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ABSTRACT 

This study presents a joint analysis of daytime and nighttime crash frequencies at the zone 

level with consideration of spatial correlations. Crash data from 131 traffic analysis zones in 

Hong Kong in 2011 are investigated. A Bayesian bivariate conditional autoregressive model 

is proposed to establish links between crash frequencies and traffic attributes, road network 

characteristics, and land use patterns. The proposed model allows not only for the distinct 

heterogeneous and spatial effects of each dependent variable, but also for the correlations 

between them. 

The parameter estimates indicate that more daytime and nighttime crashes are associated 

with more vehicle hours traveled and with networks that have greater global integration. 

Average speed alone has a significant negative effect on daytime crashes. The crash risk in 

commercial and other areas is lower than that in residential areas, but the crash risk in areas 

of mixed residential and commercial use is higher. Meanwhile, significant spatial 

autocorrelation emerges across zones and explains 46.7% and 48.2% extra-Poisson variations 

for daytime and nighttime crash frequencies, respectively. High positive correlations are 

found in both heterogeneous and spatial effects. These findings, together with its better 

performance on model fit than the univariate counterparts, demonstrate the strength of the 

proposed model. 

 

Keywords: Zonal safety; Daytime and nighttime; Spatial correlation; Bivariate 

conditional autoregressive model; Bayesian inference. 
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1. Introduction 

 

Since the US Federal Highway Administration issued the Safe, Affordable, Flexible, 

Efficient, Transportation Equity Act-A Legacy for Users (SAFETEA-LU) in 2005, 

considerable research efforts have been devoted to the incorporation of safety considerations 

into the transportation planning process (Abdel-Aty, Siddiqui, & Choi, 2013). Based on the 

concept of safety-conscious planning, safety-conscious practices should be comprehensively, 

routinely, and effectively incorporated into the entire transportation planning process 

(Hadayeghi, Shalaby, & Persaud, 2007). To provide decision-support tools for planners and 

engineers to implement proactive road safety planning, crash prediction models (CPMs) (also 

known as safety performance functions) at the macro level have become fairly routine 

components in traffic safety research, especially at the traffic analysis zone (TAZ) level (Zeng 

& Huang, 2014). Macro CPMs can be applied to identify factors that contribute to zonal 

crash occurrences, to monitor area-wide safety performance, and to provide suggestions for 

countermeasures aimed at improving regional traffic safety (Huang et al., 2016). Spatial 

correlation (also known as spatial dependency or spatial effect) is an important issue to 

consider in zonal crash analysis because the safety performance of adjacent regional units 

may be affected by common unobserved or unobservable factors (Quddus, 2008). Including 

spatial correlation in CPMs can improve model estimation and reduce model misspecification 

(Washington, Karlaftis, & Mannering, 2011). 

Most studies analyze daytime and nighttime crashes together. This is due in part to the 
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absence of detailed data, but it is also based on the assumption that the same crash occurrence 

mechanisms prevail during the day and at night. However, driving environments in the 

daytime and nighttime differ significantly, with varying environmental and traffic conditions 

that affect driver behavior and eventually crash propensity (Chen, Ma, & Chen, 2014). 

Several studies have modeled daytime and nighttime crash frequencies for road segments or 

intersections and shown substantial differences in their contributing factors (Chen et al., 2014; 

Dinu & Veeraragavan, 2011; Donnell, Porter & Shankar, 2010). However, to the best of our 

knowledge, no such study has reported on both daytime and nighttime crash frequencies 

simultaneously at the zonal level. 

Due to the bivariate nature of crash data, it is necessary to consider the likely correlation 

between crash frequencies in daytime and nighttime; this correlation is derived from the 

effects of omitted confounding factors shared by crash frequency measures across the two 

periods. Although some studies account for the heterogeneous correlation among crash 

severities or types with bivariate or multivariate regression techniques (El-Basyouny & Sayed, 

2009a; Ma & Kockelman, 2006; Park & Lord, 2007; Yu & Abdel-Aty, 2013; Zeng, Wen, 

Huang, Pei, & Wong, 2017b, 2018), bivariate or multivariate spatial correlation is seldom 

considered (Barua, El-Basyouny, & Islam, 2014). Moreover, univariate spatial modeling of 

daytime and nighttime crash frequencies may result in biased estimates because they may not 

be spatially independent of one another. Therefore, a bivariate spatial analysis is expected to 

control for heterogeneous correlations and correlated spatial dependencies of daytime and 

nighttime crash frequencies in the same observation unit. 

From a methodological standpoint, many approaches, such as generalized estimation 
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equations (Abdel-Aty & Wang, 2006), simultaneous autoregressions (Quddus, 2008), 

multiple membership (El-Basyouny & Sayed, 2009b), and geographic weighted Poisson 

regression (Hadayeghi, Shalaby, & Persaud, 2010; Li, Wang, Liu, Bigham, and Ragland, 

2013; Xu & Huang, 2015), have been advocated to capture spatial correlation in crash 

frequency data, but most are specified for univariate modeling. The multivariate conditional 

autoregressive (CAR) model, which has been successfully applied to analyze crash 

frequencies at the macro level (e.g., cantons and census tracts) (Aguero-Valverde, 2013; 

Wang & Kockelman, 2013) and the micro level (e.g., roadway segments and intersections) 

(Barua et al., 2014; Ma, Chen, & Chen, 2017; Huang, Zhou, Wang, Chang, & Ma, 2017; Wen, 

Sun, Zeng, Zhang, & Yuan, 2018) by severity or transportation mode, is one state-of-the-art 

method for multivariate spatial modeling under a Bayesian framework. 

In line with previous studies, the key objective of this study is to use the bivariate CAR 

model to simultaneously analyze zonal daytime and nighttime crash frequencies, 

accommodating spatial correlations among adjacent zones and the heterogeneous and spatial 

correlations between the two crash periods. To demonstrate the utility of the proposed model, 

it is compared with univariate CAR models in the Bayesian context via programming in the 

freeware WinBUGS. Crash data collected from 131 selected TAZs in Hong Kong are used in 

the empirical analysis. 

The remainder of this paper is organized as follows. The next section reviews the 

literature on zonal CPMs and daytime/nighttime crash analysis. Section 3 describes the crash 

data obtained from Hong Kong for the study. The proposed model and the criteria for model 

assessment are specified in Section 4. Section 5 introduces a detailed estimation of the 
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proposed model and discusses the parameter estimation results. Finally, our conclusions and 

recommendations for future research are presented in Section 6. 

 

2. Literature review 

 

2.1. Zonal CPMs 

 

Numerous studies of zonal CPMs have been conducted at various zone scales, ranging 

from states (Noland, 2003; Castro-Nuño, Castillo-Manzano, & Fageda, 2018), counties 

(Aguero-Valverde & Jovanis, 2006; Huang, Abdel-Aty, & Darwiche, 2010; Li et al., 2013), 

districts (Haynes, Jones, Kennedy, Harvey, & Jewell, 2007), census tracts/wards (Quddus, 

2008; Wang & Kockelman, 2013), and postal codes (Lee, Abdel-Aty, & Choi, 2014) to traffic 

analysis districts (TADs) (Cai, Abdel-Aty, & Lee, 2017a; Cai, Abdel-Aty, Lee, & Eluru, 

2017b), TAZs (Abdel-Aty, Siddiqui, Huang, & Wang, 2011; Guo, Pei, Yao, & Wong, 2015; 

Guo, Xu, Pei, Wong, & Yao, 2017; Hadayeghi et al., 2010; Huang et al., 2016; Xu & Huang, 

2015), block groups (Levine, Kim, & Nitz, 1995), and local health areas (MacNab, 2004). 

Among these, TAZs are among the most prevalent zonal units because they can be easily 

integrated into the transportation planning process (Huang et al., 2016). 

Various zone-level risk factors, including traffic characteristics such as traffic flow and 

average speed (Hadayeghi et al., 2010; Quddus, 2008); road facility conditions such as 

network topology (Guo et al., 2015, 2017), highway density/length (Huang et al., 2016; 

Quddus, 2008), and intersection density/number (Quddus, 2008; Xu, Huang, Dong, & Wong, 
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2017); socioeconomic and demographic indices, such as land use (Guo et al., 2015, 2017; 

Wang & Kockelman, 2013), employment (Quddus, 2008; Hadayeghi et al., 2010), household 

income (Huang et al., 2016; Xu et al., 2017), and population density (Huang et al., 2010); and 

environmental factors such as annual precipitation (Aguero-Valverde & Jovanis, 2006) have 

been widely investigated to interpret the observed cross-sectional variability of safety 

conditions.  

Crash data are typically collected with reference to the location dimension, which results 

in spatial correlations among adjacent spatial units (Quddus, 2008). Thus, most zonal crash 

studies have accommodated spatial correlations in crash frequency modeling (Hadayeghi et 

al., 2010; Huang et al., 2010; Li et al., 2013; Guo et al., 2017; Xu et al., 2017); however, 

daytime and nighttime crashes are modeled together in these studies, which neglects the 

differences in the contributing factors to crash occurrence across these two periods. 

 

2.2. Daytime/nighttime crash analyses 

 

Daytime and nighttime CPMs are typically developed to estimate the effect of roadway 

lighting on traffic safety at intersections (Bullough, Donnell, & Rea, 2013; Donnell et al., 

2010; Gross & Donnell, 2011; Isebrands, Hallmark, Li, McDonald, Storm, & Preston, 2010). 

Most of these studies suggest that installation of lighting would decrease intersection-related 

crashes at night but increase intersection-related crashes during the daytime. With respect to 

other risk factors, the magnitudes of these effects on daytime and nighttime crash frequencies 

have certain discrepancies. One related problem is that the effects of some factors on crash 



Zeng et al. 

9 

 

frequency can be significant during one period (daytime or nighttime) but insignificant during 

the other. For example, in an empirical analysis on intersection safety in Minnesota (Gross & 

Donnell, 2011), the presence of a depressed median on major roads was found to significantly 

reduce the occurrence of daytime crashes, but its effect on nighttime crash frequency was not 

significant (at a significance level of 95%). 

Similarly, Chen et al. (2014) developed random-effects Tobit models for crash rate 

analysis using refined-scale panel data. They found that the roadway segment length, a low 

speed limit, and the on-ramp density had significant effects (at least at a significance level of 

90%) only on daytime crash rates, whereas the truck percentage, the inside shoulder width, 

and the occurrence of snow had significant effects only on nighttime crash rates. Likewise, 

Dinu and Veeraragavan (2011) applied random-parameters Poisson models to two-lane 

undivided highways in India. The model estimates showed that some factors related to traffic 

composition and roadway geometry (including the proportion of trucks and motorized 

two-wheelers, the driveway density, and the horizontal curvature) had heterogeneous effects 

on crash frequency during only one period (either daytime or nighttime). 

These findings suggest that considerable discrepancies exist in the traffic, roadway, and 

environmental attributes that affect daytime and nighttime crash frequencies and that it would 

be beneficial to take each of them as response variables of CPMs if the required data were 

available. Overall, a spatial joint analysis for daytime and nighttime crash frequencies in 

TAZs is fully merited. It is expected to identify their respective contributing factors and 

capture the effects of heterogeneous correlations and spatial dependencies. 
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3. Data preparation 

 

A comprehensive crash dataset collected from the Hong Kong Traffic Information System 

is used in this study. TAZs defined in the Hong Kong Planning Vision and Strategy zoning 

system are used as the spatial units for the empirical analysis. Of the 338 TAZs in the zoning 

system, 131 are identified as having adequate traffic and roadway information. The traffic 

crashes reported within these areas in 2011 are aggregated by TAZ using geographical 

information system techniques. In the absence of exact data for the time of sunrise and sunset 

each day, the aggregated crashes are empirically divided into two groups according to the 

crash occurrence time: daytime crashes from 07:00 to 19:00 and nighttime crashes from 

19:00 to 07:00, as suggested by Dinu and Veeraragavan (2011). Therefore, the daytime and 

nighttime crash counts can be obtained for each selected TAZ in 2011. Figs. 1 and 2 display 

the spatial distributions of the aggregated daytime and nighttime crashes, respectively. 

One study found that time exposure, as measured by vehicle hours traveled (VHT), is a 

more reasonable proxy for crash exposure (Pei, Wong, & Sze, 2012). In the current analysis, 

to estimate the traveled vehicle hours for each observation, the average annual daily traffic 

(AADT) and taxi global positioning system (GPS) datasets are collected. The AADT data and 

temporal and directional multiplicative factors are obtained from the Hong Kong Annual 

Traffic Census system, which provides hourly traffic volumes for more than 100 core stations 

in Hong Kong. The taxi GPS data are derived from 480 taxis traveling around Hong Kong 

that are equipped with GPS probes. The probe taxis report real-time information on location, 

data, time, direction, speed, and occupancy to the traffic control center at 30-second intervals. 
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The VHTs on all roadway segments within the study area are estimated using the following 

procedure. First, we estimate the hourly traffic volume of roadways without core stations 

following the linear data projection method proposed by Wong and Wong (2015), using the 

hourly traffic volume on roadways with core stations and the taxi flow volume on all 

roadways (please refer to the reference for more details on the data projection method). 

Second, we estimate the average travel speed for each hour according to the taxis’ 

instantaneous speed information contained in the GPS dataset. These estimates are based on 

Pei, Wong, Ai, and Shi’s (2009) findings that taxi speed is almost equivalent to actual travel 

speed in Hong Kong. Third, we calculate the hourly VHTs of each segment as the product of 

each segment’s traffic volume and length divided by the average travel speed. Finally, we 

calculate the VHTs for daytime and nighttime periods in each TAZ as the sum of the VHTs on 

the covered hours and roadways. To explore the nonlinear relationship between crash 

frequency and VHT, the natural logarithm of VHT is modeled like the other explanatory 

variables. 

The estimated travel speed is used as a risk factor to model zonal daytime and nighttime 

crash frequencies, together with road density, intersection density, land use pattern, and road 

network pattern. The road density is defined as the total length of roadway in a TAZ divided 

by its area, and the intersection density is calculated as the number of intersections in a TAZ 

divided by the total road length. The land use pattern of each selected TAZ is inferred by the 

percentage of trips in each zone, based on the trip pattern and purpose. Specifically, we 

categorize land use patterns into four groups: residential, commercial, mixed (combined 

commercial and residential use), and others (government, institution, or community), 
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according to the primary (more than 50%) trip purpose within each zone. Residential area is 

set as the reference pattern. 

Global integration, which measures the accessibility of the roadway network (Haq, 2001), 

is found an appropriate index to describe typical patterns of the road network patterns in 

Hong Kong (Guo et al., 2015, 2017). Therefore, it is used to quantify road network patterns 

in this research. The global integration value of roadway l , lI , can be calculated by the 

following formulas: 

( 2)

2( 1)
n

l
l

D n
I

MD

 



,                            (1) 

2
22{ [log (( 2) 3) 1] 1} ( 3 2)nD n n n n      ,                 (2) 

where n  is the number of roads within the network. lMD  is the mean depth of road l , that 

is, the average distance from road l  to other roads, which is calculated as follows: 

1

( 1)
m

l d
d

MD d N n


   ,                       (3) 

where d  is an integer and represents the shortest distance from road l , dN  denotes the 

number of roads with the shortest distance d , and m  denotes the maximum shortest 

distance. 

Table 1 summarizes the definitions and descriptive statistics of the variables used in 

model development. The results of the correlation tests and multicollinearity diagnoses 

suggest that these explanatory variables are statistically independent. 

 

4. Methods 
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In this section, the formulations of the univariate and bivariate CAR models for analysis 

of zonal daytime and nighttime crash frequencies are successively specified. Two criteria, the 

deviance information criteria (DIC) and Bayesian R2, are then proposed to evaluate the model 

fit performance in the context of Bayesian inference. 

 

4.1. Model specification 

 

4.1.1. Univariate CAR model 

To explore the spatial correlations among the zonal units derived from the shared effects 

of unobserved confounding factors, the univariate CAR model is developed by incorporating 

a Gaussian CAR prior into the traditional Poisson log-normal model (Zeng & Huang, 2014). 

Specifically, the observed daytime ( 1)k   /nighttime ( 2)k   crash count ,k iY  in TAZ i  

is assumed to follow a Poisson distribution, and a random term with CAR prior, ,k i , is 

added into the link function. The model structure of the univariate CAR regression can be 

expressed as follows: 

, , ,~ ( )k i k i k iY Poisson  , 1, 2k  ,                      (4) 

, , , , ,ln lnk i k i k i k k i k ie     X β ,                      (5) 

where ,k i , ,k ie , ,k iX , and kβ  are the expected crash count, the crash exposure (i.e., the 

number of opportunities for crash occurrence), and the risk factors and regression coefficients 

corresponding to daytime and nighttime crashes in TAZ i , respectively. 

,k i  is a residual term to account for unstructured heterogeneous effects of daytime and 

nighttime crash frequencies, which are assumed to follow an ordinary, exchangeable normal 
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distribution: 

, ~ (0, )u
k i knormal  ,                           (6) 

where ( 0)u
k   is the variance of ,k i . 

,i k  represents the spatial effect of the daytime/nighttime crash frequency in TAZ i , 

which is specified via the intrinsic (univariate) CAR prior proposed by Besag et al. (1974): 

, , ,~ ( , )u
k i k i k inormal   ,                           (7) 

,

,

k j iji j
k i

iji j

 











,                            (8) 

,

us
u k
k i

iji j









,                             (9) 

in which us
k  is the variance parameter in the univariate CAR prior. ij  is the entry with 

the adjacency index and weight for TAZs i  and j  in proximity matrix. Although various 

proximity structures have been investigated (Guo et al., 2017), the most prevalent structure, a 

0-1 first-order neighbor, is used to define the proximity matrix in this study. Specifically, if 

TAZs i  and j  share a common border, 1ij  ; otherwise, 0ij  . 

The posterior proportion of variation explained by the spatial correlation term for each 

crash period is also of interest and is defined as follows (Aguero-Valverde, 2013): 

( )

( ) ( )
k

k
k k

sd

sd sd


 




.                          (10) 

 

4.1.2. Bivariate CAR model 

Although the univariate CAR model accommodates area-wide spatial correlations, it 

ignores correlations of heterogeneous and spatial effects between daytime and nighttime 
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crash frequencies in the same spatial unit. To deal with this issue, a bivariate CAR model is 

proposed that can be extended to a multivariate version for joint modeling ( 2)K K   of 

dependent variables (Barua et al., 2014). The difference in the model structure between the 

bivariate CAR and its univariate counterpart lies mainly in the specification of the residual 

terms. Specifically, to account for the correlation between heterogeneous effects, 1,i  and 

2,i  are assumed to follow a bi-normal distribution with zero means: 

2~ ( , )it Nθ 0 Σ , 1,

2,

i
i

i



 

  
 

θ , 
1,1 1,2

2,1 2,2

b b

b b

 
 
 

   
 

Σ .                (11) 

In the variance-covariance matrix Σ , the diagonal elements ( 1,1
b  and 2,2

b ) are the 

variances of residual terms 1,i  and 2,i , and the off-diagonal elements (
1,2
b  and 2,1

b , 

1,2 2,1
b b  ) are the covariance between 1,i  and 2,i . The correlation coefficient 

1,2 1,1 2,2
b b b     describes the correlation between 1,i  and 2,i . 

To capture the correlation between the spatial effects of daytime and nighttime crash 

frequencies, a bivariate two-dimensional CAR prior is proposed. Given that the 0-1 

first-order neighbor structure is used, the bivariate CAR prior can be expressed as the 

following: 

2~ ( , )i i
i

N n
ΩΦ Φ , 1,

2,

i
i

i



 

  
 

Φ , 
1,

2,

i
i

i



 

   
 

Φ , 
1,1 1,2

2,1 2,2

bs bs

bs bs

 
 
 

   
 

Ω ,       (12) 

in which i iji j
n 


  is the number of TAZs adjacent to TAZ i , and , ,k i k j ij ii j

n  


 . 

Ω  is the variance-covariance matrix for spatial correlation, where 1,1
bs  and 2,2

bs  reflect the 

spatial variances of daytime and nighttime crash frequencies, respectively, and 1,2 2,1( )bs bs   

reflects the spatial covariance between them. To measure the correlation between the spatial 
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effects, the correlation coefficient is calculated as: 1,2 1,1 2,2
bs bs bs

s    . 

 

4.2. Model assessment 

 

The two most prevalent criteria in the context of Bayesian inference, DIC and Bayesian 

R2, are used to assess the goodness-of-fit of the above models. DIC are considered a Bayesian 

equivalent of Akaike’s information criterion that penalizes models with more parameters. It 

thus provides a Bayesian measure of model complexity and fitting (Spiegelhalter, Best, 

Carlin, & Van Der Linde, 2002) and is defined as 

DIC D pD  ,                           (13) 

where D  is the posterior mean deviance that can be used to measure fitness or “adequacy,” 

and pD  is a complexity measure for the effective number of parameters. In general, if the 

DIC are lower, the model is preferred; and differences over 10 suggest the significantly better 

performance of the model with lower DIC (Spiegelhalter, Thomas, Best, & Lunn, 2005). 

Moreover, El-Basyouny and Sayed (2009a) showed that the DIC are additive under 

independent models and priors. Consequently, the DIC values of the univariate CAR models 

can be added to enable comparison to the DIC of the bivariate CAR model. 

The Bayesian R2, which measures the global model fit, is used to estimate the ratio of 

the explained sum of squares to the total sum of squares (Zeng & Huang, 2014). The 

Bayesian R2 values of daytime and nighttime crash frequencies, represented by 2
1R  and 2

2R , 

respectively, are calculated as 
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 

 

2

, ,
2 1

2

,
1

1

N

k i k i
i

k N

k i k
i

Y
R

Y Y







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




,                    (14) 

,
1

1 N

k k t
i

Y Y
N 

  , 1, 2k  .                    (15) 

In the above equations, 1Y  and 2Y  are the means of daytime and nighttime crash 

frequencies, respectively. 

 

5. Model estimation and result analysis 

 

5.1. Model estimation 

 

Due to the complexity of the spatial models, the parameters and super-parameters are 

estimated by Bayesian methods using the Markov chain Monte Carlo (MCMC) techniques 

available in WinBUGS. Obtaining Bayesian estimates requires specification of the (super-) 

parameters’ prior distributions, which reflect prior knowledge about the (super-) parameters. 

In the absence of sufficient knowledge, noninformative (vague) prior distributions are 

specified (Zeng & Huang, 2014; Zeng, Wen, Huang, & Abdel-Aty, 2017a). Specifically, a 

diffused normal distribution 4(0,10 )N   is used for the priors of the regression coefficients 

(i.e., the elements of kβ ). A diffused gamma distribution (0.001,0.001)gamma  is used for 

the priors of the precision (reciprocal of the variance) parameters, 1 u
k  and 1 us

k ( 2)1,k  . 

A Wishart prior, ( , )W rP , is used for 1Σ  and 1Ω , where 
1 0

0 1

 
  
 

P  represents the 
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scale matrix and 2r   is the degrees of freedom (Barua et al., 2014). For each model, a 

chain of 550,000 iterations of the MCMC simulation is made, with the first 50,000 iterations 

acting as a burn-in. The MCMC convergence is evaluated via visual inspection of the MCMC 

trace plots for the model parameters and monitoring of the ratios of the Monte Carlo errors 

relative to the respective standard deviations of the estimates. 

 

5.2. Result analysis 

 

Table 2 shows the (super-) parameter estimates and goodness-of-fit measures for the 

univariate and bivariate CAR models. From the results, it is evident that the bivariate model 

fits the zonal crash data better than the univariate models because the bivariate model has 

lower DIC (1702 for the bivariate model versus 1748 for the univariate models) and a higher 

Bayesian R2 ( 2
1R  = 0.927 and 2

2R  = 0.904 for the bivariate model versus 2
1R  = 0.923 and 

2
2R  = 0.894 for the univariate models) for both daytime and nighttime crash frequencies. 

Moreover, the cumulative residual (CURE) plots of daytime and nighttime crash frequencies, 

as shown in Fig. 3, indicate that the ranges of the residuals in the univariate models are 

somewhat larger than those in the bivariate model, which further demonstrates the latter’s 

strength regarding model fit. By explicitly modeling the correlation between daytime and 

nighttime crashes, the bivariate CAR model benefits from pooling strength across crash times 

and thereby reduces model misspecification (Aguero-Valverde, 2013). Specifically, the 

variances and covariances of both heterogeneous and spatial effects are all significant at the 
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95% credibility level. The statistically significant   and s  are estimated to be 0.696 and 

0.701, respectively. These results imply that daytime and nighttime crashes are highly 

correlated in a positive way due to heterogeneous and spatial effects. Heterogeneous (aspatial) 

correlations capture the effects of the missing risk factors shared by crash times within a TAZ 

(but not across TAZs), such as distinctive local lighting conditions and sight obstructions 

(Wang & Kockelman, 2013). In contrast, correlations in spatial effects are expected and 

attributable to omitted factors that are spatially clustered but more widely spread (thus 

affecting nearby TAZs) and are shared across crash times (Wang & Kockelman, 2013). 

Examples of such omitted factors include terrain features, weather conditions, and 

socioeconomic attributes. 

Once the (aspatial and spatial) correlations between the response variables are considered, 

the magnitudes of the heterogeneous effects increase from 0.039 (0.074) to 0.147 (0.184) for 

daytime (nighttime) crashes, and the significance levels vary from 90% to 95%. In contrast, 

the spatial autoregression effects of daytime and nighttime crashes decrease, as reflected by 

the lower spatial variances in the bivariate model. As a consequence, the proportions of 

variation explained by the spatial effects decrease from 0.739 to 0.467 for daytime crashes 

and from 0.667 to 0.482 for nighttime crashes. Nonetheless, 1  and 2  are still significant 

at the 95% credibility level. In addition, we were interested to observe that the constant terms 

obtained from the univariate and bivariate models differ remarkably between daytime and 

nighttime cases. One plausible reason may be that some unobserved effects that are 

considered to be fixed in univariate models have been captured by the correlations between 

daytime and nighttime crash frequencies. 
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When the coefficient estimates of each explanatory variable in the univariate and 

bivariate models are compared, it can be seen that their plus or minus signs are almost 

consistent in the models and for daytime and nighttime crashes, but the significance levels 

differ for some factors. For example, although the effects of speed on daytime and nighttime 

crashes are significant at 95% and 90% credibility levels, respectively, in the univariate 

models, in the bivariate model, the effect of speed on daytime crashes is significant only at 

the 90% credibility level and is insignificant for nighttime crashes (i.e., less than the 90% 

credibility level). Given the outperformance of the bivariate CAR model, the parameter 

estimates for crash exposure and risk factors are mainly discussed. 

It is not a surprise that VHT was found to have significant (at the 95% credibility level) 

positive effects on both daytime and nighttime crash frequencies. As a measure of crash 

exposure, an increase in VHT brings about more opportunities for crashes. The coefficients 

( 1  = 0.215 [SD = 0.042] and 2  = 0.200 [SD = 0.042]) differ substantially from 1, which 

means that a nonlinear relationship exists between the daytime (nighttime) crash frequency 

and the VHT. This relationship is in line with the model assumptions and the findings in the 

literature (Guo et al., 2017). According to the parameter estimates, doubling the daytime VHT 

is expected to increase the number of crashes by 148%, and doubling the nighttime VHT is 

expected to increase the number of crashes by 144%. 

The results show that the effect of average speed is only significant (at the 90% 

credibility level) for daytime crashes. The negative coefficient ( 1  = −0.011 [SD = 0.006]) 

indicates that the expected daytime crash frequency decreases by 1.1% for every 1 km/h 

increase in the average speed. This finding aligns with those of several studies (Gladhill & 



Zeng et al. 

21 

 

Monsere, 2012; Guo et al., 2015, 2017); their authors argued that the lower crash risk in 

zones with higher average speeds may be attributed to favorable built environments, in which 

the road network configurations are more reasonable and road infrastructure is better 

maintained. 

The significant positive (at least at the 90% credibility level) coefficients ( 1  = 0.303 

[SD = 0.135] and 2  = 0.281 [SD = 0.158]) for integration imply that more daytime and 

nighttime crashes tend to occur in zones with higher global integration. Increases of 35.4% 

and 32.4% were found in daytime and nighttime crashes, respectively, for every increase of 1 

in the value of global integration. This result supports the earlier findings of Guo et al. (2017), 

who offered several explanations for the phenomenon. A TAZ with higher global integration 

suggests greater accessibility to the roadways within it and may thereby act as a conduit for 

daily travels. Heavier traffic volumes are thus expected in these TAZs than in less connected 

or accessible ones. A higher global integration suggests that the roadways within the zone 

may possess more connections (i.e., intersections) with other roads. Given the complicated 

vehicular maneuvers and frequent signal changes at intersections, the probability of crashes 

might increase. A higher global integration also indicates that the network may have more 

complicated routes, which likely give rise to more traffic conflicts. Moreover, the selected 

TAZs refer to three network patterns: grid, deformed grid, and irregular. A network with 

higher global integration is more likely to have a grid pattern. Most of the roads in a grid 

pattern network are straight, which may make the experience of driving monotonous and 

boring. Drivers may be more distracted, and driver fatigue may be intensified, thus increasing 

the crash risk. 
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The coefficient estimates show that, compared with residential areas, commercial areas 

have 31.1% and 38.5% fewer daytime and nighttime crashes, respectively, and other areas 

have 37.5% and 39.0% fewer daytime and nighttime crashes, respectively. The presence of 

additional overpasses, as shown in Fig. 4, may contribute to decreases in crash occurrences in 

commercial and other areas of Hong Kong. Overpasses allow conflicts between automobiles 

and pedestrians crossing a street to be avoided by keeping them apart. Moreover, shops in 

underground floors are common in Hong Kong’s residential areas, as displayed in Fig. 5. 

These shops attract a large number of surrounding residents, which may lead to an increase in 

pedestrian-related crashes. In contrast, 43.7% more daytime crashes and 54.3% more 

nighttime crashes occur in mixed areas than in residential areas. This may be explained, in 

part, by the finding of Ewing and Dumbaugh (2009) that pedestrians are less likely to 

perceive their environment as safe in areas with a mixed land-use pattern than in areas with a 

monotonous land-use pattern. 

 

6. Conclusions  

 

This paper investigates the relationship between zone-level daytime and nighttime crash 

frequencies and various factors related to traffic, network, and land use, including VHT, 

average speed, roadway density, intersection density, network pattern, and land use pattern. A 

Bayesian bivariate CAR model is advocated for the joint analysis of daytime and nighttime 

crash frequencies in 131 TAZs in Hong Kong by accounting for zone-specific heterogeneity, 

spatial dependence across zones, and aspatial and spatial correlations between crash periods. 
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The results of Bayesian estimation show that VHT, the crash exposure measure, has a 

positive and nonlinear relationship with both daytime and nighttime crash frequencies. As the 

average speed increases, the daytime crash counts decrease significantly. More crashes are 

expected to occur in zones with greater global integration values (which are also more likely 

to be a grid network). Mixed-use areas are the most hazardous for road users, followed in 

order by residential areas, commercial areas, and other areas. 

Significant heterogeneous and spatial effects are found in the bivariate CAR model. 

Spatial effects account for 46.7% and 48.2% of the extra-Poisson variations for daytime and 

nighttime crash frequencies, respectively. The correlations for heterogeneous and spatial 

effects are estimated at 0.696 and 0.701, respectively, both of which are highly significant. 

The results indicate that greater daytime risks are associated with greater nighttime risks 

because they may be affected by unobserved factors shared across the two periods within a 

TAZ or spatially clustered but widespread. Moreover, the bivariate CAR model is found to 

provide a superior fit over the two univariate CAR models because its (bivariate) DIC are 

much lower than the sum of their (univariate) DIC and because its Bayesian R2 values for 

daytime and nighttime crashes are higher than the counterparts from the univariate models. 

In summary, the empirical analysis recognizes the distinct risk-factors that make a 

significant contribution to daytime and nighttime crash frequencies in TAZs and demonstrates 

the applicability and superiority of the bivariate CAR model for the joint analysis. However, 

several enhancements may be pursued. For example, a number of socioeconomic, 

demographic, and environmental factors should be investigated, including employment, age 

cohorts, and roadway lighting/illumination. A random-parameters extension may also be 
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pursued to capture heterogeneity in the explanatory variables’ safety effects (Barua, 

El-Basyouny, & Islam, 2016). However, more field datasets are needed to validate the 

random-parameters model, because none of the factors in the Hong Kong dataset were found 

to have significant heterogeneous effects on daytime or nighttime crashes (results not shown). 
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Fig. 1. Spatial distribution of daytime crashes across the 131 TAZs in Hong Kong. 
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Fig. 2. Spatial distribution of nighttime crashes across the 131 TAZs in Hong Kong. 
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(a) 

 

 

(b) 

Fig. 3. Cumulative residual plots of daytime and nighttime crash frequencies. 
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Fig. 4. Typical scene in a commercial area in Hong Kong. 
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Fig. 5. Typical scene in a residential area in Hong Kong. 
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Table 1. Descriptive statistics of the variables. 

Variable Description Mean SD Min. Max. Percent 

Response variables 

Daytime Daytime crash count per TAZ 35.9 21.7 2 117  

Nighttime Nighttime crash count per TAZ 16.5 12.5 1 75  

Crash exposure 

VHT[1] Daytime vehicle hours traveled 452,432 357,697 6,957 1,867,394  

VHT[2] Nighttime vehicle hours traveled 213,007 197,153 4,209 1,205,817  

Risk factors 

Speed[1] Daytime average speed 23.0 10.7 8.58 71.6  

Speed[2] Nighttime average speed 28.7 12.3 10.5 75.7  

Integration Global integration 1.15 0.43 0.48 3.62  

Road_dens Roadway length (km) per km2 50.1 15.0 21.2 109  

Inter_dens Number of intersections per km 3.56 1.47 1.21 11.2  

Land use 

Residential (reference)     58.7 

Commercial     19.1 

Mixed     13.0 

Others     9.2 
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Table 2. Parameter estimation in the univariate and bivariate CAR models a. 

 Univariate CAR Bivariate CAR 

 Daytime Nighttime Daytime Nighttime 

Constant -7.435(3.213) b -46.61(2.426)* 6.049(2.677)* -0.432(4.348) 

VHT 0.130(0.058)* 0.161(0.064)* 0.215(0.042)* 0.200(0.059)* 

Speed -0.015(0.006)* -0.010(0.005)** -0.011(0.006)** -0.008(0.005) 

Integration 0.344(0.130)* 0.315(0.146)* 0.303(0.135)* 0.281(0.158)** 

Commerical -0.327(0.149)* -0.526(0.167)* -0.358(0.149)* -0.486(0.174)* 

Mixed 0.357(0.151)* 0.422(0.175)* 0.361(0.163)* 0.434(0.188)* 

Others -0.457(0.177)* -0.501(0.199)* -0.470(0.181)* -0.495(0.215)* 

Heterogeneous 

variance c 

0.039(0.047)** 0.074(0.070)** 0.147(0.043)* 0.184(0.059)* 

Spatial variance d 0.764(0.298)* 0.655(0.371)* 0.360(0.207)* 0.435(0.255)* 

k  0.739(0.163)* 0.667(0.185)* 0.467(0.080)* 0.482(0.079)* 

R2 0.923 0.894 0.927 0.904 

DIC 937 811 1702 

1,2 2,1
b b   — — 0.118(0.046)* 

1,2 2,1( )bs bs   — — 0.303(0.207)* 

  — — 0.696(0.117)* 

s  — — 0.701(0.194)* 

a Road_dens and Inter_dens are excluded, as none of their effects on daytime or nighttime crash frequency 
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is significant (less than the 90% credibility level). 

b Estimated mean (standard deviation) for the parameter. 

c Heterogeneous variance refers to u
k   in the univariate model or ,

b
k k  in the bivariate model. 

d Spatial variance refers to us
k   in the univariate model or ,

bs
k k  in the bivariate model. 

* Significant at the 95% credibility level. 

** Significant at the 90% credibility level. 

 


