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14 Abstract
15 Genome-wide association studies (GWAS) using longitudinal phenotypes collected over 
16 time is appealing due to the improvement of power. However, computation burden has 
17 been a challenge because of the complex algorithms for modeling the longitudinal data.  
18 Approximation methods based on Empirical Bayesian Estimates (EBEs) from mixed-
19 effects modeling have been developed to expedite the analysis. However, our analysis 
20 demonstrated that bias in both association test and estimation for the existing EBE-based 
21 methods remains an issue. We propose an incredibly fast and unbiased method (SCEBE, 
22 simultaneous correction for EBE) that can correct the bias in the naive EBE approach, and 
23 provide unbiased p-values and estimates of effect size. Through application to ADNI data 
24 with 6,414,695 single nucleotide polymorphisms, we demonstrated that SCEBE can 
25 efficiently perform large-scale GWAS with longitudinal outcomes, providing nearly 
26 10,000 times improvement of computational efficiency and shortening the computation 
27 time from months to minutes. The SCEBE package and the example datasets are available 
28 at https://github.com/Myuan2019/SCEBE

29 Key Points
30  Modeling GWAS data on longitudinal outcome using mixed-effects model can 
31 improve statistical power, however, computational complexity and efficiency remain 
32 difficult and challenging.
33  SCEBE provides almost identical estimation and p-values compared to the standard 
34 likelihood based approach.
35  SCEBE provides nearly 10,000 times improvement of computational efficiency and 
36 shortens the computation time from months to minutes. 
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12 Introduction

13 Genome-wide association studies (GWAS) with longitudinal outcomes allow higher 

14 statistical power to detect genetic variants with relatively weak effects [1-2], better 

15 identification patient populations, and better understanding of mechanisms of disease 

16 resistance and disease progression [3] etc. Mixed-effects model is a powerful and popular 

17 tool to model repeated measurements [4]. However, computation burden become 

18 challenging for such model as millions of single nucleotide polymorphisms (SNPs) are 

19 evaluated in GWAS. Currently, the most commonly used algorithm for testing association 

20 is either the Wald test or the likelihood ratio test [3-4]. In addition, local convergence may 

21 lead to biased parameter estimation and p-values for mixed-effects models. 

22 Empirical Bayes Estimates (EBEs), derived from the base mixed-effects model 

23 without covariates has long been used as an ad hoc approach to facilitate variable selection 

24 for low-dimension data [5-6]. Efforts were made to utilize EBE-based approach (thereafter 

25 referred as naïve EBE [NEBE]) to test association in GWAS [7-8] with longitudinal 

26 outcomes. Despite of its simplicity, it is well known that the EBEs are biased as they tend 

27 to be shrunk to the corresponding population mean [6, 9], and may not be suitable for 

28 identification of significant variables [9]. Therefore, there is an urgent need to develop an 
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1 efficient and scalable algorithm to compute unbiased association test statistics for GWAS 

2 with longitudinal outcomes. 

3 We propose a novel, high throughtput algorithm to provide an efficient and scalable 

4 computation of the association test statistics for GWAS with longitudinal outcomes. This 

5 method not only corrects the bias caused by shrinkage, and provides numerically identical 

6 estimation and p-values to those from the standard mixed-effects model, but also could be 

7 10,000 times faster than current standard approach. 

8

9 Methods

10 Suppose the GWAS is designed from a natural population with three genotypes at each 

11 locus. Let denote the number of individuals and  denote the number of SNPs. The ith 𝑚 𝑞

12 individual has observations  at time points . 𝑛𝑖 𝑦𝑖 = (𝑦𝑖1,𝑦𝑖2,…, 𝑦𝑖𝑛𝑖)′ 𝑡𝑖 = (𝑡𝑖1,𝑡𝑖2,…, 𝑡𝑖𝑛𝑖)′

13 A typical linear mixed-effects model in GWAS can be written in a two stage form as 

14 follows,

15 𝑦𝑖 = 𝑍𝑖𝛽𝑖 + 𝑒𝑖

16 𝛽𝑖 = 𝛼 + 𝑥𝑖𝛾 + 𝑏𝑖, 𝑖 = 1, 2, ⋯,𝑚     (1)

17  and 𝑒𝑖 ∼ 𝑁(0, 𝐺𝑖) 𝑏𝑖 ∼ 𝑁(0,𝑅)

18 where  is the random effect vector. The design matrix  is a matrix. βi 𝑝 × 1 𝑍𝑖 𝑛𝑖 × 𝑝 

19 Covariate is the genotype coded as 0, 1 or 2 for three different genotypes.  and  are 𝑥𝑖 α γ

20 -dimensional intercept and slope parameters. The base model corresponds to model (1) 𝑝

21 with Residual independently folllow a multinormal distribution with mean 0 γ = 0. 𝑒𝑖′𝑠 

22 and a  covariance matrix  which chracterizes the correlation structure of within-𝑛𝑖 × 𝑛𝑖 𝐺𝑖

23 subject variablities.  is the between-subject error vector following a multinormal  𝑏𝑖 𝑝 × 1 

Page 3 of 42

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

1 distribution with mean 0 and a  covariance matrix   characterizes the between-𝑝 × 𝑝 𝑅. 𝑅

2 subject variablilities. The standard approach of fitting model (1) is based on the likelihood 

3 function and implemented in R packages (e.g., lme4). We call the standard approach ‘LME’ 

4 in this article.

5 We propose a simultaneous correction for empirical Bayesian estimator (SCEBE) 

6 which can simultaneously correct genetic effects on all random parameters. The SCEBE 

7 method contains three steps: 

8 Step 1: Fit a base mixed-effects model without covariates (thereafter referred as base 

9 model). In this step, maximum likelihood estimators (MLEs) or restricted maximum 

10 likelihood estimators (REMLs) are obtained for the fixed effects, between-subject 

11 variability (random effects), and within-subject variability under the base model. 

12 Step 2: Treat the predictors of random effects (i.e., EBEs) from Step 1 as phenotypes 

13 for genome-wide association analysis using a standard linear regression model. The 

14 resulting SNP effect estimates (and corresponding p-values) are referred as the naive 

15 empirical Bayesian estimators (NEBE). The EBEs are the weighted sum of the population 

16 and sample mean, thus suffer from the shrinkage to population mean especially when 

17 longitudinal samples are sparse or/and within-subject variability is large. The shrunk EBEs 

18 tend to produce biased NEBE estimators.

19 Step 3: Fortunately, the degree of bias can be theoretically quantified and be used as 

20 the correction matrix to obtain the unbiased estimators and test statistics. In this step, we 

21 correct the NEBE as well as the covariance matrix of NEBE by a derived simultaneous 

22 correction matrix to obtain the unbiased estimates and testing statistics for the SNP effects. 

23 The derived correction matrix has the expression as follows 
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1 𝑆𝑐 =
∑𝑚

𝑖 = 1(𝑥𝑖 ― 𝑥)[𝑥𝑖(𝐼𝑝 ― 𝑆𝑖) + 𝑆𝑖∑
𝑚
𝑖 = 1𝑥𝑖𝑊𝑖]

∑𝑚
𝑖 = 1(𝑥𝑖 ― 𝑥)2

2 where  is the sample mean;  is the p-dimensional identity matrix; 𝑥 𝐼𝑝 𝑆𝑖 =

3  is the shrinkage matrix and  (𝑍′𝑖𝐺 ―1
𝑖 𝑍𝑖 + 𝑅 ―1) ―1𝑅 ―1 𝑊𝑖 = (∑𝑚

𝑖 = 1𝑍′𝑖Σ ―1
𝑖 𝑍𝑖)

―1
𝑍′𝑖Σ ―1

𝑖 𝑍𝑖

4 with  being the covariance matrix of . We proved that the expectation Σ𝑖 = 𝑍𝑖𝑅𝑍′𝑖 + 𝐺𝑖 𝑦𝑖

5 of NEBE under the true model (1) is . Therefore,  can be used as the correction 𝑆𝑐𝛾 𝑆𝑐

6 factor to correct the bias of NEBE. Details of the derivation of correction matrixes are 

7 provided in Supplementary Materials/Section 1.

8 While this paper was in development, Sikorska et al. also published an alternative, 

9 efficient algorithm for genome-wide analysis of longitudinal data (GALLOP) [11]. The 

10 main idea of GALLOP is to efficiently solve the Henderson equation by taking 

11 consideration of the block diagonal feature of the coefficient matrix of the Henderson 

12 equation. In this paper, we also implemented GALLOP in our R package and applied it to 

13 the simulation and real data analysis for comparison. 

14

15 Results

16 ADNI data analysis

17 The data was downloaded from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

18 database (www.loni.usc.edu/ADNI). The ADNI is an ongoing longitudinal multicenter 

19 study aimed at detecting and monitoring the early stage of Alzheimer's disease (AD) by 

20 investigating the magnetic resonance imaging, positron emission tomography, genetic, 

21 biochemical biomarkers, and neuropsychological and clinical assessment. Since the initial 
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1 phase ADNI-1 was carried out in 2004, the ADNI has been extended to ADNI-2, ADNI-3 

2 and ADNI-GO. There are 784 individuals enrolled in the study and a total 6,528,104 SNPs 

3 were sequenced and screened after quality control. In this paper, we used one of the most 

4 widely used imputation methods, segmented haplotype estimation and imputation tool 

5 (SHAPEIT) [12], to impute missing genotypes. After deleting SNPs with MAF being 

6 smaller than 0.05 and SNPs with only one genotype for all individuals, 6,414,695 SNPs 

7 were analyzed. We used repeatedly measured Rey Auditory Verbal Learning Test (RAVLT) 

8 forgetting scale scores over time as the longitudinal response phenotype, and investigated 

9 the SNP effects on the progression rate of RAVLT over time.

10 The key features of the proposed method SCEBE are time efficiency and accuracy 

11 compared to standard LME. We first compared the computation time cost for different 

12 approaches using the ADNI data (6,414,695 SNPs) (Figure 1). The computation was 

13 performed on an Ubuntu 16.04 LTS running on a server with CPU@2.9G and 8G RAM. 

14 It required approximately 145 days (single-CPU time) for LME to scan through all the 

15 SNPs, while only 2 min， 37 min and 118 min were needed for NEBE, SCEBE and 

16 GALLOP respectively (Figure 1a). Therefore, SCEBE approach was nearly 10,000 times 

17 faster than LME (Figure 1b).

18 The SCEBE also provide unbiased estimates and similar p-values compared to 

19 classical LME (Figure 2). In contrast, as expected, the estimates of effect size based on 

20 NEBE approach had marked biases (Figure 2b). Due to the shrinkage, the estimated effect 

21 of the SNPs on the disease progression (slope) based on NEBE was close to zero despite 

22 that the underlying genetic effects based on LME were apparent for many SNPs (Figure 

23 2b). Furthermore, the p-values from the intermediate biased NEBE are obviously different 

Page 6 of 42

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

1 from those of the standard LME (Figure 2a). SCEBE corrected the bias in estimation and 

2 p-values from NEBE and provided very similar p-values as the standard LME (Figure 2a). 

3 In comparison, GALLOP and SCEBE shared very similar p-values for association tests 

4 and estimation of SNP effects for the ADNI data. Nevertheless, the SCEBE was 3 – 4 times 

5 faster than GALLOP (Figure 1a and 1b). 

6 Manhattan plot based on SCEBE for the ADNI data is presented in Figure 3. A closer 

7 look at the top 20 SNPs for both baseline disease status (intercept) and disease progression 

8 (slope) is displayed in Figure 4. Four out of the top 20 SNPs for the baseline AD status are 

9 related to genes which have been reported to be associated with AD ([13, 14]). Among 

10 them, rs429358 is within APOE, rs12721051 is within APOC1, rs4420638, rs56131196 

11 are 500B downstream variants of APOC1.It is well known that APOE4 is involved in the 

12 pathogenesis of both late-onset familial and sporadic AD [13]. In addition, recent literature 

13 suggested that immunosuppression associated with APOC1 in the context of Aβ innate 

14 immune activation is potentially clinically relevant [14].

15 In addition, among the top 20 SNPs for disease progression according to RAVLT 

16 scores, rs3799160 is within PDE10A, which has been reported to be related to AD in recent 

17 literatures [15-16]. It was discovered that most PDE isoforms (including PDE10A) are 

18 expressed in the brain, and PDE inhibitors are capable to improve memory performance in 

19 different animal models of AD [15]. Additionally, expression of PDE10A was found to be 

20 upregulated after long term potentiation induction in the hippocampus of awake adult rats 

21 [16], indicating that it may have effects on memory and cognition. 

22 Since very few GWAS association studies have been reported using RAVLT scores 

23 over time, the other SNPs identified in this study (Supplementary Table 1) may provide 
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1 new insights for biology of AD and its disease progression. Further investigations are 

2 warranted in the future to better understand the biology of these SNPs. 

3  

4

5 Simulation studies

6 Association test

7 We also use extensive simulations to compare the standard LME with the NEBE, SCEBE 

8 and GALLOP approaches. Briefly, m=100, 500, 1000, or 10000 subjects were simulated 

9 for a given scenario. Two unbalanced sampling schemes, sparse (1, 2, 3, or 5 samples per 

10 subject over time) and intensive (3, 5, 7, or 9 samples per subject over time) sampling, 

11 were implemented in the simulations. Assuming that the allele frequency of risk allele  𝑝𝐴

12 is randomly sampled from a uniform distribution  and Hardy-Weinberg U(0.05,0.5)

13 equilibrium holds in population, the probabilities of three genotypes are 𝑝2
𝐴,  2𝑝𝐴(1 ― 𝑝𝐴),

14  respectively.  100, 1000, 10000 SNPs are independently sampled from a (1 ― 𝑝𝐴)2

15 multinomial distribution with probability . We assumed that (𝑝2
𝐴, 2𝑝𝐴(1 ― 𝑝𝐴),(1 ― 𝑝𝐴)2)′

16 no effects of SNPs were on baseline disease status (intercept), while the effect sizes of 

17 SNPs on disease progression (slope) were randomly sampled from a uniform distribution

18 . The between-subject covariance was assumed diagonal with all elements were  U(0,0.5)

19 set to 1, while the within-subject covariance was also assumed diagonal, which was set to 

20 0.5, 1, 2, or 3 to allow different levels of shrinkage. In total, 96 scenarios were simulated 

21 and each was done for 1000 replicates.  

22 For the association test, although the p-values calculated based on NEBE appear to be 

23 trending the same way as those based on the LME approach, the discrepancy in the p-
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1 values from these two approaches was obvious as the data points scatter around the 1:1 

2 identity line (Supplementary Figure 1). On the contrast, SCEBE provided very similar p-

3 values for the association test on both intercept and the slope of the model compared to the 

4 LME approach regardless of the level of shrinkage. 

5 As expected, compared to standard LME, NEBE severely underestimated the effect 

6 size due to shrinkage (Supplementary Figure 2). However, after corrections, the estimates 

7 from SCEBE are virtually identical to those based on the LME approach as the data points 

8 perfectly aligned on the 1:1 identity line. Similar to the findings based on the real ADNI 

9 data, the simulation study also demonstrated that GALLOP and SCEBE provided similar 

10 p-values and estimates for SNP effects (Supplementary Figure 1 and 2). All of the four 

11 investigated approaches can well controlled the type I error rate at the nominal level 

12 (Supplementary Figure 3). 

13

14 Computation complexity

15 Since multiple integrations/approximations are required, the computation time for fitting a 

16 classic LME by lmer in ‘lme4’ package increases with the cubic of the number of 

17 individuals [17]. In addition, for a typical GWAS with LME, millions of LME model 

18 fittings are needed by adding one SNP at a time into the model. 

19 The proposed SCEBE only requires a single run of the time-consuming LME model 

20 (ie, the base model without SNP effects) to estimate the random effects parameters (EBEs). 

21 Then the association studies are performed by treating the EBEs for a model parameter as 

22 the phenotype and SNPs as genotypes using linear regression models. This substantially 

23 reduces the per-SNP computation time as it converts the complex LME model to simple 
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1 linear regression. Finally, the bias in SNP-effect estimates and test statistics caused by 

2 shrinkage of EBEs is corrected by a correction matrix. Since analytic expression for the 

3 correction matrix can be derived theoretically, the computation can be done through 

4 matrix-vector manipulation for all the SNPs together as long as the computer memory 

5 allows. 

6 Our simulation experiments confirmed that the computation time of SCEBE was 

7 drastically improved compared to that for LME (Supplementary Figure 4a). Depending on 

8 sample size and number of SNPs, approximately 100 – 2000 folds of increase in 

9 computation efficiency was observed for SCEBE. The gain in time efficiency relative to 

10 LME improved with increasing sample size or/and increasing number of SNPs 

11 (Supplementary Figure 4b). In the GWAS analysis for ADNI data where over 6 million of 

12 SNPs were involved, the gain in time efficiency was approximately almost 10, 000 time 

13 for SCEBE (Figure 1b). Consistent with the analysis for ADNI data, the SCEBE was 3 – 4 

14 times faster than GALLOP in the simulation studies (Supplementary Figure 4). 

15

16 Confounding

17 Confounding due to relatedness or population stratification is one of the most challenging 

18 issues in statistical inferences for GWAS [18-21]. We conducted additional simulations to 

19 study the impact of population stratification on statistical inference based on the 

20 approaches discussed in this article. We simulated data using the Balding-Nichols model 

21 [22-24] (details are provided in Supplementary Materials/Section 2). 

22 As expected, in the presence of population stratification, the quantiles of test statistics 

23 of the SNPs tend to deviate from the theoretical quantiles of chi-square distribution with 1 
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1 degree of freedom (Supplementary Figure 5). However, SCEBE could still provide 

2 unbiased estimates and very similar p-values compared to the standard LME despite of 

3 population stratification (Supplementary Figure 6a and 6b). This suggests that population 

4 stratification has similar impact on the standard LME and SCEBE. Furthermore, it appears 

5 that genomic control [17] could correct the test statistics back to the theoretical distribution  

6 for both SCEBE and LME when all simulated SNPs had no effects, and reduce the 

7 influence of population stratification when there were SNPs with active effects 

8 (Supplementary Figure 5). 

9

10 Discussion

11 GWAS with longitudinal outcomes based on repeated measures could markedly increase 

12 the statistical power, particularly for detecting genetic variants with relatively weak effects 

13 [1-2]. Mixed-effect modeling has been an attractive approach for GWAS with longitudinal 

14 outcomes despite of its computational challenge and cost [3, 25]. Althgouh EBE-based 

15 approaches can reduce the computational time [7-8], these approaches suffer from 

16 shrinkage-induced bias in estimation and association test (i.e., p values), particularly in 

17 presence of large measurement errors or with sparse observations per subject. We proposed 

18 a approach that can correct the bias related to NEBE but preserve the feature of high 

19 throughput for NEBE. We demonstrated that this novel approach with ADNI data and 

20 completed a GWAS with longitudinal outcomes on millions of SNPs within an hour in 

21 comparison with months using the standard LME modeling, representing nearly 10,000 

22 times improvement of computational efficiency. In addition, our simulation shows that the 

23 improvement of time efficiency by SCEBE increases with increasing sample size 
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1 (Supplementary Figure 3). This feature suggests the potential application of SCEBE to 

2 modern data with large sample size, particularly for emerging large-scale genetic data from 

3 biobanks [26].

4 Confounding due to relatedness or population stratification is one of the most 

5 important and challenging issues in GWAS. Our simulation studies showed that population 

6 stratification had similar impacts on all the approaches. Furthermore, our simulation 

7 showed that genomic control could correct the bias in the test statistics caused by 

8 population stratification. SCEBE reduces the LME-based GWAS for longitudinal 

9 outcomes to standard linear-regression GWAS, where EBEs are treated as phenotypes. 

10 This allows coupling SCEBE with other more sophisticated approaches, such as, 

11 EIGENSTRAT/PCA [19-20] and LD regression [21], for controlling bias due to population 

12 stratification. Future research on how to use SCEBE with these confounding-controlling 

13 approaches is warranted.  

14 Over the last decade, different approaches have been attempted for nonlinear GWAS 

15 of longitudinal outcomes [27-29]. However, these methods are extremely time-consuming 

16 and often require hours for only 1,000 tests [1], which is not scalable for large-scale GWAS 

17 data with millions of SNPs. In the present paper, although we limited ourselves to linear 

18 mixed-effects modeling, SCEBE can be easily extended to nonlinear longitudinal data, 

19 which opens the door for efficient and scalable functional GWAS for more complex 

20 nonlinear longitudinal traits. 

21 While this paper was in development, Sikorska et al. also present a new algorithm that 

22 expedites genome-wide analysis of longitudinal data (GALLOP) [11]. GALLOP solves the 

23 equivalent penalized least squares problem efficiently and factorizations and 
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1 transformations are used to avoid inversion of large matrices. Both our simulation study 

2 and real-data analysis suggest that GALLOP and SCEBE provide similar p-values and 

3 estimation for effect size in the context of linear model for disease progression. However, 

4 SCEBE was 3 – 4 times faster than GALLOP. More importantly, when generalizing to 

5 nonlinear mixed-effects model, our preliminary simulation study indicated that the 

6 performance of GALLOP could be less consistent and exhibited suboptimal performance 

7 compared to SCEBE (Supplementary Materials/Section3 and Supplementary Figure 7). 

8 This suggests that SCEBE is robust and consistent for GWAS using both linear and 

9 nonlinear longitudinal data. Future investigation may be needed in this area. 
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1

2

3 Figure Legends

4 Figure 1a: Running time required for LME/NEBE/GALLOP/SCEBE to complete GWAS 

5 scan of ADNI data (performed on an Ubuntu 16.04 LTS running on a server with 

6 CPU@2.9G and 8G RAM; 784 individuals and 6,414,695 SNPs). 

7 Figure 1b ：  Fold change in computation time (logarithm scale) for 

8 NEBE/GALLOP/SCEBE relative to standard LME to complete GWAS scan of 23 

9 chromosomes in ADNI data (784 individuals and 6,414,695 SNPs; fold change is 

10 calculated as time for LME over time for alternative methods; each bar represents a 

11 chromosome; performed on an Ubuntu 16.04 LTS running on a server with CPU@2.9G 

12 and 8G RAM). 

13 Figure 2a: Scatter plots of p-values from NEBE/GALLOP/SCEBE against LME on the -

14 log10 scale for ADNI data with 784 individuals and 6,414,695 SNPs.

15 Figure 2b: Scatter plots of estimates from NEBE/GALLOP/SCEBE against LME for 

16 ADNI data with 784 individuals and 6,414,695 SNPs.

17 Figure 3a: Manhattan Plot for testing associations on baseline disease status (intercept) by 

18 SCEBE for ADNI data with 784 individuals and 6,414,695 SNPs.

19 Figure 3b: Manhattan Plot for parameter estimation on disease progression (slope) by 

20 SCEBE for ADNI data with 784 individuals and 6,414,695 SNPs.

21 Figure 4: Lollipop Plot for top 20 SNPs selected by SCEBE for ADNI data with 784 

22 individuals and 6,414,695 SNPs (x-axis is –log10 of p-values and y-axis is the SNP name; 

23 the number behind each bar is the chromosome ID).
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1

2 1. Estimation and test statistics for linear mixed model with single covariate

3 Suppose the GWAS is designed from a natural population with three genotypes at each 

4 locus. Let denote the number of individuals and  denote the number of SNPs. The ith 𝑚 𝑞

5 individual has observations  at time points . 𝑛𝑖 𝑦𝑖 = (𝑦𝑖1,𝑦𝑖2,…, 𝑦𝑖𝑛𝑖)′ 𝑡𝑖 = (𝑡𝑖1,𝑡𝑖2,…, 𝑡𝑖𝑛𝑖)′

6 A typical linear mixed-effects model in GWAS can be written in a two stage form as 

7 follows,

8 𝑦𝑖 = 𝑍𝑖𝛽𝑖 + 𝑒𝑖

9 𝛽𝑖 = 𝛼 + 𝑥𝑖𝛾 + 𝑏𝑖, 𝑖 = 1, 2, ⋯,𝑚     (1)

10  and 𝑒𝑖 ∼ 𝑁(0, 𝐺𝑖) 𝑏𝑖 ∼ 𝑁(0,𝑅)

11 where  is the random effect vector. The design matrix  is a matrix. βi 𝑝 × 1 𝑍𝑖 𝑛𝑖 × 𝑝 

12 Covariate is the genotype coded as 0, 1 or 2 for three different genotypes.  and  are 𝑥𝑖 α γ

13 -dimensional intercept and slope parameters. The base model corresponds to model (1) 𝑝

14 with .  is the  covariance matrix which chracterizes the correlation γ = 0 𝐺𝑖 𝑛𝑖 × 𝑛𝑖

15 structure of within-subject variablities.  is a covariance matrix which 𝑅 𝑝 × 𝑝 

16 characterizes the between-subject variablilities. The standard approach of fitting model (1) 

17 is based on the likelihood function and implemented in R packages (e.g., lme4). We call 

18 the standard approach ‘LME’ in this article.

19 The best predictor of the random effects , defined as the posterior mean of  𝛽𝑖 𝛽𝑖

20 given data , equals to . The 𝑦𝑖 BP(𝛽𝑖) = (𝑍′𝑖𝐺 ―1
𝑖 𝑍𝑖 + 𝑅 ―1) ―1(𝑍′𝑖𝐺 ―1

𝑖 𝑦𝑖 + 𝑅 ―1𝛼)

21 parametrical empirical Bayesian estimators (naive EBE) of , denoted as , is then 𝛽𝑖 𝛽𝑖

22 obtained by plugging the MLEs of nuisance parameters such as  and . Let the 𝐺𝑖, 𝑅 𝛼

23 covariance matrix of  be , then the MLE of  under the base model is 𝑦𝑖 Σ𝑖 = 𝑍𝑖𝑅𝑍′𝑖 + 𝐺𝑖 𝛼

24  which can be regarded as the weighted average of . After the (∑𝑚
𝑖 = 1𝑍′𝑖Σ ―1

𝑖 𝑍𝑖)
―1

𝑍′𝑖Σ ―1
𝑖 𝑦𝑖  𝑦𝑖

25 naive EBEs (NEBEs) are obtained, a simple linear regression of NEBE is carried out on 
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3

1 the covariate . The least square estimator of  is  where  is the 𝑥𝑖 𝛾 =
∑𝑚

𝑖 = 1(𝑥𝑖 ― 𝑥) 𝛽𝑖

∑𝑚
𝑖 = 1(𝑥𝑖 ― 𝑥)2 𝑥

2 sample mean.

3 Under the true model (1), the expectation of  is . Therefore 𝑦𝑖 E(𝑦𝑖) = 𝑍𝑖(𝛼 + 𝑥𝑖𝛾)

4 the expectation of , under the true model (1) is 𝛽𝑖 E(𝛽𝑖) = α + [𝑥𝑖(𝐼𝑝 ― 𝑆𝑖) + 𝑆𝑖∑
𝑚
𝑖 = 1𝑥𝑖𝑊𝑖

5  with , and . The ]γ 𝑊𝑖 = (∑𝑚
𝑖 = 1𝑍′𝑖Σ ―1

𝑖 𝑍𝑖)
―1

𝑍′𝑖Σ ―1
𝑖 𝑍𝑖 𝑆𝑖 = (𝑍′𝑖𝐺 ―1

𝑖 𝑍𝑖 + 𝑅 ―1) ―1𝑅 ―1

6 expectation of  under true model (1) can be derived based on the expectation of . γ 𝛽𝑖

7 Denote  where  is the p-dimensional identity matrix. 𝑆𝑐 =
∑𝑚

𝑖 = 1(𝑥𝑖 ― 𝑥)[𝑥𝑖(𝐼𝑝 ― 𝑆𝑖) + 𝑆𝑖∑
𝑚
𝑖 = 1𝑥𝑖𝑊𝑖]

∑𝑚
𝑖 = 1(𝑥𝑖 ― 𝑥)2 𝐼𝑝

8 we have .
 
Noticing that  is generally not a diagonal matrix even in the E(𝛾) = 𝑆𝑐𝛾 𝑆𝑐

9 simple case that the sampling time and measuring time points are the same for all the 

10 individuals. So the elements of  actually estimate the linear combination of elements of γ

11 . Especially when at least one element of  is not equal to 0, the EBEs-based estimator 𝛾 𝛾

12 of  is largely biased. Thus the EBEs-based estimator  can only be used as an unbiased 𝛾 γ

13 estimate and hypothesis testing after correction. We propose the simutanous correction 

14 method in this paper to correct all elements of  at the same time. The matrix   defined 𝛾 𝑆𝑐

15 above can be served as the simutanous correction matrix and the simutanously corrected 

16 estimator of  can be expressed as  which is called SCEBE.γ 𝛾𝑠𝑖𝑚 = 𝑆 ―1
𝑐 γ

17 In order to derive the test statistics for hypothesis testing, we need to calculate the 

18 variance of . To show the derivation more clearly, we introduce some notations. Let 

19 𝐴𝑖 = (𝑍′𝑖𝐺 ―1
𝑖 𝑍𝑖 + 𝑅 ―1) ―1𝑍′𝑖𝐺 ―1

𝑖 ,

20  𝐵𝑖 = (𝑍′𝑖𝐺 ―1
𝑖 𝑍𝑖 + 𝑅 ―1) ―1𝑅 ―1,

21 𝐶𝑖 = (∑𝑚

𝑖 = 1
𝑍′𝑖Σ ―1

𝑖 𝑍𝑖)
―1

𝑍′𝑖Σ ―1
𝑖 .
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4

1 Then the covariance matrix of  can be determined by  and  which 𝛽𝑖 var(𝛽𝑖) cov(𝛽𝑖, 𝛽𝑗)

2 has the explicit form 

3 var(𝛽𝑖) = 𝐴𝑖Σ𝑖𝐴′𝑖 + 𝐵𝑖(∑𝐶𝑖Σ𝑖𝐶′𝑖)𝐵′𝑖 + 𝐴𝑖Σ𝑖𝐶′𝑖𝐵′𝑖 + 𝐵𝑖𝐶𝑖Σ𝑖𝐴′𝑖

4 cov(𝛽𝑖, 𝛽𝑗) = 𝐵𝑖(∑𝐶𝑖Σ𝑖𝐶′𝑖)𝐵′𝑗 + 𝐴𝑖Σ𝑖𝐶′𝑖𝐵′𝑗 + 𝐵𝑖𝐶𝑗Σ𝑗𝐴′𝑗.

5 The Variance of  can be calculated as γ

6 var(γ) =
var(∑(𝑥𝑖 ― 𝑥)𝛽𝑖)

(∑(𝑥𝑖 ― 𝑥)2)2 =
∑(𝑥𝑖 ― 𝑥)2var(𝛽𝑖) + ∑

𝑖 ≠ 𝑗(𝑥𝑖 ― 𝑥)(𝑥𝑗 ― 𝑥)cov(𝛽𝑖, 𝛽𝑗)

(∑(𝑥𝑖 ― 𝑥)2)2 .

7 The t test statistic for  can be constrcuted as𝐻0𝑖:𝛾𝑖 = 𝛾𝑖0

8 𝑡𝑖 =
𝛾𝑖 ― 𝛾𝑖0

[𝑆 ―1
𝑐 var(γ)(𝑆 ―1

𝑐 )′]𝑖,𝑖

.

9 where   is the true value of and the subscript  denotes the ith 𝛾𝑖0 𝛾𝑖, 𝑖 = 1,2,…, 𝑝 (𝑖,𝑖)

10 diagonal of the matrix .𝑆 ―1
𝑐 var(γ)(𝑆 ―1

𝑐 )′

11

12 2. Simulation details for generating data with population stratification

13 Following Price et al. (Nature Genetics, 2006), we simulated data using Balding-Nichols 

14 model (Genetica, 1995) for two latent subpopulations. Simulation details are summarized 

15 as follows,

16  Sample ancestral population allele frequency p from uniform distribution U[0.1, 0.5]. 

17  Sample and  from beta distribution . This 𝑝1 𝑝2 Beta(
p(1 ― Fst)

Fst
, 

(1 ― p)(1 ― Fst)
Fst

)

18 distribution has mean p and variance . The quantity  measures the 𝐹𝑠𝑡 ∗ 𝑝(1 ― 𝑝) 𝑭𝒔𝒕

19 genetic distance between two subpopulations (Wright 1951 and Cavalli-Sforza et al. 

20 1994).  was set to 0.01. 𝐹𝑠𝑡

21  Total sample size N=800. Sample  genotypes for the first subpopulation n1 = 30%N

22 from the multinomial distribution Mul(n1, ((1 ― p1)2,2p1(1 ― p1),p2
1)′) and n2
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5

1 genotypes for the second subpopulation from the multinomial distribution = 70%N 

2  Mul(n2, ((1 ― p2)2,2p2(1 ― p2),p2
2)′).

3  Longitudinal phenotypes for ith subject were generated by a linear random intercept 

4 and slope model within each subpopulations and combine them to form the final dataset,

5 yi = αi + βiti + εi  

6         (2)αi = α0 + bi1

7 , βi = γ0 + xiγ + gi +bi2

8 where is the genotype;  independently.  if ith  xi εi~𝑁(0,1);bi1,bi2~𝑁(0,1) gi = 0.05

9 subject belongs to the first subgroup;  otherwise. gi = ―0.05 α0 = γ0 = 0.

10  Make inference about  based on Model (1) under two scenarios by ignoring: (1) all γ

11 1000 SNPs are null markers; (2) 50 out of 1000 SNPs are causal markers and the genetic 

12 effects (  for causal makers are set to be 0.2. We compared the quantiles of the γ)

13 observed test statistics of LME and SCEBE with the chi-square distribution with 1 

14 degree of freedom to study the impact of PS on the test; we also compared the estimates 

15 of LME and SCEBE to study the impact of PS on the estimate. 

16

17 3. Small-scale simulation with nonlinear mixed-effects model

18 A small-scale simulation with a nonlinear model for pharmacokinetics (PK) was performed. 

19 The PK model is defined as follows,

20

21 𝑦𝑖𝑗 =
𝐷𝑒𝑙𝑘𝑎 ― 𝑙𝑣𝑖

𝑒𝑙𝑘𝑎 ― 𝑒𝑙𝑐𝑙𝑖 ― 𝑙𝑣𝑖
(e ― e

(𝑙𝑐𝑙𝑖 ― 𝑙𝑣𝑖)𝑡𝑖𝑗

- e ― e
𝑙 𝑘𝑎.𝑡𝑖𝑗

) + 𝜀𝑖𝑗

22 𝑙𝑣𝑖 = 𝜇𝑙𝑣 + 𝛽𝑙𝑣(𝑊𝑇𝑖 ― 70) + 𝜂𝑙𝑣𝑖

23 𝑙𝑐𝑙𝑖 = 𝜇𝑙𝑐𝑙 + 𝛽𝑙𝑐𝑙(𝑊𝑇𝑖 ― 70) + 𝜂𝑙𝑐𝑙𝑖,𝑗 = 1,2,…,𝑛𝑖, 𝑖 = 1,2,…,𝑚.

24 where 

25  : the observed drug concentration for the th individual at time  after a single 𝑦𝑖𝑗 i 𝑡𝑖𝑗

26 dose administration; 

27  : single dose; 𝐷
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1  : the logarithms of the rate of oral absorption ( ); 𝑙𝑘𝑎 𝐾𝑎

2  : the logarithms of volume of distribution in the central compartment ( );𝑙𝑣𝑖 𝑉

3  : the logarithms of clearance ( );𝑙𝑐𝑙𝑖 𝐶𝐿

4  : the body weight (covariate) sampled from normal distribution ;𝑊𝑇𝑖 N(70kg,0.09)

5  In simulation: sample size  measurement time is randomly drawn from 𝑚 = 200;

6 (3, 5, 7, 9); dose  takes values in interval [-𝐷 = 1;𝜇𝑘𝑙 = 𝜇𝑙𝑣 = log (0.5);𝛽𝑙𝑣 = 0; 𝛽𝑙𝑐𝑙

7 0.5, 0.5]; 1000 replicates for each scenario.𝜀𝑖𝑗,𝜂𝑙𝑣𝑖, 𝜂𝑙𝑐𝑙𝑖~𝑁(0,0.09); 

8
9

10 Supplementary Tables

11 Table1: Top 20 significant SNPs and their corresponding genes for baseline disease status 

12 and disease progression.

Baseline disease status (intercept)
SNP name CHR ID Corresponding Gene Relationship
rs429358 19 APOE within
rs2290454 17 MYO15B within
rs61982594 14 BDKRB2 nearby
rs11629183 14 BDKRB2 nearby
rs61982595 14 BDKRB2 nearby
rs112109390 22 TBC1D22A within
rs5767390 22 TBC1D22A within
rs1318028 22 TBC1D22A within
rs4823893 22 TBC1D22A within
rs4823891 22 TBC1D22A within
rs4823892 22 TBC1D22A within
rs4239942 22 TBC1D22A within
rs5767395 22 TBC1D22A within
rs56023698 10 LOC105378335 nearby
rs4420638 19 APOC1 500B downstream variant
rs56131196 19 APOC1 500B downstream variant

chr19_32037917 19 LINC01837 within
rs12721051 19 APOC1 within
rs79963487 22 NONE NONE
rs55658667 17 RGS9 within

Disease progression (slope)
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SNP CHR Corresponding Gene Relationship
rs181201525 23 SPANXN4 nearby
rs9503225 6 LINC01600 nearby
rs1001729 6 LINC01600 nearby
rs9501862 6 LINC01600 nearby
rs7770991 6 LINC01600 nearby
rs9503220 6 LINC01600 nearby
rs7755937 6 LINC01600 nearby
rs9501860 6 LINC01600 nearby
rs2054638 6 LINC01600 nearby
rs78647522 7 BPGM nearby
rs3799160 6 PDE10A within
rs13022686 2 LINC01121 within
rs150313784 23 SPANXN4 nearby
rs2368834 12 IQSEC3 within
rs10902747 1 ZNF683 nearby
rs4811516 20 DOK5 nearby
rs10919857 1 CCNQP1 nearby
rs11247938 1 ZNF683 2KB Upstream Variant
rs1012644 20 DOK5 nearby
rs10753872 1 CCNQP1 nearby

1

2

3 Supplementary Figure Legends

4 Supplementary Figure 1a: P-value comparison on –log10 scale for association tests on 

5 intercept among LME, NEBE and two EBE-based approaches with linear mixed-effects 

6 model.

7 Supplementary Figure 1b: P-value comparison on –log10 scale for association tests on 

8 slope  among LME, NEBE and two EBE-based approaches with linear mixed-effects 

9 model.

10 Supplementary Figure 2a: Comparison of estimation for intercept among LME, NEBE 

11 and two EBE-based approaches with a linear mixed-effects model. Each symbol represents 

12 the estimation for a simulated dataset.

13 Supplementary Figure 2b: Comparison of estimation for slope among LME, NEBE and 
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1 two EBE-based approaches with a linear mixed-effects model. Each symbol represents the 

2 estimation for a simulated dataset.

3 Supplementary Figure 3: Type I errors for association tests from LME, NEBE and two 

4 EBE-based approaches (sample size m=200, 500, 800 and 1000; between-subject error=1; 

5 within-subject error=1; 1000 replicates).

6 Supplementary Figure 4a: Running time for NEBE, GALLOP and SCEBE compared to 

7 LME by 96 simulation scenarios with 1000 replicates. 

8 Supplementary Figure 4b Fold change in computation time (logarithm scale) for NEBE, 

9 GALLOP and SCEBE compared to LME for 96 simulation scenarios with 1000 replicates. 

10 Fold change is calculated as time for LME over time for alternative methods; Each bar 

11 represents a simulation scenario.

12 Supplementary Figure 5: Plots of theoretical quantiles of chi-square distribution with 1 

13 degree of freedom against observed quantiles of LME and SCEBE before and after GC 

14 correction for disease progression. Scenario 1: all 1000 SNPs are null markers; Scenario 2: 

15 50 out of 1000 SNPs are causal markers with effect sizes 0.2.

16 Supplementary Figure 6a: Comparison of p-values on –log10 scale based on LME and 

17 SCEBE in presence of population stratification. Scenario 1: all 1000 SNPs are null markers; 

18 Scenario 2: 50 out of 1000 SNPs are causal markers with effect sizes 0.2.

19 Supplementary Figure 6b: Estimation comparison between LME and SCEBE in presence 

20 of population stratification. Scenario 1: all 1000 SNPs are null markers; Scenario 2: 50 out 

21 of 1000 SNPs are causal markers with effect sizes 0.2.

22 Supplementary Figure 7: Estimation and p-value comparisons of GALLOP and SCEBE 

23 on clearance relative to NLME with sample size m=200; dose𝐷 = 1;𝜇𝑘𝑙 = 𝜇𝑙𝑣 = log (0.5);

24  takes values in interval [-0.5, 0.5]; 1000 replicates.𝛽𝑙𝑐𝑙 𝜀𝑖𝑗,𝜂𝑙𝑣𝑖, 𝜂𝑙𝑐𝑙𝑖~𝑁(0,0.09);
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Figure 1a: Running time required for LME/NEBE/GALLOP/SCEBE to complete GWAS scan of ADNI data 
(performed on an Ubuntu 16.04 LTS running on a server with CPU@2.9G and 8G RAM; 784 individuals and 

6,414,695 SNPs). 
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Figure 1b： Fold change in computation time (logarithm scale) for NEBE/GALLOP/SCEBE relative to standard 
LME to complete GWAS scan of 23 chromosomes in ADNI data (784 individuals and 6,414,695 SNPs; fold 

change is calculated as time for LME over time for alternative methods; each bar represents a chromosome; 
performed on an Ubuntu 16.04 LTS running on a server with CPU@2.9G and 8G RAM). 
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Figure 2a: Scatter plots of p-values from NEBE/GALLOP/SCEBE against LME on the -log10 scale for ADNI 
data with 784 individuals and 6,414,695 SNPs. 
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Figure 2b: Scatter plots of estimates from NEBE/GALLOP/SCEBE against LME for ADNI data with 784 
individuals and 6,414,695 SNPs. 
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Figure 3a: Manhattan Plot for testing associations on baseline disease status (intercept) by SCEBE for ADNI 
data with 784 individuals and 6,414,695 SNPs. 
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Figure 3b: Manhattan Plot for parameter estimation on disease progression (slope) by SCEBE for ADNI data 
with 784 individuals and 6,414,695 SNPs. 

Page 30 of 42

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 4: Lollipop Plot for top 20 SNPs selected by SCEBE for ADNI data with 784 individuals and 6,414,695 
SNPs (x-axis is –log10 of p-values and y-axis is the SNP name; the number behind each bar is the 

chromosome ID). 
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Supplementary Figure 1a: P-value comparison on –log10 scale for association tests on intercept among LME, 
NEBE and two EBE-based approaches with linear mixed-effects model. 
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Supplementary Figure 1b: P-value comparison on –log10 scale for association tests on slope  among LME, 
NEBE and two EBE-based approaches with linear mixed-effects model. 
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Supplementary Figure 2a: Comparison of estimation for intercept among LME, NEBE and two EBE-based 
approaches with a linear mixed-effects model. Each symbol represents the estimation for a simulated 

dataset. 
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Supplementary Figure 2b: Comparison of estimation for slope among LME, NEBE and two EBE-based 
approaches with a linear mixed-effects model. Each symbol represents the estimation for a simulated 

dataset. 
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Supplementary Figure 3: Type I errors for association tests from LME, NEBE and two EBE-based approaches 
(sample size m=200, 500, 800 and 1000; between-subject error=1; within-subject error=1; 1000 

replicates). 
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Supplementary Figure 4a: Running time for NEBE, GALLOP and SCEBE compared to LME by 96 simulation 
scenarios with 1000 replicates. 
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Supplementary Figure 4b Fold change in computation time (logarithm scale) for NEBE, GALLOP and SCEBE 
compared to LME for 96 simulation scenarios with 1000 replicates. Fold change is calculated as time for LME 

over time for alternative methods; Each bar represents a simulation scenario. 
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: Plots of theoretical quantiles of chi-square distribution with 1 degree of freedom against observed quantiles 
of LME and SCEBE before and after GC correction for disease progression. Scenario 1: all 1000 SNPs are null 

markers; Scenario 2: 50 out of 1000 SNPs are causal markers with effect sizes 0.2. 
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Comparison of p-values on –log10 scale based on LME and SCEBE in presence of population stratification. 
Scenario 1: all 1000 SNPs are null markers; Scenario 2: 50 out of 1000 SNPs are causal markers with effect 

sizes 0.2. 
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Estimation comparison between LME and SCEBE in presence of population stratification. Scenario 1: all 1000 
SNPs are null markers; Scenario 2: 50 out of 1000 SNPs are causal markers with effect sizes 0.2. 
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