
 1 

Exploring the limit of using a deep neural 1 

network on pileup data for germline 2 

variant calling 3 
 4 
Ruibang Luo*, Chak-Lim Wong, Yat-Sing Wong, Chi-Ian Tang, Chi-Man Liu, Chi-Ming Leung, 5 
Tak-Wah Lam* 6 
 7 
Department of Computer Science, The University of Hong Kong, Hong Kong, China 8 
 9 
* Correspondence and requests for materials should be addressed to R. L. (email: 10 
rbluo@cs.hku.hk) and T. L. (twlam@cs.hku.hk) 11 
 12 

Abstract 13 

Single-molecule sequencing technologies have emerged in recent years and revolutionized 14 

structural variant calling, complex genome assembly, and epigenetic mark detection. 15 

However, the lack of a highly accurate small variant caller has limited the new technologies 16 

from being more widely used. In this study, we present Clair, the successor to Clairvoyante, 17 

a program for fast and accurate germline small variant calling, using single molecule 18 

sequencing data. For ONT data, Clair achieves the best precision, recall and speed as 19 

compared to several competing programs, including Clairvoyante, Longshot and Medaka. 20 

Through studying the missed variants and benchmarking intentionally overfitted models, we 21 

found that Clair may be approaching the limit of possible accuracy for germline small variant 22 

calling using pileup data and deep neural networks. Clair requires only a conventional CPU 23 

for variant calling and is an open source project available at https://github.com/HKU-24 

BAL/Clair. 25 
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Introduction 26 

Fast and accurate variant calling is essential for both research and clinical applications of 27 

human genome sequencing1,2. Algorithms, best practices and benchmarking guidelines have 28 

been established for how to use Illumina sequencing to call germline small variants, 29 

including single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels)3-6. In 30 

recent years, single-molecule sequencing (SMS) technologies have emerged for a variety of 31 

important applications7. These technologies, which are also known as the third-generation 32 

sequencing technologies, generate sequencing reads two to three orders of magnitude 33 

longer than Illumina reads (10–100kbp versus 100–250bp). The long read length has made 34 

the new SMS technologies, including Pacific Biosciences (PacBio) and Oxford Nanopore 35 

Technology (ONT), unprecedentedly powerful for resolving complex genome assembly 36 

problems and for detecting large structural variants8. However, currently available SMS 37 

technologies also have a significantly higher base error rate of 3–15%9, making the variant 38 

calling methods previously designed for Illumina sequencing inapplicable to SMS 39 

technologies. The lack of accurate tools for efficient variant calling has limited SMS 40 

technologies from being applied to the many problems that require SNPs and small indels. 41 

 42 

In our previous work, we developed Clairvoyante10, a germline small variant caller for single 43 

molecule sequencing data. Clairvoyante does not require sequence assembly and calls 44 

variants directly from read alignments. Clairvoyante adopts a deep convolutional neural 45 

network, so that by using the truth variants called and orthogonally verified in seven human 46 

individuals by the Genome In A Bottle (GIAB) consortium11-13, Clairvoyante can be trained 47 

for variant calling on any new type of sequencing data without the need to look into its 48 
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error profile and build a hand-crafted model. Clairvoyante takes pileup data as input and 49 

runs quickly. However, Clairvoyante’s design is unable to call multiallelic variants or indels 50 

longer than four bases. These defects remain to be solved. Meanwhile, the limit of using 51 

pileup data and deep neural networks for variant calling remains to be explored. 52 

 53 

In this study, we present Clair, a fast and accurate system for germline small variant calling 54 

using single molecule sequencing data. With an entirely different network architecture and 55 

learning tasks (i.e. output components), Clair resolves the multiallelic and long indel variant 56 

calling problems that have prevented Clairvoyante from calling all types of small variants. 57 

We describe in detail the methods we tried that either worked or did not work for 58 

improving Clair’s performance. For ONT datasets14, our experiments on whole-genome 59 

variant calling in GIAB samples show that Clair outperforms Clairvoyante and other variant 60 

callers, including Longshot15 and Medaka16, in terms of precision, recall and speed. For high 61 

accuracy reads, including both PacBio CCS (Circular Consensus Sequencing)17 and Illumina 62 

datasets13, DeepVariant18 had modestly improved F1-scores over Clair by .11% to .13%, 63 

although Clair was seven times faster. Looking into the false positive (FP) and false negative 64 

(FN) variants of the three sequencing technologies showed that except for variants with 65 

insufficient coverage by chance, most of the others could be resolved using complete read 66 

alignments instead of pileup data or else could not be resolved at all, even with a manual 67 

inspection. 68 
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Results 69 

Overview of Clair 70 

Clair is a four-task, five-layer recurrent neural network with two bi-directional LSTM layers 71 

followed by three feedforward layers (Figure 1). Clair takes a BAM file as input to find 72 

candidate variants with any minor allele frequencies larger than a threshold (typically 73 

between 0.1 and 0.2), and then computes a pileup of the candidates and converts the 74 

summaries into a tensor. In a tensor, the allelic counts of bases and gaps on both strands of 75 

a candidate variant and its 16 flanking bases are encoded into 1,056 integer values. More 76 

details and pseudo code are available in the Methods section. As discussed in the 77 

Clairvoyante paper, one major unsolved problem was how to support the calling of multi-78 

allelic variants (i.e., variants with two alternative alleles). In Clair, the problem is solved by 79 

using four new (deep learning) tasks that are entirely different from Clairvoyante. These are: 80 

1) a 21-genotype probabilistic model with 21 probability outputs; 2) the use of three 81 

probabilities for the input, including a homozygous reference (0/0 genotype), a 82 

heterozygous variant (0/1) or a homozygous variant (1/1); 3) the length of the first indel 83 

allele, with 33 probabilities representing a length of ‘<-15bp’, ‘-15bp’, ‘-14bp’, …, ‘-1bp’, 84 

‘0bp’, ‘1bp’, …, ‘15bp’, ‘>15bp’; and 4) the length of the second indel allele. The 21-genotype 85 

probabilistic model can represent all possible genotypes of a diploid sample at the genome 86 

position. The length of indels longer than 15bp cannot be directly inferred from the third 87 

and fourth tasks, so Clair includes an additional step that re-scans the alignments. More 88 

details on each of these steps can be found in the Methods section. The four tasks make 89 

their own decisions and are designed to cross-validate each other. For example, task two is 90 

a coarse-grained version of task one and can veto the decision made by task one. Tasks 91 
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three and four should indicate 0bp indel length if an SNP variant is decided by task one. 92 

More details on how the four tasks make a joint decision are available in the Methods 93 

section. We used the ‘focal loss’ deep-learning technique to solve the problem of 94 

unbalanced variant types in training data. We used the ‘cyclical learning rate’ deep learning 95 

technique to achieve the maximum possible variant calling performance and speed up the 96 

training process to be able to handle larger training datasets. To improve Clair’s 97 

performance at lower sequencing coverages, we augmented the training data with 10 98 

subsampled coverages of each dataset. The parameters of these three new techniques are 99 

in the Methods section. 100 

 101 

Clair has 2,377,818 parameters, which is 45.7% more than Clairvoyante (1,631,496 102 

parameters) but only one tenth as many as DeepVariant (23,885,392 parameters). In terms 103 

of variant calling speed, Clair takes about 30 minutes, 1.5 hour, and 5 hours for a 50-fold 104 

coverage WGS sample using Illumina, PacBio CCS and ONT data, respectively, using 24 CPU 105 

cores. In our experiments, Clair was 10–20% slower than Clairvoyante, but significantly 106 

faster than DeepVariant, Longshot and Medaka. 107 

 108 

The Methods section includes a description of procedures to augment the training data or 109 

improve Clair’s network architecture that we tested but that did not improve precision and 110 

recall of variant calling. Developers working on further improving Clair’s performance can 111 

save time by avoiding the same methods, or the same settings in a method. 112 

 113 
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Performance on ONT 114 

ONT datasets are currently available for two GIAB samples, HG001 and HG002. The HG001 115 

rel6 dataset generated by the Nanopore WGS Consortium14 contains approximately 44.3-116 

fold coverage of human genome (the dataset is also referred to as 1:44x, where '1' means 117 

the sample suffix and '44x' means the coverage). The rel6 dataset was base-called with 118 

Guppy 2.3.8, using the HAC (High-ACcuracy) model. In addition to the rel6 dataset, we 119 

obtained a separate 124.1-fold coverage dataset for HG001 (1:124x) directly from Oxford 120 

Nanopore (Philipp Rescheneder, personal communication). That dataset was base-called 121 

with Guppy 2.2.3 using the Flip-Flop model. In some experiments, we combined 1:44x and 122 

1:124x to form a new dataset 1:168x to maximize the coverage. For HG002, we used a 123 

dataset with ~64-fold coverage (2:64x) from the GIAB consortium, which was base-called 124 

with Guppy 2.3.5 using the Flip-Flop model. The links to the datasets are available in the 125 

Supplementary Notes. The details about "the GIAB truth variant datasets", and "the 126 

benchmarking methods and metrics" are available in "Methods – Benchmarking". Please 127 

note that we have removed the low-complexity regions defined by GA4GH (The Global 128 

Alliance for Genomics and Health)6 from benchmarking and we suggest removing these 129 

regions as a common practice in calling small variants using the current ONT data. The 130 

details of the regions removed, and the performance differences before and after removing 131 

the low complexity regions using different sequencing technologies are available in 132 

"Methods – Benchmarking". 133 

 134 

Figure 2 shows the precision and recall of Clair and other variant callers on SNPs and indels 135 

in multiple experiments with ONT data. Supplementary Table 1 contains more details, 136 

including precision, recall and F1-score in five categories, including overall, SNP, indel, 137 
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insertion, and deletion. Our results show that Clair not only outperformed other variant 138 

callers, including Clairvoyante, Longshot, and Medaka, but also ran much faster. Using 139 

1:168x|2:64x (i.e., test variant calling using HG002 with 64-fold coverage against a model 140 

trained using HG001 with 168-fold coverage) as Clair’s primary result, Clair achieved 98.36% 141 

precision, 96.46% recall, and 97.40% F1-score overall performance. In terms of SNPs, the 142 

three metrics were 99.29%, 97.78% and 98.53%, respectively. For indels, they were 143 

somewhat lower at 81.15%, 73.88%, and 77.34%. Clair significantly outperformed its 144 

predecessor Clairvoyante on both SNP and indel calling (overall F1-score 97.40% versus 145 

93.45%). Clair had a slightly higher F1-score on SNPs than Longshot (98.53% versus 98.41%), 146 

but Longshot detects only SNPs, and Clair ran five times faster than Longshot (320 versus 147 

1,797 minutes). Clair had a better performance than Medaka (overall F1-score 97.40% 148 

versus 94.81%) and ran 30 times faster (320 versus 10,817 minutes). It is worth mentioning 149 

that we didn’t benchmark Nanopolish19, which is also capable of variant calling on ONT data, 150 

because it also requires raw signals as input, which are not publicly available for HG002. 151 

 152 

We ran further experiments to answer five additional questions about Clair, as follows. 153 

 154 

Is the Clair model reference-genome specific? In our experiments, performance did not 155 

depend on whether we used GRCh37 or GRCh38. The performance of 1:168x|2:64x and 156 

1:168x|2:64x(b37) was similar; the latter experiment tested HG002 GRCh37 read alignments 157 

on a model trained using HG001 GRCh38 read alignments. Actually, 1:168x|2:64x(b37) 158 

performed slightly better than 1:168x|2:64x, with a 0.18% better F1-score on SNPs, and 159 

1.4% on indels.  160 

 161 
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Does higher coverage in the test sample helps improve variant calling performance? Yes, 162 

but improvement seems to asymptote at ~60-fold coverage. In a comparison of 163 

1:168x|2:64x to 1:168x|2:32x, the overall F1-score increased from 94.10% to 97.40% 164 

(+3.30%), the SNP from 95.51% to 98.53% (+3.02%), and the indel from 68.87% to 77.34% 165 

(+8.47%). Further increasing the coverage in the test sample will note significantly increase 166 

the variant calling performance as we discuss below. 167 

 168 

Does higher coverage for model training help improve variant calling performance? Yes, 169 

but it depends on the coverage of the test sample. In a comparison of 1:124x|2:64x to 170 

1:44x|2:64x, the overall F1-score increased from 96.84% to 97.51% (+0.67%), the SNP from 171 

98.01% to 98.54% (+0.53%), and the indel from 75.78% to 78.44% (+2.66%). In a comparison 172 

of 1:168x|2:64x to 1:124x|2:64x, the performance was similar, or even slightly dropped 173 

from 97.51% to 97.40% overall. One possible reason is that the lower coverage test sample 174 

cannot benefit from the much higher coverage used for model training. We propose how to 175 

deal with excessively high coverage in test samples (i.e., coverage exceeding that used in 176 

model training) in the Discussion section below. 177 

 178 

Does multiple subsampled coverage for model training improve variant calling 179 

performance? Yes. in a comparison of 1:44x|2:64x to ‘1:44x (single cov.)|2:64x’, the latter 180 

used only the full coverage 44-fold in model training; the overall F1-score increased from 181 

95.47% to 96.84% (+1.37%), the SNP from 96.94% to 98.01% (+1.07%), and the indel from 182 

75.78% to 78.44% (+2.86%). The results show that even without sufficient coverage for 183 

model training, using multiple subsampled coverage still improved the variant calling 184 

performance significantly. 185 
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 186 

What is the upper bound on performance? 187 

To determine Clair’s performance limit on the current ONT data, we intentionally overfitted 188 

Clair by adding the samples we are going to test to the model training. That is, we 189 

performed a biased test by exposing the test samples to model training, and if a true variant 190 

is not called even after a biased training, it suggests the input signal is simply too weak 191 

against the noise. Theoretically, a valid biased test requires the training data to be flawless 192 

and the model design to be perfect, which are neither the case in our study, nor realistic in 193 

real-world problems. However, in terms of training samples, GIAB has improved the quality 194 

continuously. In the latest version v3.3.2, 99.5% of the variants have been correctly 195 

phased13, suggesting their unprecedented quality. In terms of model design, we admit that 196 

Clair will still have rooms to be improved, but the improvement is likely to be insignificant if 197 

we do not deviate from using pileup data because, in this study, we have systematically 198 

optimized the method using the techniques laid out in the Methods section. That is to say, 199 

as we expect the real performance cap will be higher, the gap between it and using a biased 200 

test in our study is small. Thus, it is appropriate to use a biased test to explore the limit of 201 

Clair. 202 

 203 

The two tests we did were 1:168x+2:64x|2:64x and 1:168x+2:64x|1:168x. Although the test 204 

sample coverage in the first test was much lower than that in the second (64-fold against 205 

168-fold), their performance was similar, with the overall F1-score at 97.77% and 97.82%, 206 

SNP at 98.75% and 98.77%, and indel at 79.92% and 81.37%. The biased test 207 

1:168x+2:64x|2:64x did not significantly outperform 1:168x|2:64x; the overall F1-score 208 

increased from 97.40% to 97.77% (+0.33%), SNP from 98.53% to 98.75% (+0.22%), and indel 209 
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from 77.34% to 79.92% (+2.58%). Even with this biased experiment, we observed that the 210 

performance of using Clair on the current ONT data was capped at about 97.8% F1-score 211 

overall, 98.8% on SNPs, and 80% on indels. We consider how the new ONT chemistry that 212 

provides a lower base error rate can raise the upper bound of Clair’s variant calling 213 

performance in the Discussion section below. 214 

 215 

We analyzed and categorized the FP and FN results of Clair on ONT data. We randomly 216 

extracted 100 FPs and 100 FNs from the 1:168x|2:64x experiment. Figure 3 shows a 217 

summary and examples of different categories, and Supplementary Table 2 shows a detailed 218 

analysis of each FP and FN. Within the 100 FPs, the three largest categories are "Incorrect 219 

allele with AF≥0.2" (41/100), "Homopolymer" (25/100), and "Tandem repeat" (11/100). 220 

"Incorrect allele with AF≥0.2" means that at the FP variant, an incorrect allele dominates 221 

other alleles in the read alignments (including the correct one), and the incorrect allele has a 222 

frequency ≥20%. "Homopolymer", "Tandem repeat", and "Low complexity region" mean 223 

that the FP variant is in a repetitive region, which remains difficult for ONT base-calling. It is 224 

worth mentioning that these repetitive regions are ≤10bp because we removed all GA4GH 225 

low-complexity regions longer than 10bp from benchmarking. It may not be possible to 226 

perfectly resolve these three categories for FP variants using pileup data for variant calling, 227 

although complete read alignments might help to provide better precision. Three out of 100 228 

FPs had "Incorrect insertion bases", while two out of 100 were categorized as "Overlapping 229 

insertions", which means that the alleles of two consecutive insertions overlapped each 230 

other in an input tensor; thus, the correct allele cannot be resolved for both insertions. 231 

These two categories of errors can be resolved using the '--pysam_for_all_indel' option in 232 

Clair, but this slows down Clair for ONT data by a factor of up to ten times. Other errors, 233 
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including "Incorrect indel length" and "Incorrect zygosity", are errors made by Clair's neural 234 

network. In the 100 FNs, the three major categories are "Correct allele with AF<0.25" 235 

(54/100), "Homopolymer" (18/100), and "Tandem repeat" (7/100). "Correct allele with 236 

AF<0.25" means that at the location of the missed (FN) variant, the signal of the correct 237 

allele is rather weak, with allele frequency lower than 25%. One FN categorized as "More 238 

than two possible alternative alleles" is an error due to an alignment error in segmental 239 

duplications, in which more than two alternative alleles seem correct. 240 

 241 

Performance on PacBio CCS 242 

In early 201917, PacBio developed a protocol based on single-molecule, circular consensus 243 

sequencing (CCS) to generate highly accurate (99.8%) long reads averaging as much as 244 

13.5kb. PacBio published CCS datasets for HG001 (in this section also referred to as 1:30x; 1 245 

as the sample suffix and 30x means 30-fold coverage), HG002 (2:33x) and HG005 (5:33x). All 246 

three samples are involved in model training. To demonstrate a possible overfitting 247 

phenomenon on deep learning based variant callers, both HG002 and HG005 are used in 248 

benchmarking. To align with ONT’s benchmarking results, the low-complexity regions 249 

defined by GA4GH were removed from benchmarking. But noteworthy, PacBio CCS data is 250 

less erroneous and the performance in the low-complexity regions are not significantly 251 

degraded. The performance differences before and after removing the low complexity 252 

regions using different sequencing technologies are available in "Methods – 253 

Benchmarking".” 254 

 255 

Supplementary Table 3 shows the results of Clair and three other variant callers: 256 

Clairvoyante, Longshot, and DeepVariant. Testing on HG002, DeepVariant performed the 257 
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best, with an overall F1-score of 99.96%, SNP of 99.97%, and indel of 99.92%. The primary 258 

result of Clair 1:30x+5:33x|2:33x had an overall F1-score of 99.83%, which was 0.13% lower 259 

than DeepVariant, but outperformed both Clairvoyante and Longshot. On SNP, 260 

1:30x+5:33x|2:33x had an F1-score of 99.88%, which was 0.09% lower than DeepVariant, 261 

0.43% higher than Longshot, and 0.17% higher than Clairvoyante. On indel, 262 

1:30x+5:33x|2:33x had an F1-score at 99.07%, which was 0.85% lower than DeepVariant, 263 

but 19.17% higher than Clairvoyante, showing that the new methods applied to Clair have 264 

effective solved the indel-calling problem in Clairvoyante. In terms of speed, Clair (147 265 

minutes) is slightly faster than Longshot (206 minutes), and about seven times faster than 266 

DeepVariant (1,072 minutes). We also tested HG005. Interestingly, while Clair, Clairvoyante, 267 

and Longshot all performed better on HG005 than HG002, DeepVariant performed worse. 268 

Comparing 1:30x|2:33x to 1:30x|5:33x, Clair's overall F1-score increased from 99.77% to 269 

99.80%. Clairvoyante's overall F1-score increased from 98.61% to 98.70%. Longshot's SNP 270 

F1-score increased from 99.45% to 99.46%. The performance of the three callers verifies the 271 

quality of the HG005 dataset. However, DeepVariant's F1-score dropped from 99.96% to 272 

99.92%, the SNP F1-score decreased from 99.97% to 99.93%, and the indel F1-score 273 

dropped most significantly, from 99.92% to 99.78%. The most probable reason is that, 274 

DeepVariant's current PacBio CCS model was trained completely using HG00220. We suggest 275 

using DeepVariant's result on HG005 as its real performance on PacBio CCS data. The biased 276 

test 1:30x+2:33x+5:33x|2:33x found the performance cap of Clair at 99.88% on SNP, which 277 

was the same as 1:30x+5:33x|2:33x, and 99.28% on indel, which was 0.21% higher than 278 

1:30x+5:33x|2:33x. While in 1:30x+5:33x|2:33x, the highest coverage used for model 279 

training was only 33x, we expect to fill the performance gap on indel calling by using higher 280 

coverage for model training. The performance gap between Clair and DeepVariant on 281 
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HG005 (99.28% against 99.78%, -0.5%) is the result of Clair using pileup data, while 282 

DeepVariant uses complete read alignments that contain information at a per-read level. 283 

This is also a reason DeepVariant runs slower than Clair. We discuss the possibility of 284 

improving Clair to use complete read alignments without slowing down performance in the 285 

Discussion section below. 286 

 287 

Performance on Illumina 288 

Approximately 300x coverage in 148-bp Illumina paired-end read data is available for five 289 

GIAB samples, including HG001, HG002, HG003, HG004 and HG00511. We used HG001, 290 

HG003, HG004, HG005 for model training, and HG002 for benchmarking. To resemble the 291 

typical coverage in whole genome sequencing, we used full coverage of HG001 (306-fold) 292 

and HG005 (352-fold), but down-sampled HG002, HG003 and HG004 to 52-, 57-, and 66-293 

fold. To align with ONT's benchmarking results, the low-complexity regions defined by 294 

GA4GH were removed from benchmarking. But we observed that Illumina’s results were not 295 

very much affected by removing the low-complexity regions. 296 

 297 

Supplementary Table 4 shows the results of Clair and DeepVariant. DeepVariant performed 298 

better, with an overall F1-score of 99.94%. The primary result of Clair 299 

1:306x+3:57x+4:66x+5:352x|2:52x was an overall F1-score of 99.83%, which was 0.11% 300 

lower than DeepVariant’s. For SNPs, the F1-score of Clair was 0.09% lower than that of 301 

DeepVariant (99.85% versus 99.94%). For Indel, the F1-score of Clair was 0.42% lower than 302 

DeepVariant’s (99.48% versus 99.90%). In terms of speed, Clair was about seven times faster 303 

than DeepVariant (77 versus 537 minutes). The biased test 304 

1:306x+2:52x+3:57x+4:66x+5:352x|2:52x found the performance cap of Clair to be 99.87% 305 
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for SNPs, which was 0.02% higher than the primary result, but 0.07% lower than that of 306 

DeepVariant, and 99.57% for indels, which was 0.09% higher than the primary result, but 307 

0.33% lower than that of DeepVariant. Similar to the ONT and PacBio CCS experiments, we 308 

expect to fill in the performance gap through partially making use of complete read 309 

alignments, as discussed in the Discussion section. 310 

Discussion 311 

In this paper we present Clair, a germline small variant caller for single molecule sequencing 312 

data. The name Clair means ‘clear’ in French, echoing its predecessor, named Clairvoyante, 313 

meaning ‘clear seeing’. Clair adds new methods to solve problems that Clairvoyante had 314 

trouble with, including multiallelic variant calling and long indel calling. In our experiments 315 

on ONT data, Clair outperformed all existing tools in terms of precision, recall and speed. On 316 

PacBio CCS and Illumina data, Clair performed slightly worse than DeepVariant, but ran 317 

about an order of magnitude faster. Looking closer at the FP and FN variants shows that 318 

Clair is approaching the limit on how accurately it can call variants using pileup data. Some 319 

of the erroneous variant calls can be corrected using complete read alignments instead of 320 

pileup data. However, dealing with complete read alignments requires a more powerful 321 

neural network design with much greater computational demands. In the future, we will 322 

explore using an ensemble method to handle the majority of the variants using Clair, while 323 

for the extremely tricky ones we will use a new, more sophisticated method. 324 

 325 

The quality and sufficiency of training data is key to the performance of Clair, as well as 326 

other deep learning based variant callers, such as DeepVariant. To train a model for 327 

production purposes, we used five samples (HG001 to 5) for Illumina data, but only two 328 
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samples (HG001 and HG002) for ONT, due to the limited availability of public high-coverage 329 

whole genome sequencing datasets for the GIAB samples. ONT sequencing of the other 330 

GIAB samples is ongoing, and more data will be available in the near future. With additional 331 

datasets, we expect to see even higher performance in Clair on ONT data. 332 

 333 

On ONT data, although Clair performed the best, its indel calling precision and recall were 334 

only about 80%, even excluding GA4GH low-complexity regions, which leaves substantial 335 

room for improvement. While the precision can be further improved by considering 336 

complete read alignments, the recall is bounded by input and can be improved only with a 337 

lower read-level base-calling error rate. Future improvements in ONT technology offer the 338 

possibility of reducing the error rate to 2-3%, which in turn should improve Clair’s ability to 339 

detect indels in these data. 340 

 341 

The GIAB datasets we used for model training have moderate whole-genome sequencing 342 

coverage. Although we can use samples with very high coverage (over 300-fold, which is 343 

sometimes seen in amplicon sequenced data) with Clair for variant calling, such samples 344 

might show degraded performance because very high coverage variants were not 345 

adequately observed in model training. To solve this problem, we propose two methods. 346 

One method is to do transfer learning using a trained model on additional datasets with 347 

very high coverage. Clair supports transfer learning and can be applied to additional 348 

datasets instantly. Another method is an ensemble method, which generates multiple 349 

copies of randomly subsampled read alignments at a candidate variant for Clair to call 350 

variant. A majority vote or a decision tree can be used to make the final decision, using the 351 

results of each copy. 352 
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 353 

A limitation of Clair is that it cannot be applied to polyploid species, which are inconsistent 354 

with its neural network design. For the same reasons, Clair is not applicable to somatic 355 

variant calling, where a single sample might hold multiple distinct populations of cells. Our 356 

next steps include extending Clair to support polyploid species and somatic variant calling. 357 

Method 358 

 359 

Clair's input/output 360 

Input 361 

For a truth variant for training or a candidate variant for calling, the read alignments that 362 

overlap or are adjacent to the variant are summarized (i.e. pile-up data) into a three-363 

dimensional tensor of shape 33 by 8 by 4, comprising 1056 integer numbers. The three 364 

dimensions correspond to the position, the count of four possible bases from two different 365 

strands, and four different ways of counting. In the first dimension, 33 positions include the 366 

starting position of a variant at the center and 16 flanking bases on both sides. The second 367 

dimension corresponds to the count of 'A+', 'A-', 'C+', 'C-', 'G+', 'G-', 'T+' or 'T-', with the 368 

symbols +/- denoting the count from the forward/reverse strand. The third dimension 369 

replicates the first two dimensions with four different ways of counting to highlight 1) the 370 

allelic count of the reference allele, 2) insertions, 3) deletions and 4) single nucleotide 371 

alternative alleles. "Supplementary Note – Pseudocode for generating the input tensor" 372 

shows the pseudo code of the exact algorithm of how the input tensor is generated. 373 

Supplementary Figure 1 demonstrates how the tensors look like for ONT data at a random 374 

‘non-variant’, a ‘SNP’, an ‘Insertion’, and a ‘Deletion’. 375 
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 376 

Output  377 

The output of Clair has four tasks (a.k.a. four output components, in total 90 probabilities), 378 

including 1) the 21-genotype probabilistic model (21 probabilities); 2) zygosity (3 379 

probabilities); 3) the length of the first indel allele (33 probabilities); and 4) the length of the 380 

second indel allele (33 probabilities). One of the breakthroughs in Clair is the invention of 381 

the 21-genotype probabilistic model. It comprises all of the possible genotypes of a diploid 382 

sample at a genome position, including 'AA', 'AC', 'AG', 'AT', 'CC', 'CG', 'CT', 'GG', 'GT', 'TT', 383 

'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD', 'TD', 'II', 'DD', and 'ID', where 'A', 'C', 'G', 'T', 'I' (insertion) 384 

and 'D' (deletion) denote the six possible alleles. The new model covers variants with two 385 

alternative alleles, which could not be called in Clairvoyante. The zygosity task outputs the 386 

probability of the input being 1) a homozygous reference (0/0); 2) heterozygous with 1 or 2 387 

alternative alleles (0/1 or 1/2); or 3) a homozygous variant (1/1). The zygosity task is 388 

partially redundant to the 21-genotype task, but it makes decisions independently, and it 389 

crosschecks the decision made by the 21-genotype task. Tasks three and four have the same 390 

design. They output the length of up to two indel alleles. Each task outputs 33 probabilities, 391 

including the likelihood of 1) more than 15bp deleted (<-15bp); 2) any number between -392 

15bp and 15bp, including 0bp, and; 3) more than 15bp inserted (>15bp). In training, the 393 

indel allele with a smaller number is set as the first indel allele. For example, for a 394 

heterozygous 1bp deletion, the first indel allele is set as -1bp, the second as 0bp (-1bp/0bp). 395 

For a heterozygous 1bp insertion, 0bp/1bp is set. This design makes the non-0bp training 396 

variants for both tasks balanced. For a heterozygous indel with two alternative alleles, say, 397 

one -2bp and one 5bp, -2bp/5bp are set. For a homozygous indel, two indel alleles are set to 398 

the same value. For indels longer than 15bp, the exact length is determined using an 399 
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additional step (Method – New methods used in Clair – Dealing with indels longer than 400 

15bp). The output of the two indel allele tasks are also used for crosschecking with the 21-401 

genotype task, with 0bp supporting an SNP allele, and non-0bp supporting an indel allele. 402 

More details about how the four tasks crosscheck each other to come up with a result 403 

coherently are in "Method – New methods used in Clair – Determining the most probable 404 

variant type using the four tasks of Clair". 405 

 406 

New methods used in Clair 407 

Clair has been fully revamped while a few basic deep-learning techniques in Clairvoyante 408 

have been retained, including 1) model initialization; 2) activation function; 3) optimizer; 4) 409 

dropout; 5) L2 regularization; and 6) combining multiple samples for model training. The 410 

parameters in 1, 2, and 3 remain default. The dropout rate of each layer is depicted in 411 

Figure 1. For L2 regularization, we tested and found a constant 1e-3 worked best with 412 

cyclical learning rate, which will be introduced in a following section. Below we discussed 413 

the new methods we have applied in Clair. 414 

 415 

Moving from convolutional to recurrent neural network 416 

In Clairvoyante, we observed that the size of the convolutional kernel in the three 417 

convolutional layers had limited the performance. Increasing the kernel size will increase 418 

the performance, at a cost that the number of model parameters and running time will 419 

increase exponentially. When designing Clair, we tried two strategies, including 1) multiple 420 

dilated kernels, and 2) recurrent neural network (RNN) with bi-directional LSTM, for 421 

substituting the three convolutional layers in Clairvoyante. The performance of using dilated 422 

kernels was good. But to achieve the same performance as using RNN, six three times n 423 
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dilated kernels are needed for our input for each convolutional layer, which increased the 424 

computation significantly. An RNN layer is usually slower than a convolutional layer with the 425 

same number parameters, but it outperformed dilated kernel because to achieve the same 426 

performance, RNN with bi-directional LSTM requires over 50% fewer parameters in our new 427 

design. We used two RNN layers of in Clair in contrast to three convolutional layers in 428 

Clairvoyante. 429 

 430 

Dealing with indels longer than 15bp 431 

For each candidate variant, Clair directly outputs the length of up to two alternative indel 432 

alleles. However, if an insertion goes beyond 15bp, or a deletion goes below -15bp, Clair 433 

runs an additional step to decide its exact length and allele. In the additional step, Clair 434 

gathers all possible insertion/deletion alleles longer than 15bp at a genome position 435 

through pysam (a wrapper around htslib and the samtools21 package). Depending on the 436 

genotype concluded by Clair, we choose 1) the insertion/deletion with the highest allelic 437 

count for 'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD' and 'TD'; 2) the insertions with the highest and/or 438 

the second-highest allelic count for 'II'; 3) the deletions with highest and/or the second-439 

highest allelic count for 'DD', or; 4) both the insertion and deletion with the highest allelic 440 

count for 'ID'. The additional step is slow, but it is required only for indels longer than 15bp. 441 

We investigated HG001 and found 570,367 indels in its truth variant set; only 10,672 442 

(1.87%) were >15bp. In our experiments, we found the slowdown was acceptable. Users can 443 

set an option in Clair to enable this additional step for all indels, but our experiments found 444 

that while the improvement in precision is small, it slows down Clair by about two times 445 

with Illumina and PacBio CCS data, and by more than 10 times on ONT data. 446 

 447 
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Determining the most probable variant type using the four Clair tasks 448 

Clair outputs data on four tasks. With an independent penultimate layer (Figure 1, FC5 449 

layer) immediately before each task, the output of each task is considered independent. We 450 

made two observations from our experiments: 1) for true positive variants, a random task 451 

or two will make a mistake occasionally, but usually, the best and the second-best 452 

probabilities are near and can be disambiguated if considered with other tasks; 2) for false 453 

positive variants, the tasks do not usually agree well with each other, leading to two or 454 

more possible decisions with similar probabilities. Thus, in Clair, we implemented a method 455 

as a submodule for making a decision using the output of all four tasks. Variants are divided 456 

into 10 categories: 1) a homozygous reference allele; 2) a homozygous 1 SNP allele; 3) a 457 

heterozygous 1 SNP allele, or heterozygous 2 SNP alleles; 4) a homozygous 1 insertion allele; 458 

5) a heterozygous 1 insertion allele, or heterozygous 1 SNP and 1 insertion alleles; 6) 459 

heterozygous 2 insertion alleles; 7) a homozygous 1 deletion allele; 8) a heterozygous 1 460 

deletion allele, or heterozygous 1 SNP and 1 deletion alleles; 9) heterozygous 2 deletion 461 

alleles; and 10) a heterozygous 1 insertion and 1 deletion alleles. The likelihood value of the 462 

10 categories is calculated for each candidate variant, and the category with the largest 463 

likelihood value is chosen (Pseudocode in "Supplementary Note – Pseudo code for 464 

determining the most probable variant type"). The variant quality is calculated as the square 465 

of the Phred score of the distance between the largest and the second-largest likelihood 466 

values. 467 

 468 

Cyclical learning rate 469 

The "initial learning rate" and "how the learning rate decays" are two critical 470 

hyperparameters in training a deep neural network model. A model might be stuck at a local 471 
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optimum (i.e. unable to achieve the best precision and recall) if the initial learning rate is 472 

too large, or the decay is too fast. But a large initial learning rate, and a slow decay rate 473 

make the training process either unstable or take too long to finish. So in common practice, 474 

a tediously long grid search that is very costly is needed to find the best hyperparameters. 475 

Furthermore, through a grid search, we found that different sequencing technologies differ 476 

in their best hyperparameters. This problem makes model training too complicated and 477 

largely impedes Clair from being applied to new datasets and sequencing technologies. To 478 

solve the problem, we implemented Cyclical Learning Rate (CLR)22 in Clair. CLR is a new deep 479 

learning technique that eliminates the need to find the best values of the two 480 

hyperparameters. CLR gives a way to schedule the learning rate in an efficient way during 481 

training, by cyclically varying between a lower and higher threshold. Following the CLR 482 

paper, we determined the higher threshold to be 0.03 and the lower threshold to be 0.0001. 483 

The two thresholds worked well on the training variants of all three sequencing 484 

technologies (Illumina, PacBio CCS and ONT). In terms of which CLR scheduler to use, we 485 

chose the triangular schedule with exponential decay. In our experiments, on PacBio CCS 486 

and Illumina datasets, CLR decreased model training time by about 1–3 times, while often 487 

outperforming the three-step decay method introduced in Clairvoyante for both precision 488 

and recall. However, on ONT datasets, CLR has a lower, but almost negligible, performance 489 

than the three-step decay. We provide both CLR and three-step decay options in Clair. To 490 

train a model for production, we suggest users try both options and choose the best 491 

through benchmarking. In our results, we used CLR for PacBio CCS and Illumina datasets, 492 

and the three-step decay method for ONT datasets. 493 

 494 
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Focal loss 495 

Our training data uses the truth variants from the GIAB consortium and is unbalanced in 496 

terms of variant type. For example, the number of heterozygous variants is nearly twice that 497 

of the homozygous variants. SNPs are about five times more numerous than indels. Worst 498 

of all, only ~1.1% (39,898 of 3,619,471 in HG001) of variants have two or more alternative 499 

alleles. And among them, only 884 (~0.024%) are multiallelic SNPs. This problem leads to 500 

degenerate models, as the numerous easy variants contribute no useful learning signals and 501 

overwhelm training. In our practice, if we leave the problem unaddressed, we observe a 502 

significant drop in recall for the underrepresented variant types. For multiallelic SNPs, the 503 

recall dropped to zero. To solve this problem, we used the "Focal loss" technique23, which 504 

applies a modulating term to the cross-entropy loss in Clair's output to focus training on 505 

underrepresented hard variants and down-weight the numerous easy variants. Focal loss 506 

calculates the loss as (1 − 𝑝!)" × 𝛼! × −log	(𝑝!), where 𝑝! = 𝑝, 𝛼! = 𝛼, if the prediction 507 

matches the truth, or 𝑝! = (1 − 𝑝), 𝛼! = (1 − 𝛼) otherwise. In addition to the traditional 508 

cross entropy loss, focal loss uses two more parameters: 𝛾 (the focusing parameter) to 509 

differentiate easy/hard training examples, and 𝛼 (the balancing parameter) to balance the 510 

importance of positive/negative training examples. We have tested the combinations of 𝛾 =511 

1, 2, 4, and 𝛼 = 0.25, 0.5. We determined 𝛾 = 2 and 𝛼 = 0.25 work best for the GIAB truth 512 

variants with a 1:2 ratio of truth variant and non-variant. The use of focal loss significantly 513 

increases the performance of underrepresented variant types. It also allows us to be more 514 

lenient on variant type balance when augmenting the training data. 515 

 516 
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Training data augmentation using subsampled coverage 517 

Lower coverage usually leads to lower precision and recall in variant calling. To train Clair to 518 

achieve better performance on variants with lower coverages, we subsampled each dataset 519 

into four or nine additional datasets with lower coverages. The subsampling factors f are 520 

determined as (√4 ÷ 𝑐! )#, where c is full coverage of each sample, 4 is the minimal 521 

coverage, ℎ is either 4 or 9, and 𝑛 is from 1 to h. Using HG002 as an example, its full 522 

coverage is 63.68-fold, and the nine subsampled coverages are 46.82-, 34.43-, 25.31-, 523 

18.61-, 13.69-, 10.06-, 7.40-, 5.44- and 4.00-fold. If variant samples were lower than 4x after 524 

subsampling, we removed them from training. We used the command "samtools view -s f" 525 

to generate a subsampled BAM. A different seed counting from zero for random number 526 

generation was set for each coverage. The use of subsampled coverages improved the recall 527 

on indel significantly. 528 

 529 

Methods tested but showed no improvement to accuracy 530 

In this section we discuss methods we tested that had no effect on Clair’s performance. For 531 

researchers working on further improving the performance of Clair, these methods could be 532 

avoided or revised. This section is elaborated in detail in the Supplementary Notes. 533 

 534 

Benchmarking 535 

The GIAB truth variant datasets 536 

We used the GIAB version 3.3.2 datasets as our truth variants. Depending on the availability 537 

of deep sequencing data, our ONT experiments used samples HG001 or HG001+HG002 for 538 

model training, our PacBio CCS experiments used HG001 or HG001+HG005, and our Illumina 539 
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experiments used HG001 or HG001+HG003+HG004+HG005. For benchmarking, ONT, PacBio 540 

CCS and Illumina experiments have used HG002, HG005, and HG002, respectively. The links 541 

to the truth variants and high-confidence regions are available in “Methods – Data sources – 542 

Truth variants”. Depending on the reference genome used in the already available read 543 

alignments, we used GRCh38 for our ONT and Illumina experiments, and GRCh37 for our 544 

PacBio CCS experiments. The links to the reference genomes we used are available in 545 

“Methods – Data sources – Reference genomes” 546 

 547 

Removing GA4GH low-complexity regions from benchmarking 548 

Krusche et al.6 from the GA4GH benchmarking team and the GIAB consortium published the 549 

low-complexity regions, including homopolymers, STRs, VNTRs, and other repetitive 550 

sequences for stratifying variants in their paper titled "Best practices for benchmarking 551 

germline small-variant calls in human genomes". All low-complexity regions defined by 552 

GA4GH are longer than 10bp. The performance difference between before and after 553 

removing the low-complexity regions are in Supplementary Table 5. ONT's performance 554 

degraded significantly (precision -11.41%, recall -55.33%), while that of PacBio CCS and 555 

Illumina dropped only 0.99–1.67% in precision and recall. Thus, when computing variant 556 

calling using ONT, we suggest removing the variants called in the low-complexity regions. In 557 

our benchmarks for all datasets, in addition to using the high-confidence regions of each 558 

sample provided by GIAB, we removed the low-complexity regions. The procedures are 559 

available in "Supplementary Note – Commands – Remove GA4GH low complexity regions 560 

from GIAB's high-confidence regions". There was retention of 92.61–93.47% high-561 

confidence regions in GRCh38, and 94.40–95.05% in GRCh37 of the five samples HG001 to 5 562 

after removing the low-complexity regions (Supplementary Table 8). 563 
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 564 

Benchmarking methods and metrics 565 

Clair trains a model either for 30 epochs, using the Cyclical Learning Rate (used for PacBio 566 

CCS and Illumina datasets), or by decaying the learning rate three times (by one tenth each 567 

time) until the validation losses converge (used for ONT datasets). While the performance of 568 

last few epochs are generally similar, the best-performing one will be chosen for 569 

benchmarking. We did not run replications of model training because choosing from the 570 

best epoch actually resembles the process of having multiple replications. In ONT and 571 

Illumina experiments, the GRCh38 reference genome was used, while in PacBio CCS 572 

experiments, GRCh37 was used. For each variant calling experiment, we used the 573 

submodule vcfeval in RTG Tools24 version 3.9 to generate three metrics, ‘Precision’, ‘Recall’, 574 

and ‘F1-score’, for five categories of variants: ‘Overall’, ‘SNP’, ‘Indel’, ‘Insertion’, and 575 

‘Deletion’. All time consumptions were gauged on two 12-core Intel Xeon Silver 4116 (in 576 

total 24 cores), with 12 concurrent Clair processes, each with 4 Tensorflow threads. As Clair 577 

has some serial steps that use only one thread, we observed our setting sufficient to 578 

maximize the utilization of all 24 cores. For other variant callers, including DeepVariant, 579 

Longshot and Medaka, options were to set to use all 24 cores for the best speed. 580 

 581 

Computational performance 582 

Clair requires Python3, Pypy3 and Tensorflow. Variant calling using Clair requires only a 583 

CPU. For a typical 30-fold human WGS sample, Clair takes about an hour for Illumina data 584 

and PacBio CCS data, and five hours on ONT data, using two 12-core Intel Xeon Silver 4116 585 

processors. Memory consumption depends on both input data and concurrency. ONT data 586 

has a higher memory footprint than Illumina and PacBio CSS, while Clair is capped at 7GB 587 
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per process (helper scripts at 4.5GB and Tensorflow at 2.5GB). Model training requires a 588 

high-end GPU; we used the Nvidia Titan RTX 24GB in our experiment. Using Clair’s default 589 

parameters, generating 1 million training samples takes about 38 seconds. For example, the 590 

Illumina model with four samples (HG001, 3, 4, 5) and 30 coverages in total (10 for 1 and 5, 591 

5 for 2 and 3) has 284,367,735 training samples and takes about 11,000 seconds per epoch. 592 

Training the 1:168x|2:64x ONT model used 246,099s (2.85 days) on the Titan RTX. In 593 

comparison, the Nvidia RTX 2080 Ti 11GB is about 15% slower, and the Nvidia GTX 1080 Ti 594 

11GB is about 35% slower. 595 

 596 

Code availability 597 

Clair is open source, available at https://github.com/HKU-BAL/Clair. Clair is licensed under 598 

the BSD 3-Clause license. 599 

 600 

Data availability 601 

The details of and links to the 1) reference genomes, 2) truth variants, 3) Oxford Nanopore 602 

Technologies (ONT) data, 4) Pacific Bioscience (PacBio) CCS data, and 5) Illumina data that 603 

are supporting the findings of this study are available in the “Data Sources” section in the 604 

Supplementary Notes. The VCF files generated by Clair in this study are available at 605 

http://www.bio8.cs.hku.hk/clair_models/VCFBenchmarked/.  606 
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Figures 680 

 681 

Figure 1. Clair network architecture and layer details. RNN: Recurrent Neural Network. FC: 682 

Fully Connected layer. Bi-LSTM: Bi-directional Long Short-Term Memory layer. 683 

  684 
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 685 

Figure 2. ONT benchmarking results. For Clair, the datasets used for model training and 686 

testing are separated with a vertical bar '|', and are written as ‘a:bx’, where a denotes the 687 

suffix of the GIAB sample ID (e.g., 1 means HG001), and b denotes the coverage of the 688 

dataset. Longshot calls only SNP variants, so it is not shown in the indel results. 689 

  690 
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 691 

Figure 3. The category distribution of FPs and FNs made by Clair in the 1:168x|2:64x 692 

experiment on ONT data, and six genome browser screen captures showing examples of 693 

different categories. In the screen captures, bases A, C, G, and T are green, blue, yellow, and 694 

red, respectively. Gaps (i.e., deletions) are dark gray. Insertions are purple dots between 695 

two bases and are wider when the insertion is longer. 696 


