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Abstract: Well-designed and implemented green infrastructure (GI) can help to recover the natural 9 

hydrologic regimes of urban areas. Large-scale GI planning requires understanding the impact of GI spatial 10 

allocation on surface-subsurface hydrologic dynamics. This study develops a coupled surface-subsurface 11 

hydrological model (SWMM-MODFLOW) that simulates fine-temporal-scale two-way interactions 12 

between GI and groundwater at a catchment scale. The model was calibrated and validated using monitoring 13 

data from an urban catchment within Kitsap County, WA, US. Based on the validated model, a series of 14 

hypothetical simulations were then performed to evaluate how the spatial allocation of GI, in particular 15 

bioretention cells, influences and correlates with surface runoff and groundwater table dynamics. The spatial 16 

allocation was represented by the implementation ratio (i.e., area), the aggregation level (i.e., density), and 17 

the location of bioretention cells. The dynamics were quantified by peak and volume reductions of surface 18 

runoff, as well as groundwater table rise and the standard deviation of groundwater levels. The 19 

implementation ratio of bioretention cells was found to be the main spatial feature that governed both surface 20 
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runoff and groundwater table dynamics. With the implementation of more bioretention cells, greater amounts 21 

of runoff could be controlled and the groundwater table rose, but the spatial uniformity of regional 22 

groundwater levels (i.e., the standard deviation of groundwater levels) was not significantly affected. 23 

Bioretention cells should therefore be allocated in a distributed pattern when groundwater table depth is 24 

relatively uniform. Allocating bioretention cells in upstream areas can generally raise the groundwater levels 25 

downstream, but their exact locations must still be determined based on the geophysical conditions and 26 

spatial variations within the catchment. Bioretention cells with greater surface runoff control efficiencies 27 

lead to higher groundwater table rises, which highlights the importance of considering tradeoffs between 28 

surface runoff control and groundwater protection in GI planning. 29 

Keywords: low impact development; bioretention cell; stormwater management; integrated modeling; 30 

groundwater modeling; urban planning 31 

 32 

1. Introduction 33 

Excessive urbanization has significantly deteriorated natural hydrological, ecological, and biological 34 

regimes. There is now a general consensus that more sustainable and environmentally friendly development 35 

approaches are needed (Song, 2005). Green infrastructure (GI) has been proposed as an approach for this 36 

conceptual revolution (Brown et al., 2009). However, the definition of GI can vary. For fields concerned 37 

with hydrology and stormwater management, GI is analogous to concepts such as low impact development 38 

(LID), sustainable urban drainage systems (SUDS), and water sensitive urban design (WSUD), which 39 

represent a group of semi-natural spatially distributed stormwater management practices (Potter, 2006; 40 

Young et al., 2014; Fletcher et al., 2015). Compared with traditional drainage systems, these possess more 41 
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diverse functionalities, which include collecting, storing, and infiltrating rainfall runoff, and recovering 42 

natural hydrological cycles (Chui et al., 2016). Representative practices include bioretention cells, porous 43 

pavements, green roofs, etc. Alternatively, for fields such as landscape design and urban planning, GI can 44 

include forests or other green spaces that provide other environmental benefits such as urban heat island 45 

mitigation and biodiversity improvement (EC, 2013; Zhang and Chui, 2019). GI as referred to in this study 46 

follows the first definition, focusing on hydrology and stormwater management. 47 

Among the benefits that GI can provide, such as reduction of peak runoff and control of non-point 48 

source pollution, groundwater recharge is one benefit that attracts relatively little attention (Jefferson et al., 49 

2017; Sohn et al., 2019). One reason for this may be that recharging groundwater using GI comes with many 50 

challenges, which are particularly prominent in shallow groundwater areas. For example, a groundwater 51 

mound can form when the groundwater recharge rate exceeds the dissipation rate. This may slow down or 52 

inhibit surface infiltration, and increases the risk of groundwater contamination due to a shorter traveling 53 

distance and more carried pollutants (Fischer et al., 2003; Datry et al., 2004; Göbel et al., 2004; Endreny and 54 

Collins, 2009; Machusick et al., 2011; Stewart et al., 2017; Zhang and Chui, 2017; Zhang and Chui, 2018a). 55 

However, recharging groundwater using GI can increase the baseflow, recover the hydrological cycle, and 56 

help maintain urban water supplies (Newcomer et al., 2014; Bhaskar et al., 2016, 2018; Bradshaw and Luthy, 57 

2018). It should therefore be promoted in the appropriate conditions, such as in locations with suitable 58 

subsurface soil properties and a relatively deep groundwater table (Trinh and Chui, 2013; Chui and Trinh, 59 

2016). 60 

For the reasons aforementioned, the objectives and constraints of groundwater recharge should be 61 

thoroughly considered in GI planning. However, maximizing the control of surface runoff often remains the 62 
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dominant objective in GI implementation. As reviewed by Zhang and Chui (2018b), many studies considered 63 

the peak and volume control of surface runoff (Perez-Pedini et al., 2005; Damodaram and Zechman, 2013; 64 

Sebti et al., 2016; Giacomoni and Joseph, 2017; Lim and Welty, 2017; Voter and Loheide, 2018). Other 65 

studies considered pollution mitigation of surface runoff (Maringanti et al., 2009; Rodriguez et al., 2011; 66 

Chiang et al., 2014; Chen et al., 2015, 2016), and some examined the two aspects together (Lee et al., 2012; 67 

Liu et al., 2016a, 2016b; Mao et al., 2017; Xu et al., 2018). For the relationship between GI and groundwater, 68 

some studies assessed the response of shallow groundwater to GI (Endreny and Collins, 2009; Trinh and 69 

Chui, 2013, Chui and Trinh, 2016; Zheng et al., 2018), while others proposed recommendations about 70 

suitable distances between GI and the groundwater table (Locatelli et al., 2015; Zhang and Chui, 2017; 71 

Muñoz-Carpena et al., 2018; Lauvernet and Muñoz-Carpena, 2018). However, the impact of GI spatial 72 

allocations on shallow groundwater table dynamics remains to be evaluated. 73 

The spatial allocation of GI is hypothesized to affect the groundwater table dynamics in a number of 74 

aspects. Based on the study of Zhang and Chui (2018b), the spatial allocation of GI can be mainly represented 75 

by the implementation ratio (i.e., area), aggregation level (i.e., density), and location. First, the 76 

implementation ratio of GI is a major factor because it determines the amount of rainfall that can be infiltrated. 77 

With a higher implementation ratio, more water can be recharged, and the groundwater table should rise 78 

higher. Second, the aggregation level of GI is also influential, because more-aggregated GI practices can 79 

cause local water infiltration and result in groundwater mounds as reported by Endreny and Collins (2009). 80 

Third, the location of GI also matters, as the land use and geologic conditions (e.g., the hydraulic properties 81 

of in-situ soil, groundwater table depth) can be very different at different locations. Specifically, in areas of 82 

higher imperviousness, more permeable soils, and shallower groundwater tables, GI can affect the 83 
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groundwater table dynamics more dramatically, due to greater surface runoff and higher infiltration and 84 

recharge rates. The concept of variable source area explains the impacts of these factors (Miles and Band, 85 

2015; Lim, 2016). Additionally, the spatial allocation of GI can be determined, based only on land use and 86 

geologic factors, by using spatial analysis tools without hydrological analysis (Martin-Mikle et al., 2015; 87 

Johnson and Sample, 2017). 88 

Although there are many different numerical models that can simulate the hydrological processes of GI, 89 

they all have limitations in simulating GI in shallow groundwater environments. As reviewed by Zhang et 90 

al. (2018), variably saturated porous media software, e.g. COMSOL Multiphysics, VS2D, Hydrus 1D/2D/3D, 91 

have been used in some cases (He and Davis, 2010; Stewart et al., 2017; Zhang and Chui, 2017). However, 92 

they generally cannot handle, or are not suitable for, catchment-scale studies because they simplify or cannot 93 

simulate rainfall-runoff generation and surface runoff routing. Alternatively, some surface-subsurface 94 

hydrological models (e.g., MODHMS, MIKE-SHE, and VELMA) can better simulate rainfall-runoff 95 

processes and are more widely used at the catchment scale (Barron et al., 2013; Trinh and Chui, 2013; 96 

Locatelli et al., 2017; Hoghooghi et al., 2018). However, they mostly operate at relatively coarse temporal 97 

and spatial resolutions, which are beyond the normal scales of individual GI practices. Thus, in all current 98 

models certain time- and space-sensitive hydrological processes important to GI are overly simplified. Many 99 

of these tools are also commercial or non-open source software, which makes them harder to improve or 100 

integrate with other tools for data analysis and optimization. Importantly, neither type of model can simulate 101 

urban hydraulics, such as storm sewer systems, which limits their usage in urban areas where GI may have 102 

the greatest impact. 103 

As an urban hydrologic-hydraulic model, SWMM has been widely adopted to simulate GI, including 104 
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to assess the hydrological and water quality treatment performance of GI (Qin et al., 2013; Palla and Gnecco, 105 

2015; Chui et al., 2016; Jayasooriya et al., 2016; Avellaneda et al., 2017; Kong et al., 2017). It is also used 106 

to evaluate the optimal designs and allocations of GI (Elliott et al., 2009; Lucas and Sample, 2015; 107 

Giacomoni and Joseph, 2017; Macro et al., 2018; Yang and Chui, 2018a, 2018b; Zischg et al., 2018). 108 

However, SWMM is not as capable in simulating the subsurface hydrological performance of GI. First, it 109 

highly simplifies the simulation of unsaturated and saturated flows by assuming a linearized soil water 110 

retention curve. Second, it neglects the impact of groundwater on the hydrological processes of GI (e.g., 111 

exfiltration, percolation, underdrain flow) (Lee et al., 2018; Zhang et al., 2018). To partially overcome these 112 

deficiencies, Zhang et al. (2018) improved SWMM by creating an interface to incorporate groundwater 113 

levels into the simulation of GI, and showed that the modified SWMM is appropriate for simulating the 114 

performance of GI in shallow groundwater environments. However, it cannot simulate groundwater 115 

dynamics and requires the direct input of groundwater levels, which greatly hinders its application. 116 

This study integrates the modified SWMM, named SWMM-LID-GW, with MODFLOW, which is a 117 

finite-difference groundwater flow model developed by U.S. Geological Survey, to develop a loosely 118 

coupled surface-subsurface hydrological model, named SWMM-MODFLOW. It is loosely coupled because 119 

the two models were integrated through external file input and output without internal function calls. The 120 

coupling approach utilized in this study is similar to that of Zhang et al. (2018), however, the groundwater 121 

dynamics are simulated instead of being input, and two-way interactions between GI and groundwater are 122 

realized. The model was calibrated and validated using monitoring data from an urban catchment at 123 

Silverdale, WA, in the US. Then, using a bioretention cell (BC) that allows exfiltration as a representative 124 

GI, a series of hypothetical scenarios of different spatial allocation patterns of BCs was simulated, which 125 
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covered different implementation ratios, aggregation levels, and locations of BCs within the same catchment. 126 

The influence of the spatial allocation of BCs on surface runoff and groundwater table dynamics was also 127 

evaluated. Finally, the correlations between surface runoff and groundwater table dynamics were examined. 128 

This study focused on groundwater, rather than surface runoff, dynamics because they are less studied and 129 

understood. 130 

 131 

2. Methodology 132 

2.1 Modeling framework of SWMM-MODFLOW 133 

A two-way coupled surface-subsurface hydrological model, SWMM-MODFLOW, was developed and 134 

utilized. It is a loosely coupled model linking SWMM and MODFLOW, and its structure is shown in Fig. 1. 135 

Retaining the main structures of SWMM and MODFLOW, the coupling was performed through file input 136 

and output without internal function calls between the source codes of the two models. More specifically, 137 

the surface infiltration rate in non-GI-pervious areas, or the exfiltration rate at the bottom of the GI, was sent 138 

from SWMM to MODFLOW, while groundwater table depth was sent from MODFLOW to SWMM (Fig. 139 

1). Based on the groundwater table depth obtained from MODFLOW, the hydrological processes of GI 140 

including underdrain flow, exfiltration rate, and surface runoff, were calculated using the equations of 141 

SWMM-LID-GW developed by Zhang et al. (2018) (Eq. 1-2). Furthermore, MODFLOW can also simulate 142 

groundwater table dynamics after receiving the infiltration and exfiltration rates from SWMM. The 143 

governing equations of underdrain flow of GI, exfiltration rate of GI, and groundwater flow in MODFLOW 144 

are shown by Eq. 1, 2 and 3 below respectively: 145 
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𝑓!"#$% = #
𝐴 × (ℎ&' − ℎ())*+,)-			(𝑖𝑓	ℎ&' ≥ ℎ.&)
𝐴 × (ℎ.& − ℎ())*+,)-			(𝑖𝑓	ℎ&' < ℎ.&)

                                                                             (Eq. 1) 146 

where 𝑓!"#$% is the rate of underdrain flow; 𝐴 and 𝐵 are the two coefficients of underdrain, which depend on 147 

the size and the density of holes on the underdrain, respectively; ℎ())*+,  is the distance between the 148 

underdrain and the bottom of the GI; ℎ&' is the depth of water storage within the GI; and ℎ.& is the distance 149 

between the groundwater table and the bottom of the GI. 150 

𝑓+/)$0 =
1!21
1!21"

× 𝐾*                                                                                                                                  (Eq. 2)  151 

where 𝑓+/)$0 is the exfiltration rate; 𝐾* is the saturated hydraulic conductivity of the in-situ soils; 𝜃* and 𝜃$ 152 

are the saturated and initial moisture contents, respectively, of the in-situ soils; and 𝜃 is the current moisture 153 

content of the in-situ soil near the bottom of the GI, which depends on the groundwater table depth. The 154 

exfiltration rate varies with the groundwater table depth and the soil moisture of in-situ soils. This rate 155 

becomes equal to 𝐾* when the soil moisture of in-situ soils is equal to 𝜃$, and the rate reduces to zero when 156 

the groundwater table rises to, or above, the bottom of the GI. It should be noted that the initial moisture 157 

content of the in-situ soils (𝜃$) was updated for every time step, and was based on the groundwater table 158 

depth of nearby GI. Some of the variables mentioned above are illustrated in Fig. 2. 159 
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                                                                                         (Eq. 3) 160 

where 𝐾/ , 𝐾5 , and 𝐾6 represent the hydraulic conductivity in the 𝑥, 𝑦, and 𝑧 directions; 𝑆* represents the 161 

specific storage; and ℎ represents the average groundwater head of grids  beneath the GI, which was used to 162 

calculate the soil moisture at the bottom of the GI (i.e., 𝜃 in Eq. 2) through the Van Genuchten equation. 163 

Overall, the coupled model can characterize the variations of hydrological processes of GI, with respect 164 

to groundwater table depth. When the groundwater table fluctuates, the underdrain flow and exfiltration rates 165 
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can vary, as characterized by the equations above. As a result, the percolation rate from soil layer to storage 166 

layer, the surface infiltration rate, and the rate of surface runoff may also vary according to the water balance 167 

inside the different layers of GI. For example, when the groundwater table is shallower than the bottom of 168 

both the GI and the underdrain pipe, the exfiltration stops and the underdrain flow is governed by the 169 

groundwater table instead of the percolation rate. Thus, the maximum percolation and surface infiltration 170 

rates should be equal to the rate of underdrain flow. More details about these features can be found in Zhang 171 

et al. (2018). 172 

The data exchange was governed by a MATLAB controller. The detailed mechanisms of the MATLAB 173 

controller and the data exchange are also shown in Fig. 1. The controller realized temporal synchronization 174 

between the two models by using the “hot-start” functions, which allowed the two models to pause and re-175 

start from a previous time step when necessary. More specifically, one simulation was segmented into 176 

multiple time steps. After the completion of each time step, one model was paused with the results of this 177 

time step stored into external hot-start files, and then sent to the controller for processing. The other model 178 

was then activated by the controller after receiving the processed results (Fig. 1). The hot-start function in 179 

SWMM was already improved by Zhang et al. (2018) to support the storage and extraction of GI simulation 180 

results including soil moisture of the soil zone, water depth at the surface, and water depth inside the storage 181 

layer, into the external hot-start files (Fig. 1). However, there is no similar built-in function in the current 182 

version of MODFLOW. Thus, a hot-start function was developed in MODFLOW by transferring and 183 

modifying the source code from GSFLOW, another surface-subsurface hydrological model coupled by the 184 

Precipitation-Runoff Modeling System (PRMS) and MODFLOW (Regan et al., 2015). With similar 185 

functionalities to those of SWMM, the hot-start function of MODFLOW can store and extract groundwater 186 
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heads and percolation rates in different layers of grids at the end and start of each time step. Details about 187 

the hot-start functions in SWMM and MODFLOW can be found in Zhang et al. (2018) and Regan et al. 188 

(2015) respectively. 189 

The controller performed the spatial mapping between two models by processing the results from each 190 

model into organized and transferable formats. This is necessary because the spatial representation 191 

approaches of the two models are completely different. SWMM is a sub-catchment-based spatially lumped 192 

model, but MODFLOW is a grid-based finite-difference model, as shown in Fig. 3. The controller extracted 193 

the infiltration rate of pervious areas, or the exfiltration rate of GI, from the output files of SWMM and 194 

discretized them into matrixes, which were then updated into the input files of MODFLOW (Fig. 1 and 3). 195 

Simultaneously, the controller extracted matrixes of groundwater heads from the output files of MODFLOW, 196 

modified these into groundwater table depths, lumped them into sub-catchment-based values, and then 197 

updated these values into the input files of SWMM (Fig. 1 and 3). Although the locations of GI within sub-198 

catchments cannot be specified in SWMM, they can be accurately located in MODFLOW (yellow rectangles 199 

in Fig. 3) with three indicators: the index of sub-catchment; the index of GI within each sub-catchment; and 200 

the coordinates of grids of GI. This mapping process is schematically illustrated in Fig. 3. 201 

2.2 Study area and data 202 

An urban catchment in Silverdale, Kitsap County, WA, US was selected as the study area (Fig. 4). The 203 

study area is 197 ha in size with approximately 80% urbanization, and is located on the Kitsap Peninsula 204 

(Fig. 4b) lying at the northern tip of the Dyes Inlet, which is connected to the Puget Sound. The area is of 205 

equable oceanic climate with generally mild temperatures, and moderate to heavy precipitation (Sceva, 1957). 206 

It has warm dry summers and relatively mild winters. The precipitation averages 1103.6 mm/year with 161 207 
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precipitation days, and the reference evapotranspiration (ET) averaged 741.7 mm/year during 1991-2018. 208 

The detailed properties of the sub-catchments can be found in Table 1. 209 

The catchment is located at a Pleistocene depositional unit in Kitsap County. The major soil types of the 210 

area include, but are not limited to, bedrock, advanced outwash, gravels, lacustrine, peat, and till, based on 211 

local geologic surveys (Sceva, 1957) and the SSURGO soil database (NRCS and USDA, 2017). The northern 212 

and western parts of the catchment are mountainous with an average slope of 10–14%, so the highest 213 

locations were assigned as the domain boundaries in these two directions, which were assumed as no-flow 214 

boundaries in the groundwater model (the light gray boundary in Fig. 4c). The southwestern and eastern 215 

sides of the catchment lie in the Strawberry Creek (the blue boundary in Fig. 4c) and the Clear Creek (the 216 

green boundary in Fig. 4c), respectively. The southern boundary is connected to the Dyes Inlet (the yellow 217 

boundary in Fig. 4c). In addition, discrete groundwater level data within the catchment (black triangles in 218 

Fig. 4c) were retrieved from the Environmental Information Management System (EIM) of Washington State, 219 

and were used to estimate the initial groundwater levels of the catchment through extrapolation. The 220 

groundwater levels observed are within 30 m below the land surface, and were highest during the late spring 221 

months and lowest in the late fall and early winter months (Sceva, 1957).  222 

One year of monitoring was performed by Kitsap County at an urban catchment near the Central Kitsap 223 

County Campus (CKCC), which is located at the central part of the catchment (Fig. 4c and 3d). The CKCC 224 

site is 2.63 ha in size, within which nine BCs and 10 parcels of porous pavements are implemented. The BCs 225 

are 35–146.8 m2 in size, which allows a surface ponding depth of 100 mm, and consist of soil and storage 226 

layers of 400 mm and 380 mm in thickness, respectively. The soil layers were filled by an amended soil mix 227 

and the storage layers were filled by washed aggregated (AASHTO No. 57). The porous pavements are 238–228 
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1710 m2 in size, consisting of pavement and storage layers of 50 mm and 750 mm in thickness, respectively. 229 

The pavement layer is made up of Eco-Priora concrete pavers and AASHTO No. 8 aggregate in the openings. 230 

The storage layer is made up of an open-graded base and a subbase, which are filled by AASHTO No. 57 231 

and No. 2 aggregates, respectively. These GI practices are connected to the storm sewer system via 150-mm 232 

underdrains. The hydrologic properties of the different layers of both types of GI practices are shown in 233 

Table 2, and their detailed designs can be found in Herrera (2013) and Zhang et al. (2018). Five datasets are 234 

available for 1 year from October 1, 2011 to September 30, 2012. These include surface runoff from the 235 

rooftop of the Haselwood Family YMCA building (0.46 ha) (𝑅𝑂𝑂𝐹_𝑆𝑅), surface runoff from one impervious 236 

area of 0.068 ha (𝐼𝑃_𝑆𝑅), underdrain flow of one parcel of porous pavement (0.17 ha) (𝑃𝑃_𝑈𝐷), the pipe 237 

flow at the sewer outlet of the catchment (2.63 ha) (𝑂𝑈𝑇𝐿𝐸𝑇), and the groundwater table depth at one 238 

location within the site (𝐺𝑊_𝐷𝐸𝑃𝑇𝐻). All of the datasets were continuous, and were at a temporal resolution 239 

of 5 min. The locations of the monitoring stations are shown in Fig. 4d, and more details about the monitoring 240 

approaches and devices can be found in Zhang et al. (2018). 241 

2.3 Model settings 242 

2.3.1 SWMM 243 

Given that SWMM is a spatially lumped model, the catchment was separated into 14 sub-catchments, 244 

or hydrologic response units, in SWMM (Fig. 4c). The hydrologic response units were delineated based on 245 

the topography and soil type using ArcGIS. Due to the relatively consistent geophysical and hydrological 246 

characteristics within each unit, each sub-catchment was considered as homogeneous in its hydrologic 247 

responses. The area and the imperviousness of the sub-catchments ranged from 7.67 ha to 24.23 ha, and from 248 

47.49% to 100%, respectively (Table 1). 249 
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The Dynamic Wave model was used for flow routing in the storm sewers, and the Green-Ampt equation 250 

was used as the infiltration model, which allowed the consideration of surface ponding. This model may 251 

slightly overestimate the hydraulic conductivity (Triadis and Broadbridge, 2012), but it obtained similar 252 

results as that calculated by the Richards equation for GI practices (Dussaillant et al., 2004). GI practices 253 

were placed within sub-catchments in a lumped manner instead of being independently represented. The 254 

detailed hydrologic properties of GI practices can be found in Table 2. After implementing GI practices into 255 

sub-catchments, the properties of the sub-catchments were modified, including the imperviousness, width, 256 

and percentage of impervious area treated by GI. The details of these modifications are elaborated in the 257 

following sections as necessary. 258 

2.3.2 MODFLOW 259 

The grid size in MODFLOW was set as 23 m × 23 m, considering the trade-offs between sub-catchment 260 

size and the normal size of GI, and between computation accuracy and cost. Based on the geologic conditions, 261 

the area was segmented into three subsurface layers, the thicknesses of which were 0–30 m, 0–15 m, and 0–262 

15 m, respectively. The upper two layers were set as convertible (i.e., can switch between unconfined and 263 

confined) and the bottom layer was set as confined. The properties of the layers and the flow between layers 264 

and grids were simulated using the Layer Property Flow (LPF) package, which allowed the simulation of 265 

dewatered conditions.  266 

The surface infiltration (retrieved from SWMM in each time step) was simulated as a specified flux into 267 

the subsurface layers using the Recharge (RCH) package. The ET was simulated using the EVT package, 268 

and the monthly averaged ET rate in the study area was used with an ET root depth of 0.5 m. The River 269 

(RIV) package was used to simulate the river boundaries (i.e., Clear Creek and Strawberry Creek), which 270 
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were represented as head-dependent flux. The river stages of these two rivers, retrieved from the Kitsap 271 

Public Utility District, were simply assigned as the heads of these two boundary conditions, assuming the 272 

rivers are connected to the unconfined aquifer underneath. This assumption is reasonable because the base 273 

flow of these two creeks is primarily from groundwater discharge during summer (Sebren, M.B., 2017). In 274 

addition, the General-Head Boundary (GHB) package was used to simulate the boundary of the sea (i.e., 275 

Dyes Inlet), and the sea level, retrieved from the NOAA Tides and Currents database, was assigned as the 276 

head of the boundary condition. 277 

In addition, it should be noted that the coupled SWMM-MODFLOW ran hourly, but SWMM and 278 

MOFWLO ran at a time step of 5 min. The Preconditioned Conjugate-Gradient (PCG) package was used to 279 

solve the finite difference equations in MODFLOW, with a maximum number of iterations of 150, a 280 

relaxation parameter of 0.97, and a maximum absolute change in head of 0.01 m. 281 

2.4 Model calibration and validation 282 

Although some types of information about the catchment, like the thickness of the aquifer and the soil 283 

type distribution, are available, the exact modeling parameter values may still be unknown, because some 284 

parameters are not directly observable. These include the drainage coefficient of underdrain, Manning’s n of 285 

overland flow and conduit, and the depression storages of impervious and pervious areas. Other parameters 286 

may vary significantly in their ranges, such as the hydraulic conductivity, specific yield, and specific storage 287 

of soils. Thus, the parameters were calibrated first. 288 

The model was calibrated and validated using the monitoring datasets at the CKCC site, including 289 

𝑅𝑂𝑂𝐹_𝑆𝑅, 𝐼𝑃_𝑆𝑅, 𝑃𝑃_𝑈𝐷, 𝑂𝑈𝑇𝐿𝐸𝑇, and 𝐺𝑊_𝐷𝐸𝑃𝑇𝐻 as mentioned. Data from the first 5 months (from 290 

October 1, 2011 to February 29, 2012) were used for calibration, while those for the last 7 months (from 291 
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March 1 to September 30, 2012) were used for validation. Although both SWMM and MODFLOW were 292 

run at 5-min time steps, they were coupled hourly to save computations, so SWMM and MODFLOW each 293 

were run for 12 time steps before each round of data exchange. Updating groundwater table depths or 294 

recharge rates in SWMM and MODFLOW every hour was considered fine-grained enough to capture the 295 

surface runoff and groundwater table dynamics during the 1-year simulation. Particularly, the general 296 

groundwater level in the catchment does not fluctuate at a very fine scale according to historical monitoring 297 

(Herrera, 2013). It should be noted that the monitoring data used for model calibration was from the central 298 

catchment of the area (i.e., the CKCC site, red rectangular area in Fig. 4c). However, the model was built to 299 

cover the whole catchment and reach the catchment boundaries. 300 

The calibration approach was similar to that of Zhang et al. (2018). More specifically, a non-dominated 301 

sorted genetic algorithm (NSGA-II) originally developed by Seshadri (2009) in MATLAB was utilized after 302 

integration with SWMM-MODFLOW. The parallel computing package of MATLAB was utilized, using 303 

four cores of the CPU to save computation time. The algorithm first initialized the parameters for calibration 304 

mentioned above, then invoked the execution of SWMM-MODFLOW. The Nash-Sutcliffe Efficiency (𝑁𝑆𝐸) 305 

values of the datasets (i.e., 𝑅𝑂𝑂𝐹_𝑆𝑅, 𝐼𝑃_𝑆𝑅, 𝑃𝑃_𝑈𝐷, 𝑂𝑈𝑇𝐿𝐸𝑇, and 𝐺𝑊_𝐷𝐸𝑃𝑇𝐻) were then computed as 306 

the performance indicators. Based on the objective of maximizing the performance indicators (i.e., the 𝑁𝑆𝐸 307 

values), the algorithm generated new populations (i.e., new sets of parameters) through the processes of 308 

parent selection, crossover (crossover probability = 0.9), and mutation (mutation probability = 0.1) out of 309 

the population generated (number of populations = 24). The parameters were improved after iterations of 310 

generations. The calibration was considered completed when the assigned total number of generations (10) 311 

was reached. This number of generations was sufficient because the 𝑁𝑆𝐸 values of the datasets were found 312 



 

16 

 

to reach their near optimums after 8 generations. The final calibrated parameters were manually selected 313 

from the last generation of populations by striking a tradeoff among the 𝑁𝑆𝐸 values of the datasets. 314 

The SWMM parameters to be calibrated included underdrain coefficient, underdrain exponent, the 315 

offset height of underdrain, saturated hydraulic conductivity, the width of sub-catchment, Manning’s n for 316 

overland flow, the depression storage of impervious area, and the roughness of the conduit. Additionally, 317 

hydraulic conductivity and specific yield were calibrated in MODFLOW. 318 

2.5 The hypothetical case studies 319 

A series of hypothetical scenarios were formulated to represent different spatial allocation patterns of 320 

BCs. One-year continuous simulations were then performed using the validated model, but with different 321 

spatial allocation patterns. The simulation duration was considered sufficient to capture the groundwater 322 

table dynamics because the response time of shallow groundwater was shorter, and the model was warmed 323 

up sufficiently. The results obtained were also considered representative given that the 1-year period covers 324 

a range of rainfall events and groundwater levels. 325 

The initial conditions of the above simulations were the results from warm-up simulations in which 326 

there were no BCs. Using the 10-year rainfall from 2001 to 2011 in the study area as the input, the warm-up 327 

simulations were run repeatedly until they reached a dynamic equilibrium where the difference of 328 

groundwater levels, at 10 selected grids from different parts of the catchment between two consecutive 329 

simulations, was within 0.5%. 330 

2.5.1 Rules of spatial allocation of bioretention cells 331 

The rules of allocating the BCs within the catchment are illustrated in Fig. 5. The BCs were allocated 332 
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as a cluster of practices within each sub-catchment. The size of each BC was the same, and equal to the grid 333 

size of MODFLOW (23 m × 23 m). First, the number of BCs within each sub-catchment was determined, 334 

which represented the implementation ratio of the BCs. Then the central location of the BC cluster was 335 

determined (BC4 in Fig. 5), which represented the approximate location of BCs within each sub-catchment. 336 

After that, the remaining BCs simply surrounded the central BC circle-by-circle, following a rectangular-337 

shaped pattern until reaching the total number of BCs. A certain gap (i.e., 0–69 m in this study) was kept 338 

between each BC, the magnitude of which determined the aggregation level of the BC cluster. The physically 339 

unavailable locations, i.e., pervious areas and locations out of the sub-catchment, were skipped during the 340 

process (indicated by yellow cells with red crosses in Fig. 5). The spatial allocation assumed a uniform 341 

allocation pattern within each sub-catchment. This simplification is considered acceptable because this study 342 

focused on generating generic understanding instead of making detailed planning decisions. In addition, the 343 

surface flow routing between BCs was neglected, which may affect the runoff control performance of the 344 

BCs. This simplification was considered negligible because this study focused on groundwater table 345 

dynamics, and limited information about the site, such as topography, land use, and sewer systems, also 346 

hinders the consideration of flow routing between BCs. 347 

Four dimensionless indicators (i.e., 𝑅𝐴𝑇𝐼𝑂 , 𝐺𝐴𝑃 , 𝐿𝑂𝐶7 , and 𝐿𝑂𝐶*7 ) were used to represent the 348 

different aspects of spatial allocation of BCs using equations shown in Fig. 5. These four indicators were 349 

selected because they represent the main factors that need to be considered in GI planning as proposed by 350 

Zhang and Chui (2018b): 351 

• 𝑅𝐴𝑇𝐼𝑂 represents the implementation ratio of BCs, which is the ratio of the total area of BCs (𝑁_𝐺𝐼%) 352 

to the total area of available locations for BCs (𝐴%) (Eq. 4). 353 
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• 𝐺𝐴𝑃 represents the aggregation level of BCs, which is calculated by the ratio of average gap size 354 

between BCs (𝐿.89) and the average size of BCs (𝐿-:) (Eq. 5). 355 

• 𝐿𝑂𝐶7 represents the relative location of BCs within the catchment, which ranges from 0 to 1. A 356 

value closer to 0 or 1 means BCs are mainly allocated in upstream or downstream areas respectively. After 357 

labeling the sub-catchments from 1 to 𝑁 approximately from upstream to downstream, the relative location 358 

index of each BC was calculated by dividing the index of the sub-catchment it belonged to (𝐿𝑂𝐶%) by 𝑁. 359 

Then 𝐿𝑂𝐶7 was obtained by taking the average of the relative location indices of all BCs (Eq. 6). 360 

• 𝐿𝑂𝐶*7 represents the relative location of BCs within the sub-catchments, which ranges from 0 to 1. 361 

Similar to 𝐿𝑂𝐶7, a value closer to 0 or 1 means that BCs are mainly allocated near the upper or lower ends 362 

of the sub-catchments, respectively. For a specific sub-catchment, the available locations for BCs were first 363 

labeled from 1 to 𝐴% approximately from upstream to downstream, and the relative location index of each 364 

BC was calculated by dividing the index of the grid it belonged to (𝐿𝑂𝐶_𝐵𝐶;,%) by 𝐴%. Then the 𝐿𝑂𝐶*7 of 365 

this sub-catchment was obtained by taking the average of the relative location indices of all BCs within this 366 

sub-catchment (Eq. 7). 367 

𝑅𝐴𝑇𝐼𝑂 = =_-:#
8#

                                                                                                                                       (Eq. 4) 368 
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where 𝑁 represents the total number of sub-catchments (14 in this case); 𝑁_𝐵𝐶% represents the total area of 372 

BCs in sub-catchment 𝑛; 𝐴% represents the total area of available areas for BCs; 𝐿-:  and 𝐿.89 represent the 373 
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size of BCs and the gap in between BCs, respectively; 𝐿𝑂𝐶% represents the index of sub-catchment 𝑛; and 374 

𝐿𝑂𝐶_𝐵𝐶;,% represents the index of the grid for the 𝑚,4 BC in sub-catchment 𝑛. The exact ranges of these 375 

four indicators are elaborated in the next section. 376 

The properties of the BCs, such as their thickness and the hydraulic conductivity of media soils, 377 

followed those of the BCs at the CKCC site mentioned above. More specifically, each BC constituted a 300 378 

mm soil layer and a 380 mm storage layer. Notably, however, no underdrain pipe was used. For each scenario, 379 

some sub-catchment parameters needed to be modified in SWMM. First, the width of the sub-catchments, 380 

which is one main parameter used to calculate overland flow in SWMM, was adjusted by multiplying the 381 

original value by the ratio of 8#2=_-:#
8#

 , because a proportion of the impervious area was replaced by BCs. 382 

This approach is recommended in SWMM manuals and adopted by some SWMM users (Rossman, 2015). 383 

In addition, the percentage of the impervious area treated by BCs was also adjusted, allowing BCs to receive 384 

surface runoff from impervious areas that are, at most, 20 times larger. This is within the recommended range 385 

of most design standards, which range from 5 to 20 times the area of the BC (Dhalla and Zimmer, 2010; 386 

Roseen and Stone, 2013; Woods Ballard et al., 2015). 387 

2.5.2 Modeling scenarios and outputs 388 

A total of 144 scenario-based simulations were performed to evaluate the impact of the spatial allocation 389 

of BCs on surface runoff and groundwater table dynamics. The scenarios covered four different 390 

implementation ratios of BCs (𝑅𝐴𝑇𝐼𝑂 of 0.625%, 1.25%, 2.5%, and 5%); four different aggregation levels 391 

(𝐺𝐴𝑃 of 0, 1, 2, and 3); three different locations within the whole catchment (𝐿𝑂𝐶7 of approximately 0.5, 392 

0.3, and 0.75 when BCs were distributed throughout all of the sub-catchments, only in upstream, or only in 393 

downstream sub-catchments, respectively); and three different locations within sub-catchments (𝐿𝑂𝐶*7 of 394 
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approximately 0.1, 0.45, and 0.9 when BCs were allocated near the upper end, middle section, or lower end 395 

of sub-catchments, respectively). The ranges of parameters for the hypothetical scenarios are illustrated in 396 

Table 3 below. 397 

The scenario without BCs was also simulated, and was treated as the base case. The indicators 398 

representing the surface runoff and groundwater table dynamics were then calculated by comparing the 399 

results of the base case with those of the hypothetical cases. More specifically, the peak reduction (𝑃𝑅) and 400 

volume reduction (𝑉𝑅) of surface runoff throughout the year in different sub-catchments, and for the whole 401 

catchment, were extracted to represent the surface runoff dynamics. The peak (𝐺𝑅9) and temporally averaged 402 

(𝐺𝑅E) groundwater table rises in different sub-catchments and for the whole catchment, as well as the 403 

standard deviation of groundwater level in the catchment (𝐺𝐿'FG) throughout the year, were extracted to 404 

represent the groundwater table dynamics. The three parameters together can comprehensively represent the 405 

local and regional changes of groundwater levels, as well as the uniformity of groundwater levels. Note that 406 

higher runoff control efficiency (i.e., higher 𝑃𝑅 and 𝑉𝑅) and more spatially uniform groundwater levels (i.e., 407 

lower 𝐺𝑅9, 𝐺𝑅E, and 𝐺𝐿'FG) are generally preferred, because a more uniform groundwater level results 408 

from higher recharge in areas with a deeper groundwater table and lower recharge in areas of a shallower 409 

groundwater table. The outcome is beneficial because the two objectives of enhancing groundwater recharge 410 

in deeper areas and minimizing groundwater mounding in shallow groundwater areas can be realized 411 

simultaneously. 412 

 413 
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3. Results and discussion 414 

3.1. Model calibration and validation 415 

Fig. 6 shows the time series of different datasets (i.e., rainfall, 𝑃𝑃_𝑈𝐷, 𝐼𝑃_𝑆𝑅, 𝑅𝑂𝑂𝐹_𝑆𝑅, 𝑂𝑈𝑇𝐿𝐸𝑇, 416 

and 𝐺𝑊_𝐷𝐸𝑃𝑇𝐻) during both calibration and validation periods. The light gray and dark gray sections in 417 

Fig. 6a-6f correspond to the calibration and validation periods, respectively. One event on December 23, 418 

2011 is shown specifically in Fig. 6g-6l. This event is considered representative given its medium rainfall 419 

intensity (12 mm/h), runoff amount (23 mm), and groundwater table fluctuation (0.3 m) during the period, 420 

which can be observed in Fig. 6. In addition, the final calibrated parameters in both SWMM and MODFLOW 421 

are shown in Table 4 and are all within physically reasonable ranges. 422 

The pipe flow at the outlet of the catchment (𝑂𝑈𝑇𝐿𝐸𝑇) and surface runoff of the building roof 423 

(𝑅𝑂𝑂𝐹_𝑆𝑅) showed very good fits with the monitoring data, with 𝑁𝑆𝐸 of 0.80 and 0.62 during calibration, 424 

and 0.64 and 0.51 during validation, respectively (Fig. 6d and 6e). The underdrain flow (𝑃𝑃_𝑈𝐷) and surface 425 

runoff (𝐼𝑃_𝑆𝑅) were slightly underestimated at rainfall peaks and rises of the groundwater table (Fig. 6h and 426 

6i), but were still of reasonable goodness of fit. The 𝑁𝑆𝐸 of 𝑃𝑃_𝑈𝐷 and 𝐼𝑃_𝑆𝑅 were 0.44 and 0.42 during 427 

calibration, and 0.50 and 0.41 during validation, respectively. Particularly, the goodness of fit of 𝑃𝑃_𝑈𝐷 was 428 

improved during the selected event with an 𝑁𝑆𝐸 of 0.72 (Fig. 6h). Generally, the goodness of fit values of 429 

these datasets were acceptable, and comparable to those obtained by Zhang et al. (2018) using SWMM-LID-430 

GW with groundwater monitoring data as direct input. 431 

Comparatively, the goodness of fit for 𝐺𝑊_𝐷𝐸𝑃𝑇𝐻 was not as satisfactory, with 𝑁𝑆𝐸 values of -0.26 432 

and 0.33 during calibration and validation periods, respectively (Fig. 6f). However, SWMM-MODFLOW 433 

captured the general fluctuations of the groundwater table during the overall period and the selected event 434 
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(Fig. 6f and 6l), and the goodness of fit during the selected event was reasonable (𝑁𝑆𝐸 of 0.61) (Fig. 6l). 435 

The good fits of 𝑃𝑃_𝑈𝐷 and 𝑂𝑈𝑇𝐿𝐸𝑇 also confirmed the accuracy of groundwater simulation to some 436 

extent, because they are both highly related to groundwater table depth, as shown in Zhang et al. (2018). The 437 

discrepancy could be reduced if there were additional monitoring data for model calibration, and if a better 438 

understanding of the spatial variations of subsurface geophysical conditions (e.g., hydraulic conductivity and 439 

specific yield) in the study area could be obtained. 440 

3.2. Surface runoff dynamics 441 

Fig. 7 shows the surface runoff response, represented by peak reduction (𝑃𝑅) and volume reduction 442 

(𝑉𝑅) of surface runoff, at different sub-catchments for different implementation ratios of BCs. It should be 443 

noted that the values shown in the graph (Fig. 7) are the averaged results of different scenarios. Fig. 7 444 

explicitly shows the results for different values of 𝑅𝐴𝑇𝐼𝑂 , but the 𝑅𝐴𝑇𝐼𝑂  values in the graph are the 445 

averaged results for different values of 𝐺𝐴𝑃, 𝐿𝑂𝐶: , and 𝐿𝑂𝐶': . This also applies to other similar graphs (i.e., 446 

Fig. 8-13). 447 

As expected, 𝑃𝑅  and 𝑉𝑅  were greater when there were more BCs. More specifically, when the 448 

implementation ratio of BCs increased from 0.625% to 1.25%, 2.50%, and 5.00%, respectively, 𝑃𝑅 for the 449 

whole area (shown as dashed lines in Fig. 7b) increased from 1.9 ± 1.3% to 8.6 ± 2.7%, 22.3 ± 2.8%, and 450 

43.6 ± 4.8%, and 𝑉𝑅 for the whole area (shown as dashed lines in Fig. 7d) increased from 4.2 ± 1.7% to 451 

15.1 ± 2.7%, 35.2 ± 3.1%, and 54.5 ± 13.5%. Considering that this is a highly impermeable catchment 452 

(approximately 80% urbanized), the impact of BCs may not be as significant for other more permeable 453 

catchments. 454 

Furthermore, it was found that the impact of the implementation ratio was different in different sub-455 
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catchments. Using the scenario of an implementation ratio of 5.00% as an example, the 𝑃𝑅 values of sub-456 

catchments S7, S8, and S9 were 56.7 ± 41.2%, 53.9 ± 40.6%, and 52.2 ± 39.9%, which were significantly 457 

higher than the 𝑃𝑅 values of sub-catchments S1, S4, S10, and S14, which were approximately 0.0 ± 0.0%, 458 

30.4 ± 26.2%, 43.3 ± 37.0%, and 32.9 ± 30.7%, respectively (Fig. 7b). This was also true for the 𝑉𝑅 values 459 

(Fig. 7d). These sub-catchment differences were likely caused by differences of imperviousness, slope, and 460 

the permeability of in-situ soils. Compared with the imperviousness values of sub-catchments S7, S8, and 461 

S9 (57%, 50.7%, and 66.2%, respectively), the imperviousness values of sub-catchments S4, S10, and S14 462 

were higher (79.1%, 95.3%, and 78.7%, respectively), and the soils of sub-catchments S4, S10, and S14, 463 

which are near the two rivers and the sea, are of lower permeability than the other sub-catchments, which 464 

resulted in lower runoff control efficiency in these areas. Although sub-catchment S1 was lower in 465 

imperviousness (i.e., 47.5%), its slope (i.e., 14%) was significantly greater than that of other sub-catchments, 466 

which was not beneficial for runoff control. This was consistent with the mechanisms of GI and runoff 467 

generation found in some other studies (Shuster et al., 2005; Dietz and Clausen, 2008; Ahiablame and Shakya, 468 

2016). 469 

3.3. Groundwater table dynamics 470 

Figs. 8-13 compare the response of the groundwater table with BCs of different spatial allocations. More 471 

specifically, Figs. 8, 11, 12, and 13 show the spatial variation of peak (𝐺𝑅9) and temporally averaged (𝐺𝑅E) 472 

groundwater table rises within the catchment. Fig. 9 shows the spatial variation of mean groundwater table 473 

depth throughout the year, and Fig. 10 illustrates the standard deviation of groundwater levels in the 474 

catchment (𝐺𝐿'FG) throughout the year. 475 
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3.3.1. Impact of the implementation ratio of bioretention cells 476 

A small number of BCs can significantly change the groundwater dynamics. For example, when 477 

averaged over the whole catchment, if 0.625%, 1.25%, 2.50%, and 5.00% of the impervious area were 478 

replaced by BCs, the peak groundwater rise (𝐺𝑅9) would be approximately 0.13 ± 0.05 m, 0.34 ± 0.08 m, 479 

0.82 ± 0.11 m, and 1.31 ± 0.38 m, respectively (see dashed lines in Fig. 8b and Fig. 8c). At some specific 480 

locations, the groundwater table rise can be a few meters or higher (> 5 m) during some specific time (Fig. 481 

8d). This is a significant change and can be problematic, considering that the thickness of the unsaturated 482 

zone was only from 0 to 5 m in approximately half of the catchment, and 5 out of 14 sub-catchments had 483 

groundwater tables very close to the ground (Fig. 9b). In addition, it was found that BCs not only affect the 484 

local groundwater table, but also influence regional groundwater levels. When 5% of the catchment was 485 

replaced by BCs, the groundwater table of the catchment was as much as 1 m closer to the ground compared 486 

with an implementation ratio of 0.625% (Fig. 9c). This can also be seen from the significantly large areas of 487 

groundwater table rise (darker green regions) shown in Fig. 8a and 8d. A similar observation was obtained 488 

by Bhaskar et al. (2018). This illustrates the importance of considering the groundwater table condition in 489 

the spatial planning of GI. 490 

Fig. 8d and 8h show the exceedance probability curves of 𝐺𝑅9  and 𝐺𝑅E  within the catchment, 491 

illustrating the proportion of the catchment area with different levels of 𝐺𝑅9 and 𝐺𝑅E. Similarly, Fig. 11d, 492 

11h, 12d, 12h, 13d, and 13h illustrate the same information. They provide another perspective on the 493 

groundwater table dynamics as a result of BCs. With more BCs implemented, the proportion of catchment 494 

areas with lower groundwater rises (e.g., < 1.0 m for peak rise and < 0.4 m for temporally averaged rise) was 495 

lower, while the proportion of catchment areas with higher groundwater rises (e.g., > 1.0 m for peak rise 496 
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and > 0.4 m for temporally averaged rise) was higher (Fig. 8d and 8h). For example, when only 0.625% of 497 

the impervious area was replaced by BCs, approximately 100% of the catchment had a 𝐺𝑅9 of less than 1.0 498 

m and a 𝐺𝑅E less than 0.2 m. However, when 5.00% of the catchment was replaced by BCs, only 48% and 499 

39% of the catchment had 𝐺𝑅9  and 𝐺𝑅E  values less than 1.0 m and 0.2 m, respectively. Overall, areas 500 

comprising 33%, 14%, 4%, and 2% of the catchment had 𝐺𝑅9 values of 1–2 m, 2–3 m, 3–4 m, and 4–5 m, 501 

respectively (Fig. 8d and 8h). 502 

Similar to surface runoff, the groundwater table response also varied among different sub-catchments. 503 

Comparatively, sub-catchments around the center of the catchment (e.g., S3 and S9) showed higher 504 

groundwater table rises than those closer to the catchment boundary (e.g., S1 and S14) (Fig. 8b and 8f). A 505 

similar observation can be obtained from Fig. 11-13. This variation can be explained by noting that the 506 

upstream areas were of steeper topography and groundwater hydraulic gradients, while the downstream areas 507 

were of gentler topography and groundwater hydraulic gradients. As a result, the groundwater tended to 508 

gather in the central sub-catchments (e.g., S3 and S9), rather than sub-catchments nearer the boundary. This 509 

is quite a common phenomenon in sloped areas. Focusing on a catchment of similar terrain (i.e., steeper or 510 

gentler in upstream or downstream directions, respectively) in China, Cai et al. (2015) also found that the 511 

groundwater level was higher in the medium section of the catchment. However, the same phenomenon may 512 

not occur in catchments of different topographies. For example, a more uniform groundwater table rise is 513 

expected in relatively flat catchments. 514 

Notably, increasing the implementation level of BCs could slightly decrease the average uniformity of 515 

the groundwater table due to the greater maximum and minimum 𝐺𝐿'FG values (Fig. 10a), although the 516 

differences were not that significant. During approximately 50% of the time, the uniformity of the 517 
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groundwater table condition among different implementation ratios was very similar (Fig. 10a). Thus, 518 

implementing more BCs with an appropriate allocation strategy may not be unfavorable to the regional 519 

groundwater dynamics. 520 

3.3.2. Impact of the aggregation level of bioretention cells 521 

Fig. 11 compares the response of the groundwater table to different aggregation levels of BCs. The 522 

spatial variation in groundwater table rise was different for different BC aggregation levels, particularly for 523 

𝐺𝑅9 (Fig. 11a). When BCs were more aggregated, with a smaller 𝐺𝐴𝑃, the groundwater table rises were also 524 

more concentrated (Fig. 11a). As a result, BCs allocated in a more aggregated pattern formed slightly higher 525 

𝐺𝑅9 for the overall catchment (the dashed lines in Fig. 11b and Fig. 11c). 𝐺𝑅9 of the catchment was 0.70 ± 526 

0.55 m, 0.66 ± 0.51 m, 0.65 ± 0.50 m, and 0.64 ± 0.48 m when 𝐺𝐴𝑃 was 0, 1, 2, and 3, respectively. This 527 

was expected because more densely aggregated BCs with a relatively short distance them between may form 528 

an overlapped groundwater mound (Endreny and Collins, 2009). When the BCs were more aggregated, the 529 

proportion of lower 𝐺𝑅9 areas was smaller, while that of higher 𝐺𝑅9 areas was greater (Fig. 11d). For the 530 

same reason, the 𝐺𝐿'FG  of the catchment was slightly higher when the BCs were allocated in a more 531 

aggregated pattern (Fig. 10b). 532 

However, 𝐺𝑅E for the catchment was slightly greater when the BCs were allocated in a more distributed 533 

pattern (Fig. 11f). When the BCs were more distributed, the proportion of lower 𝐺𝑅E areas was smaller, 534 

while the proportion of higher 𝐺𝑅E areas was greater (Fig. 11h), which was different from the pattern in Fig. 535 

11d. This is possibly because more distributed BCs can affect a greater proportion of the total area. This can 536 

be seen from the spatial variation of 𝐺𝑅E of the catchment, in which the shaded areas are larger when 𝐺𝐴𝑃 537 

is greater (Fig. 11e). As a result, the overall groundwater table rise of the catchment was higher, although 538 
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with a relatively low local groundwater table rise at specific locations. However, the impact of the 539 

aggregation level on the regional groundwater table dynamics was relatively minimal, compared with that 540 

of the implementation level. This can be seen from the minimal difference in groundwater table depth shown 541 

in Fig. 9d. 542 

Thus, to achieve a more spatially uniform groundwater level, which is a generally desired condition, 543 

BCs with more distributed patterns are preferred when the groundwater table depth is relatively uniform. 544 

When BCs need to be allocated in a more aggregated pattern, due to site constraints, it would be better if 545 

they could be allocated in places with a deeper groundwater table. 546 

3.3.3. Impact of the location of bioretention cells 547 

Figs. 12 and 13 compare the responses of the groundwater table to BCs allocated at different locations 548 

within the catchment and within sub-catchments, respectively. When the BCs were spatially distributed, or 549 

in upstream areas of the catchment, 𝐺𝑅9 and 𝐺𝑅E were greater than when the BCs were in downstream 550 

areas. When the BCs were spatially distributed, only in upstream areas, or only in downstream areas, the 551 

corresponding 𝐺𝑅9  for the whole catchment was 0.72 ±  0.66 m, 0.70 ±  0.47 m, or 0.54 ±  0.33 m, 552 

respectively (dashed lines in Fig. 12b and Fig. 12c), and the 𝐺𝑅E for the whole catchment was 0.45 m, 0.46 553 

m, or 0.31 m, respectively (dashed lines in Fig. 12f and Fig. 12g). In addition, the proportion of areas of 554 

lower groundwater table rise (both 𝐺𝑅9  and 𝐺𝑅E ) was smaller, and the proportion of areas of higher 555 

groundwater table rise was greater, when the BCs were spatially distributed or only in upstream areas (Fig. 556 

12d and 12h). 557 

These phenomena have two possible explanations. First, as shown in Fig. 9, the groundwater table in 558 

upstream areas (i.e., S1, S3, S4, S5, and S6) was closer to the ground surface, so the groundwater table could 559 
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respond and rise more quickly and more significantly. Second, the regional groundwater hydraulic gradient 560 

may play a role. Generally, the recharge from BCs in upstream areas can affect the groundwater table 561 

conditions in downstream areas more quickly and to a larger spatial extent, while the recharge in downstream 562 

areas normally extends to the surrounding areas without obvious directionality. This can be seen clearly in 563 

Fig. 11b and 11f. When the BCs were allocated in upstream sub-catchments (S1-S7), obvious groundwater 564 

table rises were observed in some downstream sub-catchments (S8-S10). In contrast, when the BCs were 565 

allocated in downstream sub-catchments (i.e., S8-S14), the groundwater table also rose at some of the 566 

upstream sub-catchments (i.e., S2, S3, and S7) but the rise was relatively minimal. However, the magnitude 567 

of this effect may differ for different regional groundwater hydraulic gradients and hydrologic connectivities 568 

(Jones et al., 2019). For example, the effect may not be as significant in areas with relatively flat topographies. 569 

A similar phenomenon was observed through comparing the 𝐺𝑅E values for BCs allocated at different 570 

locations within sub-catchments (Fig. 13). Compared with BCs at the lower end of the sub-catchments (0.31 571 

± 0.22 m), 𝐺𝑅E for the overall catchment was greater when the BCs were at the upper end or in the middle 572 

section of the sub-catchments (0.44 ± 0.32 m and 0.46 ± 0.36 m, respectively) (Fig. 13f and 13g), because 573 

the proportion of higher 𝐺𝑅E areas was greater (Fig. 13h). In addition, the groundwater levels within the 574 

catchment were less uniform (represented by larger 𝐺𝐿'FG values) when the BCs were allocated in upstream 575 

areas and near the upper end of sub-catchments, and vice versa (Fig. 10c and 10d). 576 

Thus, when the groundwater table is relatively deep, BCs are generally better allocated in upstream 577 

areas to result in greater regional groundwater recharge and groundwater table rise. When the groundwater 578 

table is relatively shallow, it is generally better to allocate BCs in the downstream areas to minimize 579 

groundwater table rise and its potential effects on the performance of BCs. However, the optimal allocation 580 
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may vary case-by-case, as other geophysical conditions like soil distribution should also be considered. 581 

Furthermore, it was found that both 𝐺𝑅9 and 𝐺𝑅E of upstream sub-catchments (S1-S7) were greater when 582 

the BCs were allocated at the upper end of the sub-catchments. These values for downstream sub-catchments 583 

(S9-S14) were greater when the BCs were allocated at the lower end of the sub-catchments (Fig. 13b and 584 

13f). For example, when the BCs were located at the upper end, middle section, and lower end, 𝐺𝑅9 of S2 585 

decreased from approximately 1.01 ± 0.86 m to 0.68 ± 0.61 m and 0.51 ± 0.61 m, respectively (Fig. 13b 586 

and 13c), and 𝐺𝑅E of S2 decreased from 0.67 ± 0.62 m to 0.47 ± 0.43 m and 0.30 ± 0.38 m, respectively 587 

(Fig. 13f and 13g). In comparison, 𝐺𝑅9 of S9 increased from 0.72 ± 0.65 m to 1.03 ± 0.93 m and 1.38 ± 588 

1.23 m, respectively (Fig. 13b and 13c), and 𝐺𝑅E of S9 increased from 0.43 ± 0.39 m to 0.54 ± 0.42 m and 589 

0.61 ± 0.46 m, respectively (Fig. 13f and 13g). This was because the extent of groundwater rise was greater 590 

near BCs (Machusick et al., 2011; Thomas and Vogel, 2011; Nemirovsky et al., 2014). More specifically, 591 

when the BCs (in all sub-catchments) were allocated at the upper end of each sub-catchment, those within 592 

the downstream sub-catchments were closer to the upstream sub-catchments. Therefore, the groundwater 593 

recharge by BCs in downstream sub-catchments more easily affected upstream sub-catchments, resulting in 594 

higher groundwater table rises in upstream areas. Conversely, when the BCs were allocated at the lower end 595 

of each sub-catchment, those within the upstream sub-catchments were closer to the downstream sub-596 

catchments. Then the groundwater recharge by BCs in upstream sub-catchments more easily affected 597 

downstream sub-catchments, resulting in higher groundwater table rise in downstream areas. 598 

3.4. Relationships between surface runoff and groundwater table dynamics 599 

Fig. 14 illustrates the inter-correlations between the responses of surface runoff and groundwater table 600 

levels to different implementation ratios of BCs. Each dot in the graph represents the data (𝑃𝑅, 𝑉𝑅, 𝐺𝑅9, 601 
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𝐺𝑅E, or 𝐺𝐿'FG) for one sub-catchment. 602 

One observation can be obtained from the bar plots along the diagonal of Fig. 14. More specifically, 603 

when there were more BCs (𝑅𝐴𝑇𝐼𝑂 of 5.00%), the occurrences of higher 𝑃𝑅, 𝑉𝑅, 𝐺𝑅9, 𝐺𝑅E, and 𝐺𝐿'FG 604 

values were greater, which was consistent with observations in pervious sections. As expected, 𝑃𝑅 and 𝑉𝑅 605 

correlated with each other closely, with an 𝑅H of 0.95. For groundwater table rises, only 𝐺𝑅9 and 𝐺𝑅E were 606 

closely correlated (𝑅H of 0.91), while 𝐺𝐿'FG was less correlated to the other two indicators (𝑅H of 0.59 and 607 

0.42 for 𝐺𝑅9 and 𝐺𝑅E respectively). In addition, the indicators of surface runoff (i.e., 𝑃𝑅 and 𝑉𝑅) were also 608 

correlated with the indicators of groundwater table rises (i.e., 𝐺𝑅9, 𝐺𝑅E, and 𝐺𝐿'FG) at a relatively lower, 609 

but still significant, level (Fig. 14). More specifically, 𝑃𝑅 correlated with 𝐺𝑅9, 𝐺𝑅E, and 𝐺𝐿'FG with 𝑅H 610 

values of 0.85, 0.82, and 0.45, respectively, and 𝑉𝑅 correlated with 𝐺𝑅9, 𝐺𝑅E, and 𝐺𝐿'FG with 𝑅H values of 611 

0.86, 0.84, and 0.45, respectively. The observed correlations were not surprising, because the reduction of 612 

surface runoff and the increase of groundwater recharge were simultaneous outcomes of enhanced 613 

infiltration and recharge by GI. 614 

These observations together reflect the importance of considering the tradeoffs between surface runoff 615 

control and groundwater protection in GI planning. A more ideal GI strategy should reduce surface runoff, 616 

but also maintain a relatively minimal influence on groundwater dynamics. 617 

 618 

4. Concluding remarks 619 

A coupled surface-subsurface hydrological model, SWMM-MODFLOW, was developed to evaluate 620 

the surface runoff and groundwater table dynamics of green infrastructure of different spatial allocations at 621 
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catchment scale. The model was calibrated and validated using the monitoring data at an urban catchment at 622 

Kitsap County, WA, US. 623 

Using bioretention cells as the representative green infrastructure, a series of hypothetical simulations 624 

was performed. The influence of spatial allocations of bioretention cells, represented by the implementation 625 

ratio, aggregation level, and location, on the surface runoff and groundwater table dynamics, was quantified. 626 

The primary findings are summarized as follows. 627 

• The implementation ratio of the bioretention cells was the main spatial feature that governed both surface 628 

runoff and groundwater table dynamics. With higher implementation ratios, the peak reduction and 629 

volume reduction of surface runoff were greater, and the peak and temporally averaged groundwater 630 

table rises were higher. However, implementing more bioretention cells may not affect the uniformity 631 

of regional groundwater levels if an appropriate allocation strategy is selected. 632 

• Bioretention cells with more distributed allocation patterns resulted in slightly lower peak groundwater 633 

table rises, higher temporally averaged groundwater table rises, and a lower standard deviation of 634 

groundwater levels in the catchment. Thus, if a more uniform groundwater level is desired, bioretention 635 

cells should be allocated in a more distributed way when the original groundwater table depth is 636 

relatively uniform. Conversely, when bioretention cells need to be allocated in a more aggregated pattern 637 

(e.g., due to site constraints), it would be better if they could be allocated in places with a deeper 638 

groundwater table. 639 

• Allocating bioretention cells in upstream areas can raise the groundwater levels downstream due to the 640 

regional hydraulic gradient. Thus, when the groundwater table is relatively deep, bioretention cells 641 

should generally be allocated in upstream areas to produce a greater regional groundwater recharge and 642 
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groundwater table rise. In cases when the groundwater table is relatively shallow, it is generally better 643 

to implement bioretention cells in the downstream areas to minimize groundwater table rise and the 644 

potential influence on the performance of bioretention cells. In addition, the geophysical conditions and 645 

spatial variations within the catchment should be considered when allocating bioretention cells. 646 

• Bioretention cells of greater surface runoff control efficiencies led to higher groundwater table rises. 647 

Thus, it is of great importance to consider the tradeoff between surface runoff control and groundwater 648 

protection in the planning of green infrastructure. 649 

This study carries certain limitations. First, the coupled model considered the impact of shallow 650 

groundwater on some hydrological processes such as exfiltration, underdrain flow, and surface runoff, but 651 

other processes were neglected. For example, the impact of shallow groundwater on evapotranspiration of 652 

GI was not considered, which could be influential in some conditions such as areas of shallow groundwater 653 

or arid climate. Second, the rules for allocating bioretention cells spatially in the hypothetical simulations 654 

were simplified. The detailed land uses (e.g., buildings, roads) and physical constraints (e.g., underground 655 

infrastructures) were not considered due to the unavailability of relevant information, so a relatively uniform 656 

allocation pattern was assumed. As a result, the main insights obtained in this study may have limited 657 

contribution at the scales of single GI practices, but they can be beneficial to the higher-level planning of GI. 658 

The simplified rule of spatial allocation of GI practices therefore should not affect the insights that work at 659 

regional scales. In fact, considering the specific physical and/or legal constraints of the study area might 660 

even have affected the transferability of the insights gained, because the constraints can be very different in 661 

different areas. Third, the simulations in this study only considered the boundary conditions and 662 

hydrogeological conditions of one catchment due to data availability. However, the results from this study 663 
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can serve as a general reference for others, and the developed model and study methodology can be applied 664 

to other catchments to obtain more specific and accurate findings. Future studies should examine more 665 

catchment characteristics, such as through the use of more hypothetical catchments, and more spatial 666 

allocation rules for various GI practices. They should also explore the optimal spatial allocation of green 667 

infrastructure for the restoration of surface-subsurface hydrology. 668 
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