(7))
L
| .
o3
—
((v]
c
:fU
SE
Qo
L C
Fo

Recent developments in the PySCF
program package

Cite as: J. Chem. Phys. 153, 024109 (2020); https://doi.org/10.1063/5.0006074
Submitted: 27 February 2020 . Accepted: 15 June 2020 . Published Online: 09 July 2020

Qiming Sun "%, Xing Zhang "/, Samragni Banerjee, Peng Bao, Marc Barbry "=/, Nick S. Blunt "/, Nikolay
A. Bogdanov, George H. Booth ", Jia Chen ¥, Zhi-Hao Cui "/, Janus J. Eriksen ¥/, Yang Gao "/, Sheng
Guo ", Jan Hermann "=, Matthew R. Hermes, Kevin Koh "/, Peter Koval "', Susi Lehtola "/, Zhendong
Li "=, Junzi Liu, Narbe Mardirossian, James D. McClain, Mario Motta "/, Bastien Mussard ", Hung

Q. Pham "%, Artem Pulkin ", Wirawan Purwanto "/, Paul J. Robinson "/, Enrico Ronca "/, Elvira R.
Sayfutyarova ", Maximilian Scheurer "=, Henry F. Schurkus "=, James E. T. Smith "%, Chong Sun "/,
Shi-Ning Sun, Shiv Upadhyay "%/, Lucas K. Wagner "/, Xiao Wang "/, Alec White "/, James Daniel
Whitfield "=, Mark J. Williamson "=/, Sebastian Wouters, Jun Yang "/, Jason M. Yu "=, Tianyu Zhu "/,
Timothy C. Berkelbach "/, Sandeep Sharma, Alexander Yu. Sokolov "*/, and Garnet Kin-Lic Chan

COLLECTIONS

Paper published as part of the special topic on Electronic Structure Software
Note: This article is part of the JCP Special Topic on Electronic Structure Software.

¢
@

View Online Export Citation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

The CECAM electronic structure library and the modular software development paradigm
The Journal of Chemical Physics 153, 024117 (2020); https://doi.org/10.1063/5.0012901

PSl4 1.4: Open-source software for high-throughput quantum chemistry
The Journal of Chemical Physics 152, 184108 (2020); https://doi.org/10.1063/5.0006002

The ORCA quantum chemistry program package
The Journal of Chemical Physics 152, 224108 (2020); https://doi.org/10.1063/5.0004608

Lock-in Amplifiers S
up to 600 MHz

J. Chem. Phys. 153, 024109 (2020); https://doi.org/10.1063/5.0006074 153, 024109

© 2020 Author(s).

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519893960&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=994cc3a39dfad055e97600b55d242e72d9bc8924&location=
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074
https://aip.scitation.org/author/Sun%2C+Qiming
http://orcid.org/0000-0003-0528-6186
https://aip.scitation.org/author/Zhang%2C+Xing
http://orcid.org/0000-0002-1892-1380
https://aip.scitation.org/author/Banerjee%2C+Samragni
https://aip.scitation.org/author/Bao%2C+Peng
https://aip.scitation.org/author/Barbry%2C+Marc
http://orcid.org/0000-0001-5197-7944
https://aip.scitation.org/author/Blunt%2C+Nick+S
http://orcid.org/0000-0002-2284-6969
https://aip.scitation.org/author/Bogdanov%2C+Nikolay+A
https://aip.scitation.org/author/Bogdanov%2C+Nikolay+A
https://aip.scitation.org/author/Booth%2C+George+H
http://orcid.org/0000-0003-2503-4904
https://aip.scitation.org/author/Chen%2C+Jia
http://orcid.org/0000-0002-7310-3196
https://aip.scitation.org/author/Cui%2C+Zhi-Hao
http://orcid.org/0000-0002-7389-4063
https://aip.scitation.org/author/Eriksen%2C+Janus+J
http://orcid.org/0000-0001-8583-3842
https://aip.scitation.org/author/Gao%2C+Yang
http://orcid.org/0000-0003-2320-2839
https://aip.scitation.org/author/Guo%2C+Sheng
https://aip.scitation.org/author/Guo%2C+Sheng
http://orcid.org/0000-0002-1083-1882
https://aip.scitation.org/author/Hermann%2C+Jan
http://orcid.org/0000-0002-2779-0749
https://aip.scitation.org/author/Hermes%2C+Matthew+R
https://aip.scitation.org/author/Koh%2C+Kevin
http://orcid.org/0000-0002-0412-4516
https://aip.scitation.org/author/Koval%2C+Peter
http://orcid.org/0000-0002-5461-2278
https://aip.scitation.org/author/Lehtola%2C+Susi
http://orcid.org/0000-0001-6296-8103
https://aip.scitation.org/author/Li%2C+Zhendong
https://aip.scitation.org/author/Li%2C+Zhendong
http://orcid.org/0000-0002-0683-6293
https://aip.scitation.org/author/Liu%2C+Junzi
https://aip.scitation.org/author/Mardirossian%2C+Narbe
https://aip.scitation.org/author/McClain%2C+James+D
https://aip.scitation.org/author/Motta%2C+Mario
http://orcid.org/0000-0003-1647-9864
https://aip.scitation.org/author/Mussard%2C+Bastien
http://orcid.org/0000-0002-0826-4719
https://aip.scitation.org/author/Pham%2C+Hung+Q
https://aip.scitation.org/author/Pham%2C+Hung+Q
http://orcid.org/0000-0003-3608-1298
https://aip.scitation.org/author/Pulkin%2C+Artem
http://orcid.org/0000-0002-9364-1653
https://aip.scitation.org/author/Purwanto%2C+Wirawan
http://orcid.org/0000-0002-2124-4552
https://aip.scitation.org/author/Robinson%2C+Paul+J
http://orcid.org/0000-0003-0465-4979
https://aip.scitation.org/author/Ronca%2C+Enrico
http://orcid.org/0000-0003-0494-5506
https://aip.scitation.org/author/Sayfutyarova%2C+Elvira+R
https://aip.scitation.org/author/Sayfutyarova%2C+Elvira+R
http://orcid.org/0000-0001-8403-5013
https://aip.scitation.org/author/Scheurer%2C+Maximilian
http://orcid.org/0000-0003-0592-3464
https://aip.scitation.org/author/Schurkus%2C+Henry+F
http://orcid.org/0000-0002-3210-5929
https://aip.scitation.org/author/Smith%2C+James+E+T
http://orcid.org/0000-0002-5130-8633
https://aip.scitation.org/author/Sun%2C+Chong
http://orcid.org/0000-0002-8299-9094
https://aip.scitation.org/author/Sun%2C+Shi-Ning
https://aip.scitation.org/author/Upadhyay%2C+Shiv
http://orcid.org/0000-0002-8501-0501
https://aip.scitation.org/author/Wagner%2C+Lucas+K
http://orcid.org/0000-0002-3755-044X
https://aip.scitation.org/author/Wang%2C+Xiao
http://orcid.org/0000-0003-1402-7522
https://aip.scitation.org/author/White%2C+Alec
http://orcid.org/0000-0002-9743-1469
https://aip.scitation.org/author/Whitfield%2C+James+Daniel
https://aip.scitation.org/author/Whitfield%2C+James+Daniel
http://orcid.org/0000-0003-2873-0622
https://aip.scitation.org/author/Williamson%2C+Mark+J
http://orcid.org/0000-0002-5295-7811
https://aip.scitation.org/author/Wouters%2C+Sebastian
https://aip.scitation.org/author/Yang%2C+Jun
http://orcid.org/0000-0001-8701-9297
https://aip.scitation.org/author/Yu%2C+Jason+M
http://orcid.org/0000-0002-2270-6798
https://aip.scitation.org/author/Zhu%2C+Tianyu
http://orcid.org/0000-0003-2061-3237
https://aip.scitation.org/author/Berkelbach%2C+Timothy+C
http://orcid.org/0000-0002-7445-2136
https://aip.scitation.org/author/Sharma%2C+Sandeep
https://aip.scitation.org/author/Sokolov%2C+Alexander+Yu
http://orcid.org/0000-0003-2637-4134
https://aip.scitation.org/author/Chan%2C+Garnet+Kin-Lic
http://orcid.org/0000-0001-8009-6038
/topic/special-collections/ess2020?SeriesKey=jcp
https://doi.org/10.1063/5.0006074
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0006074
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0006074&domain=aip.scitation.org&date_stamp=2020-07-09
https://aip.scitation.org/doi/10.1063/5.0012901
https://doi.org/10.1063/5.0012901
https://aip.scitation.org/doi/10.1063/5.0006002
https://doi.org/10.1063/5.0006002
https://aip.scitation.org/doi/10.1063/5.0004608
https://doi.org/10.1063/5.0004608

The Journal
ARTICLE scitation.org/journalljcp

of Chemical Physics

Recent developments in the PySCF program
package

Cite as: 3. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074 @
Submitted: 27 February 2020 + Accepted: 15 June 2020 -
Published Online: 9 July 2020

Qiming Sun,' '/ Xing Zhang,” '©' Samragni Banerjee,” Peng Bao,” Marc Barbry,” "~ Nick S. Blunt,’

Nikolay A. Bogdanov,” George H. Booth,® '*' Jia Chen,”'° " Zhi-Hao Cui,” "*" Janus J. Eriksen,"’

Yang Gao,'” '/ Sheng Guo,"”” "/ Jan Hermann,'*"” '/ Matthew R. Hermes,'® Kevin Koh,"” "> Peter Koval,'®
Susi Lehtola,”” "* Zhendong Li,”° ' Junzi Liu,”’ Narbe Mardirossian,””> James D. McClain,” Mario Motta,*
Bastien Mussard,” Hung Q. Pham,'® Artem Pulkin,”® Wirawan Purwanto,”’ Paul J. Robinson,*
Enrico Ronca,” '/ Elvira R. Sayfutyarova,’® "' Maximilian Scheurer,”’ "' Henry F. Schurkus,’

James E. T. Smith,”” ' Chong Sun,” ' Shi-Ning Sun,'” Shiv Upadhyay,”” "' Lucas K. Wagner,**

Xiao Wang,” '©/ Alec White,” "' James Daniel Whitfield,”” "' Mark J. Williamson,”* "' Sebastian Wouters,*’
Jun Yang,” '/ Jason M. Yu,”” ' Tianyu Zhu,” "' Timothy C. Berkelbach,”*** "*/ Sandeep Sharma,”
Alexander Yu. Sokolov,” '© and Garnet Kin-Lic Chan®*

AFFILIATIONS

TAxiomQuant Investment Management LLC, Shanghai 200120, China
2Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
*Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA

“Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

5Simbeyond B.V., P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

¢Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom

"Max Planck Institute for Solid State Research, HeisenbergstraRe 1, 70569 Stuttgart, Germany
gDepartment of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
?Department of Physics, University of Florida, Gainesville, Florida 32611, USA

°Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA

"School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
2Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
Google Inc., Mountain View, California 94043, USA

“FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6,14195 Berlin, Germany
*TU Berlin, Machine Learning Group, Marchstr. 23,10587 Berlin, Germany

6Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota,
207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA

"Department of Chemistry and Biochemistry, The University of Notre Dame du Lac, 251 Nieuwland Science Hall, Notre Dame,
Indiana 46556, USA

BSimune Atomistics S.L., Avenida Tolosa 76, Donostia-San Sebastian, Spain

Department of Chemistry, University of Helsinki, P.O. Box 55 (A. |. Virtasen aukio 1), FI-00014 Helsinki, Finland

29Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China

ZIDepartment of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA

22AMGEN Research, One Amgen Center Drive, Thousand Oaks, California 91320, USA

ZDRW Holdings LLC, Chicago, Illinois 60661, USA

?IBM Almaden Research Center, San Jose, California 95120, USA

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074 153, 024109-1
Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0006074
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0006074
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0006074&domain=pdf&date_stamp=2020-July-9
https://doi.org/10.1063/5.0006074
https://orcid.org/0000-0003-0528-6186
https://orcid.org/0000-0002-1892-1380
https://orcid.org/0000-0001-5197-7944
https://orcid.org/0000-0002-2284-6969
https://orcid.org/0000-0003-2503-4904
https://orcid.org/0000-0002-7310-3196
https://orcid.org/0000-0002-7389-4063
https://orcid.org/0000-0001-8583-3842
https://orcid.org/0000-0003-2320-2839
https://orcid.org/0000-0002-1083-1882
https://orcid.org/0000-0002-2779-0749
https://orcid.org/0000-0002-0412-4516
https://orcid.org/0000-0002-5461-2278
https://orcid.org/0000-0001-6296-8103
https://orcid.org/0000-0002-0683-6293
https://orcid.org/0000-0003-1647-9864
https://orcid.org/0000-0002-0826-4719
https://orcid.org/0000-0003-3608-1298
https://orcid.org/0000-0002-9364-1653
https://orcid.org/0000-0002-2124-4552
https://orcid.org/0000-0003-0465-4979
https://orcid.org/0000-0003-0494-5506
https://orcid.org/0000-0001-8403-5013
https://orcid.org/0000-0003-0592-3464
https://orcid.org/0000-0002-3210-5929
https://orcid.org/0000-0002-5130-8633
https://orcid.org/0000-0002-8299-9094
https://orcid.org/0000-0002-8501-0501
https://orcid.org/0000-0002-3755-044X
https://orcid.org/0000-0003-1402-7522
https://orcid.org/0000-0002-9743-1469
https://orcid.org/0000-0003-2873-0622
https://orcid.org/0000-0002-5295-7811
https://orcid.org/0000-0001-8701-9297
https://orcid.org/0000-0002-2270-6798
https://orcid.org/0000-0003-2061-3237
https://orcid.org/0000-0002-7445-2136
https://orcid.org/0000-0003-2637-4134
https://orcid.org/0000-0001-8009-6038

The Journal

ARTICLE scitation.org/journalljcp

of Chemical Physics

Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA

?6QuTech and Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands
IInformation Technology Services, Old Dominion University, Norfolk, Virginia 23529, USA
28Department of Chemistry, Columbia University, New York, New York 10027, USA

#Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Via G. Moruzzi, 1, 56124 Pisa, Italy
*°Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA

*"Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University of Heidelberg, 205 Im Neuenheimer Feld,
69120 Heidelberg, Germany

32Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

*3Department of Physics and Institute for Condensed Matter Theory, University of lllinois at Urbana-Champaign,
Illinois 61801, USA

34Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

*5Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

*¢Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
37Bricsys NV, Bellevue 5/201, 9050 Gent, Belgium

*Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

*Department of Chemistry, University of California, Irvine, 1102 Natural Sciences Il, Irvine, California 92697-2025, USA

Note: This article is part of the JCP Special Topic on Electronic Structure Software.
2 Author to whom correspondence should be addressed: gkc1000@gmail.com

ABSTRACT

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids
as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and
philosophy behind PYSCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement
their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state
simulations. Finally, we describe the growing ecosystem of projects that use PYSCF across the domains of quantum chemistry, materials

science, machine learning, and quantum information science.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006074

. INTRODUCTION

This article describes the current status of the Python Simu-
lations of Chemistry Framework, also known as PYSCF, as of ver-
sion 1.7.1. The PySCF project was originally started in 2014 by
Sun, then in the group of Chan, in the context of developing a
tool to enable ab initio quantum embedding calculations. However,
it rapidly outgrew its rather specialized roots to become a general
purpose development platform for quantum simulations and elec-
tronic structure theory. The early history of PYSCF is recounted
in Ref. 1. Now, PYSCF is a production ready tool that implements
many of the most commonly used methods in molecular quan-
tum chemistry and solid-state electronic structure. Since its incep-
tion, PYSCF has been a free and open-source package hosted on
Github’ and is now also available through pip,’ conda,” and a num-
ber of other distribution platforms. It has a userbase numbering
in the hundreds and over 60 code contributors. Beyond chem-
istry and materials science, it has also found use in the areas of
data science,”” machine learning,” "’ and quantum computing'* '®
in both academia and industry. To mark its transition from a
code developed by a single group to a broader community effort,
the leadership of PySCF was expanded in 2019 to a board of
directors.”

While the fields of quantum chemistry and solid-state elec-
tronic structure are rich with excellent software,'* > the develop-
ment of PYSCF is guided by some unique principles in the order of
priority as follows:

1. PySCF should be more than a computational tool; it should be
a development platform. We aim for users to be empowered
to modify the code, implement their own methods without the
assistance of the original developers, and incorporate parts of
the code in a modular fashion into their own projects.

2. Unlike many packages that focus on either molecular chem-
istry or materials science applications, PYSCF should support
both equally, allowing calculations on molecules and materials
to be carried out in the same numerical framework and with
the same theoretical approximations.

3. PySCF should enable users outside of the chemical sciences
(such as workers in machine learning and quantum informa-
tion theory) to carry out quantum chemistry simulations.

In the remainder of this article, we elaborate on these guid-
ing principles of PYSCF, describing how they have impacted the
program design and implementation and how they can be used

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-2

https://scitation.org/journal/jcp
mailto:gkc1000@gmail.com
https://doi.org/10.1063/5.0006074

The Journal

of Chemical Physics

to implement a new functionality in new projects. We provide a
brief summary of the implemented methods and conclude with an
overview of the PYSCF ecosystem in different areas of science.

Il. THE DESIGN PHILOSOPHY BEHIND PySCF

All quantum simulation workflows naturally require some level
of programming and customization. This may arise in simple tasks,
such as scanning a potential energy surface, tabulating results, or
automating input generation, or in more advanced use cases that
include more substantial programming, such as with complex data
processing, incorporating logic into the computational workflow, or
when embedding customized algorithms into the computation. In
either case, the ability to program with and extend one’s simulation
software greatly empowers the user. PySCF is designed to serve as a
basic program library that can facilitate custom computational tasks
and workflows as well as form the starting point for the development
of new algorithms.

To enable this, PYSCF is constructed as a library of modular
components with a loosely coupled structure. The modules provide
easily reusable functions with (where possible) simple implementa-
tions, and hooks are provided within the code to enable extensibility.
Optimized and competitive performance is, as much as possible, sep-
arated out into a small number of lower level components that do not
need to be touched by the user. We elaborate on these design choices
below.

A. Reusable functions for individual suboperations

It is becoming common practice to provide a Python script-
ing interface for input and simulation control. However, PYSCF goes
beyond this by providing a rich set of Python APIs (Application Pro-
gramming Interfaces) not only for the simulation models but also
for many of the individual sub-operations that compose the algo-
rithms. For example, after input parsing, a mean-field Hartree-Fock
(HF) or density functional theory (DFT) algorithm comprises many
steps, including integral generation, guess initialization, assembling
components of the Fock matrix and diagonalizing, and accelerat-
ing iterations to self-consistent convergence. All of these suboper-
ations are exposed as PYSCF APIs, enabling one to rebuild or modify
the self-consistent algorithm at will. Similarly, APIs are exposed for
other essential components of electronic structure algorithms, such
as integral transformations, density fitting, Hamiltonian manipula-
tion, various many-electron and Green’s functions solvers, compu-
tation of derivatives, relativistic corrections, and so forth, in essence
across all the functionality of PYSCF. The package provides a large
number of examples to demonstrate how these APIs can be used in
customized calculations or methodology development.

With at most some simple initialization statements, the PyYSCF
APIs can be executed at any place and in any order within a code
without side-effects. This means that when implementing or extend-
ing the code, the user does not need to retain information on the
program state and can focus on the physical theory of interest. For
instance, using the above example, one can call the function to build
a Fock matrix from a given density matrix anywhere in the code,
regardless of whether the density matrix in question is related to
a larger simulation. From a programming design perspective, this
is because within PYSCF, no implicit global variables are used and

ARTICLE scitation.org/journalljcp

functions are implemented free of side effects (or with minimal side
effects) in a largely functional programming style. The PySCF func-
tion APIs generally follow the Numpy/Scipy API style. In this conven-
tion, the input arguments are simple Python built-in datatypes or
Nuwmpy arrays, avoiding the need to understand complex objects and
structures.

B. Simple implementations

Python is among the simplest of the widely used programming
languages and is the main implementation language in PySCF. Apart
from a few performance critical functions, over 90% of PYSCF is
written in Python, with dependencies on only a small number of
common external Python libraries (Numpy, Scipy, and H5pY).

Implementation language does not hide organizational com-
plexity, however, and structural simplicity in PYSCF is achieved via
additional design choices. In particular, PYSCF uses a mixed object
oriented/functional paradigm: complex simulation data (e.g., data
on the molecular geometry or cell parameters) and simulation mod-
els (e.g., whether a mean-field calculation is a HF or DFT one)
are organized in an object oriented style, while individual function
implementations follow a functional programming paradigm. Deep
object inheritance is rarely used. Unlike packages where external
input configuration files are used to control a simulation, the sim-
ulation parameters are simply held in the member variables of the
simulation model object.

Where possible, PYSCF provides multiple implementations of
the same algorithm with the same API: one is designed to be easy
to read and simple to modify, and another is for optimized per-
formance. For example, the full configuration interaction module
contains both a slower but simpler implementation and heavily opti-
mized implementations, specialized for specific Hamiltonian sym-
metries and spin types. The optimized algorithms have components
that are written in C. This dual level of implementation mimics the
Python convention of having modules in both pure Python and C
with the same API (such as the proriLE and cProriLe modules of the
Python standard library). It also reflects the PYSCF development
cycle, where often a simple reference Python implementation is first
produced before being further optimized.

C. Easily modified runtime functionality

In customized simulations, it is often necessary to modify the
underlying functionality of a package. This can be complicated in
a compiled program due to the need to consider detailed types
and compilation dependencies across modules. In contrast, many
parts of PYSCF are easy to modify due to the design of PYSCF
as well as the dynamic runtime resolution of methods and “duck
typing” of Python. Generally speaking, one can modify the func-
tionality in one part of the code without needing to worry about
breaking other parts of the package. For example, one can mod-
ify the HF module with a custom Hamiltonian without consider-
ing whether it will work in a DFT calculation; the program will
continue to run so long as the computational task involves HF
and post-HF methods. Furthermore, Python “monkey patching”
(replacing functionality at runtime) means that core PySCF rou-
tines can be overwritten without even touching the code base of the
library.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-3

https://scitation.org/journal/jcp

The Journal
of Chemical Physics

D. Competitive performance

In many simulations, performance is still the critical considera-
tion. This is typically the reason for implementing code in compiled
languages such as Forrran or C/C++. In PySCF, the performance
gap between Python and compiled languages is partly removed by
a heavy reliance on Nuwmpy and Scipy, which provide Python APIs
to optimized algorithms written in compiled languages. Additional
optimization is achieved in PYSCF with custom C implementations
where necessary. Performance critical spots, which occur primar-
ily in the integral and tensor operations, are implemented in C and
heavily optimized. The use of additional C libraries also allows us
to achieve thread-level parallelism via OpenMP, bypassing Python’s
intrinsic multithreading limitations. Since a simulation can often
spend over 99% of its runtime in the C libraries, the overhead due to
the remaining Python code is negligible. The combination of Python
with C libraries ensures that PySCF achieves leading performance in
many simulations.

111. A COMMON FRAMEWORK FOR MOLECULES
AND CRYSTALLINE MATERIALS

Electronic structure packages typically focus on either molec-
ular or materials simulations and are thus built around numerical
approximations adapted to either case. A central goal of PYSCF
is to enable molecules and materials to be simulated with com-
mon numerical approximations and theoretical models. Originally,
PySCF started as a Gaussian atomic orbital (AO) molecular code
and was subsequently extended to enable simulations in a crystalline
Gaussian basis. Much of the seemingly new functionality required
in a crystalline materials simulation is, in fact, analogous to the
functionality in a molecular implementation, such as

1. Using a Bloch basis. In PYSCF, we use a crystalline Gaussian
AO basis, which is analogous to a symmetry adapted molecular
AO basis.

2. Exploiting translational symmetry by enforcing momentum
conservation. This is analogous to handling molecular point
group symmetries.

3. Handling complex numbers, given that the matrix elements
between Bloch functions are generally complex. This is anal-
ogous to the requirements of a molecular calculation with
complex orbitals.

Other modifications are unique to the crystalline material set-
ting, including

1. Techniques to handle divergences associated with the long-
ranged nature of the Coulomb interaction, since the classi-
cal electron-electron, electron—-nuclear, and nuclear-nuclear
interactions are separately divergent. In PySCF, this is han-
dled via the density fitting integral routines (see below) and
by evaluating certain contributions using Ewald summation
techniques.

2. Numerical techniques special to periodic functions, such as
the fast Fourier transform (FFT), as well as approximations
tailored to plane-wave implementations, such as certain pseu-
dopotentials. PYSCF supports mixed crystalline Gaussian and
plane-wave expressions using analytic integrals as well as FFT
on grids.

ARTICLE scitation.org/journalljcp

3. Techniques to accelerate convergence to the thermodynamic
limit. In PySCF, such corrections are implemented at the
mean-field level by modifying the treatment of the exchange
energy, which is the leading finite-size correction.

4. Additional crystal lattice symmetries. Currently, PyYSCF con-
tains only experimental support for additional lattice symme-
tries.

In PySCF, we identify the three-index density fitted integrals
as the central computational intermediate that allows us to largely
unify molecular and crystalline implementations. This is because

1. three-center “density-fitted” Gaussian integrals are key to fast
implementations;

2. the use of the FFT to evaluate the potential of a pair density
of AO functions, which is needed in fast DFT implementa-
tions with pseudopotentials,” is formally equivalent to density
fitting with plane-waves;

3. the density fitted integrals can be adjusted to remove the
Coulomb divergences in materials;”’ and

4. three-index Coulomb intermediates are sufficiently compact
that they can be computed even in the crystalline setting.

PySCF provides a unified density fitting API for both molecules
and crystalline materials. In molecules, the auxiliary basis is assumed
to be Gaussian AOs, while in the periodic setting, different types
of auxiliary bases are provided, including plane-wave functions [in
the FFTDF (Fast Fourier Transform Density Fitting) module], crys-
talline Gaussian AOs [in the GDF (Gaussian Density Fitting) mod-
ule], and mixed plane-wave-Gaussian functions [in the MDF (Gaus-
sian and Planewave Mixed Density Fitting) module].” Different
auxiliary bases are provided in periodic calculations as they are
suited to different AO basis sets: FFTDF is efficient for smooth AO
functions when used with pseudopotentials, GDF is more efficient
for compact AO functions, and MDF allows a high accuracy treat-
ment of the Coulomb problem, regardless of the compactness of the
underlying atomic orbital basis.

Using the above ideas, the general program structure, imple-
mentation, and simulation workflow for molecular and materials
calculations become very similar. Figure 1 shows an example of the
computational workflow adopted in PySCF for performing molec-
ular and periodic post-HF calculations. The same driver functions
can be used to carry out generic operations such as solving the
HF equations or coupled cluster amplitude equations. However,
the implementations of methods for molecular and crystalline sys-
tems bifurcate when evaluating k-point dependent quantities, such
as the three-center density-fitted integrals, Hamiltonians, and wave-
functions. Nevertheless, if only a single k-point is considered (and
especially at the ' point where all integrals are real), most molecu-
lar modules can be used to perform calculations in crystals without
modification (see Sec. V).

IV. DEVELOPING WITH PySCF: CASE STUDIES

In this section, we walk through some case studies that illus-
trate how the functionality of PySCF can be modified and extended.
We focus on cases that might be encountered by the average user
who does not want to modify the source code but wishes to assemble
different existing PySCF APIs to implement a new functionality.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-4

https://scitation.org/journal/jcp

The Journal

of Chemical Physics

build molecule
mol=gto.Mole()

;

generate 3-center integrals
ints=df.DF (mol)
build SCF object
mf=scf.HF (mol)
mf.with_df=ints

|

v

start SCF iterations
scf.kernel(mf)

l

build unit cell
mol=pbc.gto.Cell()

ARTICLE scitation.org/journalljcp

generate 3-center integrals for
unique k-point triplets
ints=pbc.df.DF(mol, kpts)
build SCF object
mf=pbc.scf. KHF (mol,kpts)
mf.with_df=ints

v

build Fock matrix _ Yes . % No
mf.with_df.get jk() [fmeleculos

build Fock matrix
——>» for each k point
mf.with_df.get_jk()

v

diagonalize Fock matrix;
update density matrix

if No

converged?

Yesl

converged SCF

|

v

build post-HF object
mycc=cc.CCSD(mf)

v

build post-HF object
mycc=pbc.cc.KCCSD(mf)

|

No for unique k-point triplets:

if molecule?

iYes

AO-to-MO tranformation
mycc._scf.with_df.ao2mo()

—>» AO-to-MO transformation
mycc._scf.with_df.ao2mo()

l

iteratively solve for
—» wavefunctions
cc.kernel(mycc)

Yes
converged post-HF «——

Yes

update wavefunctions
— cc.update_amps(mycc)

.

if
converged?

lNo

if molecule or No
cell with
single k point?

for each k point or
unique k-point triplets:
update wavefunctions
pbc.cc.kcesd.update_amps(mycc)

FIG. 1. lllustration of the program workflow for molecular and periodic calculations. The orange and purple boxes indicate functions that are k-point independent and k-point
dependent, respectively; the blue boxes indicate generic driver functions that can be used in both molecular and periodic calculations.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-5

https://scitation.org/journal/jcp

The Journal
ARTICLE scitation.orgljournalljcp

of Chemical Physics

A. Case study: Modifying the Hamiltonian independently of any specific Hamiltonian with up to two-body
interactions. Consequently, the Hamiltonian under study can be
In PySCF, simulation models (i.e., different wavefunction easily customized by the user, which is useful for studying model

approximations) are always implemented such that they can be used problems or, for example, when trying to interface to different

import numpy
import pyscf

mol = pyscf.M()

n = 10
mol.nelectron = n

Define model Hamiltonian: tight binding on a ring
hl = numpy.zeros((n, n))
for i in range(n-1):
hi[i, i+1] = hi[i+1, i] = -1.
hi[n-1, 0] = h1[0, n-1] = -1.

Build the 2-electron interaction tensor starting from a random 3-index tensor.
tensor = numpy.random.rand(2, n, n)

tensor = tensor + tensor.transpose(0, 2, 1)

eri = numpy.einsum(’xpq,xrs->pqrs’, tensor, tensor)

SCF for the custom Hamiltonian

mf = mol.HF()

mf.get_hcore = lambda *args: hil

mf .get_ovlp = lambda *args: numpy.eye(n)

Option 1: overwrite the attribute mf._eri for the 2-electron interactions
mf._eri = eri
mf .run()

Option 2: introduce the 2-electron interaction through the Cholesky decomposed tensor.
dfmf = mf.density_£fit()

dfmf.with_df._cderi = tensor

dfmf . run()

Option 3: define a custom HF potential method

def get_veff(mol, dm):
J = numpy.einsum(’xpq,xrs,pq->rs’, tensor, tensor, dm)
K = numpy.einsum(’xpq,xrs,qr->ps’, tensor, tensor, dm)
return J - K * .5

mf.get_veff = get_veff

mf .run()

Call the second order SCF solver in case converging the DIIS-driven HF method
without a proper initial guess is difficult.
mf = mf.newton().run()

Run post-HF methods based on the custom SCF object
mf .MP2() .run()

mf.CISD() .run()

mf .CCSD() .run()

mf .CASSCF (4, 4).run()

mf.CASCI(4, 4).run().NEVPT2() .run()

mf . TDHF () .run()

mf.CCSD() .run() .EOMIP() .run()

mc = shci.SHCISCF(mf, 4, 4).run()

mc = dmrgscf.DMRGSCF(mf, 4, 4).run()

FIG. 2. Hamiltonian customization and post-HF methods for customized Hamiltonians.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074 153, 024109-6
Published under license by AIP Publishing

https://scitation.org/journal/jcp

The Journal

of Chemical Physics

numerical basis approximations. Figure 2 shows several different
ways to define one-electron and two-electron interactions in the
Hamiltonian followed by subsequent ground and excited state cal-
culations with the custom Hamiltonian. Note that if a method is not
compatible with or well defined using the customized interactions,
for instance, in the case of solvation corrections, PYSCF will raise a
Python runtime error in the place where the requisite operations are
ill-defined.

B. Case study: Optimizing orbitals of arbitrary
methods

The PYSCF MCSCF module provides a general purpose quasi-
second order orbital optimization algorithm within orbital sub-
spaces (e.g., active spaces) as well as over the complete orbital space.
In particular, it is not limited to the built-in CASCI, CASSCF, and
multi-reference correlation solvers but allows orbital optimization
of any method that provides energies and one- and two-particle

ARTICLE scitation.org/journalljcp

density matrices. For this reason, PYSCF is often used to carry
out active space orbital optimization for DMRG (density matrix
renormalization group), selected configuration interaction, and full
configuration interaction quantum Monte Carlo wavefunctions via
its native interfaces to Block” (DMRG), CheMPS2’’ (DMRG),
Dice’' ** (selected CI), Arrow’ """ (selected CI), and NECI’”
[FCIQMC (full configuration interaction quantum Monte Carlo)].

In addition, it is easy for the user to use the MCSCF module
to optimize orbitals in electronic structure methods for which the
orbital optimization API is not natively implemented. For exam-
ple, although orbital-optimized MP2" is not explicitly provided in
PYSCF, a simple version of it can easily be performed using a short
script, as shown in Fig. 3. Without any modifications, the orbital
optimization will use a quasi-second order algorithm. We see that
the user only needs to write a simple wrapper to provide two func-
tions, namely, make_rdm12, which computes the one- and two-
particle density matrices, and kernel, which computes the total
energy.

import numpy
import pyscf
class MP2AsFCISolver (object):

def kernel(self, hl, h2, norb, nelec, ciO=None, ecore=0, **kwargs):
Kernel takes the set of integrals from the current set of orbitals

fakemol = pyscf.M(verbose=0)
fakemol.nelectron = sum(nelec)
fake_hf = fakemol.RHF()
fake_hf._eri = h2

fake_hf.get_hcore = lambda *args: hl
fake_hf.get_ovlp = lambda *args: numpy.eye(norb)

Build an SCF object fake_hf without SCF iterations to perform MP2

fake_hf.mo_coeff = numpy.eye(norb)
fake_hf.mo_occ = numpy.zeros(norb)

fake_hf.mo_occ[:fakemol.nelectron//2] = 2

self.mp2 = fake_hf.MP2().run()

return self.mp2.e_tot + ecore, self.mp2.t2

def make_rdmi2(self, t2, norb, nelec):

dml = self.mp2.make_rdml(t2)
dm2 self .mp2.make_rdm2(t2)
return dml, dm2

mol = pyscf.M(atom="H 0 0 O; F 0 0 1.1°, basis=’ccpvdz’)

mf = mol.RHF().run()

Put in the active space all orbitals of the system
mc = pyscf.mcscf.CASSCF(mf, mol.nao, mol.nelectron)

mc.fcisolver = MP2AsFCISolver()

Internal rotation inside the active space needs to be enabled

mc.internal_rotation = True
mc.kernel ()

FIG. 3. Using the general CASSCF solver to implement an orbital-optimized MP2 method.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-7

https://scitation.org/journal/jcp

The Journal

of Chemical Physics ARTICLE scitation.org/journalljcp

C. Case study: Implementing an embedding model we define an embedding Hamiltonian for the fragment in the pres-

- . ence of the atoms in the environment as
As a more advanced example of customization using PySCF, we

now illustrate how a simple script with standard APIs enables PYSCF

to carry out geometry optimization for a wavefunction in Hartree- Hemb = Reftfrag + Veefrag>
Fock (WFT-in-HF) embedding model, as shown in Fig. 4 with a
configuration interaction with single and double excitations (CISD) hegtfrag = Pcore,frag + (Pcoreenv + Vegt[penv])

solver. Given the Hamiltonian of a system, expressed in terms of the

Hamiltonians of a fragment and its environment,
Veff[Penv] = / Vee,envpenv(r)dr + f Vee,frag-envpenv(r)dr-
Hsys = Hfrag + Henv + Vee,frag—env;

Hirag = ecore frag + Veefrags Geometry optimization can then be carried out with the approxi-
Henv = heoreenv + Veeenvs mate nuclear gradients of the embedding problem,

import pyscf

frag = pyscf.M(atom=’frag.xyz’, basis=’ccpvtz’)
env = pyscf.M(atom=’env.xyz’, basis=’sto-3g’)
sys = frag + env

def embedding_gradients(sys):
Regular HF energy and nuclear gradients of the entire system
sys_hf = sys.HF().run()
grad_sys = sys_hf.Gradients() .kernel()

Construct a CASCI-like effective 1-electron Hamiltonian for the fragment

with the presence of outlying atoms in the environment. dm_env is the

density matrix in the environment block

dm_env = sys_hf.make_rdmil ()

dm_env[frag.nao:,:] = dm_env[:,frag.nao:] = 0

frag_hcore_eff = (sys_hf.get_hcore() + sys_hf.get_veff(sys, dm_env)) [:frag.nao, :frag.nao]

Customize the zeroth order calculation by overwriting the core Hamiltonian.
HF and CISD now provide the embedding wavefunction on fragment.

geom_frag = sys.atom_coords(unit=’Angstrom’) [:frag.natm]
frag.set_geom_(geom_frag)

frag_hf = frag.HF()

frag_hf.get_hcore = lambda *args: frag_hcore_eff

frag_hf.run() O

frag_ci = frag hf.CISD().run()

The .Gradients() method enables a regular analytical nuclear gradient object
to evaluate the Hellmann-Feynman forces on fragment using the first order

derivatives of the original fragment Hamiltonian and the variational

embedding wavefunction.

grad_hf_frag = frag_hf.Gradients() .kernel()

grad_ci_frag = frag_ ci.Gradients().kernel()

Approximate the energy and gradients of the entire system with the post-HF
correction on fragment

approx_e = sys_hf.e_tot + frag_ ci.e_tot - frag hf.e_tot

approx_grad = grad_sys

approx_grad[:frag.natm] += grad_ci - grad_hf

print (’Approximate gradients:\n’, approx_grad)

return approx_e, approx_grad

new_sys = pyscf.geomopt.as_pyscf_method(sys,\
embedding_gradients) .Gradients() .optimizer () .kernel()

FIG. 4. An advanced example that implements geometry optimization based on a WFT-in-HF embedding model using standard PYSCF APIs.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074 153, 024109-8
Published under license by AIP Publishing

https://scitation.org/journal/jcp

The Journal

of Chemical Physics

Gradients = <‘I—’CI

OH. sys
0X

8I_Ifrag
0X

‘I’CI> ~ <‘Yc1

Yo >

ARTICLE scitation.org/journalljcp

where the fragment wavefunctions Wrag r and Weqgcr are obtained
from the embedding Hamiltonian Hepp. The code snippet in Fig. 4
demonstrates the kind of rapid prototyping that can be carried out

+ (‘I’HF O(Heny + Vee, frag-env) ‘I’HF) using PYSCF APIs. In particular, this demonstration combines the
[2).¢ APIs for ab initio energy evaluation, analytical nuclear gradient
OHpg OHpeg computation, computing the HF potential for an arbitrary density
= (‘Pc ‘I’CI) - (Whr ‘{’HF) matrix, Hamiltonian customization, and customizing the nuclear
0X 0X . . R
gradient solver in a geometry optimization.
+ (‘I’HF Oy \PHF>
0X
OH, OH, V. SUMMARY OF EXISTING METHODS AND RECENT
~ (‘Pfrag,CI aTg \Pfrag,CI> - (‘Pfrag,HF aTg \Pfrag,HF> ADDITIONS
In this section, we briefly summarize major current capabilities
+ ("PHF OHsys Yp >’ of the PYSCF package. These capabilities are listed in Table I, and the
ox details are presented in Subsections V A-V H.
TABLE I. Major features of PYSCF as of version 1.7.1.
Methods Molecules Solids Comments
HF Yes Yes ~10000 AOs"
MP2 Yes Yes ~1500 MOs"
DFT Yes Yes ~10000 AOs"
TDDFT/TDHEF/TDA/CIS Yes Yes ~10000 AOs"
GoWo Yes Yes ~1500 MOs"
CISD Yes Yes ~1500 MOs'’
FCI Yes Yes” ~(18e, 180)"
IP/EA-ADC(2) Yes No ~500 MOs™*
IP/EA-ADC(2)-X Yes No ~500 MOs™*“
IP/EA-ADC(3) Yes No ~500 MOs™*“
CCSD Yes Yes ~1500 MOs*
CCSD(T) Yes Yes ~1500 MOs*
IP/EA/EE-EOM-CCSD" Yes Yes ~1500 MOs"
MCSCF Yes Yes® ~3000 AOs," 30-50 active orbitals®
MRPT Yes Yes” ~1500 MOs," 30-50 active orbitals®
QM/MM Yes No
Semiempirical Yes No MINDO3
Relativity Yes No ECP and scalar-relativistic corrections for all methods; two-component methods
for HF, DFT, DMRG, and SHCI; four-component methods for HF and DFT
Gradients Yes No HF, MP2, DFT, TDDFT, CISD, CCSD, CCSD(T), MCSCF, and MINDO3
Hessian Yes No HF and DFT
Orbital localizer Yes Yes NAO, meta-Lowdin, IAO/IBO, VVO/LIVVO, Foster-Boys, Edmiston-Ruedenberg,
Pipek-Mezey, and maximally localized Wannier functions
Properties Yes Yes' EFGs, M0ssbauer spectroscopy, NMR, magnetizability, and polarizability
Solvation Yes No ddCOSMO, ddPCM, and polarizable embedding
AO, MO integrals Yes Yes One-electron and two-electron integrals
Density fitting Yes Yes HEF, DFT, MP2, and CCSD
Symmetry Yes No® Dy, and subgroups for molecular HF, MCSCF, and FCI

*An estimate based on a single SMP node with 128 GB memory without density fitting.

“T-point only.

“In-core implementation limited by storing two-electron integrals in memory.

4Perturbative corrections to IP and EA via IP-EOM-CCSD#* and EA-EOM-CCSD* are available for both molecules and crystals.
“Using an external DMRG, SHCI, or FCIQMC program (as listed in Sec. IV B) as the active space solver.

fEFGs and Méssbauer spectra only.
8Experimental support for point-group and time-reversal symmetries in crystals at the SCF and MP2 levels.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-9

https://scitation.org/journal/jcp

The Journal
of Chemical Physics

ARTICLE scitation.org/journalljcp

import pyscf

mol = pyscf.M(atom = N 0 0 0; N O 0 1.1’ , basis = ’ccpvdz’)

mf = mol.RKS()

mf .xc =’CAMB3LYP’

mf . xc ?270.19%SR_HF(0.33) + 0.65*LR_HF(0.33) + 0.46+ITYH + 0.35%B88, 0.19*%VWN5 + 0.81%LYP’’’
mf . xc ’RSH(0.33, 0.65, -0.46) + 0.46*ITYH + 0.35%B88, 0.19*VWN5 + 0.81*LYP’

e_mf = mf.kernel()

FIG. 5. An example of two customized RSH functionals that are equivalent to the CAM-B3LYP functional.

A. Hartree-Fock and density functional theory
methods

The starting point for many electronic structure simulations is a
self-consistent field (SCF) calculation. PYSCF implements Hartree-
Fock (HF) and density functional theory (DFT) with a variety
of Slater determinant references, including restricted closed-shell,
restricted open-shell, unrestricted, and generalized (noncollinear
spin) references,”””” for both molecular and crystalline (k-point)
calculations. Through an interface to the Lmixc” and XCFun"’
libraries, PYSCF also supports a wide range of predefined exchange-
correlation (XC) functionals, including the local density approxima-
tion (LDA), generalized gradient approximations (GGAs), hybrids,
meta-GGAs, nonlocal correlation functionals (VV10"'), and range-
separated hybrid (RSH) functionals. In addition to the predefined
XC functionals, the user can also create customized functionals in a
DFT calculation, as shown in Fig. 5.

Because PySCF uses a Gaussian AO representation, the SCF
computation is usually dominated by Gaussian integral evaluation.
Through the efficient Gaussian integral engine Liscint,” the molec-
ular SCF module can be used with more than 10 000 basis functions
on a symmetric multiprocessing (SMP) machine, without resorting
to any integral approximations such as screening. Further speed-up

I
—— All electron

--- PP -

ay

Energy (eV)

—10\

G X w K G

—

FIG. 6. All-electron and pseudopotential LDA band structures of the Si crystal.
Reprinted with permission from, Sun et al., J. Chem. Phys. 147, 164119 (2017).
Copyright 2017 AIP Publishing LLC.

can be achieved through Gaussian density fitting, and the pseudo-
spectral approach (SGX) is implemented to speed up the evaluation
of exchange in large systems.” "

In crystalline systems, HF and DFT calculations can be carried
out either at a single point in the Brillouin zone or with a k-point
mesh. The cost of the crystalline SCF calculation depends on the
nature of the crystalline Gaussian basis and the associated density
fitting. PYSCF supports Goedecker-Teter-Hutter (GTH) pseudopo-
tentials™ that can be used with the associated basis sets (developed
by the CP2K group).”*” Pseudopotential DFT calculations are typi-
cally most efficiently done using plane-wave density fitting (FFTDEF).
Alternatively, all-electron calculations can be performed with stan-
dard basis sets, and the presence of sharp densities means that Gaus-
sian density fitting performs better. Gaussian density fitting is also
the algorithm of choice for calculations with HF exchange. Figure 6
shows an example of the silicon band structures computed using
a GTH-LDA pseudopotential with FFTDF and in an all-electron
calculation using GDF.

B. Many-body methods

Starting from a SCF HF or DFT wavefunction, various many-
body methods are available in PYSCF, including Meller-Plesset
second-order perturbation theory (MP2), multi-reference perturba-
tion theory (MRPT),*** configuration interaction (CD," ™ cou-
pled cluster (CC),’ o multi-configuration self-consistent field
(MCSCE),**% algebraic diagrammatic construction (ADC),” 7" and
GoWy'" 7" methods. The majority of these capabilities are available
for both molecules and crystalline materials.

1. Molecular implementations

The PYSCF CI module implements solvers for configura-
tion interaction with single and double excitations (CISD) and a
general full configuration interaction (FCI) solver that can treat
fermion, boson, and coupled fermion-boson Hamiltonians. The
FCI solver is heavily optimized for its multithreaded performance
and can efficiently handle active spaces with up to 18 electrons in
18 orbitals.

The CC module implements coupled cluster theory with sin-
gle and double excitations (CCSD)**°' and with the perturba-
tive triples correction [CCSD(T)].”” A-equation solvers are imple-
mented to compute one- and two-particle density matrices as well
as the analytic nuclear gradients for the CCSD and CCSD(T)
methods.””*”” PYSCF also implements various flavors of equation-
of-motion CCSD to compute electron affinities (EAs), ionization

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-10

https://scitation.org/journal/jcp

The Journal

of Chemical Physics ARTICLE scitation.org/journalljcp

~0.560 — ‘ ‘ ‘ ‘ — : ‘ : ‘ — —0.560
1 —
1 =
—0.561} ' —0561 2
oo ' =
OO0V %
_ —0562¢ up to 50 H atoms and : 170962 &
£ 1500 AO basis functions : g
B _0563| ' 1-0563 £
o ' =
2 _os64| ' 0564 =
z I =
wy ' 3
—0.565 | ' 10565 =
- Y
' z
—0.566 | : RCCSD —0.566 ¢
' RCCSD(T) £
! W

—0.567 L ‘ ‘ ‘ ‘ - ‘ ‘ s ‘ 0567

0100 0080 0060 0.040 0.020 0 0 0025 0050 0075 0100 0125
3

N1 X~

FIG. 7. Energies of a hydrogen chain computed at the restricted CCSD and CCSD(T) levels extrapolated to the complete basis set (CBS) and thermodynamic limits. The
left-hand panel shows extrapolation of Ecgs(N) vs 1/N, where N is the number of atoms, while the right-hand panel shows extrapolation of Eccpyxz(N — oo) vs 1/x with x
equal to 2, 3, and 4 corresponding to double-, triple-, and quadruple-zeta basis, respectively. Adapted from Ref. 77.

potentials (IPs), neutral excitation energies (EEs), and spin—flip (SF) (@)
excitation energies.””*"***" Experimental support for beyond dou-

bles corrections to IP and EA via IP-EOM-CCSD*">’° and EA-

EOM-CCSD* is also available. For very large basis sets, PYSCF pro-

vides an efficient AO-driven pathway that allows calculations with

more than 1500 basis functions. An example of this is shown in

Fig. 7, where the largest CCSD(T) calculation contains 50 electrons

and 1500 basis functions.”’

Second- and third-order algebraic diagrammatic construction
(ADC) methods are also available in PYSCF for the calculation of
molecular electron affinities and ionization potentials” "’ [EA/IP-
ADC(n), n =2, 3]. These have a lower cost than EA/IP-EOM-CCSD.
The advantage of the ADC methods over EOM-CCSD is that their
amplitude equations can be solved in one iteration and the eigen-

value problem is Hermitian, which lowers the cost of computing the DMRG-CASSCF(22e, 270)

EA/IP energies and transition intensities. cc-pV5Z (~3000 AO functions)
The MCSCF module provides complete active space configura- E (°B,) = -2245.306 E,

tion interaction (CASCI) and complete active space self-consistent E (SAsj = -2245.312E,

field (CASSCF)***” methods for multi-reference problems. As dis- (b)

cussed in Sec. IV B, the module also provides a general second-
order orbital optimizer’® that can optimize the orbitals of external
methods, with native interfaces for the orbital optimization of the
density matrix renormalization group (DMRG),”" full configura-
tion interaction quantum Monte Carlo (FCIQMC),””” and selected
configuration interaction wavefunctions.’”*” Starting from a CASCI
or CASSCF wavefunction, PySCF also implements the strongly
contracted second-order n-electron valence perturbation theory™*’
(SC-NEVPT?2) in the MRPT module to include additional dynamic I e
correlation. Together with external active-space solvers, this enables e MR-AQCC(12,120)
one to treat relatively large active spaces for such calculations, as — Bt

. e o o 15 20 25 30 35
illustrated in Flg. 8. Bond length (Angstrom)

—0

Energy (eV)

—%— DMRG-SC-NEVPT2(12e,220)

2. Crystalline implementations FIG. 8. (a) Ground-state energy calculations for Fe(ll)-porphine at the DMRG-
: CASSCF/cc-pV5Z level with an active space of 22 electrons in 27 orbitals.”® (b)
As discussed in Sec. 11, the PYSCF implementations of many- Potential energy curve for Cr, at the DMRG-SC-NEVPT2 (12e, 220) level, com-
body methods for crystalline systems closely parallel their molecular pared to the results from other methods. Adapted \{vith permission frpm Guo etlal.,
implementations. In fact, all molecular modules can be used to carry J. Chem. Theory Comput. 12, 1583 (2016). Copyright (2016) American Chemical

Society.
out calculations in solids at the T-point, and many modules (those Y

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074 153, 024109-11
Published under license by AIP Publishing

https://scitation.org/journal/jcp

The Journal ARTICLE o _ _
of Chemical Physics CL scitation.org/journalljcp
import pyscf
cell = pyscf.M(atom=..., a=...) # ’a’ defines lattice vectors

mf = cell.HF(kpt = [0.23,0.23,0.23]) .run()

Use PBC CCSD class so integrals are handled
correctly with respect to Coulomb divergences

mycc = pyscf.pbc.cc.CCSD(mf)

molecular CCSD code used to compute correlation energy at single k-point
converged, ecorr = pyscf.cc.ccsd.kernel (mycc)

FIG. 9. lllustration of using the molecular code to compute an energy in the crystal at a single k-point.

supporting complex integrals) can be used at any other single k-
point. Such single k-point calculations only require the appropriate
periodic integrals to be supplied to the many-body solver (Fig. 9).
For those modules that support complex integrals, twist averag-
ing can then be performed to sample the Brillouin zone. To use
savings from k-point symmetries, an additional summation over
momentum conserving k-point contributions needs to be explic-
itly implemented. Such implementations are provided for MP2,
CCSD, CCSD(T), IP/EA-EOM-CCSD”” and EE-EOM-CCSD,*’ and
GoW,. For example, Fig. 10 shows the MP2 correlation energy
and the CIS excitation energy of MgO, calculated using periodic

630 1

-6.32

-6.34

-6.36 |

MP2 corr. energy (V)

-6.38 [11 1 1

— — —
=] f— —
9] [e) (O]
T LI I e e
[]
|
[]

CIS exc. energy (eV)

—_

e

=]
T

657 47 377
(Number of k-points)~!

FIG. 10. Periodic MP2 correlation energy per unit cell (top) and CIS excitation
energy (bottom) as a function of the number of k-points sampled in the Brillouin
zone for the MgO crystal.

density-fitted implementations; the largest system shown, with a
7 x 7 x 7 k-point mesh, correlates 5488 valence electrons in 9261
orbitals. Furthermore, Fig. 11 shows some examples of periodic cor-
related calculations on NiO carried out using the Go W, and CCSD
methods.

C. Efficiency

In Table I, we provide rough estimates of the sizes of prob-
lems that can be tackled using PYSCF for each electronic structure
method. Figures 7, 8, 10, and 11 illustrate some real-world examples
of calculations performed using PySCF. Note that the size of sys-
tem that can be treated is a function of the computational resources
available; the estimates given above assume relatively standard and
modest computational resources, e.g., a node of a cluster, or a few
dozen cores. For more details of the runtime environment and pro-
gram settings for similar performance benchmarks, we refer readers
to the benchmark page of the PySCF website (www.PvSCF.org). The
implementation and performance of PYSCF on massively parallel
architectures is discussed in Sec. V H.

For molecular calculations using mean-field methods, PYSCF
can treat systems with more than 10000 AO basis functions with-
out difficulty. Figure 15 shows the time of building the Fock matrix
for a large water cluster with more than 12000 basis functions.
With the integral screening threshold set to 107" a.u., it takes only
around 7 h on one computer node with 32 CPU cores. Applying
MPI (Message Passing Interface) parallelization further reduces the
Fock-build time (see Sec. V H). For periodic boundary calculations
at the DFT level using pure XC functionals, even larger systems can
be treated using pseudopotentials and a multi-grid implementation.
Table IT presents an example of such a calculation, where for the
largest system considered ([H,O]s1» with more than 25000 basis
functions), the Fock-build time is about an hour or less on a single
node.

To demonstrate the efficiency of the many-body method imple-
mentations, in Tables 111 and IV, we show timing data of exemplary
CCSD and FCI calculations. It is clear that systems with more than
1500 basis functions can be easily treated at the CCSD level and
that the FCI implementation in PYSCF is very efficient. In a simi-
lar way, the estimated performance for other many-body methods
implemented in PySCF is listed in Table I.

D. Properties

At the mean-field level, the current PYSCF program can
compute various nonrelativistic and four-component relativistic

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-12

https://scitation.org/journal/jcp
http://www.PySCF.org

The Journal

of Chemical Physics

G, W,@PBE
E,=18eV:

DOS

G, W, @PBEO
E, =49 eV:

b=

-2 0

i ;
-8 -6 -4 4 12

2
w (eV)

ARTICLE scitation.org/journalljcp

—0.6
-0.8
-1.0

7

Ut

1
x [A]

FIG. 11. Electronic structure calculations for antiferromagnetic NiO. (a) Density of states and bandgaps computed by Gy W. (b) Normalized spin density on the (100) surface

by CCSD (the Ni atom is located at the center). Adapted from Ref. 81.

molecular properties. These include NMR shielding and spin-
spin coupling tensors,” " electronic g-tensors,”””’ nuclear spin-
rotation constants and rotational g-tensors,”*”” hyperfine cou-

pling (HFC) tensors,”””” electron spin-rotation (ESR) tensors, %’

TABLE II. Wall time (in seconds) for building the Fock matrix in a supercell DFT cal-
culation of water clusters with the GTH-TZV2P?54 basis set using the SVWN®” and
the PBE®® XC functionals and the corresponding pseudopotentials. Integral screen-
ing and lattice summation cutoff were controlled by an overall threshold of 106 a.u.
for Fock matrix elements. The calculations were performed on one computer node
with 32 Intel Xeon Broadwell (E5-2697v4) processors.

System Nao® SVWN PBE
[H20]32 1280 8 23
[H2O]64 2560 20 56
[H20] 128 5120 74 253
[H,0]236 12 800 276 1201
[H2O0]512 25600 1279 4823

*Number of AO basis functions.

TABLE Ill. Wall time (in seconds) for the first CCSD iteration in AO-driven CCSD cal-
culations on hydrogen chains. The threshold of integral screening was set to 10— '3
a.u. For these hydrogen chain molecules, CCSD takes around 10 iterations to con-
verge. The calculations were performed on one computer node with 28 Intel Xeon
Broadwell (E5-2697v4) processors.

System/basis set Noc" Nyirt” Time
H3o/cc-pVQZ 15 884 621

Hso/cc-pV5Z 15 1631 6887
Hso/cc-pVQZ 25 1472 8355

*Number of active occupied orbitals.
®Number of active virtual orbitals.

magnetizability tensors,””'""'"" zero-field splitting (ZFS) ten-

sors,'””'"* as well as static and dynamic polarizability and hyper-
polarizability tensors. The contributions from spin-orbit coupling
and spin-spin coupling can also be calculated and included in the
g-tensors, HFC tensors, ZFS tensors, and ESR tensors. In magnetic
property calculations, an approximate gauge-origin invariance is
ensured for NMR shielding, g-tensors, and magnetizability tensors
via the use of gauge including atomic orbitals.”"'?" 10319

Electric field gradients (EFGs) and Mdssbauer parame-
ters'”'"” can be computed using either the mean-field electron
density or the correlated density obtained from non-relativistic
Hamiltonians, spin-free exact-two-component (X2C) relativistic
Hamiltonians,"'* '** or four-component methods in both molecules
and crystals.

Finally, analytic nuclear gradients for the molecular ground
state are available at the mean-field level and for many of the elec-
tron correlation methods such as MP2, CCSD, CISD, CASCI, and
CASSCEF (see Table I). The CASCI gradient implementation sup-
ports the use of external solvers, such as DMRG, and provides gradi-
ents for such methods. PYSCF also implements the analytical gradi-
ents of time-dependent density functional theory (TDDFT) with or
without the Tamm-Dancoff approximation (TDA) for excited state
geometry optimization. The spin-free X2C relativistic Hamiltonian,

TABLE IV. Wall time (in seconds) for one FCl iteration for different active-space sizes.
The calculations were performed on one computer node with 32 Intel Xeon Broadwell
(E5-2697v4) processors.

Active space Time
(12e, 120) 0.1
(14e, 140) 0.7
(16e, 160) 8
(18e, 180) 156

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-13

https://scitation.org/journal/jcp

The Journal

of Chemical Physics

frozen core approximations, solvent effects, and molecular mechan-
ics (MM) environments can be combined with any of the nuclear
gradient methods. Vibrational frequency and thermochemical anal-
ysis can also be performed using the analytical Hessians from mean-
field level calculations or numerical Hessians of methods based on
the numerical differentiation of analytical gradients.

E. Orbital localization

PySCF provides two kinds of orbital localizations in the LO
module. The first kind localizes orbitals based on the atomic charac-
ter of the basis functions and can generate intrinsic atomic orbitals
(IAOs),'"” natural atomic orbitals (NAOs),''° and meta-Léwdin
orbitals.""” These AO-based local orbitals can be used to carry out
a reliable population analysis in arbitrary basis sets.

The second kind optimizes a cost function to produce local-
ized orbitals. PySCF implements Boys localization,"'® Edmiston-
Ruedenberg localization, "’ and Pipek-Mezey localization.'”’ Start-
ing from the IAOs, one can also use orbital localization based on
the Pipek-Mezey procedure to construct the intrinsic bond orbitals
(IBOs).'"” A similar method can also be used to construct local-
ized intrinsic valence virtual orbitals that can be used to assign the
core-excited states."”’ The optimization in these localization rou-
tines takes advantage of the second order co-iterative augmented
Hessian (CIAH) algorithm122 for rapid convergence.

For crystalline calculations with k-point sampling, PySCF also
provides maximally localized Wannier functions (MLWFs) via a
native interface to the WanniEr90 program.'”’ Different types of
orbitals are available as initial guesses for the MLWFs, including the
atomic orbitals provided by Wannir90, meta-Léwdin orbitals,'"”
and localized orbitals from the selected columns of density matrix
(SCDM) method."**'** Figure 12 illustrates the IBOs and MLWFs of
diamond computed by PySCF.

F. QM/MM and solvent

PySCF incorporates two continuum solvation models, namely,
the conductor-like screening model'”® (COSMO) and the polariz-
able continuum model using the integral equation formalism'*"'**
(IEE-PCM). Both of them are implemented efficiently via a domain
decomposition (dd) approach'” '’ and are compatible with most
of the electronic structure methods in PYSCF. Furthermore, besides

equilibrium solvation where the solvent polarization is governed by

(@) (b)

FIG. 12. (a) IBOs for diamond at the T-point (showing one ¢ bond); (b) MLWFs for
diamond computed within the valence IAO subspace (showing one sp® orbital).

ARTICLE scitation.org/journalljcp

FIG. 13. lllustration of P-cluster (the [FegS7] cluster of nitrogenase) calculations
where the COSMO solvation model was used to mimic the protein environment of
nitrogenase beyond the first coordination sphere. Fe, orange; S, yellow; C, cyan;
O, red; N, blue; H, white; Si, pink. Adapted from Ref. 134.

the static electric susceptibility, non-equilibrium solvation can also
be treated within the framework of TDDFT in order to describe
fast solvent response with respect to abrupt changes in the solute
charge density. As an example, in Ref. 134, the COSMO method was
used to mimic the protein environment of nitrogenase in electronic
structure calculations for the P-cluster (Fig. 13). For excited states
generated by TDA, the polarizable embedding model'*” can also be
used through an interface to the external library cpee.'”>'*°

Currently, PySCF provides some limited functionality for per-
forming QM/MM calculations by adding classical point charges to
the QM region. The implementation supports all molecular elec-
tronic structure methods by decorating the underlying SCF meth-
ods. In addition, MM charges can be used together with the X2C
method and implicit solvent treatments.

GC. Relativistic treatments

PySCF provides several ways to include relativistic effects. In
the framework of scalar Hamiltonians, spin-free X2C theory,
scalar effective core potentials'”® (ECPs), and relativistic pseudo-
potentials can all be used for all methods in calculations of the
energy, nuclear gradients, and nuclear Hessians. At the next level
of relativistic approximations, PYSCF provides spin-orbit ECP inte-
grals and one-body and two-body spin-orbit interactions from the
Breit-Pauli Hamiltonian and X2C Hamiltonian for the spin—orbit
coupling effects.” Two-component Hamiltonians with the X2C
one-electron approximation and four-component Dirac-Coulomb,
Dirac-Coulomb-Gaunt, and Dirac-Coulomb-Breit Hamiltonians
are all supported in mean-field molecular calculations.

H. MPI implementations

In PySCF, distributed parallelism with MPI is implemented
via an extension to the PySCF main library known as MPI4PySCF.
The current MPI extension supports the most common methods in
quantum chemistry and crystalline material computations. Table V

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-14

https://scitation.org/journal/jcp

The Journal
of Chemical Physics

TABLE V. Methods with MPI support. For solids, MPI support is currently provided
only at the level of parallelization over k-points.

Methods Molecules Solids
HF Yes Yes
DFT Yes Yes
MP2 Yes® Yes
CCSD Yes" Yes

*Closed shell systems only.

lists the available MPI-parallel alternatives to the default serial
(OpenMP) implementations. The MPI-enabled modules implement
almost identical APIs to the serial ones, allowing the same script
to be used for serial jobs and MPI-parallel jobs (Fig. 14). The effi-
ciency of the MPI implementation is demonstrated in Fig. 15, which
shows the wall time and speed-up of Fock builds for a system with
12288 AOs with up to 64 MPI processes, each with 32 OpenMP
threads.

To retain the simplicity of the PYSCF package structure, we use
a server—client mechanism to execute the MPI parallel code. In par-
ticular, we use MPI to start the Python interpreter as a daemon that
receives both the functions and data on remote nodes. When a par-
allel session is activated, the master process sends the functions and
data to the daemons. The function object is decoded remotely and
then executed. For example, when building the Fock matrix in the
PySCF MPI implementation, the Fock-build function running on
the master process first sends itself to the Python interpreters run-
ning on the clients. After the function is decoded on the clients,
input variables (such as the density matrix) are distributed by the
master process through MPI. Each client evaluates a subset of the

run in cmdline:
mpirun -np 4 python input.py

import pysct
mol = pyscf.M(...)

Serial task

from pyscf import dft

mf = dft.RKS(mol).run(xc="b31lyp’)

J, K = mf.get_jk(mol, mf.make_rdmi1())

MPI-parallel task

from mpidpyscf import dft

mf = dft.RKS(mol).run(xc=’b3lyp’)

J, K = mf.get_jk(mol, mf.make_rdml())

FIG. 14. Code snippet showing the similarity between serial and MPI-parallel DFT
calculations.

ARTICLE scitation.org/journalljcp

25000 A

20000 A

15000 A

Wall time (s)

10000 A

5000

0 10 20 30 40 50 60
Number of MPI processes

FIG. 15. Computation wall time of building the Fock matrix for the [H,0]s+ cluster
at the HF/VDZ level (12288 AO functions) using PYSCF’s MPI implementation.
Each MPI process contains 32 OpenMP threads, and the speed-up is compared
to the single-node calculation with 32 OpenMP threads.

four-center two-electron integrals (with load balancing performed
among the clients) and constructs a partial Fock matrix, similarly to
the Fock-build functions in other MPI implementations. After send-
ing the partial Fock matrices back to the master process, the client
suspends itself until it receives the next function. The master pro-
cess assembles the Fock matrices and then moves on to the next part
of the code. The above strategy is quite different from the traditional
MPI programs that hard-code the MPI functionality into the code
and initiate the MPI parallel context at the beginning of the pro-
gram. This PySCF design brings the important benefit of being able
to switch on and off MPI parallelism freely in the program without
the need to be aware of the MPI-parallel context (see Ref. 1 for a
more detailed discussion of PyYSCF MPI mode innovations).

VI. THE PySCF SIMULATION ECOSYSTEM

PySCEF is widely used as a development tool, and many groups
have developed and made available their own projects that either
interface to PYSCF or can be used in a tightly coupled manner to
access a greater functionality. We provide a few examples of the
growing PySCF ecosystem below, which we separate into use cases:
(1) external projects to which PySCF provides and maintains a native
interface and (2) external projects that build on PySCF.

A. External projects with native interfaces

PySCF currently maintains a few native interfaces to external
projects, including

e GeoMeTRIC'"" and pyserny.' "' These two libraries provide the
capability to perform geometry optimization, and interfaces
to them are provided in the PyYSCF GEOMOPT module.
As shown in Fig. 4, given a method that provides energies
and nuclear gradients, the geometry optimization module
generates an object that can then be used by these external
optimization libraries.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-15

https://scitation.org/journal/jcp

The Journal
of Chemical Physics

e DFTD3.""*'* This interface allows us to add the DFTD3'*
correction to the total ground state energy as well as to the
nuclear gradients in geometry optimizations.

¢ DMRG, SHCI, and FCIQMC programs (BLOCK,” CuEMPS2,”"
Dice,”' ™ Arrow,”* and NECI’”). These interfaces
closely follow the conventions of PYSCF’s FCI module. As
such, they can be used to replace the FCI solver in MCSCF
methods (CASCI and CASSCEF) to study large active space
multi-reference problems.

e Lixc’ and XCrun." These two libraries are tightly inte-
grated into the PYSCF code. While the PYSCF DFT mod-
ule allows the user to customize exchange-correlation (XC)
functionals by linearly combining different functionals, the
individual XC functionals and their derivatives are evaluated
within these libraries.

e TBLIS.""'*° The tensor contraction library TBLIS offers
a similar functionality to the numpy.einsum function
while delivering substantial speed-ups. Unlike the BLAS-
based “transpose-GEMM-transpose” scheme that involves a
high memory footprint due to the transposed tensor inter-
mediates, TBLIS achieves optimal tensor contraction perfor-
mance without such memory overhead. The TBLIS interface
in PySCF provides an einsum function that implements
the numpy.einsum API but with the TBLIS library as the
contraction back-end.

e CPPE."”'" This library provides a polarizable embedding
solvent model and can be integrated into PYSCF calcula-
tions for ground-state mean-field and post-SCF methods.
In addition, an interface to TDA is currently supported for
excited-state calculations.

B. External projects that build on PySCF

There are many examples in the literature of quantum chem-
istry and electronic structure simulation packages that build on
PYSCEF. The list below is by no means exhaustive but gives an idea
of the range of projects using PySCF today.

1. Quantum Monte Carlo. Several quantum Monte Carlo pro-
grams, such as QMCPACK,‘ o prMc,‘ i QWALK,‘ “ and
HANDE," support reading wavefunctions and/or Hamilto-
nians generated by PYSCF. In the case of ryQMC, PYSCF is
integrated as a dependent module.

2. Quantum embedding packages. Many flavors of quantum
embedding, including density matrix embedding and dynam-
ical mean-field theory, have been implemented on top of
PySCF. Examples of such packages include QSoME,"”''*
pDMET,”*'*® PyDMFET,"”® Porarto,'””"** and openQEMIST,”’
which all use PYSCF to manipulate wavefunctions and embed-
ding Hamiltonians and to provide many-electron solvers.

3. General quantum chemistry. PYSCF can be found as a com-
ponent of tools developed for many different kinds of cal-
culations, including localized active space self-consistent field
(LASSCF),"”* multiconfiguration pair-density functional the-
ory (MC-PDFT),"”” and state-averaged CASSCF energy and
analytical gradient evaluation (all these use the PyYSCF MCSCF
module to optimize multi-reference wavefunctions), as well as
for localized orbital construction via the Pywannizroo library.' ™
The PYMBE package,® which implements the many-body

ARTICLE scitation.org/journalljcp

expanded full CI method,'”"'** utilizes PYSCF to perform
all the underlying electronic structure calculations. Green’s
function methods such as the second-order Green’s func-
tion theory (GF2) and the self-consistent GW approximation
have been explored using PYSCF as the underlying ab initio
infrastructure.'” In the linear scaling program LSQC,'**'”’
PySCF is used to generate reference wavefunctions and inte-
grals for the cluster-in-molecule local correlation method. The
APDFT (alchemical perturbation density functional theory) pro-
gram'**'*” interfaces to PYSCF for QM calculations. In the
PySCE-NAO project,'” large-scale ground-state and excited-
state methods are implemented based on additional support
for numerical atomic orbitals, which has been integrated into
an active branch of PYSCF. The PYFLOSIC package' ' evaluates
self-interaction corrections with the Fermi-Lowdin orbitals
in conjunction with the PYSCF DFT module. Furthermore,
PySCF FCI capabilities are used in the morsturm package'’” for
the development of Coulomb Sturmian basis functions, and
PySCF post-HF methods appear in VeLoxCuem'” and apcc'”
for spectroscopic and excited-state simulations.

VIl. BEYOND ELECTRONIC STRUCTURE

A. PYSCF in the materials genome initiative and
machine learning

As discussed in Sec. I, one of our objectives when devel-
oping PySCF was to create a tool that could be used by non-
specialist researchers in other fields. With the integration of machine
learning techniques into molecular and materials simulations, we
find that PYSCF is being used in many applications in conjunc-
tion with machine learning. For example, the flexibility of the
PySCF DFT module has allowed it to be used to test exchange-
correlation functionals generated by machine-learning protocols in
several projects” and has been integrated into other machine learn-
ing workflows.”'” PYSCF can be used as a large-scale computational
engine for quantum chemistry data generation.”” In the context of
machine learning of wavefunctions, PySCF has also been used as the
starting point to develop neural network based approaches for SCF
initial guesses,'' for the learning of HF orbitals by the DeepMind
team,'” and for Hamiltonian integrals used by fermionic neural nets
in NeTkET,

B. PySCF in quantum information science

Another area where PYSCF has been rapidly adopted as a devel-
opment tool is in the area of quantum information science and quan-
tum computing. This is likely because Python is the de facto stan-
dard programming language in the quantum computing commu-
nity. For example, PYSCF is one of the standard prerequisites to carry
out molecular simulations in the OpenFrrmion'” library, the Qiskir-
Aqua' library, and the OpenQEMIST'® package. Through PySCF’s
GitHub page, we see a rapidly increasing number of quantum
information projects that include PYSCF as a program dependency.

VIIl. OUTLOOK

After five years of development, the PYSCF project can prob-
ably now be considered to be a feature complete and mature tool.

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-16

https://scitation.org/journal/jcp

The Journal

of Chemical Physics

Although no single package can be optimal for all tasks, we believe
that PYSCF to a large extent meets its original development criteria
of forming a library that is useful not only in simulations but also
in enabling the customization and development of new electronic
structure methods.

With the recent release of version 1.7, the current year marks
the end of development of the version 1 branch of PYSCF. As we
look toward PySCF version 2, we expect to build additional innova-
tions, for example, in the areas of faster electronic structure methods
for very large systems, further support and integration for machine
learning and quantum computing applications, better integration
of high-performance computing libraries and more parallel imple-
mentations, and perhaps even forays into dynamics and classical
simulations. Beyond feature development, we will expand our efforts
in documentation and in quality assurance and testing. We expect
the directions of implementation to continue to be guided by and
organically grow out of the established PYSCF ecosystem. However,
regardless of the scientific directions and methods implemented
within PYSCF, the guiding philosophy described in this article will
continue to lie at the heart of PYSCF’s development. We believe
that these guiding principles will help ensure that PySCF remains a
powerful and useful tool in the community for many years to come.

ACKNOWLEDGMENTS

As a large package, the development of PYSCF has been sup-
ported by different sources. Support from the U.S. National Science
Foundation via Award No. 1931258 (T.C.B., G.K.-L.C., and LK.W.)
is acknowledged to integrate high-performance parallel infrastruc-
ture and faster mean-field methods into PYSCF. Support from the
U.S. National Science Foundation via Award No. 1657286 (G.K.-
L.C.) and Award No. 1848369 (T.C.B.) is acknowledged for var-
ious aspects of the development of many-electron wavefunction
methods with periodic boundary conditions. Support for integrat-
ing PySCF into quantum computing platforms was provided par-
tially by the Department of Energy via Award No. 19374 (G.K.-L.C).
The Simons Foundation is gratefully acknowledged for providing
additional support for the continued maintenance and develop-
ment of PYSCF. The Flatiron Institute is a division of the Simons
Foundation. M.B. acknowledges support from the Departemento
de Educacion of the Basque Government through a Ph.D. grant as
well as from Euskampus and the DIPC at the initial stages of his
work. J.C. was supported by the Center for Molecular Magnetic
Quantum Materials (M2QM), an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences under Award No. DE-SC0019330. J.J.E. acknowl-
edges financial support from the Alexander von Humboldt Foun-
dation and the Independent Research Fund Denmark. M.R.H. and
H.Q.P. were partially supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Division of Chemical Sci-
ences, Geosciences and Biosciences under Award No. DE-FG02-
17ER16362 while working in the group of Laura Gagliardi at the
University of Minnesota. P.K. acknowledges financial support from
the Fellows Gipuzkoa program of the Gipuzkoako Foru Aldun-
dia through the FEDER funding scheme of the European Union.
S.L. was supported by the Academy of Finland (Suomen Akatemia)
through Project No. 311149. A.P. thanks the Swiss NSF for the
support provided through the Early Postdoc Mobility program

ARTICLE scitation.org/journalljcp

(Project No. P2ELP2_175281). H.E.S. acknowledges the financial
support from the European Union via Marie Sklodowska-Curie
Grant Agreement No. 754388 and LM Uexcellent within the German
Excellence Initiative (Grant No. ZUK22). S.B. and J.E.T.S. gratefully
acknowledge support from a fellowship through The Molecular Sci-
ences Software Institute under NSF Grant No. ACI-1547580. S.S.
acknowledges support of the NSF (Grant No. CHE-1800584). S.U.
acknowledges the support of the NSF (Grant No. CHE-1762337).
J.M.Y acknowledges support of the National Science Foundation
Graduate Research Fellowship Program. N.S.B. acknowledges fund-
ing and support from St. John’s College, Cambridge.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able within the article and/or from the corresponding author upon
reasonable request.

REFERENCES

1Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D.
McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K. L. Chan, Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 8, 1340 (2018).

2python-based Simulations of Chemistry Framework, 2020, https://github.com/
PySCF/PySCF; accessed on 16 April 2020.

3PySCF: Python-based Simulations of Chemistry Framework, 2020, https://pypi.
org/project/PySCF; accessed on 16 April 2020.

“Python-based Simulations of Chemistry Framework, 2020, https://anaconda.org/
PySCF/PySCF; accessed on 16 April 2020.

5G. Chen, P. Chen, C.-Y. Hsieh, C.-K. Lee, B. Liao, R. Liao, W. Liu, J. Qiu, Q. Sun,
J. Tang, R. Zemel, and S. Zhang, arXiv:1906.09427 [cs.LG] (2019).

5C. Lu, Q. Liu, Q. Sun, C.-Y. Hsieh, S. Zhang, L. Shi, and C.-K. Lee,
arXiv:1910.13551 [physics.chem-ph] (2019).

7S. Dick and M. Fernandez-Serra, chemRxiv:9947312 (2019).

8H. Jiand Y. Jung, J. Chem. Phys. 148, 241742 (2018).

°]. Hermann, Z. Schitzle, and F. Noé, arXiv:1909.08423 [physics.comp-ph]
(2019).

19]. Han, L. Zhang, and W. E,]. Comput. Phys. 399, 108929 (2019).

n J. Cartus, https://github.com/jcartus/SCFInitial Guess; accessed on 21 February
2020.

2D. Pfau, J. S. Spencer, A. G. d. G. Matthews, and W. M. C. Foulkes,
arXiv:1909.02487 [physics.chem-ph] (2019).

3K. Choo, A. Mezzacapo, and G. Carleo, arXiv:1909.12852 [physics.comp-ph]
(2019).

%], R. McClean, K. J. Sung, L. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried, C. Gidney,
B. Gimby, P. Gokhale, T. Hiner, T. Hardikar, V. Havlicek, O. Higgott, C. Huang,
J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman, 1.
Ozfidan, M. D. Radin, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim,
D. S. Steiger, M. Steudtner, Q. Sun, W. Sun, D. Wang, F. Zhang, and R. Bab-
bush, “OpenFermion: the electronic structure package for quantum computers,”
Quantum Sci. Technol. 5, 3 (2020).

'SH. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrow-
ics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, P. Barkoutsos, G. Barron,
L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bosch, S. Bravyi, D. Bucher,
F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen,
R. Chen, J. M. Chow, C. Claus, C. Clauss, A. J. Cross, A. W. Cross, S. Cross,
J. Cruz-Benito, C. Culver, A. D. Corcoles-Gonzales, S. Dague, T. E. Dandachi,
M. Dartiailh, DavideFrr, A. R. Davila, D. Ding, J. Doi, E. Drechsler, E. Dumitrescu,
K. Dumon, I. Duran, K. El-Safty, E. Eastman, P. Eendebak, D. Egger, M. Everitt,
P. M. Fernindez, A. H. Ferrera, A. Frisch, A. Fuhrer, M. George, J. Gacon,
Gadi, B. G. Gago,]. M. Gambetta, A. Gammanpila, L. Garcia, S. Garion,
J. Gomez-Mosquera, S. de la Puente Gonzalez, I. Gould, D. Greenberg, D. Grinko,
W. Guan, J. A. Gunnels, I. Haide, . Hamamura, V. Havlicek, J. Hellmers,

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-17

https://scitation.org/journal/jcp
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://github.com/PySCF/PySCF
https://github.com/PySCF/PySCF
https://pypi.org/project/PySCF
https://pypi.org/project/PySCF
https://anaconda.org/PySCF/PySCF
https://anaconda.org/PySCF/PySCF
http://arxiv.org/abs/1906.09427
http://arxiv.org/abs/1910.13551
http://10.26434/chemrxiv.9947312
https://doi.org/10.1063/1.5022839
http://arxiv.org/abs/1909.08423
https://doi.org/10.1016/j.jcp.2019.108929
https://github.com/jcartus/SCFInitialGuess
http://arxiv.org/abs/1909.02487
http://arxiv.org/abs/1909.12852

The Journal

of Chemical Physics

L. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, H. Imai,
T. Imamichi, K. Ishizaki, R. Iten, T. Itoko, A. Javadi-Abhari, K. Johns, T.
Kachmann, N. Kanazawa, A. Karazeev, P. Kassebaum, S. King, Knabberjoe,
A. Kovyrshin, V. Krishnan, K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone,
S. Lawrence, D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Marecek, M. Marques, D.
Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay, S. Meesala,
M. Mevissen, A. Mezzacapo, R. Midha, Z. Minev, N. Moll, M. D. Mooring,
R. Morales, N. Moran, P. Murali, . Miiggenburg, D. Nadlinger, G. Nannicini,
P. Nation, Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan,
O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello, A. Phan,
M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli, J. Pérez, R. Raymond,
R. M.-C. Redondo, M. Reuter, J. Rice, D. M. Rodriguez, M. Rossmannek, M. Ryu,
T. Sapv, M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva, A.
Simonetto, N. Singstock, Y. Siraichi, L. Sitdikov, S. Sivarajah, M. B. Sletfjerding,
J. A. Smolin, M. Soeken, I. O. Sokolov, D. Steenken, M. Stypulkoski, H.
Takahashi, I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
E. de la Torre, K. Trabing, M. Treinish, W. Turner, Y. Vaknin, C. R. Valcarce,
F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot, J. Weaver, R. Wieczorek,
J. A. Wildstrom, R. Wille, E. Winston, J. J]. Woehr, S. Woerner, R. Woo, C. J.
Wood, R. Wood, S. Wood, J. Wootton, D. Yeralin, R. Young, J. Yu, C. Zachow,
L. Zdanski, and C. Zoufal (2019), “Qiskit: An open-source framework for quantum
computing,” zenodo, https://doi.org/10.5281/zenodo.2562111.

18T Yamazaki, S. Matsuura, A. Narimani, A. Saidmuradov, and A. Zaribafiyan,
arXiv:1806.01305 [quant-ph] (2018).

"7PySCE: The Python-based Simulations of Chemistry Framework, 2020,
http://PySCF.org; accessed on 16 April 2020.

'8M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van
Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, Comput.
Phys. Commun. 181, 1477 (2010).

19, Furche, R. Ahlrichs, C. Hittig, W. Klopper, M. Sierka, and F. Weigend, Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 4, 91 (2014).

20y, Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann,
A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D.
Jacobson, I. Kaliman, R. Z. Khaliullin, T. Ku$, A. Landau, J. Liu, E. I. Proynov,
Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L.
Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G.
J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T.
Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L.
Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar,
S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes,
M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein,
Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A.
King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D.
Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan,
A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich,
S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya,
D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn,
E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein,
D. Stiick, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt,
O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang,
S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks,
G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J.
Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai,
A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong,
D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and
M. Head-Gordon, Mol. Phys. 113, 184 (2015).

2IR. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince,
E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F.
Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P.
Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A.
Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill,]. Chem. Theory
Comput. 13, 3185 (2017).

223, Kresse and J. Furthmiiller, Phys. Rev. B 54, 11169 (1996).

ARTICLE scitation.org/journalljcp

23G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

247 Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dufak, L. Fer-
righi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen,
M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G.
Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Moller,
M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Hakkinen, G.
K. H. Madsen, R. M. Nieminen, J. K. Ngrskov, M. Puska, T. T. Rantala, J. Schiotz,
K. S. Thygesen, and K. W. Jacobsen, J. Phys. Condens. Matter 22, 253202 (2010).
25p, Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli,
M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna,
I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Fer-
retti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino,
T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kii¢iikbenli, M. Lazzeri,
M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-
Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P.
Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu,
and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017).

26y, VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and
J. Hutter, Comput. Phys. Commun. 167, 103 (2005).

27}, McClain, Q. Sun, G. K.-L. Chan, and T. C. Berkelbach, J. Chem. Theory
Comput. 13, 1209 (2017).

28Q. Sun, T. C. Berkelbach, J. D. McClain, and G. K.-L. Chan, J. Chem. Phys. 147,
164119 (2017).

295, Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012).

305, Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys.
Commun. 185, 1501 (2014).

315, Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, |. Chem.
Theory Comput. 13, 1595 (2017).

32y E. T. Smith, B. Mussard, A. A. Holmes, and S. Sharma, J. Chem. Theory
Comput. 13, 5468 (2017).

33A.A. Holmes, N. M. Tubman, and C. J. Umrigar,]. Chem. Theory Comput. 12,
3674 (2016).

3"]. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar,]. Chem. Phys. 149,
214110 (2018).

35G. H. Booth, S. D. Smart, and A. Alavi, Mol. Phys. 112, 1855 (2014).

36U. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer, and C. D. Sherrill,
J. Chem. Phys. 135, 104103 (2011).

37R. Seeger and J. A. Pople, . Chem. Phys. 66, 3045 (1977).

38C. Van Wiillen,]. Comput. Chem. 23, 779 (2002).

395, Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX 7,
1(2018).

400, Ekstrém, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud, J. Chem.
Theory Comput. 6, 1971 (2010).

“10. A. Vydrov and T. Van Voorhis,]. Chem. Phys. 133, 244103 (2010).

I'ZQ. Sun, J. Comput. Chem. 36, 1664 (2015).

“3R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985).

“*F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys. 356, 98 (2009).
“5R. Izsak and F. Neese,]. Chem. Phys. 135, 144105 (2011).

463, Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).

471, Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, Wiley Interdiscip.
Rev.: Comput. Mol. Sci. 4, 15 (2014).

“8¢. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu,]. Chem.
Phys. 114, 10252 (2001).

493, Guo, M. A. Watson, W. Hu, Q. Sun, and G. K.-L. Chan, J. Chem. Theory
Comput. 12, 1583 (2016).

50g R, Langhoff and E. R. Davidson, Int.]. Quantum Chem. 8, 61 (1974).

517 A. Pople, R. Seeger, and R. Krishnan, Int.]. Quantum Chem. 12, 149 (1977).
52p, J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315 (1984).

53]. Olsen, P. Jorgensen, and J. Simons, Chem. Phys. Lett. 169, 463 (1990).

54H. Sekino and R. J. Bartlett, Int.]. Quantum Chem. 26, 255 (1984).

55A. C. Scheiner, G. E. Scuseria, J. E. Rice, T. J. Lee, and H. F. Schaefer, J. Chem.
Phys. 87, 5361 (1987).

56G. E. Scuseria, C. L. Janssen, and H. F. Schaefer,]. Chem. Phys. 89, 7382 (1988).

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-18

https://scitation.org/journal/jcp
https://doi.org/10.5281/zenodo.2562111
http://arxiv.org/abs/1806.01305
http://PySCF.org
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1002/wcms.1162
https://doi.org/10.1002/wcms.1162
https://doi.org/10.1080/00268976.2014.952696
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/physrevb.59.1758
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/1361-648x/aa8f79
https://doi.org/10.1016/j.cpc.2004.12.014
https://doi.org/10.1021/acs.jctc.7b00049
https://doi.org/10.1021/acs.jctc.7b00049
https://doi.org/10.1063/1.4998644
https://doi.org/10.1063/1.3695642
https://doi.org/10.1016/j.cpc.2014.01.019
https://doi.org/10.1016/j.cpc.2014.01.019
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.7b00900
https://doi.org/10.1021/acs.jctc.7b00900
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1063/1.5055390
https://doi.org/10.1080/00268976.2013.877165
https://doi.org/10.1063/1.3631129
https://doi.org/10.1063/1.434318
https://doi.org/10.1002/jcc.10043
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1021/ct100117s
https://doi.org/10.1021/ct100117s
https://doi.org/10.1063/1.3521275
https://doi.org/10.1002/jcc.23981
https://doi.org/10.1016/0009-2614(85)80121-4
https://doi.org/10.1016/j.chemphys.2008.10.036
https://doi.org/10.1063/1.3646921
https://doi.org/10.1103/physrevb.54.1703
https://doi.org/10.1002/wcms.1159
https://doi.org/10.1002/wcms.1159
https://doi.org/10.1063/1.1361246
https://doi.org/10.1063/1.1361246
https://doi.org/10.1021/acs.jctc.5b01225
https://doi.org/10.1021/acs.jctc.5b01225
https://doi.org/10.1002/qua.560080106
https://doi.org/10.1002/qua.560120820
https://doi.org/10.1016/0009-2614(84)85513-x
https://doi.org/10.1016/0009-2614(90)85633-n
https://doi.org/10.1002/qua.560260826
https://doi.org/10.1063/1.453655
https://doi.org/10.1063/1.453655
https://doi.org/10.1063/1.455269

The Journal

of Chemical Physics

57K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys.
Lett. 157, 479 (1989).

58E. A. Salter, G. W. Trucks, and R. J. Bartlett,]. Chem. Phys. 90, 1752 (1989).
9G. E. Scuseria,]. Chem. Phys. 94, 442 (1991).

89M. Nooijen and R. J. Bartlett,]. Chem. Phys. 102, 3629 (1995).

8TH. Koch, A. Sdnchez de Meras, T. Helgaker, and O. Christiansen, J. Chem. Phys.
104, 4157 (1996).

62M. Musial, S. A. Kucharski, and R. J. Bartlett,]. Chem. Phys. 118, 1128 (2003).
8341 Krylov, Acc. Chem. Res. 39, 83 (2006).

4H.J. Werner and P. J. Knowles,]. Chem. Phys. 82, 5053 (1985).

55H.J. A. Jensen, P. Jorgensen, and H. Agren, J. Chem. Phys. 87, 451 (1987).

6671, Schirmer, Phys. Rev. A 26, 2395 (1982).

67]. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28, 1237 (1983).

68]. Schirmer and A. B. Trofimov, |. Chem. Phys. 120, 11449 (2004).

69A. Dreuw and M. Wormit, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5, 82
(2015).

70, Banerjee and A. Y. Sokolov, |. Chem. Phys. 151, 224112 (2019).

7VL. Hedin, Phys. Rev. 139, A796 (1965).

72g, Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998);
arXiv:9712013 [cond-mat].

73X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter,
and M. Scheffler, New J. Phys. 14, 053020 (2012); arXiv:1201.0655.

7"], Wilhelm, M. Del Ben, and J. Hutter,]. Chem. Theory Comput. 12, 3623
(2016).

75]. F. Stanton and J. Gauss, Theor. Chem. Acc. 93, 303 (1996).

7], C. Saeh and J. F. Stanton, J. Chem. Phys. 111, 8275 (1999).

77M. Motta, D. M. Ceperley, G. K.-L. Chan, J. A. Gomez, E. Gull, S. Guo, C. A.
Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, A. J. Millis, N. V. Prokof’ev, U. Ray, G. E.
Scuseria, S. Sorella, E. M. Stoudenmire, Q. Sun, L. S. Tupitsyn, S. R. White, D. Zgid,
and S. Zhang, Phys. Rev. X 7, 031059 (2017).

7E’Q. Sun, J. Yang, and G. K.-L. Chan, Chem. Phys. Lett. 683, 291 (2017).

7°R. E. Thomas, Q. Sun, A. Alavi, and G. H. Booth,]. Chem. Theory Comput. 11,
5316 (2015).

80y, Wang and T. C. Berkelbach, arXiv:2001.11050 [cond-mat.mtrl-sci] (2020).
81Y. Gao, Q. Sun, J. M. Yu, M. Motta, J. McClain, A. F. White, A. J. Minnich, and
G. K.-L. Chan, arXiv:1910.02191 [cond-mat.mtrl-sci] (2019).

825 H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

837 P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

841 Visscher, T. Enevoldsen, T. Saue, H. J. A. Jensen, and J. Oddershede,
J. Comput. Chem. 20, 1262 (1999).

85T, Helgaker, M. Jaszunski, and K. Ruud, Chem. Rev. 99, 293 (1999).

86T, Enevoldsen, L. Visscher, T. Saue, H. J. A. Jensen, and J. Oddershede,]. Chem.
Phys. 112, 3493 (2000).

87V. Sychrovsky, J. Grifenstein, and D. Cremer,]. Chem. Phys. 113, 3530
(2000).

88T, Helgaker, M. Watson, and N. C. Handy, J. Chem. Phys. 113, 9402
(2000).

891 Cheng, Y. Xiao, and W. Liu,]. Chem. Phys. 130, 144102 (2009).

90G. Schreckenbach and T. Ziegler, J. Phys. Chem. A 101, 3388 (1997).

91, Neese, J. Chem. Phys. 115, 11080 (2001).

927, Rinkevicius, L. Telyatnyk, P. Safek, O. Vahtras, and H. Agren, J. Chem. Phys.
119, 10489 (2003).

93P, Hrobérik, M. Repisky, S. Komorovsky, V. Hrobarikové, and M. Kaupp,
Theor. Chem. Acc. 129, 715 (2011).

943 P. A. Sauer, J. Oddershede, and J. Geertsen, Mol. Phys. 76, 445 (1992).

95]. Gauss, K. Ruud, and T. Helgaker, . Chem. Phys. 105, 2804 (1996).

96F. Neese,]. Chem. Phys. 118, 3939 (2003).

97 A. V. Arbuznikov, J. Vaara, and M. Kaupp, J. Chem. Phys. 120, 2127 (2004).
98R. F. Curl, Mol. Phys. 9, 585 (1965).

9G. Tarczay, P. G. Szalay, and J. Gauss, |. Phys. Chem. A 114, 9246 (2010).

00T A. Keith, Chem. Phys. 213, 123 (1996).

TOTR. Cammi, . Chem. Phys. 109, 3185 (1998).

ARTICLE scitation.orgljournalljcp

1027 R. Pederson and S. N. Khanna, Phys. Rev. B 60, 9566 (1999).

T193E. Neese, J. Chem. Phys. 127, 164112 (2007).

1045, Schmitt, P. Jost, and C. van Wiillen, J. Chem. Phys. 134, 194113 (2011).
195E. London, J. Phys. Radium 8, 397 (1937).

106 Ditchfield, Mol. Phys. 27, 789 (1974).

T07H. M. Petrilli, P. E. Blochl, P. Blaha, and K. Schwarz, Phys. Rev. B 57, 14690
(1998).

1985, Adiga, D. Aebi, and D. L. Bryce, Can. J. Chem. 85, 496 (2007).

1997 Autschbach, S. Zheng, and R. W. Schurko, Concepts Magn. Reson., Part A
36A, 84 (2010).

19K, G. Dyall, . Chem. Phys. 106, 9618 (1997).

"W, Kutzelnigg and W. Liu,]. Chem. Phys. 123, 241102 (2005).

"2, Liu and D. Peng, . Chem. Phys. 125, 044102 (2006).

T3 M. Tliag and T. Saue, . Chem. Phys. 126, 064102 (2007).

1141, Cheng and J. Gauss, J. Chem. Phys. 134, 244112 (2011).

115G, Knizia, . Chem. Theory Comput. 9, 4834 (2013).

116 A E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).
"7Q. Sun and G. K.-L. Chan, J. Chem. Theory Comput. 10, 3784 (2014).

“8]. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 300 (1960).

119C. Edmiston and K. Ruedenberg,]. Chem. Phys. 43, S97 (1965).

1297 pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).

121w D. Derricotte and F. A. Evangelista,]. Chem. Theory Comput. 13, 5984
(2017).

122Q), Sun, arXiv:1610.08423 [physics.chem-ph] (2016).

125G, Pizzi, V. Vitale, R. Arita, S. Bliigel, F. Freimuth, G. Géranton, M. Gibertini,
D. Gresch, C. Johnson, T. Koretsune, J. Ibafiez-Azpiroz, H. Lee, J.-M. Lihm,
D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura,
L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Théle, S. S. Tsirkin,
M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R.
Yates, J. Phys. Condens. Matter 32, 165902 (2020).

124 A Damle, L. Lin, and L. Ying,]. Chem. Theory Comput. 11, 1463 (2015).
125 A, Damle, L. Lin, and L. Ying,]. Comput. Phys. 334, 1 (2017).

126 A Klamt and G. Schiiiirmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.

127% Cances, B. Mennucci, and J. Tomasi,]. Chem. Phys. 107, 3032 (1997).

128p Mennucci, E. Canceés, and J. Tomasi, . Phys. Chem. B 101, 10506 (1997).
129, Cances, Y. Maday, and B. Stamm, J. Chem. Phys. 139, 054111 (2013).

130F, Lipparini, B. Stamm, E. Cancés, Y. Maday, and B. Mennucci, J. Chem.
Theory Comput. 9, 3637 (2013).

131, Lipparini, G. Scalmani, L. Lagardére, B. Stamm, E. Cances, Y. Maday,
J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys. 141, 184108 (2014).
1328 Stamm, E. Cancés, F. Lipparini, and Y. Maday, J. Chem. Phys. 144, 054101
(2016).

133F, Lipparini and B. Mennucci, J. Chem. Phys. 144, 160901 (2016).

1347, Li, S. Guo, Q. Sun, and G. K.-L. Chan, Nat. Chem. 11, 1026 (2019).

35 M. Scheurer, P. Reinholdt, E. R. Kjellgren, J. M. Haugaard Olsen, A. Dreuw,
and J. Kongsted,]. Chem. Theory Comput. 15, 6154 (2019).

36 M. Scheurer (2019), “CPPE: C++ and python library for polarizable embed-
ding,” zenodo. https://doi.org/10.5281/zenodo.3345696

37W. Liu and D. Peng, . Chem. Phys. 131, 031104 (2009).

138, Flores-Moreno, R. J. Alvarez-Mendez, A. Vela, and A. M. Koster,]. Comput.
Chem. 27, 1009 (2006).

1398, Mussard and S. Sharma, J. Chem. Theory Comput. 14, 154 (2018).

1401, -p. Wang and C. Song,]. Chem. Phys. 144, 214108 (2016).

T41]. Hermann (2020), “Pyberny,” zenodo. https://doi.org/10.5281/zenodo.

3695038

1425, Grimme, J. Antony, S. Ehrlich, and H. Krieg,]. Chem. Phys. 132, 154104
(2010).

%3] L. C. Sainz, A python wrapper for DFT-D3, https://github.com/cuanto/
libdftd3; accessed on 21 February 2020.

144D, A. Matthews, arXiv:1607.00291 [cs.MS] (2016).

1"5]. Huang, D. A. Matthews, and R. A. van de Geijn, arXiv:1704.03092 [cs.MS]
(2017).

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-19

https://scitation.org/journal/jcp
https://doi.org/10.1016/s0009-2614(89)87395-6
https://doi.org/10.1016/s0009-2614(89)87395-6
https://doi.org/10.1063/1.456069
https://doi.org/10.1063/1.460359
https://doi.org/10.1063/1.468592
https://doi.org/10.1063/1.471227
https://doi.org/10.1063/1.1527013
https://doi.org/10.1021/ar0402006
https://doi.org/10.1063/1.448627
https://doi.org/10.1063/1.453590
https://doi.org/10.1103/physreva.26.2395
https://doi.org/10.1103/physreva.28.1237
https://doi.org/10.1063/1.1752875
https://doi.org/10.1002/wcms.1206
https://doi.org/10.1063/1.5131771
https://doi.org/10.1103/physrev.139.a796
https://doi.org/10.1088/0034-4885/61/3/002
http://arxiv.org/abs/alg-geom/9712013
https://doi.org/10.1088/1367-2630/14/5/053020
http://arxiv.org/abs/1201.0655
https://doi.org/10.1021/acs.jctc.6b00380
https://doi.org/10.1007/bf01127508
https://doi.org/10.1063/1.480171
https://doi.org/10.1103/physrevx.7.031059
https://doi.org/10.1016/j.cplett.2017.03.004
https://doi.org/10.1021/acs.jctc.5b00917
http://arxiv.org/abs/2001.11050
http://arxiv.org/abs/1910.02191
https://doi.org/10.1139/p80-159
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1002/(sici)1096-987x(199909)20:12<1262::aid-jcc6>3.0.co;2-h
https://doi.org/10.1021/cr960017t
https://doi.org/10.1063/1.480504
https://doi.org/10.1063/1.480504
https://doi.org/10.1063/1.1286806
https://doi.org/10.1063/1.1321296
https://doi.org/10.1063/1.3110602
https://doi.org/10.1021/jp963060t
https://doi.org/10.1063/1.1419058
https://doi.org/10.1063/1.1620497
https://doi.org/10.1007/s00214-011-0951-7
https://doi.org/10.1080/00268979200101451
https://doi.org/10.1063/1.472143
https://doi.org/10.1063/1.1540619
https://doi.org/10.1063/1.1636720
https://doi.org/10.1080/00268976500100761
https://doi.org/10.1021/jp103789x
https://doi.org/10.1016/s0301-0104(96)00272-8
https://doi.org/10.1063/1.476910
https://doi.org/10.1103/physrevb.60.9566
https://doi.org/10.1063/1.2772857
https://doi.org/10.1063/1.3590362
https://doi.org/10.1051/jphysrad:01937008010039700
https://doi.org/10.1080/00268977400100711
https://doi.org/10.1103/physrevb.57.14690
https://doi.org/10.1139/v07-069
https://doi.org/10.1002/cmr.a.20155
https://doi.org/10.1063/1.473860
https://doi.org/10.1063/1.2137315
https://doi.org/10.1063/1.2222365
https://doi.org/10.1063/1.2436882
https://doi.org/10.1063/1.3601056
https://doi.org/10.1021/ct400687b
https://doi.org/10.1063/1.449486
https://doi.org/10.1021/ct500512f
https://doi.org/10.1103/revmodphys.32.300
https://doi.org/10.1063/1.1701520
https://doi.org/10.1063/1.456588
https://doi.org/10.1021/acs.jctc.7b00493
http://arxiv.org/abs/1610.08423
https://doi.org/10.1088/1361-648x/ab51ff
https://doi.org/10.1021/ct500985f
https://doi.org/10.1016/j.jcp.2016.12.053
https://doi.org/10.1039/p29930000799
https://doi.org/10.1063/1.474659
https://doi.org/10.1021/jp971959k
https://doi.org/10.1063/1.4816767
https://doi.org/10.1021/ct400280b
https://doi.org/10.1021/ct400280b
https://doi.org/10.1063/1.4901304
https://doi.org/10.1063/1.4940136
https://doi.org/10.1063/1.4947236
https://doi.org/10.1038/s41557-019-0337-3
https://doi.org/10.1021/acs.jctc.9b00758
https://doi.org/10.5281/zenodo.3345696
https://doi.org/10.1063/1.3159445
https://doi.org/10.1002/jcc.20410
https://doi.org/10.1002/jcc.20410
https://doi.org/10.1021/acs.jctc.7b01019
https://doi.org/10.1063/1.4952956
https://doi.org/10.5281/zenodo.3695038
https://doi.org/10.5281/zenodo.3695038
https://doi.org/10.1063/1.3382344
https://github.com/cuanto/libdftd3
https://github.com/cuanto/libdftd3
http://arxiv.org/abs/1607.00291
http://arxiv.org/abs/1704.03092

The Journal

of Chemical Physics

146D, Matthews, “TBLIS is a library and framework for performing tensor
operations, especially tensor contraction, using efficient native algorithms,”
https://github.com/devinamatthews/tblis; accessed on 21 February 2020.

1471 Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A. Berrill,
N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa, B. K. Clark, R. C.
Clay, K. T. Delaney, M. Dewing, K. P. Esler, H. Hao, O. Heinonen, P. R. C. Kent,
J. T. Krogel, I. Kylanpas, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M. Martin,
A. Mathuriya,]. McMinis, C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman,
W. D. Parker, S. D. Pineda Flores, N. A. Romero, B. M. Rubenstein, J. A. R. Shea,
H. Shin, L. Shulenburger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. Van Der
Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, |. Phys. Condens.
Matter 30, 195901 (2018).

481, K. Wagner, K. Williams, S. Pathak, B. Busemeyer, J. N. B. Rodrigues,
Y. Chang, A. Munoz, and C. Lorsung, Python library for real space quantum
Monte Carlo, https://github.com/WagnerGroup/pyqmc; accessed on 21 February
2020.

1491, K. Wagner, M. Bajdich, and L. Mitas,]. Comput. Phys. 228, 3390 (2009).
1507 s, Spencer, N. S. Blunt, S. Choi, J. Etrych, M.-A. Filip, W. M. C. Foulkes, R.
S. T. Franklin, W. J. Handley, F. D. Malone, V. A. Neufeld, R. Di Remigio, T. W.
Rogers, C.J. C. Scott, J. J. Shepherd, W. A. Vigor, J. Weston, R. Xu, and A. J. W.
Thom, J. Chem. Theory Comput. 15, 1728 (2019).

151D, V. Chulhai and J. D. Goodpaster,]. Chem. Theory Comput. 13, 1503 (2017).
1521 R Petras, D. S. Graham, S. K. Ramadugu, J. D. Goodpaster, and J. J.
Shepherd, J. Chem. Theory Comput. 15, 5332 (2019).

15?’]. D. Goodpaster, D. S. Graham, and D. V. Chulhai (2019), “Good-
paster/QSoME: Initial release,” zenodo. https://doi.org/10.5281/zenodo.3356913
154M. R. Hermes and L. Gagliardi,]. Chem. Theory Comput. 15,972 (2019).
155q, Q. Pham, M. R. Hermes, and L. Gagliardi,]. Chem. Theory Comput. 16, 130
(2020).

156X. Zhang and E. A. Carter, J. Chem. Theory Comput. 15, 949 (2019).

1577 ‘H. Cui, T. Zhu, and G. K.-L. Chan, J. Chem. Theory Comput. 16, 119
(2019).

ARTICLE scitation.orgljournalljcp

158 Zhu, Z.-H. Cui, and G. K.-L. Chan, J. Chem. Theory Comput. 16, 141
(2020).

1591, Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer, and J. L.
Bao, Acc. Chem. Res. 50, 66 (2017).

1697 7. Eriksen, PyMBE: A Many-Body Expanded Correlation Code by Janus Juul
Eriksen, https://gitlab.com/januseriksen/pymbe; accessed on 21 February 2020.
1617, J. Eriksen, F. Lipparini, and J. Gauss, J. Phys. Chem. Lett. 8, 4633 (2017);
arXiv:1708.02103.

162y 7. Eriksen and J. Gauss, J. Chem. [heory Comput. 14, 5180 (2018);
arXiv:1807.01328.

163]. J. Eriksen and J. Gauss, . Chem. Theory Comput. 15, 4873 (2019);
arXiv:1905.02786.

1641 7. Eriksen and J. Gauss, J.
arXiv:1910.03527.

1655, Iskakov, A. A. Rusakov, D. Zgid, and E. Gull, Phys. Rev. B 100, 085112
(2019).

166\ . Li, C. Chen, D. Zhao, and S. Li, Int. J. Quantum Chem. 115, 641 (2015).
T7W. Li, Z. Ni, and S. Li, Mol. Phys. 114, 1447 (2016).

T68G. F. von Rudorff and O. A. von Lilienfeld, “Alchemical perturbation density
functional theory,” Phys. Rev. Research 2, 023220 (2020).

169G, F. Von Rudorff and O. A. Von Lilienfeld, J. Phys. Chem. B 123, 10073
(2019).

170p Koval, M. Barbry, and D. Sanchez-Portal, Comput. Phys. Commun. 236, 188
(2019).

1715, Schwalbe, L. Fiedler, T. Hahn, K. Trepte, J. Kraus, and J. Kortus,
arXiv:1905.02631 [physics.comp-ph] (2019).

T72M. F. Herbst, A. Dreuw, and J. E. Avery, . Chem. Phys. 149, 084106 (2018).
1737, Rinkevicius, X. Li, O. Vahtras, K. Ahmadzadeh, M. Brand, M. Ringholm,
N. H. List, M. Scheurer, M. Scott, A. Dreuw, and P. Norman, Wiley Interdiscip.
Rev.: Comput. Mol. Sci. e1457 (2019).

"7%M. F. Herbst, M. Scheurer, T. Fransson, D. R. Rehn, and A. Dreuw, Wiley
Interdiscip. Rev.: Comput. Mol. Sci. e1462 (2020).

Phys. Chem. Lett. 10, 7910 (2019);

J. Chem. Phys. 153, 024109 (2020); doi: 10.1063/5.0006074
Published under license by AIP Publishing

153, 024109-20

https://scitation.org/journal/jcp
https://github.com/devinamatthews/tblis
https://doi.org/10.1088/1361-648x/aab9c3
https://doi.org/10.1088/1361-648x/aab9c3
https://github.com/WagnerGroup/pyqmc
https://doi.org/10.1016/j.jcp.2009.01.017
https://doi.org/10.1021/acs.jctc.8b01217
https://doi.org/10.1021/acs.jctc.7b00034
https://doi.org/10.1021/acs.jctc.9b00571
https://doi.org/10.5281/zenodo.3356913
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.9b00939
https://doi.org/10.1021/acs.jctc.8b00990
https://doi.org/10.1021/acs.jctc.9b00933
https://doi.org/10.1021/acs.jctc.9b00934
https://doi.org/10.1021/acs.accounts.6b00471
https://gitlab.com/januseriksen/pymbe
https://doi.org/10.1021/acs.jpclett.7b02075
http://arxiv.org/abs/1704.03092
https://doi.org/10.1021/acs.jctc.8b00680
http://arxiv.org/abs/1807.01328
https://doi.org/10.1021/acs.jctc.9b00456
http://arxiv.org/abs/1905.02786
https://doi.org/10.1021/acs.jpclett.9b02968
http://arxiv.org/abs/1910.03527
https://doi.org/10.1103/physrevb.100.085112
https://doi.org/10.1002/qua.24831
https://doi.org/10.1080/00268976.2016.1139755
https://doi.org/10.1021/acs.jpcb.9b07799
https://doi.org/10.1016/j.cpc.2018.08.004
http://arxiv.org/abs/1905.02631
https://doi.org/10.1063/1.5044765
https://doi.org/10.1002/wcms.1457
https://doi.org/10.1002/wcms.1457
https://doi.org/10.1002/wcms.1462
https://doi.org/10.1002/wcms.1462

