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Abstract: The simultaneous estimation of crash frequency and severity has been studied for 
years, but most of the existing methodologies adopt mean regression models to estimate the 
parameters. This study presents the quantile selection model as a methodological alternative 
in analyzing crash rate and severity at different levels, focusing on addressing the 
heterogeneity and endogeneity issues so as to identify the influencing factors at signalized 
intersections. A two-step estimation procedure is carried out, in which the Heckman selection 
framework accommodates the endogenous relationship between crash rate and crash severity 
at different levels, while the quantile regression estimates various quantiles of crash rate 
instead of the mean regression, and accounts for the heterogeneity attributed to unobserved 
factors. Compare to the general Heckman selection model, the quantile approach is able to 
provide more comprehensive information about the impact of the influencing factors on crash 
rate. The model uses 555 observations from 262 signalized intersections in the Hong Kong 
metropolitan area, integrated with information on the traffic flow, geometric road design, road 
environment, traffic control and any crashes that occurred during two years. The proposed 
model reveals more detailed information in terms of different quantiles and improves the 
prediction accuracy.   
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Introduction 
 
The simultaneous estimation of crash frequency and severity at signalized intersections has 
attracted increasing attention in past decades. A variety of different approaches and 
perspectives (Park & Lord, 2007; Wong et al., 2007; Ye et al., 2009; Venkataraman et al., 
2013; Agebelie & Roshandeh, 2015; Agebelie , 2016; Islam & Hernandez, 2016) have been 
applied in prediction modeling. Studies have suggested that bias estimations might result for 
separate crash frequency or separate crash severity levels at signalized intersections because 
possible correlations between crash frequency and severity levels are not considered (Lord & 
Mannering, 2010). Moreover, Xu et al. (2013) also stated that heterogeneity and endogeneity 
issues should be addressed in evaluating the influencing factors on the safety. For decades, 
various modeling approaches have been proposed to deal with these two issues, but there has 
been no uniform criterion and too many modeling assumptions, which may violate the natural 
attributes and lead to biased inferences.  

Numerous modeling approaches have been adopted for the simultaneous estimation of 
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crash frequency and severity, for example multi-level hierarchical structures (Kim et al., 2007; 
Aguero-Valverde, 2014), simultaneous equations (Kim & Washington, 2006; Ye et al., 2009, 
2013; Caliendo & Guida, 2014) and two-stage bivariate or multivariate analysis (Ma & 
Kockelman, 2006; Park & Lord, 2007; Xu et al., 2014). Primarily, these approaches can be 
considered either combined crash frequency or severity models, or two-stage models. From 
the perspective of combined crash frequency or severity models, the studies mainly used 
combined models, e.g. a multivariate Poisson-lognormal model (El-Basyouny and Sayed, 
2011), a multinomial generalized Poisson structure (Chiou and Fu; 2013), a multivariate 
zero-inflated Poisson-lognormal regression model (Dong et al., 2014), or even Bayesian  
framework (Pei et al., 2011), and spatio—temporal analysis (Chiou and Fu, 2015) to address 
frequency and severity separately or simultaneously (Abdel-Aty and Keller, 2005).  

Alternatively, some researchers focus on the two-stage bivariate or multivariate analysis. 
Most of the two-stage models integrated two different models e.g. the two-stage mixed 
multivariate model (Wang et al., 2011), the outcome model with a multinomial probit 
selection model (Bhat et al., 2014), the two-stage bivariate logistic-Tobit model (Xu et al., 
2014), the two-stage model with binary probit model and switching regression model (Ding 
et al., 2015), and the two-stage bivariate binary probit and bivariate ordered probit model (Li 
et al, 2017), to simultaneously accommodate frequency and severity. All of these studies 
verified that two-stage analysis provides potential for future study.  

Fundamentally, the aforementioned models belong to the mean regression, in which the 
model assumptions cannot be easily extended to non-central locations, and are not always 
satisfactory with the nature of real-world data, especially in the case of homoscedasticity 
assumption (Qin, 2012). In light, quantile regression (QR) approach was proposed to specify 
conditional quantiles as functions of predictors (Koenker & Bassett, 1978). Currently, QR has 
been widely used in many fields and areas, such as example sociology, economics, finance 
and medical science (Qin, 2012; Wang et al., 2016), but the application in transportation 
research is still at the initial stage (Qin et al. 2010; Kwon et al., 2011; Qin, 2012; Wu et al., 
2014; Washington et al., 2014). A pioneering study by Hewson (2008) examined the potential 
role of QR for modeling the speed data, and demonstrated the potential benefits of using QR 
methods, providing more interest than the conditional mean. Subsequently, QR was 
introduced into safety area to identify the crash frequency (Qin et al., 2010; Qin, 2012; Wu et 
al., 2014) and crash severity (Liu et al., 2013; Washington et al. 2014).   

Compared with the mean regression, QR can estimate different effects at different 
quantiles of the response variable, in which a specific distribution is not required. Moreover, 
QR is more robust against outliers because the estimation results are less sensitive to outliers 
and multi-modality (Liu et al., 2013). In particular, QR can process the heterogeneity issue 
for data collected from different sources at different locations and times without many 
assumptions (Qin et al. 2010; Qin, 2012), which addresses the relationship between safety 
and influencing factors more appropriately. Besides, the Heckman selection model (Heckman, 
1979) is suitable to identify the relationship between crash rate and severity levels as it helps 
to correct the selection bias, providing a direct test for endogeneity from the estimation. 
Again, the Heckman selection model has been commonly adopted in the economics field, but 
application in transportation research was unfamiliar (Zhou & Kockelman, 2008; Kaplan et 
al., 2016; Xu et al. 2017).  
 Although QR approach and Heckman selection model are popular in different areas, 
these two modeling approaches have been rarely combined. In this study, the QR and 
Heckman selection model are integrated to establish a sophisticated Quantile Selection Model 
(QSM). In this QSM, the crash rate is realized by QR approach that is more robust to 
non-normal errors, while the crash injury severity is addressed by sample selection model, so 
that both the heterogeneity and endogeneity issues are addressed simultaneously. The model 
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provides a two-step analysis and deals with the zero-sample issue, based on which it can 
accommodate the heterogeneity (i.e., shared unobserved factors) between signalized 
intersections and then address the endogeneity (between crash rate and severity levels) at 
signalized intersections. An illustrative example using a crash dataset from signalized 
intersections in Hong Kong is used to evaluate the suitability of the proposed model.  
 
Data Description 
 
In this study, traffic crash information extracted from the Traffic Accident Database System 
(TRADS) of 262 signalized intersections in Hong Kong during the periods between 2002 and 
2004 were adopted. The crash information of an intersection in a particular year is considered 
as an independent observation, and hence a total of 555 observations distributed across Hong 
Kong Island (HKI), Kowloon (KLN) and the New Territories (NT) were obtained (Xu et al., 
2014). The count data included intersections without crashes or with one or multiple crashes 
in two severity levels: 1) slight injury, or 2) killed or serious injured (KSI). To conform to the 
proposed model selection procedure, intersections zero crashes are included. Among the 555 
observations, 135 (24%) exhibited zero crashes and 420 (76%) exhibited one or multiple 
crashes. Among the 76% crashes, 60% of 420 crash cases belonged to the slight injury 
category, and the remaining 16% belonged to the KSI category.  

To review the performance of crash data, the distributions on the crash rate of slight 
injury and KSI are plotted in Figure 1. The crash rate of slight injury (SCrRt) or KSI (KCrRt) 
are defined as the numbers of million crashes per year divided by the annual exposure, which 
is calculated by multiplying the annual average daily traffic (AADT) by 365 days. 
Considering that skewed distribution is observed, the QR approach is therefore preferred for 
modeling crash rate in this study. Furthermore, due to the data collection process, substantial 
heterogeneity may exist in the crash data among the signalized intersections.  
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Figure 1 Crash Rate Histogram of Slight Injury and KSI 

   Other contributory factors, including roadway characteristics (number of approach lanes, 
number of conflict points, number of turning movements required, average lane width and 
reciprocal of the turning radius), traffic characteristics (proportion of commercial vehicles 
and speed limit), signal-phasing scheme (number of signal phases, signal cycle time and 
number of pedestrian crossings), geometric characteristics (number of approaches, presence 
of tram stops and light rail transit [LRT] stops), road environments on HKI and in KLN and 
presence of turning pockets were also observed (Wong et al., 2007; Xu et al., 2014). The 
available characteristics of the data sample are presented in Table 1.  
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Table 1 Sample characteristics for the selected signalized intersections (Sample size = 555) 

Variable Description Categories 
i) Dependent variables     
Slight Slight injury  Yes: 60% No: 40% 
KSI Killed and serious injury (KSI) Yes: 15% No: 85% 

     
 Mean S.D. Min. Max. 

SCrRt Crash rate of slight injury 0.62 0.50 0.39 3.03 
KCrRt Crash rate of KSI 0.60 0.47 0.68 2.45 

ii) Exposure      
AADT AADT 35,934.16 23,219.35 903 121,221 

     
iii) Continuous variables     
Roadway characteristics     
Nolanes Number of approach lanes 8.49 3.52 2 18 
Noconflict Number of conflict points 8.74 8.53 0 30 
Notrnstream Number of turning movements required 6.32 2.70 1 12 
Lanewidth Average lane width (m) 3.31 0.31 2.7 5.5 
Reciprad Reciprocal of the turning radius 0.09 0.03 0 0.2 

Traffic characteristics     
Comveh Proportion of commercial vehicles 0.21 0.10 0.01 0.66 
Speed Speed limit (km/h) 50.04 0.85 50 70 

Signal-phasing scheme     
Nostages Number of signal stages 3.14 0.78 2 7 
Cycletime Cycle time (s) 98.31 18.30 44 140 
Pedcrossing Number of pedestrian crossings 4.06 2.21 0 8 

     
iv) Indicator variables (Yes=1, No=0)     
Geometrical characteristics     
2 Appr. Two approaches 0.16  0 1 
3 Appr. Three approaches 0.30  0 1 
4 Appr. Four or more approaches  0.69  0 1 
Tramstop Presence of tram stops  0.06  0 1 
Lrtstop Presence of LRT stops 0.02  0 1 

Road environment     
HKI Hong Kong Island  0.23  0 1 
KLN  Kowloon 0.58  0 1 

Signal-phasing scheme     
Turningpock Presence of turning pocket 0.08  0 1 

S.D. = Standard deviation  
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Method 
 
Quantile regression (QR) model 
Quantiles are cut points dividing the range of a probability distribution into contiguous 
intervals with equal probabilities. Let p be a number between zero and one, then the 100p 
percentile of the distribution for a continuous random variable y, denoted by Q(p), can be 
expressed as follows: 

 ( ) ( )
( )

( ) ( ) ( )
Q p

p P y Q p F Q p f y dy
−∞

= ≤ = = ∫  (1) 

where f(y) is the density distribution function. Converted from Equation (1), Q(p) with 
10 ≤≤ p is defined as follows: 

 

 { }pyFypFpQ ≥== − )(:inf)()( 1
     10 ≤≤ p  (2) 

where 1F −  denotes the inverse function of the cumulative distribution function, and inf 
denotes the greatest lower bound. It is noted that Q(0.5) is the median. The first and third 
quartiles are Q(0.25) and Q(0.75), and the 95th percentile is expressed as Q(0.95), 
respectively.  

Similar to the mean of a random sample leading to the minimal of the sum of square 
errors, the median of a random sample { }nyyy ,..., 21 for a random variable y results in the 
minimal of the sum of absolute deviations. Consequently, the general Q(p) can be interpreted 
as an optimal solution to minimize the weighted average of the samples whose values are 
larger or equal to Q(p), and the samples whose values are less or equal to Q(p) as follows:  
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Assume y is a linear function of the variables as the following: 
 
              y X β ε′= +  (4) 

where y denotes the response variable, β is the vector of unknown parameters of the 
covariates X, and ε  is random error. Therefore, the optimization problems can be converted 
into solving the estimation for β s: 
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k
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β β β

β β β
∈ ∈ ≥ ∈ <

 
 ′ ′= − + − −
  
∑ ∑

     (5) 

As for any quantile p between 0 and 1, ˆ( )pβ can be regarded as the pth regression 
quantile, which minimizes the sum of weighted absolute residuals (Qin et al. 2010; Qin & 
Reyes, 2011; Qin, 2012).  
 



6 
 

Heckman selection model 
The Heckman selection model formulates from two equations, including a regression 
equation:  
               1µβ += ii Xy  (6) 

and a selection equation  

               02 >+ µγiZ   (7) 

with the following holds: 
               ),0(~1 σµ N  

               )1,0(~2 Nµ  (8) 

               ρµµ =),( 21corr  
where iy  denotes the dependent variables, iX denotes the observable features of the 
independent variables, β  denotes the parameters to be estimated and 1µ  is a normally 
distributed error term with a mean of zero and a standard deviation σ  to be estimated. iZ  
denotes observable features including the overlapping variables with iX , and γ  denotes the 
vectors of parameters to be estimated. 2µ  is a distributed error term with a mean of zero and 
a standard deviation equal to one. ρ  represents the correlation between the two error terms 
to be estimated. Using these two equations, samples larger than zero can be selected and 
estimated based on various modeling methods, through which the Heckman selection model 
provides consistent, asymptotically efficient estimates for all of the parameters. More detailed 
estimation procedures can be referred to Leung and Yu (1996), Schwiebert (2015) and Xu et 
al. (2017). 
 
Quantile Selection Model 
Different from Equation (4), Equation (6) is a mean-type regression model. However, if a 
more comprehensive view of the relationship between dependent and independent variables 
at various response levels is required, the estimates by Equation (6) may be inadequate. 
Moreover, the random errors in Equation (6) may not follow the normal distribution, thus the 
assumptions will be violated. Therefore, when the effect of explanatory variables on the 
entire distribution of dependent variables is required, and the random errors do not conform 
to the normal distribution hypothesis, the quantile selection model is therefore proposed as 
supplement for the conventional Heckman selection model. 

In this study, it is assumed that a quantile regression model can be used to explain the 
crash rate for slight injury/KSI: 
 

       iiiiii XCXy µβµββ +=++= 211  (9) 

where iy  denotes the crash rate for slight injury/KSI, not mean type but quantile; iX  is a 
vector of observable features related to slight injury/KSI, in which iX1  represents the 
endogenous variables; iC  stands for the exogenous variables; 1β , 2β  and β  are vectors 
of parameters to be estimated; and iµ  is error term to be estimated. Here, the dependent 
variable iy  may not always be observed, and it is specially observed only when the crashes 
actually belong to the slight injury/KSI categories. Therefore, in the selection model, the 
dependent variable is observed if: 
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       0211 >+=++ iiiii ZCZ υγυγγ     (10) 

where iZ  is a vector of observable features related to slight injury/KSI, which includes the 
overlapping variables with iX ; iZ1  represents the endogenous variables that may or may 
not be the same as iX1 ; 1γ , 2γ  and γ  are vectors of the parameters to be estimated; and 

iυ  is a distributed error term with a mean of zero and a standard deviation equal to one. 
This equation describes the probability that slight injury/KSI is greater than zero. 

The error terms hold the following distribution: 
 

                )1,0(~ Niυ   (11) 

                ρυµ =),( iicorr  
where ρ  represents the correlation between the two error terms to be estimated. The 
parameter σρλ = , known as the inverse Mills ratio, is the estimated selection coefficient.  

The estimation of the quantile selection regression consists of two steps, starting from 
the selection model. In the first step, the probit regression is used to model the sample 
selection process in Equation (10), and then the inverse Mills ratio λ , the error from the 
probit equation explaining selection, is calculated based on the probit regression results.  
This step can be done using maximum likelihood. In the second step, the inverse Mills ratio 
is added to quantile regression analysis as an independent variable, and ordinary least 
squares regression is used to provide the consistent parameter estimates in quantiles of 
Equation (9). The estimation can be computed as follows: 

[ ] [ ]




∑ ∑ −−+−=
= =∈

N

i

N

i
iiii

R
XYXY

k 1 1

'*'* ))(1()(minargˆ βτβτβ
β

τ             (12) 

where β̂  is a consistent estimator of the τ th quantile regression coefficient for any given 
τ ∈ (0,1), *

iY is latent outcome from probit regression. 
In this study, the inverse Mills ratio term includes two parts: a selection effect and an 

effect due to the endogeneity. If the endogeneity between crash rate and injury severity 
levels is absent, the endogeneity effect is zero, and the model is reduced to the general 
two-step selection model. The selection effect gives the expected outcome of the fully 
observed sample while holding the entire explanatory variables constant (including the 
endogenous variable), and the sign of the selection effect with the endogenous variable is 
determined by the correlation coefficient ρ . By estimating the preceding equations, the 
crash rate and severity at different levels can be simultaneously and respectively calculated, 
and the full distribution of all quantiles is addressed along with the heterogeneity and 
endogeneity at the signalized intersections. More estimation methods related to the quantile 
selection models are given in Alhamzawi (2015; 2016), Arellano and Bonhomme (2017). 
 
Results and Discussion 
 
To avoid correlations between the independent variables, a correlation test is conducted to 
identify the variables without co-linearity to be included in the model, allowing the final 
results to be obtained. Based on the correlation matrix, the number of approach lanes, conflict 
points, turning movements and signal stages are highly correlated. Therefore, these variables 
are not included in the model at the same time.  

A two-step quantile selection regression models is developed in this study. The first-step 
model is a selection model that determines the presence of injury cases; whereas the 
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second-step model examines the effect of the influencing variables on the quantiles of crash 
rate. To test for bias, we examine the relationship between the residuals in  two steps. If the 
unobserved factors in the first-step selection model are correlated with the unobservable 
variables in the second step of the model,  the correlation is not zero, which implies that 
unobservable variables in the crash injury selection model also affect the second step of the 
model and heterogeneity issue exists; If the unobserved factors in the first step are unrelated 
to the unobservable variables in the second step, that the results of the first step do not affect 
the results of the second step, and the residuals are not correlated.. 

The results are presented for the best model specification of slight injury and KSI as 
quantile selection models in Tables 2 and 3, respectively, which gives the estimated 
coefficients and 95% confidence intervals for statistically significant variables at the 25th, 50th, 
75th, 90th, 95th percentile of crash rate distribution. Consequently, it presents a broader and 
complete view of the variables with different crash rates, that is to say, rather than assuming 
the coefficient are fixed across all the signalized intersections, some or all of them are 
allowed to vary to account for heterogeneity attributed to unobserved factors. Moreover, the 
error terms for ρ at different quantiles are positive for slight injury and negative for KSI, 
meaning that the unobserved factors that cause slight injury/KSI are positively and negatively 
correlated with one another, respectively. 
 
Table 2 Estimated results of the quantile selection model for slight injury 

Variables Coefficient (t-statistics)  
 0.25 0.50 0.75 0.90 0.95 

Reciprad 1.722* (6.40) 2.722* (9.49) 4.224* (24.29) 3.556* (11.39) 1.908(0.44) 
Cycletime 0.001* (2.82) 0.004* (9.50) 0.008* (17.94) 0.005* (17.49) 0.008(0.68) 
Tramstop 0.143* (5.26) 0.230* (6.68) 0.273* (9.43) 0.411* (26.58) 0.293(0.42) 
KLN 0.166* (9.68) 0.218* (11.72) 0.137* (6.89) 0.264* (23.47) 0.431(1.03) 
Cons -0.261* (-6.14) -0.610* (-11.42) -0.657* (-11.45) -0.246* (-8.99) -0.363(-0.48) 

 Coefficient Std. Err. Z-statistic   
Slight injury model 
LnAADT 0.482* 0.074 6.49   
Reciprad 4.572* 2.086 2.19   
Tramstop 0.812* 0.240 3.39   
KLN 0.680* 0.121 5.62   
Cons -5.504* 0.783 -7.02   

Goodness-of-fit      
  ρ  0.778 0.783 0.786 0.773 0.757 
σ  0.486 0.480 0.487 0.481 0.461 
λ  0.378 0.376 0.383 0.372 0.349 

MAD 0.297 0.249 0.324 0.390 0.558 
RMSE 0.469 0.399 0.450 0.503 0.646 

Note: * Significant at the 5% level.  

 Mean absolute deviation (MAD) = 1
1

ˆ
= −∑n

i i in Y Y , and  

 Root mean square error (RMSE) = 21
1

ˆ( )= −∑n
i in Y Y , where  is the observed value,  is the 

predicted value and n is the number of observations. MAD and RMSE are used to compute the errors and 
reflect the goodness-of-fit of the proposed model.  
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Table 3 Estimated results of the quantile selection model for KSI 
Variables Coefficient (t-statistics) 

 0.25 0.50 0.75 0.90 0.95 
Lanewidth -0.063* (-3.17) 0.054* (2.78) 0.311* (4.30) 0.832* (63.41) 0.651(0.90) 
Cycletime 0.001* (2.10) 0.006* (5.01) 0.012* (8.60) 0.005* (23.83) 0.003(0.27) 
KLN 0.157* (12.43) 0.188* (4.10) 0.215* (473) 0.329* (35.86) 0.304(0.70) 
Cons 0.160 (1.91) -0.532 (-1.93) -1.573* (-5.04) -2.556* (-44.66) -1.710(-0.53) 
 Coefficient Std. Err. Z-statistic   

KSI model 
Comveh 0.482* 0.074 6.49   
Tramstop 0.812* 0.240 3.39   
Cons -5.504* 0.783 -7.02   

Goodness-of-fit      
 ρ  -0.856 -0.909 -0.853 -0.836 -0.835 
σ  0.636 0.638 0.632 0.590 0.507 
λ  -0.544 -0.580 -0.539 -0.493 -0.423 
MAD 0.393 0.326 0.427 0.539 0.582 
RMSE 0.602 0.489 0.572 0.693 0.712 

Note:  * Significant at the 5% level. 
  

To demonstrate the effectiveness of the proposed model, Tables 4 and 5 give the results 
obtained from the Heckman selection model, with which the proposed model shares some 
similar features. The correlations between the two severity levels, ρ  in Tables 2 and 3 before 
75th percentile are stronger than those in Tables 4 and 5, which corresponds to the dataset 
distribution in Figure 1. Furthermore, MAD and RMSE values at 50th quantile in Tables 2 and 
3 are smaller than that in Tables 4 and 5. The results of the proposed quantile selection 
models provide more holistic and accurate results, revealing both the crash rates at all 
quantiles for slight injury and KSI severity simultaneously.  
 
Table 4 Estimated results of the Heckman selection model for slight injury 

Variables Coefficient Std. Err. Z-statistic 
Crash rate of slight injury  

Reciprad 4.923* 1.005 4.90 
Cycletime 0.004* 0.001 2.63 
Tramstop 0.244* 0.112 2.19 
KLN 0.279* 0.068 4.12 
Cons -0.714* 0.215 -3.32 

Slight injury model 
AADT 0.001* 0.001 7.43 
Reciprad 4.256* 2.094 2.03 
Tramstop 0.872* 0.240 3.63 
KLN 0.698* 0.123 5.68 
Cons 10.267* 0.010 3.68 

Goodness-of-fit  
ρ  

 
0.778 

  

σ  0.486   
λ  0.378   
Number of observations 555 
Wald Chi-square 45.85 
MAD 0.257 
RMSE 0.409 

Note: * Significant at the 5% level.  
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Table 5 Estimated results of the Heckman selection model for KSI 
Variables Coefficient Std. Err. Z-statistic 

Crash rate of KSI 
Lanewidth -0.039* 0.014 -2.81 
Cycletime 0.007* 0.003 2.24 
KLN 0.330* 0.113 2.91 
Cons 0.854* 0.561 1.52 

KSI model 
Comveh 1.767* 0.628 2.81 
Tramstop 0.585* 0.228 2.57 
Speed 0.229* 0.003 71.98 
Cons 9.979* 0.004 2.58 

Goodness-of-fit  
ρ  

 
-0.856 

  

σ  0.636   
λ  -0.545   
Number of observations 555 
Wald Chi-square 21.90 
MAD 0.385 
RMSE 0.635 

Note: * Significant at the 5% level.  
 
Table 6 Elasticity of Crash Rate Varying with Influencing Variables 
  
 

 Table 6 shows how the elasticity of crash rate varies with the significant variables in 
each quantile. The elasticity of crash rate can be calculated from one-unit increase or decrease 
in one variable while holding the mean values of other influencing variables in each quantile 
constant. The elasticity of crash rate in the slight injury model shows similar trends for all of 
the variables except cycle time, whereas no obvious trends in the elasticity of crash rate in the 
KSI model are observed for the variables except the lane width variation. 

As the results in Table 2 and 3, crash rate is positively influenced by the reciprocal of 
turning radius, cycle time, presence of tram stop and road environment in Kowloon. However, 
the closer examination of the magnitude of the estimated coefficients reveals some 
differences and similarities between the quantiles. First, the difference is that significant 
variables may reveal different impacts on crash rate at different percentiles, e.g. the reciprocal 
of turning radius is more likely to influence crash rate in the low tail than in the high tail. A 
unit increase of the reciprocal of turning radius may increase the crash rate 159% at the 25th 
percentile or crash rate 43% at the 90th percentile. This indicates that the significant 
reciprocal of turning radius variation at signalized intersections with low tail may trigger a 
sharp crash explosion easily, thus more attentions should be paid to the turning radius located 
at those intersections by roadway designers or planners. 

Elasticity Crash Rate for Slight Injury 
 0.25 0.50 0.75 0.90 

Reciprad 159% 81% 71% 43% 
Cycletime 1% 1.5% 0.2% 0.6% 
Tramstop 146% 76% 49% 51% 
KLN 170% 72% 24.5% 33% 
Elasticity Crash Rate for KSI 

 0.25 0.50 0.75 0.90 
Lanewidth 16.2% 15.6% 41.4% 94.7% 
Cycletime 0.2% 2.1% 1.6% 3.9% 
KLN 40% 55% 27% 37.5% 
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Figure 2 Quantile plots for variable coefficients of slight injury 
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(b) 

 

 

(c)  
Figure 3 Quantile plots for variable coefficients of KSI 
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Secondly, consistent with the results of the Heckman selection model, the similarity is 
that all influencing variables are of significance to the 90th percentile, while most of the 
variables are not significant at the 95th percentile. As shown from Figure 1, the distribution of 
crash rate concentrates before 75% correspondingly, and begins to weaken from the 75th 
percentile to the 90th percentile. The reason that all the variables are not statistically 
significant at the 95th percentile is not only due to the shortage of crash data, but also because 
of other influencing factors besides the listed variables, such as vehicle problems, drivers’ 
issues, and even environmental conditions, etc. This suggests that the diversity of data sets 
may need to be considered to evaluate the safety impact at signalized intersections. 

Figures 2 and 3 illustrate the estimation results of the coefficients for all the variables. 
The solid line denotes the coefficients for the 25, 50, 65, 75, and 90 percentiles, which are 
enveloped by two dashed lines representing a 95% confidence interval. 
 
Slight injury model 
 
Various studies have demonstrated that AADT is significantly related to crash rate 
(Abdel-Aty & Radwan, 2000; Wong et al., 2007; Milton et al., 2008). Likewise, as shown in 
Table 2, it is demonstrated that AADT is positively influence the slight injury, implying that 
traffic volume increases the possibility of slight injury. The more traffic volume on the 
roadway, the higher the probability that conflicts will be generated. However, because there is 
greater traffic volume, the vehicles may not speed much, thus the severity mostly resides in 
reasonable slight injury.  

As demonstrated in Figure 2(a), the reciprocal of the turning radius is significantly and 
positively correlated with the crash rate at all quantiles. A larger turning radius, i.e. smaller 
reciprocal of the turning radius, is accompanied by better sight distance, such that the severity 
of crashes decreases. However, for slight injury, the positive relation to crash rate and slight 
injury indicates that the possibility of crashes and slight injury still increases with the traffic 
flow, even under the large turning radius condition. 

Basically, cycle time is positively associated with the crash rate of slight injury. A longer 
cycle time is usually accompanied by longer vehicle queues and delays, implying that more 
vehicles arrive at the intersections during the signal cycle, and more chances conflict with 
each other and run into slight injury. Plus, longer cycle times may arouse some drivers’ 
emotions, leading to aggressive driving that ends in injuries. However, as shown in Figure 
2(b) and Table 6, the crash rate of slight injury is decreased at 75th percentile when the cycle 
time reaches certain limit. The turning curve is such that the slight injury data mostly 
concentrate before 75th percentile, implying that the vehicles queues are either adequately 
long or congested, thus leading to the slight injury down.  

The presence of tram stops is positively related to the slight injury and crash rate at all 
quantiles as shown in Figure 2(c), and Table 6 shows that the influence of presence of tram 
stops is larger at lower tail than that at higher tail. In Hong Kong Island the tram stops are 
located in the center of the road, and next to the signalized intersections. Reasonably, more 
tram stops may possibly increase the conflicts between passengers and automobiles, thus 
leading to more crashes. However, because the travel speed of tram is relatively low and 
passengers get aboard and alight at a raised area of tram stops. And therefore, the conflicts 
between passengers and the automobiles are more commonly attributed to slight injury. 

Although the road environment in KLN is significantly and positively related to the 
crash rate and slight injury in Table 2, clear trend of crash rate is not observed for all the 
quantiles as shown in Figure 2(d) because the curve fluctuates up and down at 50th and 75th 
percentiles, respectively. This indicates that the impact of road environment is not stable in 
Kowloon. The complicated traffic conditions in Hong Kong create more chances for crashes, 
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and the complicated road environment there causes more trouble whether the slight injury or 
KSI. 
 
KSI model  
 
The average lane width is negatively linked to a higher risk of KSI severity at 25th percentile, 
which is uniform with previous findings from Xu et al. (2014); however, it becomes 
positively related to crash rate of KSI beyond the 25th percentile, as shown in the curve in 
Figure 3(a), which depicts the rising trend. Currently, there is controversy about whether 
wider or narrower lanes are safer in roadway design, and the turning curve in the figure 
demonstrates the dispute, but this study suggests that wider lanes are safer, especially for KSI. 
Thus, it is recommended that the lane width at signalized intersections should be carefully 
designed to minimize the crash rate of KSI. 

Similar to the results of quantile selection model for slight injury, cycle time is 
positively correlated with crash rate of KSI at signalized intersections before 75th percentile, 
such that a longer cycle time increases the crash risk of KSI, while the curve begins to reduce 
after 75th percentile in Figure 3(b), corresponding to the data distribution in Figure 1. For 
those aggressive drivers, if they know that they will have to wait for a long red light, red-light 
jumping may increase if they miss the last seconds of the amber light, which is a dangerous 
maneuver that leads to more serious crashes. 

Shown from Figure 3(c), the traffic in Kowloon significantly and positively affects the 
KSI crash rate for all quantiles, and the curve begins to increase significantly after the 75th 
percentile. Thousands of people walk Kowloon’s streets every day, increasing the probability 
of crashes, some of which may be attributed to KSI if pedestrians and the drivers are 
aggressive. Most of Kowloon is flat and world famous stores are gathered here, attracting 
tourists from around the world. In contrast, foothills occupy a large proportion of the 
geography of Hong Kong Island and other areas, and although these areas have some 
attractions, they attract fewer pedestrians than those in Kowloon.  

The KSI severity at signalized intersections is positively sensitive to the proportion of 
commercial vehicles, in agreement with Xu et al. (2014). As the collisions with or between 
commercial vehicles usually have a greater force of impact and involve more people than 
those with or between non-commercial vehicles, a higher proportion of commercial vehicles 
means a higher proportion of heavy vehicles. Thus, in the event of a crash, the likelihood of a 
KSI is higher.  

The presence of tram stops is positively related to the KSI severity. Similar to the 
quantile selection model for slight injury, more tram stops may increase the conflicts between 
passengers and vehicles, leading to more crashes.  

To sum up, crash rate can be a predictor in the quantile selection model for slight injury 
and KSI, and vice versa. In other words, the increase in the crash severity can be reflected 
from the decrease in crash rate since crash severity is considered as one independent variable 
in the crash rate function, while the increase of crash rate implies that the crash severity may 
be reduced, thus the endogeneity can be characterized and verified by the quantile selection 
model directly. 
 
Conclusions 
 
In this paper, the crash rate and crash severity are modeled to evaluate the safety performance 
at signalized intersections in Hong Kong, while taking into account the heterogeneity and 
simultaneity issues. The quantile selection model, to the authors’ knowledge, is by far the first 
attempt in the literature on the crash rate and crash severity to simultaneously model the 
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safety at signalized intersections. A two-step procedure is used to assess the crash rate and 
crash severity simultaneously and address the slight injury and KSI separately, and the 
quantile regression accommodates the heterogeneity (i.e., shared unobserved factors) between 
signalized intersections, and the Heckman selection framework tackles the endogeneity 
(between crash rate and crash severity) at signalized intersection. Compared with the 
Heckman selection model, the proposed quantile selection model offers a more complete 
view and a highly comprehensive analysis of the relationship between variables, which 
reflects different effects at different quantiles of the response variable, and fewer assumptions 
were made for quantile regression, which is helpful to describe the relationship between crash 
rate and crash severity more naturally. 
 Generally, the results of the quantile selection model for slight injury indicate that the 
crash rate is positively correlated with the reciprocal of the turning radius, cycle time, the 
presence of tram stops and road environment in Kowloon, whereas the slight injury severity 
is significantly influenced by the AADT, the reciprocal of the turning radius, the presence of 
tram stops, and the road environment in Kowloon, but show some difference at different 
quantiles. Regarding the results of the quantile selection model for KSI, cycle times and road 
environment in Kowloon increase the likelihood of crash rate for KSI whereas the average 
lane width shows some variation at different quantiles. The proportion of commercial 
vehicles and the presence of tram stops increase the likelihood of KSI severity. The quantile 
selection model also addresses the correlation between the crash rate for slight injury/KSI and 
slight injury/KSI severity respectively, which implies that the unobserved variables are 
heterogeneous between the signalized intersections in Hong Kong.  

Nevertheless, the dataset has its limitations. First, about 555 observations are included 
and are very limited, thus the estimation results may be more accurate if more observations 
are involved. The second limitation concerns the explanatory variables. A broader range of 
explanatory variables could result in statistically significant coefficient estimates, thus more 
variables should be collected. The third limitation is that the temporal effect at signalized 
intersections is not addressed, and the model performance may be improved if the temporal 
effect is integrated into the future dataset for typical signalized intersections. 
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