REVERSE HILBERT TYPE INEQUALITIES

CHANG-JIAN ZHAO AND WING-SUM CHEUNG

(Communicated by M. Krnić)

Abstract. In this paper, some reverse Hilbert-Pachpatte's type inequalities involving series of nonnegative terms are established, which provide new estimates on inequality of this type.

1. Introduction

The well-known Hilbert's inequality can be stated below ([1, p.226])

THEOREM A. Let $a_m, b_n \geqslant 0$, $0 < \sum_1^{\infty} a_m^p \leqslant \infty$ and $0 < \sum_1^{\infty} b_n^q \leqslant \infty$. If p > 1 and q = p/(p-1), then

$$\sum_{1}^{\infty} \sum_{1}^{\infty} \frac{a_m b_n}{m+n} \leqslant \frac{\pi}{\sin(\pi/p)} \left(\sum_{1}^{\infty} a_m^p\right)^{1/p} \left(\sum_{1}^{\infty} b_n^q\right)^{1/q}.$$
 (1.1)

Hilbert's inequality and its integral form were studied extensively and numerous variants, generalizations, and extensions appeared in the literature [2-11] and the references cited therein. Some researches on reverse Hilbert inequalities were published in [12-13] and et al. The latest research on this type of inequality can be found in the literature [14]. In 1998, Pachpatte [15] proved new inequalities similar to Hilbert's inequality (1.1) and the main results are the following theorems.

THEOREM B. Let $p \ge 1, q \ge 1$ and $\{a_m\}$ and $\{b_n\}$ be two non-negative sequences of real numbers defined for m = 1, ..., k and n = 1, ..., r, where k, r are natural numbers. Let $A_m = \sum_{s=1}^m a_s$ and $B_n = \sum_{t=1}^n b_t$. Then

$$\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{A_{m}^{p} B_{n}^{q}}{m+n} \leq C(p,q,k,r) \left(\sum_{m=1}^{k} (k-m+1) \left(a_{m} A_{m}^{p-1} \right)^{2} \right)^{1/2} \times \left(\sum_{n=1}^{r} (r-n+1) \left(b_{n} B_{n}^{q-1} \right)^{2} \right)^{1/2}$$
(1.2)

where

$$C(p,q,k,r) = \frac{1}{2}pq(kr)^{1/2}. (1.3)$$

Mathematics subject classification (2010): 26D15.

Keywords and phrases: Convex function, concave function, Jensen's inequality, Hilbert's inequality.

Research is supported by National Natural Science Foundation of China (11371334, 10971205).

Research is partially supported by a HKU Seed Grant for Basic Research.

THEOREM C. Let $\{a_m\}$, $\{b_n\}$, A_m , B_n be as defined in Theorem A. Let $\{p_m\}$ and $\{q_n\}$ be positive sequences for $m=1,\ldots,k$ and $n=1,\ldots,r$, where k,r are natural numbers. Define $P_m = \sum_{s=1}^m p_s$ and $Q_n = \sum_{t=1}^n q_t$. Let ϕ and ψ be nonnegative, convex, sub-multiplicative functions defined on $\mathbb{R}_+ = [0,+\infty)$. Then

$$\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{\phi(A_{m})\psi(B_{n})}{m+n} \leq M(k,r) \left(\sum_{m=1}^{k} (k-m+1) \left(p_{m}\phi\left(\frac{a_{m}}{p_{m}}\right) \right)^{2} \right)^{1/2} \times \left(\sum_{n=1}^{r} (r-n+1) \left(q_{n}\psi\left(\frac{b_{n}}{q_{n}}\right) \right)^{2} \right)^{1/2}, \tag{1.4}$$

where

$$M(k,r) = \frac{1}{2} \left(\sum_{m=1}^{k} \left(\frac{\phi(P_m)}{P_m} \right)^2 \right)^{1/2} \left(\sum_{n=1}^{r} \left(\frac{\psi(Q_n)}{Q_n} \right)^2 \right)^{1/2}.$$
 (1.5)

The main purpose of this paper is to establish reverse Hilbert-Pachpatte's type inequalities of (1.1) and (1.4), these new inequalities provide new estimates on inequalities of these type.

2. Lemmas

LEMMA 2.1. [1, p.39] If x and y are positive real numbers and $0 \le \alpha \le 1$, then

$$\alpha x^{\alpha - 1}(x - y) \leqslant x^{\alpha} - y^{\alpha} \leqslant \alpha y^{\alpha - 1}(x - y). \tag{2.1}$$

LEMMA 2.2. [16] If a,b are positive real numbers and $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1, then

$$S\left(\frac{a}{b}\right)a^{1/p}b^{1/q} \geqslant \frac{a}{p} + \frac{b}{q},\tag{2.2}$$

where

$$S(h) = \frac{h^{1/(h-1)}}{e \log h^{1/(h-1)}}, \ 0 < h \neq 1.$$
 (2.3)

LEMMA 2.3. If $\{a_i\}$ and $\{b_i\}$ (i = 1, ..., n) are positive real sequences, then

$$\sum_{i=1}^{n} S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right) a_{i}b_{i} \geqslant \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1/q}, \tag{2.4}$$

where $S\left(\frac{Ya_i^p}{Xb_i^q}\right)$ is as in (2.3), and

$$X = \sum_{i=1}^{n} a_i^p, \quad Y = \sum_{i=1}^{n} b_i^q.$$

Proof. Let

$$a = \frac{\left(S\left(\frac{Ya_i^p}{Xb_i^q}\right)\right)^{-1} \cdot a_i^p}{X}, \ b = \frac{\left(S\left(\frac{Ya_i^p}{Xb_i^q}\right)\right)^{-1} \cdot b_i^q}{Y},$$

and by using Lemma 2.2, we have

$$S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right) \cdot \frac{a_{i}b_{i}}{X^{1/p}Y^{1/q}} \left(S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right)\right)^{-1/p} \left(S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right)\right)^{-1/q}$$

$$\geqslant \frac{1}{p} \frac{a_{i}^{p}}{X} \left(S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right)\right)^{-1} + \frac{1}{q} \frac{b_{i}^{q}}{Y} \left(S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right)\right)^{-1}.$$

Hence

$$S\left(\frac{Ya_i^p}{Xb_i^q}\right)\frac{a_ib_i}{X^{1/p}Y^{1/q}} \geqslant \frac{1}{p}\frac{a_i^p}{X} + \frac{1}{q}\frac{b_i^q}{Y}.$$

Taking the sum over i from 1 to n, we obtain

$$\frac{1}{X^{1/p}Y^{1/q}} \sum_{i=1}^{n} S\left(\frac{Ya_{i}^{p}}{Xb_{i}^{q}}\right) a_{i}b_{i} \geqslant \frac{1}{pX} \sum_{i=1}^{n} a_{i} + \frac{1}{qY} \sum_{i=1}^{n} b_{i} = 1.$$

Hence

$$\sum_{i=1}^{n} S\left(\frac{Ya_i^p}{Xb_i^q}\right) a_i b_i \geqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}. \quad \Box$$

LEMMA 2.4. [2] (Jensen's inequality) If f(x) is continuous and convex function and p_i (i = 1, 2, ..., n) are nonnegative real numbers (not all 0), then

$$f\left(\frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}\right) \leqslant \frac{\sum_{i=1}^{n} p_{i} f(x_{i})}{\sum_{i=1}^{n} p_{i}},$$
(2.5)

with equality if and only if $x_1 = \cdots = x_n$.

This inequality is reversed if f(x) is concave function.

3. Main results

First, we establish a reverse Hilbert type inequality of (1.1). Our main result is given in the following theorem.

THEOREM 3.1. Let $0 \le p \le 1, 0 \le q \le 1$ and $\{a_m\}$ and $\{b_n\}$ be two non-negative and decreasing sequences of real numbers defined for m = 1, 2, ..., k and n = 1, 2, ..., r where k, r are the natural numbers and define $A_m = \sum_{s=1}^m a_s$, $B_n = \sum_{t=1}^n b_t$ and $A_0 = B_0 = 0$. Then

$$\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{p,q,k,r,m,n} A_{m}^{p} B_{n}^{q}}{(mn)^{1/2}}$$

$$\geqslant 2C(p,q,k,r) \left(\sum_{m=1}^{k} (k-m+1)(a_m A_m^{p-1})^2 \right)^{1/2} \left((r-n+1) \sum_{n=1}^{r} (b_n B_n^{q-1})^2 \right)^{1/2}, \tag{3.1}$$

where C(p,q,k,r) is as in (1.3), and

$$\begin{split} S_{p,q,k,r,m,n} = & S\left(\frac{r\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{r}(b_{t}B_{t}^{q-1})^{2}(r-t+1)}\right) S\left(\frac{k\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{k}(a_{s}A_{s}^{p-1})^{2}(k-s+1)}\right) \\ & \times S\left(\frac{m(a_{u}A_{u}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right) S\left(\frac{n(b_{v}B_{v}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right), \end{split}$$

where

$$S\left(\frac{m(a_{u}A_{u}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right) = \max\left\{S\left(\frac{m(a_{1}A_{1}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right); S\left(\frac{m(a_{m}A_{m}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right)\right\},$$

and

$$S\left(\frac{n(b_{v}B_{v}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right) = \max\left\{S\left(\frac{n(b_{1}B_{1}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right); S\left(\frac{n(b_{n}B_{n}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)\right\},$$

and S is as in (2.3).

Proof. From Lemma 2.1, we obtain

$$\sum_{m=0}^{k-1} p A_{m+1}^{p-1} (A_{m+1} - A_m) \leqslant \sum_{m=0}^{k-1} (A_{m+1}^p - A_m^p).$$

Namely

$$A_k^p \geqslant p \sum_{m=0}^{k-1} a_{m+1} A_{m+1}^{p-1}.$$
 (3.2)

By replacing m with s first, and then replacing k with m in (3.2), we have

$$A_m^p \geqslant p \sum_{s=1}^m a_s A_s^{p-1} \ m = 1, 2, \dots, k.$$

Hence

$$S\left(\frac{m(a_uA_u^{p-1})^2}{\sum_{s=1}^m(a_sA_s^{p-1})^2}\right)A_m^p \geqslant p\sum_{s=1}^m \left(S\left(\frac{m(a_uA_u^{p-1})^2}{\sum_{s=1}^m(a_sA_s^{p-1})^2}\right) \cdot a_sA_s^{p-1}\right).$$

Because of

$$\frac{m(a_1A_1^{p-1})^2}{\sum_{s=1}^m (a_sA_s^{p-1})^2} \geqslant \cdots \geqslant 1 \geqslant \cdots \geqslant \frac{m(a_mA_m^{p-1})^2}{\sum_{s=1}^m (a_sA_s^{p-1})^2}.$$

On the other hand, S function is decreasing on (0,1) and increasing on $(1,\infty)$. So, we know that one of the $S\left(\frac{m(a_1A_1^{p-1})^2}{\sum_{s=1}^m(a_sA_s^{p-1})^2}\right)a_sA_s^{p-1}$ and $S\left(\frac{m(a_mA_m^{p-1})^2}{\sum_{s=1}^m(a_sA_s^{p-1})^2}\right)a_sA_s^{p-1}$ is maximum. Therefore

$$S\left(\frac{m(a_{u}A_{u}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right)A_{m}^{p} \geqslant p\sum_{s=1}^{m}\left(S\left(\frac{m(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right) \cdot a_{s}A_{s}^{p-1}\right). \tag{3.3}$$

Similarly

$$S\left(\frac{n(b_{v}B_{v}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)B_{n}^{q}\geqslant q\sum_{t=1}^{n}\left(S\left(\frac{n(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)\cdot b_{t}B_{t}^{q-1}\right),\tag{3.4}$$

where $S\left(\frac{m(a_u A_u^{p-1})^2}{\sum_{s=1}^m (a_s A_s^{p-1})^2}\right)$ and $S\left(\frac{n(b_v B_v^{q-1})^2}{\sum_{t=1}^n (b_t B_t^{q-1})^2}\right)$ are defined in Theorem 3.1. From (3.3) and (3.4), and in view of Lemma 2.3, we have

$$S\left(\frac{m(a_{u}A_{u}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right)S\left(\frac{n(b_{v}B_{v}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)A_{m}^{p}B_{n}^{q}$$

$$\geqslant pq\sum_{s=1}^{m}\left(S\left(\frac{m(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right)\cdot a_{s}A_{s}^{p-1}\times 1\right)\sum_{t=1}^{n}\left(S\left(\frac{n(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)\cdot b_{t}B_{t}^{q-1}\times 1\right)$$

$$\geqslant pq(mn)^{1/2}\left(\sum_{s=1}^{m}\left(a_{s}A_{s}^{p-1}\right)^{2}\right)^{1/2}\cdot\left(\sum_{t=1}^{n}\left(b_{t}B_{t}^{q-1}\right)^{2}\right)^{1/2}.$$
(3.5)

Multiplying both sides of (3.5) by

$$S\left(\frac{k\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{k}(a_{s}A_{s}^{p-1})^{2}(k-s+1)}\right)S\left(\frac{r\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{r}(b_{t}B_{t}^{q-1})^{2}(r-t+1)}\right),$$

we have

$$S\left(\frac{r\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{r}(b_{t}B_{t}^{q-1})^{2}(r-t+1)}\right)S\left(\frac{k\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{k}(a_{s}A_{s}^{p-1})^{2}(k-s+1)}\right)$$

$$\times S\left(\frac{m(a_{u}A_{u}^{p-1})^{2}}{\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}\right)S\left(\frac{n(b_{v}B_{v}^{q-1})^{2}}{\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}\right)A_{m}^{p}B_{n}^{q}$$

$$\geqslant pq(mn)^{1/2}S\left(\frac{k\sum_{s=1}^{m}(a_{s}A_{s}^{p-1})^{2}}{\sum_{s=1}^{k}(a_{s}A_{s}^{p-1})^{2}(k-s+1)}\right)\left(\sum_{s=1}^{m}\left(a_{s}A_{s}^{p-1}\right)^{2}\right)^{1/2}$$

$$\times S\left(\frac{r\sum_{t=1}^{n}(b_{t}B_{t}^{q-1})^{2}}{\sum_{t=1}^{r}(b_{t}B_{t}^{q-1})^{2}(r-t+1)}\right)\left(\sum_{t=1}^{n}\left(b_{t}B_{t}^{q-1}\right)^{2}\right)^{1/2}.$$

$$(3.6)$$

Dividing both sides of (3.6) by $(mn)^{1/2}$ first and then taking the sum over n from 1 to r and the sum over m from 1 to k, and by using Lemma 2.3, we obtain

$$\begin{split} \sum_{m=1}^k \sum_{n=1}^r \frac{S_{p,q,k,r,m,n} A_p^m B_n^d}{(mn)^{1/2}} \\ &\geqslant pq \sum_{m=1}^k S \left(\frac{k \sum_{s=1}^m (a_s A_s^{p-1})^2}{\sum_{k=1}^k (b_t B_t^{q-1})^2 (k-s+1)} \right) \left(\sum_{s=1}^m \left(a_s A_s^{p-1} \right)^2 \right)^{1/2} \\ &\times \sum_{n=1}^r S \left(\frac{r \sum_{t=1}^n (b_t B_t^{q-1})^2 (r-t+1)}{\sum_{t=1}^r (b_t B_t^{q-1})^2 (r-t+1)} \right) \left(\sum_{t=1}^n \left(b_t B_t^{q-1} \right)^2 \right)^{1/2} \\ &= pq \sum_{m=1}^k S \left(\frac{k \sum_{s=1}^m (a_s A_s^{p-1})^2}{\sum_{m=1}^k \sum_{s=1}^m (a_s A_s^{p-1})^2} \right) \left(\left(\sum_{s=1}^m \left(b_t B_t^{q-1} \right)^2 \right)^{1/2} \times 1 \right) \\ &\times \sum_{n=1}^r S \left(\frac{r \sum_{t=1}^n (b_t B_t^{q-1})^2}{\sum_{n=1}^n \sum_{t=1}^n (b_t B_t^{q-1})^2} \right) \left(\left(\sum_{t=1}^n \left(b_t B_t^{q-1} \right)^2 \right)^{1/2} \times 1 \right) \\ &\geqslant pq(kr)^{1/2} \left(\sum_{m=1}^k \sum_{s=1}^m (a_s A_s^{p-1})^2 \right) \left(\sum_{t=1}^r \sum_{t=1}^n (b_t B_t^{q-1})^2 \right)^{1/2} \\ &= 2C(p,q,k,r) \left(\sum_{s=1}^k \left(a_s A_s^{p-1} \right)^2 (k-s+1) \right)^{1/2} \left(\sum_{t=1}^r \left(b_t B_t^{q-1} \right)^2 (r-t+1) \right)^{1/2} \\ &= 2C(p,q,k,r) \left(\sum_{m=1}^k \left(a_m A_m^{p-1} \right)^2 (k-m+1) \right)^{1/2} \left(\sum_{t=1}^r \left(b_t B_t^{q-1} \right)^2 (r-n+1) \right)^{1/2}, \\ \text{where } C(p,q,k,r) \text{ is as in } (1.3), \text{ and} \\ &S_{p,q,k,r,m,n} = S \left(\frac{n \sum_{t=1}^n \left(b_t B_t^{q-1} \right)^2}{\sum_{t=1}^r \left(b_t B_t^{q-1} \right)^2} \right) S \left(\frac{m \sum_{s=1}^m \left(a_s A_s^{p-1} \right)^2}{\sum_{s=1}^k \left(a_s A_s^{p-1} \right)^2 (k-s+1)} \right) \\ &\times S \left(\frac{m \left(a_u A_u^{q-1} \right)^2}{\sum_{s=1}^m \left(a_s A_s^{q-1} \right)^2} \right) S \left(\frac{n \left(b_t B_t^{q-1} \right)^2}{\sum_{t=1}^n \left(b_t B_t^{q-1} \right)^2} \right). \end{aligned}$$

This completes the proof. \Box

REMARK 3.1. From (1.2) in Theorem B, we may estimate the following product and can get a lower bound.

$$\left(\sum_{m=1}^{k} (k-m+1) \left(a_m A_m^{p-1}\right)^2\right)^{1/2} \left(\sum_{n=1}^{r} (r-n+1) \left(b_n B_n^{q-1}\right)^2\right)^{1/2} \tag{3.7}$$

Namely

$$\left(\sum_{m=1}^{k} (k-m+1) \left(a_m A_m^{p-1}\right)^2\right)^{1/2} \left(\sum_{n=1}^{r} (r-n+1) \left(b_n B_n^{q-1}\right)^2\right)^{1/2}$$

$$\geqslant (C(p,q,k,r))^{-1} \sum_{m=1}^{k} \sum_{n=1}^{r} \frac{A_{m}^{p} B_{n}^{q}}{m+n}.$$

On the other hand, from (3.1) in Theorem 3.1, we have

$$\left(\sum_{m=1}^{k} (k-m+1)(a_m A_m^{p-1})^2\right)^{1/2} \left(\sum_{n=1}^{r} (r-n+1)(b_n B_n^{q-1})^2\right)^{1/2} \le \frac{1}{2} (C(p,q,k,r))^{-1} \sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{p,q,k,r,m,n} A_m^p B_n^q}{mn}.$$

This is just an upper bound of the product (3.7).

Next, we establish a reverse Hilbert type inequality of (1.2). Our main result is given in the following theorem.

THEOREM 3.2. Let $\{a_m\}, \{b_n\}$ be two non-negative sequences of real numbers defined for m = 1, 2, ..., k and n = 1, 2, ..., r where k, r are the natural numbers. Let $\{p_m\}$ and $\{q_n\}$ be two positive sequences. Let ϕ and ψ be two nonnegative, concave and super-multiplicative functions defined on \mathbb{R}_+ , and define

$$\overline{A}_{m} = \sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m}\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) a_{s}, \quad \overline{B}_{n} = \sum_{t=1}^{n} S\left(\frac{n\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}{\sum_{t=1}^{n}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}\right) b_{t},$$

and

$$P_{m} = \sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m}\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}, \quad Q_{n} = \sum_{t=1}^{n} S\left(\frac{n\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}{\sum_{t=1}^{n}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}\right) q_{t}.$$

Then

$$\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{k,r,m,n} \phi(\bar{A}_{m}) \psi(\bar{B}_{n})}{(mn)^{1/2}}$$

$$\geqslant 2M(k,r) \left(\sum_{s=1}^{k} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2} (k-s+1) \right)^{1/2} \left(\sum_{t=1}^{r} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right) \right)^{2} (r-t+1) \right)^{1/2},$$
(3.8)

where M(k,r) is as in (1.5), and

$$S_{k,r,m,n} = S \left(\frac{\sum_{s=1}^{k} \left(p_s \phi \left(\frac{a_s}{p_s} \right) \right)^2 (k - s + 1) \left(\frac{\phi(P_m)}{P_m} \right)^2}{\left(\sum_{m=1}^{k} \left(\frac{\phi(P_m)}{P_m} \right)^2 \right) \sum_{s=1}^{m} \left(p_s \phi \left(\frac{a_s}{p_s} \right) \right)^2} \right)$$

$$\times S\left(\frac{\sum_{t=1}^{r}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\left(r-t+1\right)\left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}}{\left(\sum_{n=1}^{r}\left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}\right)\sum_{t=1}^{n}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}\right),\right)$$

and $S(\cdot)$ is as in (2.3).

Proof. From Lemmas 2.3 and 2.4, and in view of ϕ is a super-multiplicative function, we obtain

$$\phi(\overline{A}_{m}) = \phi \left(\frac{P_{m} \sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}a_{s}/p_{s}}{\sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}} \right)$$

$$\geqslant \phi(P_{m})\phi \left(\frac{\sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}a_{s}/p_{s}}{\sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}} \right)$$

$$\geqslant \frac{\phi(P_{m})}{P_{m}} \sum_{s=1}^{m} S\left(\frac{m\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}{\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right) p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)$$

$$\geqslant \frac{\phi(P_{m})}{P_{m}} m^{1/2} \left(\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}\right)^{1/2}. \tag{3.9}$$

Similarly

$$\psi(\bar{B}_n) \geqslant \frac{\psi(Q_n)}{Q_n} n^{1/2} \left(\sum_{t=1}^n \left(q_t \psi\left(\frac{b_t}{q_t}\right) \right)^2 \right)^{1/2}. \tag{3.10}$$

Multiplying both sides of (3.9) and (3.10), respectively, by

$$S\left(\frac{\sum_{s=1}^{k}\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}\left(k-s+1\right)\cdot\left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}}{\left(\sum_{m=1}^{k}\left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}\right)\cdot\sum_{s=1}^{m}\left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}}\right),$$

and

$$S\left(\frac{\sum_{t=1}^{r}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\left(r-t+1\right)\cdot\left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}}{\left(\sum_{n=1}^{r}\left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}\right)\cdot\sum_{t=1}^{n}\left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}}\right),$$

and then multiplying these two inequalities, we have

$$S\left(\frac{\sum_{s=1}^{k} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2} \left(k-s+1\right) \cdot \left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}}{\left(\sum_{m=1}^{k} \left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}\right) \cdot \sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}} \right) \phi\left(\overline{A}_{m}\right)}$$

$$\times S\left(\frac{\sum_{t=1}^{r} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2} \left(r-t+1\right) \cdot \left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}}{\left(\sum_{n=1}^{r} \left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}\right) \cdot \sum_{t=1}^{n} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}} \right) \psi\left(\overline{B}_{n}\right)}\right)$$

$$\geqslant S\left(\frac{\sum_{s=1}^{k} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2} \left(k-s+1\right) \cdot \left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}}{\left(\sum_{m=1}^{k} \left(\frac{\phi\left(P_{m}\right)}{P_{m}}\right)^{2}\right) \cdot \sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}} \right) \frac{\phi\left(P_{m}\right)}{P_{m}} m^{1/2} \left(\sum_{s=1}^{m} \left(p_{s}\phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}\right)^{1/2}$$

$$\times S\left(\frac{\sum_{t=1}^{r} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2} \left(r-t+1\right) \cdot \left(\frac{\psi\left(Q_{n}\right)}{Q_{n}}\right)^{2}}{\left(\sum_{t=1}^{n} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\right) \cdot \sum_{t=1}^{n} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}} \right) \frac{\psi\left(Q_{n}\right)}{Q_{n}} n^{1/2} \left(\sum_{t=1}^{n} \left(q_{t}\psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\right)^{1/2}.$$

$$(3.11)$$

Dividing both sides of (3.11) by $(mn)^{1/2}$ first and then taking the sum over n from 1 to r first and then the sum over m from 1 to k, and by using the inequality in Lemma 2.3, we obtain

$$\begin{split} &\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{k,r,m,n} \phi(A_{m}) \psi(B_{n})}{(mn)^{1/2}} \\ &\geqslant \sum_{m=1}^{k} S \left(\frac{\sum_{s=1}^{k} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2} (k-s+1) \cdot \left(\frac{\phi(P_{m})}{P_{m}}\right)^{2}}{\left(\sum_{m=1}^{k} \left(\frac{\phi(P_{m})}{P_{m}}\right)^{2}\right) \cdot \sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2}} \right) \times \frac{\phi(P_{m})}{P_{m}} \left(\sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2} \right)^{1/2} \\ &\times \sum_{n=1}^{r} S \left(\frac{\sum_{t=1}^{r} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right) \right)^{2} (r-t+1) \cdot \left(\frac{\psi(Q_{n})}{Q_{n}}\right)^{2}}{\left(\sum_{n=1}^{r} \left(\frac{\psi(Q_{n})}{Q_{n}}\right)^{2}\right) \cdot \sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right) \right)^{2}} \right) \\ &\times \frac{\psi(Q_{n})}{Q_{n}} \left(\sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right) \right)^{2} \right)^{1/2} \\ &= \sum_{m=1}^{k} S \left(\frac{\left(\sum_{m=1}^{k} \sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2} \right) \cdot \left(\frac{\phi(P_{m})}{P_{m}}\right)^{2}}{\left(\sum_{s=1}^{k} \left(\frac{\phi(P_{m})}{P_{m}}\right)^{2}\right) \cdot \sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2}} \right) \frac{\phi(P_{m})}{P_{m}} \left(\sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right) \right)^{2} \right)^{1/2} \end{split}$$

$$\times \sum_{n=1}^{r} S \left(\frac{\left(\sum_{n=1}^{r} \sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\right) \cdot \left(\frac{\psi(Q_{n})}{Q_{n}}\right)^{2}}{\left(\sum_{n=1}^{r} \left(\frac{\psi(Q_{n})}{Q_{n}}\right)^{2}\right) \cdot \sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}} \frac{\psi(Q_{n})}{Q_{n}} \left(\sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\right)^{1/2} \right)$$

$$\geq \left(\sum_{m=1}^{k} \left(\frac{\phi(P_{m})}{P_{m}}\right)^{2}\right)^{1/2} \left(\sum_{m=1}^{k} \left(\sum_{s=1}^{m} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2}\right)\right)^{1/2} \right)$$

$$\times \sum_{n=1}^{r} \left(\left(\frac{\psi(Q_{n})}{Q_{n}}\right)^{2}\right)^{1/2} \left(\sum_{n=1}^{r} \left(\sum_{t=1}^{n} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2}\right)\right)^{1/2} \right)$$

$$\geq 2M(k,r) \left(\sum_{s=1}^{k} \left(p_{s} \phi\left(\frac{a_{s}}{p_{s}}\right)\right)^{2} (k-s+1)\right)^{1/2} \left(\sum_{t=1}^{r} \left(q_{t} \psi\left(\frac{b_{t}}{q_{t}}\right)\right)^{2} (r-t+1)\right)^{1/2},$$

where M(k,r) is as in (1.5), and

$$\begin{split} S_{k,r,m,n} = & S\left(\frac{\sum_{s=1}^{k} \left(p_s \phi\left(\frac{a_s}{p_s}\right)\right)^2 \left(k-s+1\right) \left(\frac{\phi\left(P_m\right)}{P_m}\right)^2}{\left(\sum_{m=1}^{k} \left(\frac{\phi\left(P_m\right)}{P_m}\right)^2\right) \sum_{s=1}^{m} \left(p_s \phi\left(\frac{a_s}{p_s}\right)\right)^2}\right) \\ \times & S\left(\frac{\sum_{t=1}^{r} \left(q_t \psi\left(\frac{b_t}{q_t}\right)\right)^2 \left(r-t+1\right) \left(\frac{\psi\left(Q_n\right)}{Q_n}\right)^2}{\left(\sum_{n=1}^{r} \left(\frac{\psi\left(Q_n\right)}{Q_n}\right)^2\right) \sum_{t=1}^{n} \left(q_t \psi\left(\frac{b_t}{q_t}\right)\right)^2}\right). \quad \Box \end{split}$$

REMARK 3.2. From (1.4) in Theorem C, we may estimate the following product and can get the lower bound.

$$\left(\sum_{m=1}^{k} \left(k - m + 1\right) \left(p_m \phi\left(\frac{a_m}{p_m}\right)\right)^2\right)^{1/2} \left(\sum_{n=1}^{r} \left(r - n + 1\right) \left(q_n \psi\left(\frac{b_n}{q_n}\right)\right)^2\right)^{1/2}.$$
(3.12)

Namely

$$\left(\sum_{m=1}^{k} (k-m+1) \left(p_m \phi\left(\frac{a_m}{p_m}\right)\right)^2\right)^{1/2} \left(\sum_{n=1}^{r} (r-n+1) \left(q_n \psi\left(\frac{b_n}{q_n}\right)\right)^2\right)^{1/2}$$
 $\geqslant (M(k,r))^{-1} \sum_{m=1}^{k} \sum_{n=1}^{r} \frac{\phi(A_m) \psi(B_n)}{m+n}.$

On the other hand, from (3.1) in Theorem 3.2, we have

$$\left(\sum_{m=1}^{k} (k - m + 1) \left(p_m \phi\left(\frac{a_m}{p_m}\right)\right)^2\right)^{1/2} \left(\sum_{n=1}^{r} (r - n + 1) \left(q_n \psi\left(\frac{b_n}{q_n}\right)\right)^2\right)^{1/2}$$
(3.13)

$$\leq \frac{1}{2} (M(k,r))^{-1} \sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{k,r,m,n} \phi(\overline{A}_m) \psi(\overline{B}_n)}{(mn)^{1/2}}.$$
(3.14)

This is just an upper bound of the product (3.12).

THEOREM 3.3. Let $\{a_m\}, \{b_n\}$ be two non-negative sequences of real numbers defined for m = 1, 2, ..., k and n = 1, 2, ..., r where k, r are the natural numbers. Define

$$A'_{m} = \sum_{s=1}^{m} S\left(\frac{ma_{s}^{2}}{\sum_{s=1}^{m} a_{s}^{2}}\right) a_{s}, \quad B'_{n} = \sum_{t=1}^{n} S\left(\frac{nb_{t}^{2}}{\sum_{t=1}^{n} b_{t}^{2}}\right) b_{t}.$$

Then

$$\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{S_{k,r,m,n} A'_m B'_n}{(mn)^{1/2}} \geqslant (kr)^{1/2} \left(\sum_{m=1}^{k} a_m^2 (k-m+1) \right)^{1/2} \left(\sum_{n=1}^{r} b_n^2 (r-n+1) \right)^{1/2},$$

where

$$S_{k,r,m,n} = S\left(\frac{\sum_{s=1}^{k} a_s^2 (k-s+1)}{k \sum_{s=1}^{m} a_s^2}\right) S\left(\frac{\sum_{t=1}^{r} b_t^2 (r-t+1)}{r \sum_{t=1}^{n} b_t^2}\right).$$

and $S(\cdot)$ is as in (2.3).

Proof. This follows immediately from Theorem 3.2 with $\phi(x) = x$ and $\psi(y) = y$. \Box

Acknowledgement. The authors express their grateful thanks to the referee for his many excellent suggestions and comments.

REFERENCES

- G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, Cambridge Univ. Press, Cambridge, 1934.
- [2] D. S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
- [3] B. C. YANG, On Hilbert's integral inequality, J. Math. Anal. Appl., 220 (1988), 778–785.
- [4] M. Z. GAO, B. C. YANG, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126 (1998), 751–759.
- [5] J. C. KUANG, L. DEBNATH, On Hilbert type inequalities with non-conjugate parameters, Appl. Math. Lett., 22 (2009), 813–818.
- [6] M. Krnić, J. Pečarić, Extension of Hilbert's inequality, J. Math. Anal. Appl., 324 (2006), 150-160.
- [7] Z. X. LV, M. Z. GAO, L. DEBNATH, On new generalizations of the Hilbert integral inequality, J. Math. Anal. Appl., 326 (2007), 1452–1457.
- [8] G. A. ANASTASSIOU, Hilbert-Pachpatte type fractional integral inequalities, Math. Compu. Mode., 49 (2009), 1539–1550.
- [9] J. JIN, L. DEBNATH, On a Hilbert-type linear series operator and its applications, J. Math. Anal. Appl., 371 (2010), 691–704.
- [10] B. C. YANG, A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterranean J. Math., 10(2) (2013), 677–692.
- [11] G. D. HANDLEY, J. J. KOLIHA AND J. E. PEČARIĆ, New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–250.

- [12] Z. T. XIE, A new reverse Hilbert-type inequality with a best constant factor, J. Math. Anal. Appl., 343 (2008), 1154–1160.
- [13] C. J. ZHAO, L. DEBNATH, Some new inverse type Hilbert integral inequalities, J. Math. Anal. Appl., 262 (2001), 411–418.
- [14] T. BATBOLD, L. E. AZAR, M. KRNIĆ, A unified treatment of Hilbert-Pachpatte-type inequalities for a class of non-homogeneous kernels, Appl. Math. Comput., 343 (2019), 167–182.
- [15] B. G. PACHPATTE, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl., 226 (1998), 166–179.
- [16] M. TOMINAGA, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 538–588.

(Received September 12, 2017)

Chang-Jian Zhao
Department of Mathematics
China Jiliang University
Hangzhou 310018, P. R. China
e-mail: chjzhao@163.com, chjzhao@aliyun.com

Wing-Sum Cheung Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong e-mail: wscheung@hku.hk