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An Ensemble based Densely-Connected Deep
Learning System for Assessment of Skeletal

Maturity
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Prudence Wing-Hang Cheung, Jason Pui Yin Cheung, Keith Dip-Kei Luk and Yong Hu

Abstract—Assessment of skeletal maturity is important for a
clinician to make decision of the most appropriate treatment on
various skeletal disorders. This task is very challenging when
using machine learning method due to the limited data and
large anatomical variations among different subjects. In this
paper, we propose an ensemble based deep learning pipeline to
automatically assess the distal radius and ulna (DRU) maturity
from left hand radiographs. At the same time, we adapted the
concept of densely connected mechanism in the proposed network
architecture to reuse features and prevent gradient disappear-
ance. Therefore, the model acquires two convincing advantages:
first, our model preserves the maximum information flow and
has a much faster convergence rate. Second, our model avoids
overfitting even if training with limited data. The experimental
dataset contains 1189 left-hand X-ray scans of children and
teenagers. The proposed method achieves 85.27% and 91.68% for
radius and ulna classification respectively. Extensive experiments
prove that our model performs better than using other network
structures.

Index Terms—dense connection, ensemble learning, convolu-
tional neural network, skeletal maturity

I. INTRODUCTION

Assessment of skeletal maturity is an important instrumen-
tality in managing children and adolescent’s growth problems
and helps the physician to find the optimal time to treat the
disease. Two clinical methods are widely employed for skeletal
maturity assessment: (1) Greulich and Pyle (G & P) method
[1]. (2) Tanner-Whitehouse (TW1, TW2, TW3) method [2–4].
The G & P method is based on the comparison between the
X-ray scan and the image set included in the atlas, but the
subjectivity of different observers makes the diagnosis result
unstable. The TW method gives a numerical score to every
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bone in the bone set, then add the score of all bones to evaluate
the bone maturity. However, for the treatment of some specific
diseases, such as adolescent idiopathic scoliosis (AIS), these
methods are difficult to implement in the outpatient clinical
setting and they are time-consuming [5].

Additionally, recognition of skeletal radiological images
highly depends on the physician’s analysis and it often takes
too much time and cost. In recent years, image processing
technology has made great progress in many fields [6–8]. Us-
ing image processing technology to analyze bone images can
solve this problem. Computer-aided-diagnosis (CAD) method
[9, 10] has been applied to many medical image processing
tasks [11, 12]. In the early years, majority related works
about CAD for bone age assessment are based on machine
learning method. Zhang et al. [13] evaluated the bone age by
using fuzzy classification based on the features extracted from
radiographic images. Some related works [14, 15] adopted
fuzzy logic to assess skeletal maturity. Seok et al. [16]
utilized decision rules to evaluate the bone age. Mahmoodi
et al. [17, 18] used Bayesian estimator for skeletal growth
estimation. Kashif et al. [19, 20], Harmsen et al. [21] and
Güraksın et al. [22] used support vector machines (SVM) for
bone age assessment. Some related works [23, 24] utilized
shallow neural networks to implement bone age assessment.

In order to avoid the hand-craft feature extraction process
in machine learning algorithms, deep-learning solutions have
been used in medical imaging applications in recent years.
For instance, Chen et al. [25] and Lee et al. [26] em-
ployed convolutional neural network (CNN) to assess bone
age by using palm and wrist radiographic images. Zhou et
al. [27] used deep convolutional neural networks (DCNNs)
and transfer learning for bone age classification. Spampinato
et al. [28] proposed an automated bone age assessment
(BAA) system by using CNN and Lee et al. [29] added
a pretreatment module to the BAA system. Bian et al.
[30] employed GoogleNet to assess bone age. Mutasa et al.
[31] designed a 14 hidden layer-customized neural network
to assess the bone age of adolescents. The model employs
several some techniques including residual-style connections,
inception layers, and spatial transformer layers. The mean
absolute errors (MAE) for young females and older females
were 0.561 years and 0.497 years respectively. For young
males and older males, The MAEs were 0.585 years and
0.501 years respectively. Iglovikov et al. [32] studied bone age
regression and classification using two VGG-style CNNs.The
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Fig. 1: Framework of our skeletal maturity assessment system.

MAEs of classification task are 6.16 months and 6.39 months
for males and females respectively. Keatmanee et al. [33]
proposed an automatic bone age assessment system by using
CNNs. They evaluated various pre-trained models including
VGG-16, ResNet-50 and Inception-V3. The obtained MAE
is 6.53 months. The results indicate that VGG-16 performs
better than others. Gou et al. [34] employed transfer learning
and regression learning to evaluate bone age. The root mean
squared errors are 0.70 year and 0.75 year for male and female
cohorts respectively. Besides, the incremental learning based
framwork et al. [35] and regression based CNN [36–38] were
also used to estimate bone age using radiograph.

These bone age assessment systems mentioned above are
mainly based on CNN structure. However, constructing very
deep CNNs by simply stacking convolutional layers is not
feasible, because too many layers can significantly impede the
propagation of gradients, which is known as the vanishing-
gradient problem. To solve this problem, related publications
proposed some solutions, such as residual networks (ResNet)
[39], highway networks [40] and densely connected convolu-
tional networks (DenseNet) [41]. These methods shared a com-
mon idea: propagate the information by creating a short path
from early layers to later layers. In these methods, DenseNet
achieved better performance. DenseNet raises the efficiency of
information propagation by connecting one layer’s output to
all the following layers. To take advantage of this mechanism,
in this work, we present a model that automatically identifies
the skeletal maturity stage of ulna and radius by using dense
connection mechanism. Our model consists of three parts: (1)
We utilize faster region-based convolutional network (Faster
R-CNN) [42] to detect the region of interest (ROI) from
radiological images. (2) For each ROI image, we segment the
radius and ulna by using fully convolutional network (FCN)
[43]. (3) We assess the radius and ulna skeletal maturity stage
by using an ensemble DenseNet structure. Our test accuracy
achieves 85.27% for radius maturity stage classification and
91.68% for ulna maturity stage classification.

In this study, we combine the dense connection mechanism
with the ensemble model to improve the stability and accuracy
of skeletal maturity assessment system. Considering accuracy,
our model achieves the best performance compared with

other mainstream neural network models. The rest of this
paper is organized as follows. In Section II, we are going to
explain the details of our framework. Section III will present
the experimental results and analysis. We will discuss our
experimental results in Section IV.

II. METHODS

The original images vary considerably in image size, palm
position, intensity and contrast. Noise caused by the back-
ground exerts a strong interference on the ulna/radius clas-
sification. In order to obtain accurate assessment results, we
use ROI detection and pixel-level segmentation to eliminate
unnecessary noise and getting a purer image of ulna/radius.
The framework of our skeletal maturity assessment system is
shown in Fig.1.

A. Region of interest detection

Location of ulna/radius varies from a few pixels to a
few hundred pixels in each image. In order to increase the
proportion of valid information of the image which inputs to
the classification module, the region of ulna and radius needs
to be extracted. Faster-R-CNN is an efficient method to detect
the region of interest (ROI). We cropped the original image
to the same size to normalize the input image size, then we
utilized trained Faster R-CNN to detect ulna and radius area.

B. Pixel-level segmentation

Bones except the ulna/radius and the background’s noise
in the ROI images still interference the accuracy of classifi-
cation, we need to further remove external noise to make the
ulna/radius’s information more prominent. Pixel-level segmen-
tation can greatly remove the noise in ROI images. In this task,
we employed Faster R-CNN model to separate the ulna/radius
from other bones and background noise.

In this work, the Faster R-CNN is first pre-trained on PAS-
CAL VOC-2012 Dataset. It is trained by back-propagation and
stochastic gradient descent (SGD) with mini-batch scheme.
The initial learning rate is set as 0.01 and all layer weights
are randomly initialized from a Gaussian distribution. The
first step is to train the region proposal network (RPN) with
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Fig. 2: (a) Constitution of dense connectivity with a 3-layer dense block. (b) The architecture of an individual DenseNet
model which consists of two dense blocks.

8000 iterations, which is followed by training Fast R-CNN
with 4000 iterations in the second step. Then, the third step
is to train RPN with another 8000 iterations and finally the
fourth step to train Fast R-CNN with another 4000 iterations.
After the pre-train, the model is fine-tuned using our dataset
including 400 left-hand X-ray scans. In this work, we employ
LabelMe [44], a free annotation tool, to label the 400 left-
hand X-ray scans. After that, we used the trained model to
segment ROI images, we input all the ROI image into the
trained model, the model output the category of each pixel.
Then we masked out the background and other bones to get
an image that only contains ulna/radius, as given in Fig. 1.

C. Data augmentation

Deep learning method requires a large number of training
samples, the limited training set will cause overfitting and
fail to generalize for application. Due to the high cost of
medical image annotation and data collection, obtaining large-
scale training set is a widespread challenge in medical image
processing field. Data augmentation is a common and effective
way to expand the training set and decrease the risk of
overfitting. We increased the size of the training set with
several geometric transformations, including horizontal flips,
rotation (range from −20◦ to +20◦), horizontal scaling and
vertical scaling by multiplying random numbers between 0.8
to 0.12.

D. Ensemble based densely-connected maturity stage classifi-
cation model

The main idea of dense connection mechanism is to connect
one layer’s output to the following layers in a block. an
advantage of this mechanism is that the gradient can flow

directly from later layers to the earlier layers, which can
prevent gradient disappearance. At the same time, the intro-
duction of bottleneck layers can effectively reduce the number
of redundant features. Define xl as the output of lth layer, xl
can be expressed by the following formula:

xl = Hl([x0, x1, . . . , xl−1]) (1)

Where [x0, x1, . . . , xl−1] represent the connectivity of the
output produced in 0th . . . (l − 1)th and Hl (·) represent the
non-linear transformation used in the lth layer. The Hl (·) is
composited by three consecutive operations: batch normaliza-
tion followed by a rectified linear unit (ReLU) [45], and a
convolution layer. Fig. 2(a) illustrates the basic framework
of a dense block, each convolution layer includes k 3 × 3
convolution kernels. If each function Hl produces k feature-
maps as output, the number of feature-maps that input to the
lth layer can be calculated as follows:

alth = k × (l − 1) + k0 (2)

where k0 is the number of channels of the input image.
The whole network is divided into several densely-connected
blocks, each block refers to as the dense block. Layers between
dense blocks are composed of a batch normalization layer
and a 1 × 1 convolutional layer followed by an average
pooling layer, refer to as the transition layer in this model. To
reduce the number of feature-maps at transition layer, 1 × 1
convolution kernel is used to reduce the input of Hl (·), if a
dense block contains m feature-maps, the following transition
layer generates bθmc output feature maps, θ is referred to
as the compression rate in this work. Fig. 2(b) illustrates the
structure of an individual DenseNet model which consists
of two dense blocks. Before entering the first dense block,
a convolution is performed on the input images, at the end
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Fig. 3: The architecture of our proposed ensemble classification model.

of the last dense block, a global average pooling and a FC
layer is performed, then a softmax classifier is implemented
for classification.

In order to improve the accuracy of the classification model,
we proposed an ensemble based densely-connected classifica-
tion model to identify the maturity stage of ulna/radius. The
model consists of several independent DenseNet models, each
DenseNet model has different structure, and each DenseNet
model classifies the input xk to a particular maturity stage
respectively. Classifier DenseNeti can be seen as a nonlinear
function fi (·), define fi(xk) is the output of global average
pooling layer in DenseNeti. A conditional tag probability
pik(y = c|fi (xk)) by applying a softmax operation is defined
as follows:

p (y = c |fi (xk) ) =
efi(xk)

Twci
+bci∑M

m=1 e
fi(xk)

Twmi
+bmi

(3)

where c ∈ 1, ...,M , M indicates the total number of classes,
w and b are the parameters of the FC layer. The probabilities
assigned to categories by DenseNeti can be denoted as:
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each individual model DenseNeti proposes corresponding
classification hypothesis for input xk, which can be denoted
as follows:

Si
k = arg max( e
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(5)

The ensemble model combines the outputs of these net-
works by training a fusion network. The fusion network
automatically learns the weight between each classifier, and it
is constructed by a fully connected neural network. When input
the kth sample xk to the ensemble classification model, each

classifier DenseNeti outputs the corresponding classification
hypothesis of xk. After combining the output of each classifier,
we can get a classification hypotheses vector Xk which can
be expressed as:

Xk =
(
S1
k,S

2
k, . . . ,S

i
k, . . . ,S

I
k

)
(6)

where I indicates the total number of Densenet classifiers.
The fusion network can be seen as a function hweight (·) which
combines the result of each classifier and assign corresponding
weights to each classifier. The last FC layer’s output can be
expressed as hweight (Xk). The final output of our ensemble
classification model can be expressed as follows:

Ypredict = arg max( ehweight(Xk)
T w

1
+b

1∑M
m=1 ehweight(Xk)

T wm+bm
,

ehweight(Xk)
T w
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(7)
the fusion network is trained to minimize the negative log-
likelihood of the prediction, the loss function is computed as
follows:

L=−
M∑
c=1

Yc log
ehweight(Xk)

Twc+bc∑M
m=1 e

hweight(Xk)
Twm+bm

(8)

where Yc indicates the true probability that the sample belongs
to category c.

Traditional ensemble algorithms are mostly based on
weighted averaging and majority voting method which only
consider the linear relationship between classifiers and most
of them provide weights by artificial experience. Generally,
the relationship between the labels of test samples and the
multiple classifiers is unknown, only considering the linear
relationships can’t guarantee the reliability of the prediction.
Our approach automatically learns the intricate weight rela-
tionships between classifiers and the labels of test samples,
especially nonlinear relationships. Fig. 3 shows the structure
of our ensemble classification model.
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Fig. 4: Samples distribution of radius and ulna.

III. EXPERIMENTS AND RESULTS

A. Data and Implementation

Our dataset contains 1189 left-hand X-ray scans of children
and teenagers (0 to 17 years old), from Duchess of Kent
Children’s Hospital, Pokfulam, Hong Kong, as shown in
Fig.5. To validate the generalization capability of the proposed
model, we used 5-fold cross validation scheme. For each fold,
we used 70% of data for training, 10% of data for validation
and 20% of data for test. Besides, 4 times data augmentation
is employed. There are four growth stages for radius and three
growth stages for ulna. The distribution for each class is shown
in Fig. 4. Examples of each stage of radius and ulna images
is shown in Fig. 6. In the following parts, we will introduce
the morphological characteristics of each growth stage.

(1) Skeletal maturity stage of radius.

Stage1. The width of epiphysis is not as wide as metaphysis
(Fig. 6(a)). This stage mainly appears in prepubertal phase
(before 9.3± 1.5 years old).

Stage2. Physeal plate clearly visible, slight separation ap-
pears between medial part of epiphysis and the metaphysis,
lateral border wider than metaphysis, standing height, long
bone length and arm span at the growth peak during this stage
(11.4± 2.1 years old), as shown in Fig. 6(b).

Stage3. The metaphysis is fully capped by epiphysis, the
growth plate disappears and forming a sclerotic line. At this
stage, the standing height stops growing. This stage always
happens after the peak height velocity (PHV), most girls
present with menarche at this stage. This stage is the peak of
sexual development (mean age about 14.75 ± 2.0 years old),
as shown in Fig. 6(c).

Stage4. The physeal line completely fuses with the lateral
edge and the medial edge, the growth plate scar barely
visible. At this stage, the arm span and the radial length
stops growing, most adolescents present sexual maturation,
this stage indicates the cessation of skeleton growth (17.3±1.1
years old), as shown in Fig. 6(d).

(2) Skeletal maturity stage of ulna
Stage1. The width of epiphysis is not as wide as metaphysis

(Fig. 6(e)). A styloid can be found on the medial end of the
epiphysis. Standing height, sitting height and long bone length
are at the growth peak during this stage (before 11.0±1.4 years
old).

Stage2. The epiphysis has the same width with the meta-
physis, the medial physeal plate is narrow but unfused. The
standing height, sitting height stops growing at this stage. This
stage is the peak of sexual development, most girls present
with menarche at this stage (13.4 ± 2.5 years old), as shown
in Fig. 6(f).

Stage3. Growth plate scar is barely visible. The arm span
and radial length stop growing at this stage. Most adolescents

Fig. 5: Images of the original dataset.

Fig. 6: Examples of each skeletal maturity stage of radius and ulna.



6

Fig. 7: Radius and ulna classification results with different growth rates.

present full sexual maturation. This stage indicates the cessa-
tion of skeleton growth (16.3 ± 1.3 years old), as shown in
Fig. 6(g).

Our model was implemented in TensorFlow [46], we con-
ducted experiments on a workstation with 12GB NVIDIA
TESLA K40m GPU and the cuDNN library (v5) has been
used for GPU acceleration.

B. Parameter analysis

In order to find well-performing individual DenseNet struc-
tures to build our ensemble classification model, we analyze
the effects of different hyper-parameters on the classification
result of individual model. The individual models were opti-
mized with Nesterov momentum algorithm. In the following
parts, we will present and analyze our experimental results.

Growth rate.
Growth rate controls the number of feature maps that each

layer contributes to the global state. We fixed other hyper-
parameters and tested the influence of growth rate on the
accuracy; small changes of the growth rate can cause appar-
ent fluctuation on the test accuracy. For different DenseNet
structures, the accuracy of the model shows a convex function
trend when growth rate increases, as shown in Fig. 7. Too
large or too small growth rate will decrease the ulna/radius test
accuracy, the best growth rate for radius/ulna classification is
around 10.

Depth.
The influence of depth on the model performance is shown

in Fig. 8. Under the same conditions (growth rate = 10,
blocks = 3), when the number of blocks is fixed, change the
total depth of the network means change the number of layers
in each block. For radius classification, the accuracy of the
model shows a convex function trend with depth increases.
For ulna classification, test accuracy shows a negative linear
relationship with depth and the model performs better with
lower depth compared with higher depth. For the classification
of radius/ulna, using deeper networks is more likely to occur
overfitting phenomenon. The best depth for radius classifica-
tion is about 16, and for ulna classification the best depth is
about 10.

Number of blocks.

The transition layers between blocks implement the down-
sampling operation. When the number of blocks increases
means more down-sampling operation to feature-maps. An
appropriate sampling degree can make the network perform
better. We fixed other hyper-parameters to observe the effect
of the number of blocks. It is evident that when the number
of blocks smaller than 3, the accuracy increases at a high rate
of speed. When the number of blocks around 3, we get the
best accuracy for radius/ulna classification, as given in Fig. 9.

Compression rate.
We tested different compression rate in our model, as shown

in Fig. 10. There presents the highest test accuracy when
compression rate around 0.7. When model without compres-
sion operations (compression rate = 1.0), the accuracy is
lower than the model which with appropriate compression
operation. Compression operation can reduce the number of
features, too many features may lead to overfitting. Discarding
an appropriate number of features can improve the accuracy
and generalization ability.

C. Model performance

According to sufficient experiments, we set blocks = 3,
depth = 16, compression rate = 0.7 and growth rate =
10 for radius classification; for ulna classification, we set
blocks = 3, depth = 10, compression rate = 0.7 and
growth rate = 10, these structures are the optimal net-
work structure we obtained for individual Densenet models,
when other variable factors are under optimal conditions,
the accuracy achieves 83.33% and 90.31% for radius and
ulna classification respectively by using individual DenseNet
model. Fig. 11 shows the trend of training accuracy and test
accuracy when the number of iterations changes.

To acquire the best performance ensemble classification
model, we selected five outstanding individual DenseNet struc-
tures from our sufficient experiments to build the ensemble
model, the structure of each sub-classifier is shown in Table
I. At the same time, we utilized a three-layer fully connected
network as our fusion network.

We evaluated the performance of our individual model and
the ensemble model for radius/ulna classification. The model
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Fig. 8: Radius and ulna classification results with different depths.

Fig. 9: Radius and ulna classification results with different number of blocks.

TABLE I: Structure of each sub-classifier.

Structure Block Depth Growth rate Structure Block Depth Growth rate
DensNet-R-A 3 16 10 DensNet-U-A 3 10 10
DensNet-R-B 4 13 9 DensNet-U-B 3 13 9
DensNet-R-C 2 13 11 DensNet-U-C 4 13 11
DensNet-R-D 3 13 10 DensNet-U-D 3 17 9
DensNet-R-E 4 17 9 DensNet-U-E 2 11 11

is evaluated by three evaluation indicators: recall, precision
and F1-score. The precision calculate formula as follows:

Precision =
Samples correctly classified as c

Samples classified as c
(9)

The recall calculate formula:

Recall =
Samples correctly classified as c

Samples of class c
(10)

The F1-score is given by:

F1− score =
2× precision× recall

precision + recall
(11)

Table II and Table III show the performance of our best
individual Densenet model and the performance of our en-
semble model. The ensemble model shows relatively balanced
and stable performance for the classification of each class,

the ensemble model achieves encouraging performance and
outperforms the individual model.

In addition, we compared the accuracy of the ensemble
model and the accuracies of these five sub-classifiers which
constitute the ensemble model, as shown in Table IV. The
ensemble model shows outstanding performance, when other
variable factors are under optimal conditions, the ensemble
model shows the best accuracy with 85.27% for radius clas-
sification and 91.68% for ulna classification.

To explore the model performance according to different
number of training samples, we compared the accuracy of the
ensemble model and the accuracies of the five sub-classifiers
when the number of samples changes, as shown in Fig. 12.

We utilized different multiples of data augmentation to
change the number of samples, when the number of samples
smaller than 4 times of the original dataset, the accuracy
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Fig. 10: Radius and ulna classification accuracy with diverse compression rates.

TABLE II: Performance of radius classification results at each stage.

Model Skeletal Maturity of Radius Recall Precision F1-score

Individual

Stage1 75.31% 75.85% 75.58%
Stage2 85.12% 83.33% 84.21%
Stage3 86.01% 81.25% 83.56%
Stage4 79.65% 74.44% 76.96%

Ensemble

Stage1 81.81% 78.26% 80.00%
Stage2 87.50% 87.50% 87.50%
Stage3 87.17% 89.47% 88.27%
Stage4 83.33% 81.08% 82.19%

increases sharply with the multiples of data augmentation
increases. Sufficient experiments prove that 4 times data
augmentation is a good choice for our skeletal maturity stage
classification task.

In this work, we used confusion matrix to evaluate the
classification performance for each category, Fig. 13 shows
the confusion matrices for ulna and radius classification. The
classification errors are mainly caused by adjacent maturity
stages which have high similarity in the skeleton morphology.
Fig. 14 (a) shows the image of radius just entering stage4,
which is very easily confused with stage3. Similarly, Fig. 14
(b) shows the ulna image of the early stage2, the visual features

of which are very similar to stage1. It is also a challenge for
the clinician to recognize such samples in practice.

(a) (b)(a) (b)

Fig. 14: Examples of radius and ulna images that are
misclassified.

Fig. 11: Accuracy of the optimal individual Densenet model for radius (a) and ulna (b) classification.
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Fig. 12: Classification accuracy of the ensemble model with different size training datasets.

TABLE III: Performance of ulna classification results at each stage.

Model Skeletal Maturity of Ulna Recall Precision F1-score

Individual
Stage1 79.54% 92.10% 85.36%
Stage2 96.33% 88.98% 92.51%
Stage3 85.11% 90.91% 87.91%

Ensemble
Stage1 84.09% 97.36% 90.23%
Stage2 98.17% 91.45% 94.70%
Stage3 93.33% 89.36% 91.30%

TABLE IV: Comparison with each individual DensNet models.

Model Train Acc Validation Acc Test Acc Model Train Acc Validation Acc Test Acc
DensNet-R-A 96.68% 85.45% 83.33% DensNet-U-A 98.42% 91.55% 90.31%
DensNet-R-B 97.12% 86.02% 82.88% DensNet-U-B 99.17% 92.32% 89.65%
DensNet-R-C 96.79% 86.26% 83.13% DensNet-U-C 98.08% 93.33% 89.96%
DensNet-R-D 98.25% 84.13% 82.50% DensNet-U-D 97.96% 91.71% 88.88%
DensNet-R-E 97.46% 85.33% 82.90% DensNet-U-E 98.55% 90.97% 88.90%

Ensemble - - 85.27% Ensemble - - 91.68%

IV. DISCUSSIONS

A. Comparison with other neural network models

We compare our ensemble model with other neural network
models. Moreover, the test accuracy of different methods
is summarized in Table V. The optimal CNN structure we
obtained from the experiment is 32c7-64c5-64c3-128c3-128c3
(”32c7” means 32 convolution kernels with size of 7). Three
observations can be made from our experiments:

1) Our model has faster convergence speed. Note that, only
100 iterations were trained until DenseNet classification model
reaches convergence (Fig. 11), but 10000 iterations for LeNet5
(Fig. 15 (a)) and AlexNet (Fig. 15 (b)) reach convergence.

2) Compared with other neural network models, DenseNet
has smaller generalization error and it is less prone to over-
fitting.

3) In the application of skeletal maturity stage classification,
our method has higher accuracy compared with other neural
network models.

Therefore, two advantages are enjoyed from the mechanism
of dense connection. First, due to the gradient flows from
later layers to earlier layers, it preserves the maximum in-

formation flow between layers, each layer receives additional
supervision. Therefore, our model is easier to converge and
reaches higher accuracy. Second, compared with other models
for ulna/radius classification, DenseNet has less parameters,
fewer parameters improve the generalization ability of the
model and prevent overfitting even if we have a small train set
which is an unavoidable problem in medical image processing.

TABLE V: Comparison with other neural network models.

Method Accuracy of radius Accuracy of ulna
LeNet5 68.59% 74.72%
AlexNet 67.88% 75.89%
ResNet 75.39% 84.82%
CNN 78.50% 85.33%

Our Method 85.27% 91.68%

B. How to improve the system

In the process of experiment, we found the parameter initial-
ization has a significant influence on the model performance.
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Fig. 13: (a) Confusion matrix for ulna classification. (b) Confusion matrix for radius classification.

Fig. 15: (a) Accuracy of LeNet5 [47]. (b) Accuracy of AlexNet [48].

Although we have achieved satisfactory results, our parameter
was initialized with random weights, this is detrimental to
the learning speed of the neural networks. We still have
room for improvement to provide more accurate classification
results. In the future work, we expect to use the advantage of
transfer learning mechanism to overcome the shortcoming of
the limit dataset which is a widespread problem in medical
image processing field. We plan to pre-train our model by
using other datasets, such as CIFAR-10 [49] or ImageNet [50],
then use the pre-trained network to build the skeletal maturity
classification model.

C. Clinical application

In the treatment of the adolescent disease, it is essential
to decide the treatment plan according to the patient’s de-
velopment situation. Study how to auto classify the skeletal
maturity is meaningful for guide clinical management [5], the
implementation of automatic skeletal maturity identification
can reduce the workload of doctors. For example, it has
significant clinical application value to quickly identify the
skeletal maturity of patient with adolescent idiopathic scoliosis
(AIS) and help physicians estimate the growth peak and
growth cessation, determine clinical observational intervals as
early as possible. In addition, using distal radius and ulna

radiographs to assess skeletal maturity can provide the refer-
ence for physicians to find the time to initiate or end bracing
therapy. At the same time, artificial assessment requires two
or more physicians to assess skeletal maturity, this method
can give diagnosis recommendations and provide a unified
standard for a given examination and reduces the influence
of interobserver variability.

V. CONCLUSIONS

In this work, we proposed an ensemble based automatic
skeletal maturity assessment system by using dense connection
mechanism. The dense connection mechanism was utilized
with the ensemble framework to improve the stability and
accuracy of skeletal maturity assessment system. A significant
quantity of experiments have been done to find the influence
of different hyper-parameters on the final result. We also
demonstrated the superiority of the proposed model against
using other models for skeletal maturity stage classification.
Applying dense connectivity, our model may achieve better
feature transfer efficiency with fewer parameters [41]. Our
model has less chance to encounter the over-fitting problem
even if training with limited data and it is much easier to
converge and has greater optimization efficiency. The proposed
method can be deployed in the clinical environment to help
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orthopedist to identify the skeletal maturity via radius and ulna
automatically and objectively.

REFERENCES

[1] W. W. Greulich, S. I. Pyle, and T. W. Todd, “Radiograph-
ic atlas of skeletal development of the hand and wrist,”
Stanford: Stanford university press, vol. 2, 1959.

[2] J. M. Tanner and R. H. Whitehouse, “Clinical longitudi-
nal standards for height, weight, height velocity, weight
velocity, and stages of puberty.” Archives of disease in
childhood, vol. 51, no. 3, pp. 170–179, 1976.

[3] R. Bull, P. Edwards, P. Kemp, S. Fry, and I. Hughes,
“Bone age assessment: a large scale comparison of the
greulich and pyle, and tanner and whitehouse (tw2)
methods,” Archives of disease in childhood, vol. 81, no. 2,
pp. 172–173, 1999.

[4] R. M. Malina and G. P. Beunen, “Assessment of skeletal
maturity and prediction of adult height (tw3 method),”
American Journal of Human Biology, vol. 14, no. 6, pp.
788–789, 2002.

[5] K. D. Luk, L. B. Saw, S. Grozman, K. M. Cheung,
and D. Samartzis, “Assessment of skeletal maturity in
scoliosis patients to determine clinical management: a
new classification scheme using distal radius and ulna
radiographs,” The Spine Journal, vol. 14, no. 2, pp. 315–
325, 2014.

[6] F. Shuang and C. L. P. Chen, “Fuzzy restricted boltzmann
machine and deep belief network: A comparison on im-
age reconstruction,” 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 1828–
1833, 2017.

[7] J. Duan, L. Chen, and C. L. P. Chen, “Region-based
multi-focus image fusion using guided filtering and
greedy analysis,” 2015 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 2932–2937, 2015.

[8] H. Sima, P. Guo, Y. Zou, Z. Wang, and M. Xu, “Bottom-
up merging segmentation for color images with complex
areas,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 48, no. 3, pp. 354–365, 2018.

[9] K. Uemura, Y. Miyoshi, T. Kawahara, S. Yoneyama,
Y. Hattori, J.-i. Teranishi, K. Kondo, M. Moriyama,
S. Takebayashi, Y. Yokomizo et al., “Prognostic value
of a computer-aided diagnosis system involving bone
scans among men treated with docetaxel for metastat-
ic castration-resistant prostate cancer,” BMC cancer,
vol. 16, no. 1, p. 109, 2016.

[10] Y. Miyoshi, S. Yoneyama, T. Kawahara, Y. Hattori, J.-
i. Teranishi, K. Kondo, M. Moriyama, S. Takebayashi,
Y. Yokomizo, M. Yao et al., “Prognostic value of the
bone scan index using a computer-aided diagnosis system
for bone scans in hormone-naive prostate cancer patients
with bone metastases,” BMC cancer, vol. 16, no. 1, p.
128, 2016.

[11] Y. Chen, J. Hsu, C. Hung, J. Wu, F. Lai, and S. Kuo,
“Surgical wounds assessment system for self-care,” IEEE
Transactions on Systems, Man, and Cybernetics: System-
s, pp. 1–16, 2018.

[12] X. Zhou, G. Bian, X. Xie, and Z. Hou, “An
interventionalist-behavior-based data fusion framework
for guidewire tracking in percutaneous coronary inter-
vention,” IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, pp. 1–14, 2018.

[13] A. Zhang, A. Gertych, and B. J. Liu, “Automatic bone
age assessment for young children from newborn to
7-year-old using carpal bones,” Computerized Medical
Imaging and Graphics, vol. 31, no. 4-5, pp. 299–310,
2007.

[14] M. Mansourvar, A. Asemi, R. G. Raj, S. A. Kareem,
C. D. Antony, N. Idris, and M. S. Baba, “A fuzzy
inference system for skeletal age assessment in liv-
ing individual,” International Journal of Fuzzy Systems,
vol. 19, no. 3, pp. 838–848, 2017.

[15] A. Gertych, A. Zhang, J. Sayre, S. Pospiech-Kurkowska,
and H. Huang, “Bone age assessment of children using a
digital hand atlas,” Computerized Medical Imaging and
Graphics, vol. 31, no. 4, pp. 322–331, 2007.

[16] J. Seok, J. Kasa-Vubu, M. DiPietro, and A. Girard,
“Expert system for automated bone age determination,”
Expert Systems with Applications, vol. 50, pp. 75–88,
2016.

[17] S. Mahmoodi, B. S. Sharif, E. G. Chester, J. P. Owen, and
R. Lee, “Skeletal growth estimation using radiographic
image processing and analysis,” IEEE Transactions on
Information Technology in Biomedicine, vol. 4, no. 4,
pp. 292–297, 2000.

[18] S. Mahmoodi, B. Sharif, E. Chester, J. Owen, and R. Lee,
“Automated vision system for skeletal age assessmen-
t using knowledge based techniques,” IET Conference
Proceedings, pp. 809–813(4), 1997.

[19] M. Kashif, S. Jonas, D. Haak, and T. M. Deserno,
“Bone age assessment meets sift,” Medical Imaging
2015: Computer-Aided Diagnosis, vol. 9414, p. 941439,
2015.

[20] M. Kashif, T. M. Deserno, D. Haak, and S. Jonas,
“Feature description with sift, surf, brief, brisk, or freak?
a general question answered for bone age assessment,”
Computers in Biology and Medicine, vol. 68, pp. 67–75,
2016.

[21] M. Harmsen, B. Fischer, H. Schramm, T. Seidl, and T. M.
Deserno, “Support vector machine classification based on
correlation prototypes applied to bone age assessment,”
IEEE Journal of Biomedical and Health Informatics,
vol. 17, no. 1, pp. 190–197, 2013.

[22] G. E. Graksn, H. Hakl, and H. Uuz, “Support vector
machines classification based on particle swarm opti-
mization for bone age determination,” Applied Soft Com-
puting, vol. 24, pp. 597–602, 2014.

[23] A. Tristan-Vega and J. I. Arribas, “A radius and ulna
tw3 bone age assessment system,” IEEE Transactions on
Biomedical Engineering, vol. 55, no. 5, pp. 1463–1476,
2008.

[24] M. Mansourvar, S. Shamshirband, R. G. Raj, R. Gunalan,
and I. Mazinani, “An automated system for skeletal
maturity assessment by extreme learning machines,” PloS
one, vol. 10, no. 9, p. e0138493, 2015.



12

[25] M. Chen, “Automated bone age classification with deep
neural networks,” Stanford University Technical Report,
2016.

[26] J. H. Lee and K. G. Kim, “Applying deep learning
in medical images: The case of bone age estimation,”
Healthcare Informatics Research, vol. 24, no. 1, pp. 86–
92, 2018.

[27] J. Zhou, Z. Li, W. Zhi, B. Liang, D. Moses, and
L. Dawes, “Using convolutional neural networks and
transfer learning for bone age classification,” Digital Im-
age Computing: Techniques and Applications (DICTA),
2017 International Conference on, pp. 1–6, 2017.

[28] C. Spampinato, S. Palazzo, D. Giordano, M. Aldinucci,
and R. Leonardi, “Deep learning for automated skeletal
bone age assessment in x-ray images,” pp. 41–51, 2017.

[29] H. Lee, S. Tajmir, J. Lee, M. Zissen, B. A. Yeshiwas,
T. K. Alkasab, G. Choy, and S. Do, “Fully automated
deep learning system for bone age assessment,” Journal
of digital imaging, vol. 30, no. 4, pp. 427–441, 2017.

[30] Z. Bian and R. Zhang, “Bone age assessment method
based on deep convolutional neural network,” 2018
8th International Conference on Electronics Information
and Emergency Communication (ICEIEC), pp. 194–197,
2018.

[31] S. Mutasa, P. D. Chang, C. Ruzal-Shapiro, and R. Ayyala,
“Mabal: a novel deep-learning architecture for machine-
assisted bone age labeling,” Journal of digital imaging,
vol. 31, no. 4, pp. 513–519, 2018.

[32] V. I. Iglovikov, A. Rakhlin, A. A. Kalinin, and A. A.
Shvets, “Paediatric bone age assessment using deep con-
volutional neural networks,” Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical
Decision Support, pp. 300–308, 2018.

[33] C. Keatmanee, S. Klabwong, K. Osatavanichvong, and
C. Suchato, “Performance of convolutional neural net-
works and transfer learning for skeletal bone age assess-
ment,” THE BANGKOK MEDICAL JOURNAL, vol. 15,
no. 1, 2019.

[34] J. Han, Y. Jia, C. Zhao, and F. Gou, “Automatic bone age
assessment combined with transfer learning and support
vector regression,” 2018 9th International Conference
on Information Technology in Medicine and Education
(ITME), pp. 61–66, 2018.

[35] S. E. Ayala-Raggi, F. M. Manzano, A. Barreto-Flores,
S. Sánchez-Urrieta, J. F. Portillo-Robledo, V. E. Bautista-
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