its environment,
Veff[Penv] = / Vee,envpenv(r)dr + f Vee,frag-envpenv(r)dr-
Hsys = Hfrag + Henv + Vee,frag—env;

Hirag = ecore frag + Veefrags Geometry optimization can then be carried out with the approxi-
Henv = heoreenv + Veeenvs mate nuclear gradients of the embedding problem,

import pyscf

frag = pyscf.M(atom=’frag.xyz’, basis=’ccpvtz’)
env = pyscf.M(atom=’env.xyz’, basis=’sto-3g’)
sys = frag + env

def embedding_gradients(sys):
# Regular HF energy and nuclear gradients of the entire system
sys_hf = sys.HF().run()
grad_sys = sys_hf.Gradients() .kernel()

# Construct a CASCI-like effective 1-electron Hamiltonian for the fragment

# with the presence of outlying atoms in the environment. dm_env is the

# density matrix in the environment block

dm_env = sys_hf.make_rdmil ()

dm_env[frag.nao:,:] = dm_env[:,frag.nao:] = 0

frag_hcore_eff = (sys_hf.get_hcore() + sys_hf.get_veff(sys, dm_env)) [:frag.nao, :frag.nao]

# Customize the zeroth order calculation by overwriting the core Hamiltonian.
# HF and CISD now provide the embedding wavefunction on fragment.

geom_frag = sys.atom_coords(unit=’Angstrom’) [:frag.natm]
frag.set_geom_(geom_frag)

frag_hf = frag.HF()

frag_hf.get_hcore = lambda *args: frag_hcore_eff

frag_hf.run() O

frag_ci = frag hf.CISD().run()

# The .Gradients() method enables a regular analytical nuclear gradient object
# to evaluate the Hellmann-Feynman forces on fragment using the first order

# derivatives of the original fragment Hamiltonian and the variational

# embedding wavefunction.

grad_hf_frag = frag_hf.Gradients() .kernel()

grad_ci_frag = frag_ ci.Gradients().kernel()

# Approximate the energy and gradients of the entire system with the post-HF
# correction on fragment

approx_e = sys_hf.e_tot + frag_ ci.e_tot - frag hf.e_tot

approx_grad = grad_sys

approx_grad[:frag.natm] += grad_ci - grad_hf

print (’Approximate gradients:\n’, approx_grad)

return approx_e, approx_grad

new_sys = pyscf.geomopt.as_pyscf_method(sys,\
embedding_gradients) .Gradients() .optimizer () .kernel()

FIG. 4. An advanced example that implements geometry optimization based on a WFT-in-HF embedding model using standard PYSCF APIs.
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where the fragment wavefunctions Wrag r and Weqgcr are obtained
from the embedding Hamiltonian Hepp. The code snippet in Fig. 4
demonstrates the kind of rapid prototyping that can be carried out

+ (‘I’HF O(Heny + Vee, frag-env) ‘I’HF) using PYSCF APIs. In particular, this demonstration combines the
[2).¢ APIs for ab initio energy evaluation, analytical nuclear gradient
OHpg OHpeg computation, computing the HF potential for an arbitrary density
= (‘Pc ‘I’CI) - ( Whr ‘{’HF) matrix, Hamiltonian customization, and customizing the nuclear
0X 0X . . R
gradient solver in a geometry optimization.
+ (‘I’HF Oy \PHF>
0X
OH, OH, V. SUMMARY OF EXISTING METHODS AND RECENT
~ (‘Pfrag,CI aTg \Pfrag,CI> - (‘Pfrag,HF aTg \Pfrag,HF> ADDITIONS
In this section, we briefly summarize major current capabilities
+ ("PHF OHsys Yp >’ of the PYSCF package. These capabilities are listed in Table I, and the
ox details are presented in Subsections V A-V H.
TABLE I. Major features of PYSCF as of version 1.7.1.
Methods Molecules Solids Comments
HF Yes Yes ~10000 AOs"
MP2 Yes Yes ~1500 MOs"
DFT Yes Yes ~10000 AOs"
TDDFT/TDHEF/TDA/CIS Yes Yes ~10000 AOs"
GoWo Yes Yes ~1500 MOs"
CISD Yes Yes ~1500 MOs'’
FCI Yes Yes” ~(18e, 180)"
IP/EA-ADC(2) Yes No ~500 MOs™*
IP/EA-ADC(2)-X Yes No ~500 MOs™*“
IP/EA-ADC(3) Yes No ~500 MOs™*“
CCSD Yes Yes ~1500 MOs*
CCSD(T) Yes Yes ~1500 MOs*
IP/EA/EE-EOM-CCSD" Yes Yes ~1500 MOs"
MCSCF Yes Yes® ~3000 AOs," 30-50 active orbitals®
MRPT Yes Yes” ~1500 MOs," 30-50 active orbitals®
QM/MM Yes No
Semiempirical Yes No MINDO3
Relativity Yes No ECP and scalar-relativistic corrections for all methods; two-component methods
for HF, DFT, DMRG, and SHCI; four-component methods for HF and DFT
Gradients Yes No HF, MP2, DFT, TDDFT, CISD, CCSD, CCSD(T), MCSCF, and MINDO3
Hessian Yes No HF and DFT
Orbital localizer Yes Yes NAO, meta-Lowdin, IAO/IBO, VVO/LIVVO, Foster-Boys, Edmiston-Ruedenberg,
Pipek-Mezey, and maximally localized Wannier functions
Properties Yes Yes' EFGs, M0ssbauer spectroscopy, NMR, magnetizability, and polarizability
Solvation Yes No ddCOSMO, ddPCM, and polarizable embedding
AO, MO integrals Yes Yes One-electron and two-electron integrals
Density fitting Yes Yes HEF, DFT, MP2, and CCSD
Symmetry Yes No® Dy, and subgroups for molecular HF, MCSCF, and FCI

*An estimate based on a single SMP node with 128 GB memory without density fitting.

“T-point only.

“In-core implementation limited by storing two-electron integrals in memory.

4Perturbative corrections to IP and EA via IP-EOM-CCSD#* and EA-EOM-CCSD* are available for both molecules and crystals.
“Using an external DMRG, SHCI, or FCIQMC program (as listed in Sec. IV B) as the active space solver.

fEFGs and Méssbauer spectra only.
8Experimental support for point-group and time-reversal symmetries in crystals at the SCF and MP2 levels.
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import pyscf

mol = pyscf.M(atom = N 0 0 0; N O 0 1.1’ , basis = ’ccpvdz’)

mf = mol.RKS()

mf .xc =’CAMB3LYP’

mf . xc ?270.19%SR_HF(0.33) + 0.65*LR_HF(0.33) + 0.46+ITYH + 0.35%B88, 0.19*%VWN5 + 0.81%LYP’’’
mf . xc ’RSH(0.33, 0.65, -0.46) + 0.46*ITYH + 0.35%B88, 0.19*VWN5 + 0.81*LYP’

e_mf = mf.kernel()

FIG. 5. An example of two customized RSH functionals that are equivalent to the CAM-B3LYP functional.

A. Hartree-Fock and density functional theory
methods

The starting point for many electronic structure simulations is a
self-consistent field (SCF) calculation. PYSCF implements Hartree-
Fock (HF) and density functional theory (DFT) with a variety
of Slater determinant references, including restricted closed-shell,
restricted open-shell, unrestricted, and generalized (noncollinear
spin) references,”””” for both molecular and crystalline (k-point)
calculations. Through an interface to the Lmixc” and XCFun"’
libraries, PYSCF also supports a wide range of predefined exchange-
correlation (XC) functionals, including the local density approxima-
tion (LDA), generalized gradient approximations (GGAs), hybrids,
meta-GGAs, nonlocal correlation functionals (VV10"'), and range-
separated hybrid (RSH) functionals. In addition to the predefined
XC functionals, the user can also create customized functionals in a
DFT calculation, as shown in Fig. 5.

Because PySCF uses a Gaussian AO representation, the SCF
computation is usually dominated by Gaussian integral evaluation.
Through the efficient Gaussian integral engine Liscint,” the molec-
ular SCF module can be used with more than 10 000 basis functions
on a symmetric multiprocessing (SMP) machine, without resorting
to any integral approximations such as screening. Further speed-up

I
—— All electron
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FIG. 6. All-electron and pseudopotential LDA band structures of the Si crystal.
Reprinted with permission from, Sun et al., J. Chem. Phys. 147, 164119 (2017).
Copyright 2017 AIP Publishing LLC.

can be achieved through Gaussian density fitting, and the pseudo-
spectral approach (SGX) is implemented to speed up the evaluation
of exchange in large systems.” "

In crystalline systems, HF and DFT calculations can be carried
out either at a single point in the Brillouin zone or with a k-point
mesh. The cost of the crystalline SCF calculation depends on the
nature of the crystalline Gaussian basis and the associated density
fitting. PYSCF supports Goedecker-Teter-Hutter (GTH) pseudopo-
tentials™ that can be used with the associated basis sets (developed
by the CP2K group).”*” Pseudopotential DFT calculations are typi-
cally most efficiently done using plane-wave density fitting (FFTDEF).
Alternatively, all-electron calculations can be performed with stan-
dard basis sets, and the presence of sharp densities means that Gaus-
sian density fitting performs better. Gaussian density fitting is also
the algorithm of choice for calculations with HF exchange. Figure 6
shows an example of the silicon band structures computed using
a GTH-LDA pseudopotential with FFTDF and in an all-electron
calculation using GDF.

B. Many-body methods

Starting from a SCF HF or DFT wavefunction, various many-
body methods are available in PYSCF, including Meller-Plesset
second-order perturbation theory (MP2), multi-reference perturba-
tion theory (MRPT),*** configuration interaction (CD," ™ cou-
pled cluster (CC),’ o multi-configuration self-consistent field
(MCSCE),**% algebraic diagrammatic construction (ADC),” 7" and
GoWy'" 7" methods. The majority of these capabilities are available
for both molecules and crystalline materials.

1. Molecular implementations

The PYSCF CI module implements solvers for configura-
tion interaction with single and double excitations (CISD) and a
general full configuration interaction (FCI) solver that can treat
fermion, boson, and coupled fermion-boson Hamiltonians. The
FCI solver is heavily optimized for its multithreaded performance
and can efficiently handle active spaces with up to 18 electrons in
18 orbitals.

The CC module implements coupled cluster theory with sin-
gle and double excitations (CCSD)**°' and with the perturba-
tive triples correction [CCSD(T)].”” A-equation solvers are imple-
mented to compute one- and two-particle density matrices as well
as the analytic nuclear gradients for the CCSD and CCSD(T)
methods.””*”” PYSCF also implements various flavors of equation-
of-motion CCSD to compute electron affinities (EAs), ionization
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FIG. 7. Energies of a hydrogen chain computed at the restricted CCSD and CCSD(T) levels extrapolated to the complete basis set (CBS) and thermodynamic limits. The
left-hand panel shows extrapolation of Ecgs(N) vs 1/N, where N is the number of atoms, while the right-hand panel shows extrapolation of Eccpyxz(N — oo) vs 1/x with x
equal to 2, 3, and 4 corresponding to double-, triple-, and quadruple-zeta basis, respectively. Adapted from Ref. 77.

potentials (IPs), neutral excitation energies (EEs), and spin—flip (SF) (@)
excitation energies.””*"***" Experimental support for beyond dou-

bles corrections to IP and EA via IP-EOM-CCSD*">’° and EA-

EOM-CCSD* is also available. For very large basis sets, PYSCF pro-

vides an efficient AO-driven pathway that allows calculations with

more than 1500 basis functions. An example of this is shown in

Fig. 7, where the largest CCSD(T) calculation contains 50 electrons

and 1500 basis functions.”’

Second- and third-order algebraic diagrammatic construction
(ADC) methods are also available in PYSCF for the calculation of
molecular electron affinities and ionization potentials” "’ [EA/IP-
ADC(n), n =2, 3]. These have a lower cost than EA/IP-EOM-CCSD.
The advantage of the ADC methods over EOM-CCSD is that their
amplitude equations can be solved in one iteration and the eigen-

value problem is Hermitian, which lowers the cost of computing the DMRG-CASSCF(22e, 270)

EA/IP energies and transition intensities. cc-pV5Z (~3000 AO functions)
The MCSCF module provides complete active space configura- E (°B,) = -2245.306 E,

tion interaction (CASCI) and complete active space self-consistent E (SAsj = -2245.312E,

field (CASSCF)***” methods for multi-reference problems. As dis- (b)

cussed in Sec. IV B, the module also provides a general second-
order orbital optimizer’® that can optimize the orbitals of external
methods, with native interfaces for the orbital optimization of the
density matrix renormalization group (DMRG),”" full configura-
tion interaction quantum Monte Carlo (FCIQMC),””” and selected
configuration interaction wavefunctions.’”*” Starting from a CASCI
or CASSCF wavefunction, PySCF also implements the strongly
contracted second-order n-electron valence perturbation theory™*’
(SC-NEVPT?2) in the MRPT module to include additional dynamic I e
correlation. Together with external active-space solvers, this enables e MR-AQCC(12,120)
one to treat relatively large active spaces for such calculations, as — Bt

. e o o 15 20 25 30 35
illustrated in Flg. 8. Bond length (Angstrom)

—0

Energy (eV)

—%— DMRG-SC-NEVPT2(12e,220)

2. Crystalline implementations FIG. 8. (a) Ground-state energy calculations for Fe(ll)-porphine at the DMRG-
: CASSCF/cc-pV5Z level with an active space of 22 electrons in 27 orbitals.”® (b)
As discussed in Sec. 11, the PYSCF implementations of many- Potential energy curve for Cr, at the DMRG-SC-NEVPT2 (12e, 220) level, com-
body methods for crystalline systems closely parallel their molecular pared to the results from other methods. Adapted \{vith permission frpm Guo etlal.,
implementations. In fact, all molecular modules can be used to carry J. Chem. Theory Comput. 12, 1583 (2016). Copyright (2016) American Chemical

Society.
out calculations in solids at the T-point, and many modules (those Y
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import pyscf
cell = pyscf.M(atom=..., a=...) # ’a’ defines lattice vectors

mf = cell.HF(kpt = [0.23,0.23,0.23]) .run()

# Use PBC CCSD class so integrals are handled
# correctly with respect to Coulomb divergences

mycc = pyscf.pbc.cc.CCSD(mf)

# molecular CCSD code used to compute correlation energy at single k-point
converged, ecorr = pyscf.cc.ccsd.kernel (mycc)

FIG. 9. lllustration of using the molecular code to compute an energy in the crystal at a single k-point.

supporting complex integrals) can be used at any other single k-
point. Such single k-point calculations only require the appropriate
periodic integrals to be supplied to the many-body solver (Fig. 9).
For those modules that support complex integrals, twist averag-
ing can then be performed to sample the Brillouin zone. To use
savings from k-point symmetries, an additional summation over
momentum conserving k-point contributions needs to be explic-
itly implemented. Such implementations are provided for MP2,
CCSD, CCSD(T), IP/EA-EOM-CCSD”” and EE-EOM-CCSD,*’ and
GoW,. For example, Fig. 10 shows the MP2 correlation energy
and the CIS excitation energy of MgO, calculated using periodic
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FIG. 10. Periodic MP2 correlation energy per unit cell (top) and CIS excitation
energy (bottom) as a function of the number of k-points sampled in the Brillouin
zone for the MgO crystal.

density-fitted implementations; the largest system shown, with a
7 x 7 x 7 k-point mesh, correlates 5488 valence electrons in 9261
orbitals. Furthermore, Fig. 11 shows some examples of periodic cor-
related calculations on NiO carried out using the Go W, and CCSD
methods.

C. Efficiency

In Table I, we provide rough estimates of the sizes of prob-
lems that can be tackled using PYSCF for each electronic structure
method. Figures 7, 8, 10, and 11 illustrate some real-world examples
of calculations performed using PySCF. Note that the size of sys-
tem that can be treated is a function of the computational resources
available; the estimates given above assume relatively standard and
modest computational resources, e.g., a node of a cluster, or a few
dozen cores. For more details of the runtime environment and pro-
gram settings for similar performance benchmarks, we refer readers
to the benchmark page of the PySCF website (www.PvSCF.org). The
implementation and performance of PYSCF on massively parallel
architectures is discussed in Sec. V H.

For molecular calculations using mean-field methods, PYSCF
can treat systems with more than 10000 AO basis functions with-
out difficulty. Figure 15 shows the time of building the Fock matrix
for a large water cluster with more than 12000 basis functions.
With the integral screening threshold set to 107" a.u., it takes only
around 7 h on one computer node with 32 CPU cores. Applying
MPI (Message Passing Interface) parallelization further reduces the
Fock-build time (see Sec. V H). For periodic boundary calculations
at the DFT level using pure XC functionals, even larger systems can
be treated using pseudopotentials and a multi-grid implementation.
Table IT presents an example of such a calculation, where for the
largest system considered ([H,O]s1» with more than 25000 basis
functions), the Fock-build time is about an hour or less on a single
node.

To demonstrate the efficiency of the many-body method imple-
mentations, in Tables 111 and IV, we show timing data of exemplary
CCSD and FCI calculations. It is clear that systems with more than
1500 basis functions can be easily treated at the CCSD level and
that the FCI implementation in PYSCF is very efficient. In a simi-
lar way, the estimated performance for other many-body methods
implemented in PySCF is listed in Table I.

D. Properties

At the mean-field level, the current PYSCF program can
compute various nonrelativistic and four-component relativistic
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FIG. 11. Electronic structure calculations for antiferromagnetic NiO. (a) Density of states and bandgaps computed by Gy W. (b) Normalized spin density on the (100) surface

by CCSD (the Ni atom is located at the center). Adapted from Ref. 81.

molecular properties. These include NMR shielding and spin-
spin coupling tensors,” " electronic g-tensors,”””’ nuclear spin-
rotation constants and rotational g-tensors,”*”” hyperfine cou-

pling (HFC) tensors,”””” electron spin-rotation (ESR) tensors, %’

TABLE II. Wall time (in seconds) for building the Fock matrix in a supercell DFT cal-
culation of water clusters with the GTH-TZV2P?54 basis set using the SVWN®” and
the PBE®® XC functionals and the corresponding pseudopotentials. Integral screen-
ing and lattice summation cutoff were controlled by an overall threshold of 106 a.u.
for Fock matrix elements. The calculations were performed on one computer node
with 32 Intel Xeon Broadwell (E5-2697v4) processors.

System Nao® SVWN PBE
[H20]32 1280 8 23
[H2O]64 2560 20 56
[H20] 128 5120 74 253
[H,0]236 12 800 276 1201
[H2O0]512 25600 1279 4823

*Number of AO basis functions.

TABLE Ill. Wall time (in seconds) for the first CCSD iteration in AO-driven CCSD cal-
culations on hydrogen chains. The threshold of integral screening was set to 10— '3
a.u. For these hydrogen chain molecules, CCSD takes around 10 iterations to con-
verge. The calculations were performed on one computer node with 28 Intel Xeon
Broadwell (E5-2697v4) processors.

System/basis set Noc" Nyirt” Time
H3o/cc-pVQZ 15 884 621

Hso/cc-pV5Z 15 1631 6887
Hso/cc-pVQZ 25 1472 8355

*Number of active occupied orbitals.
®Number of active virtual orbitals.

magnetizability tensors,””'""'"" zero-field splitting (ZFS) ten-

sors,'””'"* as well as static and dynamic polarizability and hyper-
polarizability tensors. The contributions from spin-orbit coupling
and spin-spin coupling can also be calculated and included in the
g-tensors, HFC tensors, ZFS tensors, and ESR tensors. In magnetic
property calculations, an approximate gauge-origin invariance is
ensured for NMR shielding, g-tensors, and magnetizability tensors
via the use of gauge including atomic orbitals.”"'?" 10319

Electric field gradients (EFGs) and Mdssbauer parame-
ters'”'"” can be computed using either the mean-field electron
density or the correlated density obtained from non-relativistic
Hamiltonians, spin-free exact-two-component (X2C) relativistic
Hamiltonians,"'* '** or four-component methods in both molecules
and crystals.

Finally, analytic nuclear gradients for the molecular ground
state are available at the mean-field level and for many of the elec-
tron correlation methods such as MP2, CCSD, CISD, CASCI, and
CASSCEF (see Table I). The CASCI gradient implementation sup-
ports the use of external solvers, such as DMRG, and provides gradi-
ents for such methods. PYSCF also implements the analytical gradi-
ents of time-dependent density functional theory (TDDFT) with or
without the Tamm-Dancoff approximation (TDA) for excited state
geometry optimization. The spin-free X2C relativistic Hamiltonian,

TABLE IV. Wall time (in seconds) for one FCl iteration for different active-space sizes.
The calculations were performed on one computer node with 32 Intel Xeon Broadwell
(E5-2697v4) processors.

Active space Time
(12e, 120) 0.1
(14e, 140) 0.7
(16e, 160) 8
(18e, 180) 156

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-13


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

frozen core approximations, solvent effects, and molecular mechan-
ics (MM) environments can be combined with any of the nuclear
gradient methods. Vibrational frequency and thermochemical anal-
ysis can also be performed using the analytical Hessians from mean-
field level calculations or numerical Hessians of methods based on
the numerical differentiation of analytical gradients.

E. Orbital localization

PySCF provides two kinds of orbital localizations in the LO
module. The first kind localizes orbitals based on the atomic charac-
ter of the basis functions and can generate intrinsic atomic orbitals
(IAOs),'"” natural atomic orbitals (NAOs),''° and meta-Léwdin
orbitals.""” These AO-based local orbitals can be used to carry out
a reliable population analysis in arbitrary basis sets.

The second kind optimizes a cost function to produce local-
ized orbitals. PySCF implements Boys localization,"'® Edmiston-
Ruedenberg localization, "’ and Pipek-Mezey localization.'”’ Start-
ing from the IAOs, one can also use orbital localization based on
the Pipek-Mezey procedure to construct the intrinsic bond orbitals
(IBOs).'"” A similar method can also be used to construct local-
ized intrinsic valence virtual orbitals that can be used to assign the
core-excited states."”’ The optimization in these localization rou-
tines takes advantage of the second order co-iterative augmented
Hessian (CIAH) algorithm122 for rapid convergence.

For crystalline calculations with k-point sampling, PySCF also
provides maximally localized Wannier functions (MLWFs) via a
native interface to the WanniEr90 program.'”’ Different types of
orbitals are available as initial guesses for the MLWFs, including the
atomic orbitals provided by Wannir90, meta-Léwdin orbitals,'"”
and localized orbitals from the selected columns of density matrix
(SCDM) method."**'** Figure 12 illustrates the IBOs and MLWFs of
diamond computed by PySCF.

F. QM/MM and solvent

PySCF incorporates two continuum solvation models, namely,
the conductor-like screening model'”® (COSMO) and the polariz-
able continuum model using the integral equation formalism'*"'**
(IEE-PCM). Both of them are implemented efficiently via a domain
decomposition (dd) approach'” '’ and are compatible with most
of the electronic structure methods in PYSCF. Furthermore, besides

equilibrium solvation where the solvent polarization is governed by

(@) (b)

FIG. 12. (a) IBOs for diamond at the T-point (showing one ¢ bond); (b) MLWFs for
diamond computed within the valence IAO subspace (showing one sp® orbital).
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FIG. 13. lllustration of P-cluster (the [FegS7] cluster of nitrogenase) calculations
where the COSMO solvation model was used to mimic the protein environment of
nitrogenase beyond the first coordination sphere. Fe, orange; S, yellow; C, cyan;
O, red; N, blue; H, white; Si, pink. Adapted from Ref. 134.

the static electric susceptibility, non-equilibrium solvation can also
be treated within the framework of TDDFT in order to describe
fast solvent response with respect to abrupt changes in the solute
charge density. As an example, in Ref. 134, the COSMO method was
used to mimic the protein environment of nitrogenase in electronic
structure calculations for the P-cluster (Fig. 13). For excited states
generated by TDA, the polarizable embedding model'*” can also be
used through an interface to the external library cpee.'”>'*°

Currently, PySCF provides some limited functionality for per-
forming QM/MM calculations by adding classical point charges to
the QM region. The implementation supports all molecular elec-
tronic structure methods by decorating the underlying SCF meth-
ods. In addition, MM charges can be used together with the X2C
method and implicit solvent treatments.

GC. Relativistic treatments

PySCF provides several ways to include relativistic effects. In
the framework of scalar Hamiltonians, spin-free X2C theory,
scalar effective core potentials'”® (ECPs), and relativistic pseudo-
potentials can all be used for all methods in calculations of the
energy, nuclear gradients, and nuclear Hessians. At the next level
of relativistic approximations, PYSCF provides spin-orbit ECP inte-
grals and one-body and two-body spin-orbit interactions from the
Breit-Pauli Hamiltonian and X2C Hamiltonian for the spin—orbit
coupling effects.” Two-component Hamiltonians with the X2C
one-electron approximation and four-component Dirac-Coulomb,
Dirac-Coulomb-Gaunt, and Dirac-Coulomb-Breit Hamiltonians
are all supported in mean-field molecular calculations.

H. MPI implementations

In PySCF, distributed parallelism with MPI is implemented
via an extension to the PySCF main library known as MPI4PySCF.
The current MPI extension supports the most common methods in
quantum chemistry and crystalline material computations. Table V
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TABLE V. Methods with MPI support. For solids, MPI support is currently provided
only at the level of parallelization over k-points.

Methods Molecules Solids
HF Yes Yes
DFT Yes Yes
MP2 Yes® Yes
CCSD Yes" Yes

*Closed shell systems only.

lists the available MPI-parallel alternatives to the default serial
(OpenMP) implementations. The MPI-enabled modules implement
almost identical APIs to the serial ones, allowing the same script
to be used for serial jobs and MPI-parallel jobs (Fig. 14). The effi-
ciency of the MPI implementation is demonstrated in Fig. 15, which
shows the wall time and speed-up of Fock builds for a system with
12288 AOs with up to 64 MPI processes, each with 32 OpenMP
threads.

To retain the simplicity of the PYSCF package structure, we use
a server—client mechanism to execute the MPI parallel code. In par-
ticular, we use MPI to start the Python interpreter as a daemon that
receives both the functions and data on remote nodes. When a par-
allel session is activated, the master process sends the functions and
data to the daemons. The function object is decoded remotely and
then executed. For example, when building the Fock matrix in the
PySCF MPI implementation, the Fock-build function running on
the master process first sends itself to the Python interpreters run-
ning on the clients. After the function is decoded on the clients,
input variables (such as the density matrix) are distributed by the
master process through MPI. Each client evaluates a subset of the

# run in cmdline:
# mpirun -np 4 python input.py

import pysct
mol = pyscf.M(...)

# Serial task

from pyscf import dft

mf = dft.RKS(mol).run(xc="b31lyp’)

J, K = mf.get_jk(mol, mf.make_rdmi1())

# MPI-parallel task

from mpidpyscf import dft

mf = dft.RKS(mol).run(xc=’b3lyp’)

J, K = mf.get_jk(mol, mf.make_rdml())

FIG. 14. Code snippet showing the similarity between serial and MPI-parallel DFT
calculations.
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FIG. 15. Computation wall time of building the Fock matrix for the [H,0]s+ cluster
at the HF/VDZ level (12288 AO functions) using PYSCF’s MPI implementation.
Each MPI process contains 32 OpenMP threads, and the speed-up is compared
to the single-node calculation with 32 OpenMP threads.

four-center two-electron integrals (with load balancing performed
among the clients) and constructs a partial Fock matrix, similarly to
the Fock-build functions in other MPI implementations. After send-
ing the partial Fock matrices back to the master process, the client
suspends itself until it receives the next function. The master pro-
cess assembles the Fock matrices and then moves on to the next part
of the code. The above strategy is quite different from the traditional
MPI programs that hard-code the MPI functionality into the code
and initiate the MPI parallel context at the beginning of the pro-
gram. This PySCF design brings the important benefit of being able
to switch on and off MPI parallelism freely in the program without
the need to be aware of the MPI-parallel context (see Ref. 1 for a
more detailed discussion of PyYSCF MPI mode innovations).

VI. THE PySCF SIMULATION ECOSYSTEM

PySCEF is widely used as a development tool, and many groups
have developed and made available their own projects that either
interface to PYSCF or can be used in a tightly coupled manner to
access a greater functionality. We provide a few examples of the
growing PySCF ecosystem below, which we separate into use cases:
(1) external projects to which PySCF provides and maintains a native
interface and (2) external projects that build on PySCF.

A. External projects with native interfaces

PySCF currently maintains a few native interfaces to external
projects, including

e GeoMeTRIC'"" and pyserny.' "' These two libraries provide the
capability to perform geometry optimization, and interfaces
to them are provided in the PyYSCF GEOMOPT module.
As shown in Fig. 4, given a method that provides energies
and nuclear gradients, the geometry optimization module
generates an object that can then be used by these external
optimization libraries.
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e DFTD3.""*'* This interface allows us to add the DFTD3'*
correction to the total ground state energy as well as to the
nuclear gradients in geometry optimizations.

¢ DMRG, SHCI, and FCIQMC programs (BLOCK,” CuEMPS2,”"
Dice,”' ™ Arrow,”* and NECI’”). These interfaces
closely follow the conventions of PYSCF’s FCI module. As
such, they can be used to replace the FCI solver in MCSCF
methods (CASCI and CASSCEF) to study large active space
multi-reference problems.

e Lixc’ and XCrun." These two libraries are tightly inte-
grated into the PYSCF code. While the PYSCF DFT mod-
ule allows the user to customize exchange-correlation (XC)
functionals by linearly combining different functionals, the
individual XC functionals and their derivatives are evaluated
within these libraries.

e TBLIS.""'*° The tensor contraction library TBLIS offers
a similar functionality to the numpy.einsum function
while delivering substantial speed-ups. Unlike the BLAS-
based “transpose-GEMM-transpose” scheme that involves a
high memory footprint due to the transposed tensor inter-
mediates, TBLIS achieves optimal tensor contraction perfor-
mance without such memory overhead. The TBLIS interface
in PySCF provides an einsum function that implements
the numpy.einsum API but with the TBLIS library as the
contraction back-end.

e CPPE."”'" This library provides a polarizable embedding
solvent model and can be integrated into PYSCF calcula-
tions for ground-state mean-field and post-SCF methods.
In addition, an interface to TDA is currently supported for
excited-state calculations.

B. External projects that build on PySCF

There are many examples in the literature of quantum chem-
istry and electronic structure simulation packages that build on
PYSCEF. The list below is by no means exhaustive but gives an idea
of the range of projects using PySCF today.

1. Quantum Monte Carlo. Several quantum Monte Carlo pro-
grams, such as QMCPACK,‘ o prMc,‘ i QWALK,‘ “ and
HANDE," support reading wavefunctions and/or Hamilto-
nians generated by PYSCF. In the case of ryQMC, PYSCF is
integrated as a dependent module.

2. Quantum embedding packages. Many flavors of quantum
embedding, including density matrix embedding and dynam-
ical mean-field theory, have been implemented on top of
PySCF. Examples of such packages include QSoME,"”''*
pDMET,”*'*® PyDMFET,"”® Porarto,'””"** and openQEMIST,”’
which all use PYSCF to manipulate wavefunctions and embed-
ding Hamiltonians and to provide many-electron solvers.

3. General quantum chemistry. PYSCF can be found as a com-
ponent of tools developed for many different kinds of cal-
culations, including localized active space self-consistent field
(LASSCF),"”* multiconfiguration pair-density functional the-
ory (MC-PDFT),"”” and state-averaged CASSCF energy and
analytical gradient evaluation (all these use the PyYSCF MCSCF
module to optimize multi-reference wavefunctions), as well as
for localized orbital construction via the Pywannizroo library.' ™
The PYMBE package,® which implements the many-body
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expanded full CI method,'”"'** utilizes PYSCF to perform
all the underlying electronic structure calculations. Green’s
function methods such as the second-order Green’s func-
tion theory (GF2) and the self-consistent GW approximation
have been explored using PYSCF as the underlying ab initio
infrastructure.'” In the linear scaling program LSQC,'**'”’
PySCF is used to generate reference wavefunctions and inte-
grals for the cluster-in-molecule local correlation method. The
APDFT (alchemical perturbation density functional theory) pro-
gram'**'*” interfaces to PYSCF for QM calculations. In the
PySCE-NAO project,'” large-scale ground-state and excited-
state methods are implemented based on additional support
for numerical atomic orbitals, which has been integrated into
an active branch of PYSCF. The PYFLOSIC package' ' evaluates
self-interaction corrections with the Fermi-Lowdin orbitals
in conjunction with the PYSCF DFT module. Furthermore,
PySCF FCI capabilities are used in the morsturm package'’” for
the development of Coulomb Sturmian basis functions, and
PySCF post-HF methods appear in VeLoxCuem'” and apcc'”
for spectroscopic and excited-state simulations.

VIl. BEYOND ELECTRONIC STRUCTURE

A. PYSCF in the materials genome initiative and
machine learning

As discussed in Sec. I, one of our objectives when devel-
oping PySCF was to create a tool that could be used by non-
specialist researchers in other fields. With the integration of machine
learning techniques into molecular and materials simulations, we
find that PYSCF is being used in many applications in conjunc-
tion with machine learning. For example, the flexibility of the
PySCF DFT module has allowed it to be used to test exchange-
correlation functionals generated by machine-learning protocols in
several projects” and has been integrated into other machine learn-
ing workflows.”'” PYSCF can be used as a large-scale computational
engine for quantum chemistry data generation.”” In the context of
machine learning of wavefunctions, PySCF has also been used as the
starting point to develop neural network based approaches for SCF
initial guesses,'' for the learning of HF orbitals by the DeepMind
team,'” and for Hamiltonian integrals used by fermionic neural nets
in NeTkET,

B. PySCF in quantum information science

Another area where PYSCF has been rapidly adopted as a devel-
opment tool is in the area of quantum information science and quan-
tum computing. This is likely because Python is the de facto stan-
dard programming language in the quantum computing commu-
nity. For example, PYSCF is one of the standard prerequisites to carry
out molecular simulations in the OpenFrrmion'” library, the Qiskir-
Aqua' library, and the OpenQEMIST'® package. Through PySCF’s
GitHub page, we see a rapidly increasing number of quantum
information projects that include PYSCF as a program dependency.

VIIl. OUTLOOK

After five years of development, the PYSCF project can prob-
ably now be considered to be a feature complete and mature tool.
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Although no single package can be optimal for all tasks, we believe
that PYSCF to a large extent meets its original development criteria
of forming a library that is useful not only in simulations but also
in enabling the customization and development of new electronic
structure methods.

With the recent release of version 1.7, the current year marks
the end of development of the version 1 branch of PYSCF. As we
look toward PySCF version 2, we expect to build additional innova-
tions, for example, in the areas of faster electronic structure methods
for very large systems, further support and integration for machine
learning and quantum computing applications, better integration
of high-performance computing libraries and more parallel imple-
mentations, and perhaps even forays into dynamics and classical
simulations. Beyond feature development, we will expand our efforts
in documentation and in quality assurance and testing. We expect
the directions of implementation to continue to be guided by and
organically grow out of the established PYSCF ecosystem. However,
regardless of the scientific directions and methods implemented
within PYSCF, the guiding philosophy described in this article will
continue to lie at the heart of PYSCF’s development. We believe
that these guiding principles will help ensure that PySCF remains a
powerful and useful tool in the community for many years to come.
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