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Scientific Significance Statement

Microplastics, which are plastic pieces smaller than 5 mm, are commonly found in the marine environment, where they are
available for ingestion by marine fauna. Because of both their root structure and their geographic distribution, mangrove for-
ests are known as sinks of microplastics, but very little is known about the factors controlling the microplastics ingestion by
mangrove associated crabs, which are a dominant and ecologically relevant ecosystem component. We observed that both the
level of plastic contamination in the mangrove and the feeding habit of the crab’s species play critical roles in the abundance
and type of microplastic ingested by mangrove crabs.

Abstract

As marine plastic debris is primarily sourced from terrestrial input, coastal environments are particularly
affected by deposition. Because of their pneumatophores, mangroves have been recognized for their importance
in confining plastic waste. Crabs are a dominant component of the mangrove ecosystem and play a critical role
in maintaining healthy and resilient mangrove forests. Therefore, the presence of debris fragmented from
waste, in their habitat is a potential threat. However, the potential ingestion of microplastic pieces by mangrove
crabs has not yet been investigated. Here, we quantified microparticles found in the cardiac stomachs and gill
chambers of four species of crabs. All specimens collected had anthropogenic microparticles present either via
their digestive or respiratory systems. We observed significant variability in the abundance and types of anthro-
pogenic microparticles across sites and species. Interspecific differences appear to be explained by their particu-
lar feeding habits, with less selective species ingesting more particles.
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Marine debris, and in particular plastic debris, has been
observed throughout large ranges of marine environments
(Moore et al. 2001; Widmer and Hennemann 2010; Galgani
et al. 2015). Rivers have been identified as the main sources of
plastic litter, which results in considerable pollution in coastal
regions. Hong Kong coastlines are no exception, as Hong
Kong is located at the mouth of the Pearl River, the third larg-
est riverine source of plastic into the ocean (Lebreton et al.
2017). Large plastic debris can be easily observed stranded on
many coastal habitats of Hong Kong, but investigation of
their abundance and composition is mostly limited to sandy
beaches, with other coastal habitats remaining understudied
(Cheung et al. 2018b; Ho and Not 2019). Macroplastics are
fragilized by several environmental variables, including UV
radiation, humidity, and wave action. As such, this debris is
susceptible to fragmentation, eventually leading to the forma-
tion of microplastics (i.e., plastic pieces smaller than 5 mm;
Cole et al. 2011). While microplastics have been found in all
marine environments, coastal environments are particularly
affected due to their typical proximities to river deltas and
urbanized regions (Peters and Bratton 2016; Lebreton et al.
2017; Chan et al. 2019). In Hong Kong, microplastics have
been identified in coastal surface waters (Cheung et al. 2018aq;
So et al. 2018), sandy beaches (Fok and Cheung 2015; Fok
et al. 2017), marine sediments (Tsang et al. 2017), and also
within marine organisms (Chan et al. 2019).

Because of their coastal habitats, mangroves are highly sus-
ceptible to debris exposure. Furthermore, the spatial complex-
ity characteristic of mangrove ecosystems provides many
opportunities for debris to become entangled, which enhances
their role as sinks for plastic pollution (Garcés-Ordoriez et al.
2019; Martin et al. 2019). Macroplastics trapped within coastal
forests are easily fragmented into microplastics, and recent
studies have reported a high abundance of microplastic accu-
mulation within mangrove roots systems (Garcés-Ordorfiez
et al. 2019; Li et al. 2019; Martin et al. 2019). With the excep-
tion of the abovementioned studies, there are still very few
estimates of macro- and microplastic abundances within man-
groves. These forests host diverse and highly specialized inver-
tebrate fauna (Duke et al. 2007; Cannicci et al. 2008), which
play critical roles in maintaining ecosystem functions and
could be strongly impacted by plastic pollution.

Hong Kong mangroves are characterized by a high density
and diversity of crabs and molluscs (Lee 2000). These two taxa
dominate the mangrove food web (Kristensen et al. 2017), and
their activity has a significant engineering effect on the sedi-
ment and whole-forest functionality (Kristensen 2008).
Although recent experimental evidence has emphasized the
important role played by these bioengineers in maintaining
healthy and functional mangrove forests, very few studies have
investigated the impact of anthropogenic stressors (Cannicci
et al. 2009), such as plastic pollution, on their physiology.
However, based on experimental tests, crabs have been shown
to uptake microplastic via dietary input and ventilation,

85

Feeding behavior for microparticle intake

leading to a reduction in their food consumption and, conse-
quently, of their energy budget (Watts et al. 2015, 2016). In
addition, transfer of microplastics from stomachs to hepato-
pancreas has been identified in the tropical fiddler crab, Uca
rapax (Brennecke et al. 2015). Observations of microplastic
ingestion by crabs in natural environments are, however, still
limited (Wojcik-Fudalewska et al. 2016; Welden et al. 2018).

Over the last decades, mangroves have been under multiple
threats and are disappearing worldwide at the alarming rate of
1-2% per year (Duke et al. 2007; Richards and Friess 2015;
Friess et al. 2019), especially along the coast of the South
China Sea. Hong Kong mangroves, however, have proved to
be truly resilient, since about 60 mangrove stands, covering
an area of about 500 ha, are still thriving along the coast (Tam
et al. 1997). These remaining pockets of forest still provide
paramount ecosystem services and functions (Duke et al.
2007). They support pelagic and benthic marine food webs,
evidenced through their significant contributions of organic
carbon (Meynecke et al. 2007), but also act as carbon sinks
and thus mitigate climate change (Donato et al. 2011). Man-
grove forests further reduce coastal erosion and act as filters
for pollutants, which are trapped within their fine sediment
and are not dispersed into open waters (MacFarlane et al.
2007). Due to these important ecological roles and the
increasing threat of plastic litter, it is crucial to characterize
the types and ecological implications of plastic litter within
mangrove habitats. Here, we use a field approach to look at
the ingestion of anthropogenic particles by four mangrove
crab species occupying different levels of the food web. The
transfer of anthropogenic debris as microplastic, from the
environment into crab organs, has been primarily observed
via feeding and gill ventilation. Therefore, we investigated the
presence of anthropogenic debris in the cardiac stomach and
gills of mangrove crabs, to better understand and characterize
the main intake processes. Potential transfer from stomach to
hepatopancreas has been suggested in experimental studies
(Brennecke et al. 2015) but it is beyond the scope of this
study, which focuses on intake processes rather than transfer
among internal organs. Here, we concentrate on possible dif-
ferences in intake among crab populations subject to different
levels of plastic pollution and among crab species character-
ized by different feeding habits to test whether microdebris
availability and feeding behavior affect the microplastic intake
in these keystone species in mangrove habitats.

Materials and methods

Crabs were collected between October 21%, 2017 and
November 3", 2017 from three mangrove forests in Hong
Kong: (1) Ha Pak Nai (HPN, 14 individuals sampled), located in
the north west of Hong Kong, (2) Pak Tam Chung (PTC,
19 individuals sampled), and (3) Yung Shue O (YSO, 16 individ-
uals sampled), both located on the east coast (Fig. 1; Table 1).
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The three sites are small patches (< 1 ha) of mangrove forests
dominated by Kandelia obovata trees and located at the mouth
of small rivers (Tam et al. 1997). However, HPN, situated within
the estuary of the Pearl River, is characterized by higher salinity
and nutrients compared to PTC and YSO (Duprey et al. 2016).
Within each mangrove site, adult crabs, that is, morphologically
and sexually mature individuals, belonging to four crab species
were collected by hand during their low tide activity period by
two expert researchers. The focal species were: a detritivorous
sesarmid, Parasesarma bidens (n = 15, size range 13 mm
< carapace width [CW], >20 mm), known to ingest mainly
plant material and organic sediment on the mangrove floor
(Poon et al. 2010); the grapsid Metopograpsus frontalis (n = 14,
size range 15 mm < CW > 20 mm), which is an opportunistic
feeder able both to predate on small invertebrates and to feed
on plant material (Fratini et al. 2000; Poon et al. 2010); the
ocypodid Paraleptuca splendida (n = 13, size range
13 mm < CW > 18 mm), which is known as a floating feeder,
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Fig. 1. Sampled mangrove sites within Hong Kong. n represents the
number of crabs sampled.
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since it places a small amount of substratum in its buccal cavity
and sorts food particles by passing water through the buccal cav-
ity (Crane 1975), and the predator portunid Thalamita crenata
(n = 7, size range 25 mm < CW > 35 mm), which ambushes
crabs and searches for bivalves on the mud flat (Cannicci et al.
1996). Although all of the above four species show some degree
of terrestrialization and are active at low tide, physiological and
morphological differences are evident. Parasesarma bidens,
M. frontalis, and T. crenata strongly rely on gills to breath and
have evolved various mechanisms to retain water into their gill
chambers (Little 2009). On the other hand, Paraleptuca splendida,
like most fiddler crabs, evolved a true lung within the gill cham-
ber and mostly uses its gills for osmoregulation and excretion
(Paoli et al. 2015). Due to the strong differences in abundances
shown by the above species at the study sites, we could not
obtain a balanced design, although we could standardize for sizes
and sex. To minimize stress, the collected crabs were transported
in buckets with leaves and sediments, rinsed with ultra-pure
water (Milli-Q) to remove sediment from the surface of their car-
apaces. Finally, crabs were stored at —18°C until further
processing.

Stomachs and gills were dissected and digested by a 10-min
sonication treatment followed by a hydrogen peroxide (35%)
bath heated at 80°C for 2 h. The digested solution was filtered
through a 0.3 um pore size glass filter and dried. Finally,
0.5 mL of 1% Rose Bengal was dropped on the filter to facili-
tate the identification of remaining organic material. Each fil-
ter was examined under a stereomicroscope (Carl Zeiss Stemi
305) and particles > 10 ym were identified, categorized, and
counted as fragment, fiber, pellet, and bead. Fragments were
categorized as angular-shaped pieces, fibers as elongate cylin-
dric pieces, pellets as oval-shaped pieces, and beads as spheri-
cal particles (Supporting Information Fig. S1). Because
categorical distinctions of particles smaller than 10 ym were
difficult, especially between bead and pellet, and because such
particles are unidentifiable via fourier transform infrared spec-
troscopy (FTIR) analysis, we limited our investigation to parti-
cles bigger than 10 ym. Finally, selected particles, based on
their sizes and shapes, were analyzed with a Bruker Lumos

Table 1. Number of microparticles found in gills and stomachs by crab species and by location and number of crab individuals
analyzed for each species and location. Notes: Nb microparticles refers to the total number of particles found across all crabs
investigated for a particular species and location. Nb ind. refers the number of individual crabs analyzed.

YSO PTC HPN Total

Nb Nb Nb Nb Nb Nb
Species/sites microparticles Nbind.  microparticles Nbind. microparticles ind. microparticles ind.
Parasesarma bidens 365 3 393 6 615 6 1373 15
Paraleptuca splendida 86 6 53 4 194 3 333 13
M. frontalis 534 5 197 6 238 3 969 14
T. crenata 49 2 99 3 143 2 291 7
Total 1034 16 742 19 1190 14 2966 49
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FTIR microscope using the attenuated reflectance transmission
attenuated total reflectance fourier transtorm infrared spec-
troscopy (ATR-FTIR) method to identify their compositions.
Spectra were identified using the Bruker spectrum library. To
reduce potential contamination, all equipment were rinsed
with MilliQ and methanol, all experiments were run under a
fume hood, unnecessary opening of the filtration setup and
petri dish were avoided, and cotton laboratory coats were
used. Additionally, a procedural blank was used during each
set of samples, with a total of nine replicates.

The total amount of recorded particles and the different
amount of particle types found were analyzed with
univariate and multivariate permutational analysis of variance
(PERMANOVA, Anderson et al. 2008) designs, respectively. Both
analyses were applied to test for differences in microplastic pres-
ence across locations (three levels, fixed and orthogonal), species
(four levels, fixed and orthogonal), and between gills and stom-
ach (fixed and orthogonal). In particular, the total amount of par-
ticles found, and the overall composition of particle types present
were analyzed with univariate and multivariate PERMANOVA
designs, respectively. To standardize for possible relationships
between the specimen size and the amount of bodily micro-
debris found, the number of particles belonging to each of the
selected categories found in each specimen was divided by their
CW, a standard measure of size for crabs. Due to their
heteroscedasticity assessed via PERMDISP, a multivariate version
of the Leven test (Anderson et al. 2008), the data were log-
transformed and the Euclidean distance was used to calculate
the dissimilarity matrix. When appropriate, post hoc pairwise
tests were performed to examine significant differences among
levels of factors. A principal component analysis (PCA) on previ-
ously normalized data was performed as an unconstrained ordi-
nation to visualize patterns of particle composition in stomach
and gills. To further analyze the differences in the number of
particles of the various categories found in the stomach and gills
of the different species analyzed, we performed a canonical
analysis of principal coordinates (CAP). All analyses were based
on 9999 permutations and were carried out using the software
PRIMER 7 and its add-on package PERMANOVA+ (Anderson
et al. 2008).

Results and discussion

All 49 crab specimens had particles present either in their
stomach or in/on their gills, with only one individual con-
taining particles exclusively in its stomach, reflecting the high
contamination of mangrove crabs by particles. From the sam-
pled specimens, we retrieved a total 2966 microparticle pieces,
with almost 90% of the pieces present in the stomach and
10% in the gills, indicating that ingestion is the main driver
of microparticle intake (df = 1; F = 75.1; p < 0.0001, three-way
PERMANOVA, Table 1, Supporting Information Table S1).
Based on the method used for microparticles recovery from
gills (dissection and then digestion), it is not possible to
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distinguish particles that were trapped at the surface vs. the
ones inside the gills; however, only 10% of the microparticles
retrieved where found in the gills, suggesting that the ventila-
tion system is not a main path of microparticles intake, at
least for microparticles bigger than 10 ym. No significant cor-
relation was observed between the content of microparticles
recorded in stomach, gills, or both and the size of the individ-
ual crab, both measured as carapace width and length. An
average of two microparticles was observed in procedural
blanks and was thus used to correct the number of microparti-
cles in crabs. We tested 46 pieces with ATR-FTIR but could
only confirm the composition of nine of them. All of the
other pieces were either too small for signal-to-background
differentiation, or the presence of rose Bengal or remaining
organic matter altered the readability of the spectrum. Of
these nine particles, one fiber was identified as polyethylene
(PE), one fragment as polyethylene terephthalate (PET), four
particles as rayon, two particles as paint, and one as cobalt.
Based on these results, we ascertained that most of the micro-
particles identified were derived from human-made material
(89%, considering that cobalt may come from a natural
source). If a majority of these microparticles can be considered
as originating from human material, only 22% are identified
as plastic polymer (PE and PET). However, this is based on a
limited number of analyses and we recognize the need for
additional investigations to further verify the abundance of
microplastics in mangrove crab organs. Therefore, we use the
term “microparticles” here to describe the combination of
plastic and nonplastic micropieces from anthropogenic
sources.

Both the abundance and composition of microparticle
types found in crabs significantly vary between species (df = 3;
F=5.4;p<0.01 and df = 3; F = 9.0; p < 0.0001 for abundance
and composition, respectively, three-way PERMANOVA) and
mangrove sites from which they were collected (df = 2;
F =3.4; p<0.05 and df = 2; F = 4.6; p<0.01 for abundance
and composition, respectively, three-way PERMANOVA;
Fig. 2). Crabs from the HPN mangrove located on the west
coast of Hong Kong were shown to have significantly higher
abundances of microparticles compared to crabs from the two
other mangroves (HPN > PTC = YSO, PERMANOVA post hoc
tests). A distinction in microplastic content in Hong Kong
waters between the east and west side of the region has been
previously shown to be linked to the influence of the Pearl
River (Fok and Cheung 2015). Since our sampling sites do not
differ in terms of structural characteristics, tree dominance, or
area, the east-west difference observed in the abundance of
microparticles in crab organs is likely linked to the influence
of the Pearl River.

We also observed a significant difference in the abundance
of microparticles ingested by different species, with Para-
sesarma bidens and M. frontalis characterized by similar
amounts of microdebris (t = 1.16, p = 0.25, PERMANOVA
post hoc test), and with both species higher than the ocypodid
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Fig. 2. Box plot showing the abundance microparticles found in gills and stomach of individual mangrove crabs at different locations (A) and in differ-
ent species across locations (B). Sites are YSO, PTC, both located in the east side of Hong Kong, and HPN located in the north west of Hong Kong. The
number of collected specimens per location and per species is shown below the bar. The box plots represent the nonparametric parameters, such as

medians, quartiles, and 95% ranges.

Paraleptuca splendida (t = 5.43, p <0.001 and t = 3.92, p < 0.01,
for Parasesarma bidens and M. frontalis, respectively, PER-
MANOVA post hoc tests). The predator T. crenata had a
lower amount of ingested microparticles compared to the
omnivorous Parasesarma bidens (t = 2.50, p<0.03, PER-
MANOVA post hoc test), but a higher amount than the micro-
phytobenthos feeder Paraleptuca splendida (t = 2.26, p <0.0S,
PERMANOVA post hoc test). These results can be easily
explained by the food preferences and the feeding habits of
these species. The highest rates of microparticles were recorded
in the stomachs of the detritivore Parasesarma bidens, known
to actively pick up plant materials and particulate organic mat-
ter (POM) from the sediment (Lee 2000; Poon et al. 2010), and
of the omnivorous M. frontalis, known to ingest similar rates of
animal, plant, and POM from the sediment (Poon et al. 2010).
T. crenata is also a generalist feeder, but this crab avoids feeding
on sediment and exerts a strong preference for predation on
crabs and molluscs (Cannicci et al. 1996). Finally, out of the
four species, the lowest content of microparticles was found in
the stomachs of Paraleptuca splendida, which, like other fiddler
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crabs, filters pellets of mud to feed on microphytobenthos,
using water stored in its gill chambers (Icely and Jones 1978;
Dye and Lasiak 1987; Kawaida et al. 2019). Such active filtering
could prevent this species from ingesting the heaviest micro-
particles, which are instead discharged into the pseudo-pellets
contained within inorganic components of the mud.

PCA ordination results show clear patterns regarding the
types of microparticles found in stomachs and gills across
the different species (Fig. 3A). CAP showed that stomachs
contained more fragments and beads, whereas gills con-
tained mainly fibers (Fig. 3A,B). These results confirm that
both dietary and ventilation processes are responsible for
microparticle intake by crabs (Watts et al. 2015, 2016). The
preferential presence of fibers during the ventilation process is
consistent with microparticles found in filtering organisms
such as oysters and mussels (Li et al. 2016, 2018). CAP also
confirmed that Parasesarma bidens and M. frontalis preferen-
tially ingested fragments (~ 80%) and beads (~ 13%), whereas
T. crenata ingested a mixture of fragments, beads, and fibers
and Paraleptuca splendida ingested mostly fibers (Fig. 3B). Based
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Fig. 3. Two-dimensional scatter plots of the first and second principal components (A) and of the first and second canonical axes (B) of microparticle
type compositions found in the stomach and gill chambers of four species of mangrove crab from Hong Kong. Open symbols represent the data col-
lected from the gills, closed ones the data from the gut. Triangles represent data from YSO, dots represent PTC, and squares represent HPN. Vectors of
the linear correlations between individual variables are superimposed on the graph.

on these observations, we suggest that both the abundance
and type of microparticles ingested in the cardiac stomach
depend on the feeding habits of the crabs. For example, Para-
sesarma bidens as a detritivore ingested predominantly frag-
ments whereas Paraleptuca splendida ingested less fragments but
more fibers, which have lower sinking velocity (Khatmullina
and Isachenko 2017; Hoellein et al. 2019) and could be
ingested together with microphytoplankton during the filtering
process carried out by this species.

Conclusion

Hong Kong mangroves are highly polluted by human
activities, and mangrove crabs, one of the keystone taxa in
the mangrove environment, appear to be heavily impacted by
such anthropogenic debris. All of the sampled specimens in
this study, belonging to four dominant species and located in
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three different mangroves throughout Hong Kong, present
intake of microparticles. We have shown here that the abun-
dances and types of microparticles found in crab stomachs are
related to the crab’s role in the food web and their feeding
habits, with crabs that employ generalist feeding strategies
ingesting a higher abundance and more diverse range of types
of microparticles. Although we could confirm that crabs
absorbed microplastics via both their ingestion and ventila-
tion efforts, we clearly showed that most of the intake hap-
pens via feeding.
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