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1. Introduction

Urban transit services are known for the scale economies, where additional users incur positive externalities by
increasing service frequency, which is referred to as the “Mohring effect” (Mohring (1972)). It is implicitly assumed
in this reasoning that the change in transit service frequency does not affect road traffic congestion. However, in
reality, transportation systems are multi-modal in nature where cars and buses have complex and dynamic interactions.
Increasing bus vehicles boosts traffic density which in turn exacerbates the traffic congestion in general. Despite the
prevalence, the complex congestion interaction between cars and buses is rarely studied by most of the traditional ‘two-
mode’ studies due to its limitation on analytical tractability. However, it is relevant and necessary to well incorporate
the mentioned flow interactions when decide road and transit service policies. This paper addresses the bus dispatching
problem with time-dependent multi-modal congestion interaction.

Most studies of ‘bus service optimization’ focused on the optimization of service frequency (or timetabling), see,
e.g., Ibeas et al. (2010), Szeto and Wu (2011). However, the designed values for bus frequency might not be realized
due to time-varying traffic conditions. If the assumed road traffic conditions are not appropriate and/or the multi-
modal flow interactions on the road are not well captured, the design value for bus frequency might be in the wrong
direction, which can be inefficient and misleading. Considering the multi-modal traffic dynamics, the number of buses
actively deployed in service (for abbreviation, it is referred to as ‘dispatched fleet size’ or ‘bus dispatching strategy’
interchangeably) is a more straightforward decision variable, while the frequency is endogenously determined by
traffic conditions given the dispatched fleet size. This motivates our study to examine the time-dependent dispatched
fleet size optimization strategy. In practice, the frequency and/or schedule information can still be provided to travelers
since the endogenously determined frequency can be estimated or observed based on real operation data.

Earlier literature on multi-modality primarily often focused on static or steady-state analysis. To account for the
time-varying traffic conditions and congestion dynamics, much effort has been dedicated to the dynamic traffic as-
signment problem, such as Friesz et al. (1993), Lo and Szeto (2002), and Yildirimoglu and Geroliminis (2014). In
particular, the within-day dynamic traffic patterns are governed by travelers’ trip-timing choices, which has been
modeled by the bottleneck model proposed by Vickrey (1969). Some studies have adopted the bottleneck model for
time-dependent transit services, such as Amirgholy and Gonzales (2016) and Amirgholy et al. (2017). Recent works
have also embedded the bottleneck model in the bi-modal context, such as Tabuchi (1993), Gonzales and Daganzo
(2012), Yang et al. (2013), Wu and Huang (2014), Gonzales (2015), and Wang et al. (2017).

It is generally difficult to develop an analytically tractable model for large-scale mixed traffic situations where
buses and cars are interacting with one another dynamically. The recently proposed aggregate traffic flow model,
i.e., Macroscopic Fundamental Diagram (MFD), offers a way to model the traffic dynamics with multi-modal flow
interactions. Along this line, Geroliminis et al. (2014), Chiabaut (2015), and Loder et al. (2017) studied the 3D-MFD
for multi-modal flows. Zheng and Geroliminis (2013) and Zhang et al. (2018) analyzed the distribution of road space
to different modes in the multi-modal system with MFD-based traffic dynamics. Zheng and Geroliminis (2016) and
Liu and Geroliminis (2017) considered pricing strategy in a multi-modal system with a well-defined MFD curve for
the road network. Thanks to its tractability and flexibility for large-scale networks, the MFD concept has attracted
a significant amount of attentions in the literature for a number of modeling, planning, and operation issues, e.g.,
Gayah and Daganzo (2011), Keyvan-Ekbatani et al. (2012), Geroliminis et al. (2013), Gayah et al. (2014), Leclercq
et al. (2014), Haddad (2015), Liu and Geroliminis (2016), Leclercq et al. (2017), Kouvelas et al. (2017), Zhong et al.
(2018).

Nevertheless, how to optimally set the size of dispatched bus fleet and how it will affect system dynamics have
rarely been modeled. Particularly important is that the congestion dynamics will affect the realized frequency or
schedule of buses on the road, which might significantly deviate from the planned one due to congestion. In this con-
text, we examine the time-dependent bus dispatching problem on account of complex multi-modal flow interactions
on the road. Based on the MFD concept, the impacts of buses on traffic congestion are modeled by incorporating the
Passenger Car Equivalent (PCE) concept. Moreover, traffic in different directions in the network might affect each
other. Therefore, the speeds of traffic of different modes and different directions can be interdependent on each other.

Instead of explicitly optimizing the size of dispatched bus fleet, we propose a more practical adaptive feet size
adjustment mechanism where we have a target level of regional bus loading. This adaptive or responsive approach
follows the adaptive congestion pricing strategy proposed by Liu and Geroliminis (2017) with a doubly dynamical
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system. The day-to-day variations of mode choices and traffic patterns under a particular bus dispatching adjustment
offers information for the adjustment of dispatched fleet size in the future on a day-to-day basis. While most studies
modeled the day-to-day traffic evolution process looked at the standalone driving mode, e.g., Smith (1984),Watling
(1999), Cantarella (2013), Guo et al. (2015), Smith and Watling (2016), and Guo and Huang (2016), only a few
examined multi-modal systems, e.g., Cantarella et al. (2015), Li and Yang (2016), Liu and Geroliminis (2017), and
Guo and Szeto (2018). It is found in previous studies that observations of day-to-day traffic patterns can be utilized to
develop management or operation strategies. Li and Yang (2016) developed a responsive transit frequency adjustment
strategy in the bi-modal context. However, the flow interaction between cars and buses is ignored in their study.

This study employs the doubly dynamical framework (as mentioned in the above), which has been developed by
Ben-Akiva et al. (1984), Iryo (2008), Liu et al. (2017), and Guo et al. (2018). The doubly dynamical framework is able
to accommodate both day-to-day evolution (over calendar time) and within-day dynamics (over clock time) of traffic
patterns. In particular, the day-to-day dynamics describes the evolution of the within-day dynamic traffic patterns.
Existing studies along this direction, while insightful, often rely on simplified network or demand settings or traffic
flow models (e.g., single origin-destination, single-mode systems, and point-queue traffic models). The current study
is the first to model the day-to-day traffic variation where multi-modal and multi-directional flows directly interact
with each other dynamically. Moreover, we incorporate the effect of real-time traffic condition on travelers’ choices
following Liu and Geroliminis (2017). The impact of traffic information is examined by Iryo (2016), Bifulco et al.
(2016), and Li et al. (2018) based on static models, and by Mahmassani and Liu (1999), Xiao and Lo (2016), and Liu
et al. (2017) based on dynamic models.

This study shows that the proposed doubly dynamical model can reproduce the bi-modal traffic dynamics and
complex flow interactions. Besides vehicle flows (including cars and buses), it can also characterize the passenger
flows in the public transport systems. The numerical studies also demonstrate that the proposed adaptive strategy has
the potential to help bus operator reduce operating cost and improve net benefit while maintaining comparable user
costs for passengers.

This study contributes to the literature in several ways. Firstly, it provides a novel methodological framework for
multi-modal traffic dynamics with an emphasis on bus dispatching, which is flexible for modeling large-scale systems.
Secondly, it provides a novel and straightforward way to adjust bus dispatching in order to improve bus operation
efficiency. Thirdly, it points out the often ignored issue regarding endogenously determined bus frequency based on
real-time bi-modal traffic dynamics, and improves our understanding of multi-modal traffic dynamics.

The rest of the paper is organized as follows. Section 2 introduces the basic settings for the bi-modal commuting
problem, where different modes and traffic in different directions are interacting with each other, and then formulates
the day-to-day travel choice updating process and the within-day multi-modal traffic dynamics. Section 3 discusses
the effect of bus dispatching on system performance and presents the adaptive bus dispatching adjustment given the
day-to-day traffic variations. Numerical studies are presented in Section 4. Finally, Section 5 concludes the paper.

2. Methodological framework

We start with a brief description of the rush-hour commuting problem with two modes to serve the travel demand.
We consider the city of one region in Fig. 1, where private cars and buses interact one another in the same road
network. Fig. 1 is only illustrative with a simplified network structure. Travelers can either drive a private car (mode
a) or take a bus (mode b) to reach their destinations.

As this study examines the single-region city with an aggregate approach, we do not specify origin-destination
pairs of travelers. Instead, travelers are grouped based on their trip directions and trip lengths. Let d denote the trip
direction. Typically, we have two main opposite trip directions in the peak duration, i.e., d ∈ {1, 2}, as indicated in
Fig. 1. Note that the two opposite directions do not necessarily refer to the two directions for a road link. Instead, they
can refer to the approximate moving directions for the regional traffic such as inbound and outbound. Let w denote the
group index for the trip distance and W denote the set of all groups, thus w ∈ W. For different groups, the trip distance
is different. A list of main notations is provided in the Nomenclature.

The clock time within a day is denoted by t, and the travel demand of a particular group on a particular direction at
a particular time is denoted by rd,w(t). It is assumed that the demand pattern is exogenously given and does not vary
over days. While the total demand intensity is given, the realized travel choices and the bi-modal traffic pattern of a
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Fig. 1. City network.

single day can vary from day to day. Let q denote the day. On day q, among cohort rd,w(t), the number of travelers
choosing mode m is represented by r(q)

d,w,m(t) ≥ 0, where m ∈ {a, b}, and
∑

m r(q)
d,w,m(t) = rd,w(t). Every day, travelers

choose between the two modes based on their perceptions of travel costs for the two options (often termed as the
perceived cost or utility/dis-utility).

Nomenclature

m travel mode: m = a for private car mode and m = b for bus mode
w traveler group for a specific trip distance
W set of all traveler groups with different trip distances where w ∈ W
d travelers’ traveling direction, where d ∈ {1, 2}
t, µ time points
[ts, te] the modeling duration (for departures) where ts is the start time and te is the ending time
∆t interval length where [ts, te] has been equally discretized into multiple intervals with a length of ∆t
q day index or calendar time
rd,w(t) travel demand for travel direction d, trip distance group w, departure time t
r(q)

d,w,m(t) travel demand among rd,w(t) who choosing mode m on day q
α value of time (VOT)
c(q)

d,w,m(t) mean perceived travel cost of mode m for travel demand rd,w(t) on day q

C(q)
d,w,m(t) experienced travel cost for travel demand among rd,w(t) who choosing mode m on day q

p(q)
d,w,m(t) estimated cost of mode m for travel demand rd,w(t) based on real-time traffic conditions on day q
ηc learning parameter associated with yesterday’s perceived cost
ηC learning parameter associated with yesterday’s experienced cost
ηp learning parameter associated with today and yesterday’s estimated cost based on real-time conditions
Pr(q)

d,w,m(t) proportion of travelers among demand rd,w(t) who choosing model m on day q
θd,w Logit-model parameter associated with travel direction d and trip distance group w
vd,m regional speed for mode m traffic with direct d
v(nx, ny) regional speed function where nx and ny are traffic in different moving directions
ρ parameter in the speed function v(nx, ny)
vcri maximum speed for the speed function v(nx, ny)
ncri critical accumulation for the speed function v(nx, ny)
nd,w,a car accumulation in direction d and group w
nd,w,b passenger accumulation in direction d and group w
Nd,b bus accumulation in direction d



	 Fangni Zhang et al. / Transportation Research Procedia 38 (2019) 119–138� 123
Zhang, F. and Liu, W. / Transportation Research Procedia 00 (2019) 000–000 5

vd,m regional speed for car if m = a or bus if m = b in direction d
λd,b bus loading factor for direction d
λcri critical bus loading factor for calculate the discounted speed for buses
Vd,w,b average speed for passengers (direction d and group w) after taking into account waiting time
ld,w,m trip distance for travelers (direction d, group w), and mode m
Ld,b trip distance for the one-way of the bus route
od,w,m outflow for cars when m = a and for bus passengers when m = b (direction d, group w)
Od,b outflow for buses (direction d)
T (q)

d,w,m(t) experienced travel time for travel demand among rd,w(t) who choosing mode m on day q

τ
(q)
d,w,m(t) monetary cost for travel demand among rd,w(t) who choosing mode m on day q
β the operating cost per unit time for one bus
T BF(q)(t) total bus fee collected on day q
T BC(q)(t) total bus operating cost on day q
T BN(q)(t) total bus net revenue on day q
TUC(q)(t) total user cost on day q
Q the number of days between two adjacent dispatched bus fleet adjustment
F(q)

d (t) planned size of dispatched bus fleet in direction d for time t on day q
Fd,0 parameter for the dispatched fleet size adjustment
M number of time intervals with equal length for the modeling duration
δ length of each of the M time intervals
ε error term for the traffic flow pattern to check convergence

2.1. Day-to-day dynamics

We consider a discrete-time day-to-day evolution model, following Liu and Geroliminis (2017). For group w and
departure time t, the mean perceived travel cost on day q for mode m is denoted by c(q)

d,w,m(t). Similarly, the experi-

enced cost is C(q)
d,w,m(t), and the estimated cost based on perception of real-time traffic condition is p(q)

d,w,m(t) (“real-time
instantaneous cost estimate” hereafter).

Following Liu and Geroliminis (2017), the mean perceived travel cost of departing at time t on day q+1 is updated
based on the following (perception updating for the demand):

c(q+1)
d,w,m(t) = ηc · c(q)

d,w,m(t) + ηC ·C(q)
d,w,m(t) + ηp ·

(
p(q+1)

d,w,m(t) − p(q)
d,w,m(t)

)
, (1)

where ηc > 0, ηC > 0, and ηp > 0 are three learning parameters associated with the previous mean perceived cost,
experienced cost, and estimated cost based on real-time conditions, respectively, and ηc + ηC = 1. Eq.(1) means that
the travelers’ mean perceived cost on day q + 1 is a linear combination of previous day’s mean perceived cost and
experienced cost, and then plus the difference between real-time estimated costs for days q + 1 and q. The first and
second terms in the right-hand side of Eq.(1) have been modeled in many studies, e.g., Bie and Lo (2010). The third
term is recently introduced by Liu and Geroliminis (2017). It means that travelers will compare the current traffic
conditions with those from the previous day, and evaluate whether the situation on today (of different modes) is worse
or better. In particular, p(q+1)

d,w,m(t) − p(q)
d,w,m(t) > 0 indicates that the travel cost estimate based on the current traffic

condition on day q + 1 is larger than that on the previous day, which leads to an increase in the perceived cost since
ηp > 0, and vice versa. With ηp > 0, Liu and Geroliminis (2017) shows the potential for information to help the system
traffic to converge to an equilibrium state or fixed point. This is also verified in a recent study of Li et al. (2018) with
static within-day traffic patterns.

Based on the perceived costs, the proportion choosing mode m is

Pr(q)
d,w,m(t) =

e−θd,w·c
(q)
d,w,m(t)

e−θd,w·c
(q)
d,w,a(t) + e−θd,w·c

(q)
d,w,b(t)
, (2)
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where θd,w is a trip direction and trip distance specific parameter for the Logit-model. It is obvious that Pr(q)
d,w,m(t) ≥ 0

and
∑

m Pr(q)
d,w,m(t) = 1. The Logit-model in the above requires that the random terms associated with the mean utilities

−θd,w ·c(q)
d,w,m(t) for different modes are identically and independently distributed with a Gumbel probability distribution,

where the mean is zero and the variance is 1
6π

2θd,w. The travel demand for mode m is then

r(q)
d,w,m(t) = rd,w(t) · Pr(q)

d,w,m(t). (3)

Eqs.(1), (2), and (3) together establish a day-to-day dynamical system. At the fixed point of this dynamical system,
we should have c(q+1)

d,w,m(t) = c(q)
d,w,m(t) = C(q+1)

d,w,m(t) = C(q)
d,w,m(t) and p(q+1)

d,w,m(t) = p(q)
d,w,m(t). As discussed in Li et al. (2018),

this fixed point is equivalent to the multi-modal stochastic user equilibrium under a Logit form for mode choice. Ac-
cording to, e.g., Smith and Wisten (1995), the existence of a fixed point or equilibrium solution is expected under the
following two conditions. Firstly, the feasible flow set is closed and convex. This holds by the formulation established
in the current study. Secondly, the cost function and the mode choice function are continuous over the flows. Further-
more, the uniqueness of the fixed point or equilibrium solution requires the experienced cost to be strongly monotonic
over the flows (refer to e.g., Nagurney (1993)), which does not necessarily hold in this paper under the aggregate traf-
fic flow model with complex and dynamic multi-modal flow interactions. We leave these questions for future research
while here we focus on examining the multi-modal traffic dynamics with an emphasis on the bus dispatching strategy
and adjusting the dispatched fleet size over time to improve efficiency.

2.2. Within-day dynamics with bi-modal and bi-directional flow interactions

We now describe the road traffic flow model for the bi-modal system. For the roadway network in the region (we
consider a single region city as indicated in Fig. 1), instead of modeling a detailed node-link network, we adopt an
aggregate approach based on recently proposed Macroscopic Fundamental Diagram (MFD), see, e.g., Geroliminis
and Daganzo (2008). Different from the single-region single-speed MFD framework, we consider two-directional
traffic flow in the network. The modeling of direction is in an aggregate manner, i.e., we consider two aggregate
approach for traffic movements, they are not necessarily on the same two-way street. Traffic in different directions
can have different speeds (this better captures the heterogeneity in the network than single-region single-speed MFD
framework). Particularly, the regional on-road speed has a relationship with regional traffic accumulation as follows:

v1,a = v (n1, n2) ; v2,a = v (n2, n1) , (4)

where vd,a is the regional space-mean speed for road traffic in direction d, nd is the directional traffic accumulation
in unit of Passenger Car Equivalent (PCE), and v(·) is the regional speed function. Note that we consider a typical
two-directional commuting patterns, and thus we have both n1 and n2 (with different directions) in the speed function,
where n1 and n2 might affect the speed v1,a differently (as well as for v2,a). Generally, we expect that the traffic in the
same direction has a larger unit impact on its speed than the traffic in the opposite direction. Eq.(4) covers a typical
case that the cars and buses in opposite directions are interacting with each other in the network since they share
the same network (e.g., they may conflict with each other at the same intersection). In case we consider more than
two directions, we have to include relevant accumulation variables in Eq.(4). Since we adopt an aggregate traffic flow
approach without detailed network setting, later we may frequently use ‘region’ to refer to the roadway system or
network. The accumulation nd =

∑
w nd,w,a+2.5 ·Nd,b, where nd,w,a is the car traffic in direction d, Nd,b is the bus traffic

in direction d, and 2.5 is the Passenger Car Equivalent for one bus.
Specifically, the following specific form for the regional speed is adopted for numerical analysis:

vx,a

(
nx, ny

)
= vcri · exp

 − 0.5 ·
(

nx + ρ · ny

ncri

)2 , (5)

where x, y ∈ {1, 2}, x � y. Eq.(5) involves three parameters: vcri represents the maximum speed for the region, ncri

is a critical value for accumulation, and ρ is a parameter to measure the impact of traffic in opposing direction and
ρ ∈ [0, 1]. In practice, vcri, ncri, and ρ can be calibrated with real observations from specific network topology; in this
paper, we assume that these parameters are exogenously given. There are two special cases associated with the two
extreme values of ρ: ρ = 0 and ρ = 1. ρ = 0 means that while we have a single region, traffic moving in each direction
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has a separate and independent speed-accumulation function, i.e., an independent MFD for each sub-network in the
region. The clustering of adjacent road links with directional flows into different sub-networks with a well-defined
MFD is studied in Saeedmanesh and Geroliminis (2016). ρ = 1 means that the whole network including the two
directions has one well-defined speed-accumulation function, i.e., a single well-defined MFD for the whole region. If
we have more than two directions, we then have to specify a set of coefficients ρ for traffic in different directions.

Eq.(4) or (5) characterizes the speed of normal traffic comprises of cars and buses. It is assumed that buses can
be operated at the same speed with cars if buses do not carry passengers and do not stop at bus stations. However,
in practice, buses are delayed due to boarding and alighting processes and crowding effects, depending on passenger
loading. Following Zheng and Geroliminis (2013), we introduce an average bus speed function as a discounted speed
as opposed to private cars to account for these delays

vd,b = ϕ(λd,b) · vd,a, (6)

where ϕ represents the ‘discount rate’ which decreases with the regional loading factor λd,b in direction d, i.e.,
ϕ′(λd,b) < 0. While Eq.(6) follows the notion of Zheng and Geroliminis (2013), it is introduced here in a more
general form. Instead of explicitly aggregating dwelling delays from individual boarding and alighting times as in
Zheng and Geroliminis (2013), the effect of passenger loading is designated by the term ϕ(λd,b). The general property
that more passengers lead to more large delays holds in this form and it meanwhile allows for flexibility on the specific
function form.

The analytical analysis in Section 3, by treating ϕ(λd,b) as a general function, does not assume any specific function

form for it. To implement the numerical analysis in Section 4, the exponential function ϕ(λd,b) = exp
{
− 0.5 ·

(
λd,b

λcri

)2 }

is adopted, where λcri represents a critical loading factor that is exogenously given. This function form reflects a
specific characteristics of how the ‘discount rate ϕ’ changes with ‘loading factor λd,b’: it decreases at an increasing
rate when λd,b is smaller than the critical value λcri; when λd,b exceeds λcri, it still decreases with λd,b but the increasing
rate decreases with λd,b. In general, vd,b governs a lower bus speed under a larger bus loading factor. In practice, the
selection of ϕ(λd,b) entails dedicated sensitivity and calibration analysis.

Throughout this paper, the bus ‘loading factor’ (λd,b), refers to the average number of passengers on a bus in a
particular direction d. By definition, the loading factor is calculated by λd,b =

∑
w nd,w,b/Nd,b (passenger-minute per

bus).
From the bus passengers’ point of view, the journey time includes not only in-vehicle time ld,w,b/vd,b but also waiting

time at bus station, where ld,w,b is the trip length for direction d, group w, and mode b. Denote Ld,b as the trip distance
for the one-way of the bus route on direction d, the average one-way travel time of a bus is Ld,b/vd,b. When the average
proportion of buses serving overlapped routes is γd,b (the average proportion of buses that is suitable for a particular
traveler trip among all buses operating in the same direction), the mean bus headway is hd,b = Ld,b/

(
γd,b · Nd,b · vd,b

)
.

The waiting time is approximated by the half of the mean bus headway, which is 0.5 ·hd,b = 0.5 ·Ld,b/
(
γd,b · Nd,b · vd,b

)
.

Thus, the average traveling speed of bus passengers is

Vd,w,b =
ld,w,b

ld,w,b
vd,b
+ 0.5 · γd,b · Ld,b

γd,b·Nd,b·vd,b

=
ld,w,b

ld,w,b + 0.5 · Ld,b/(γd,b · Nd,b)
· vd,b. (7)

Based on speeds and trip lengths, we can then determine the outflows of car and bus traffic, as well as passenger
flows. Following many studies based on the MFD concept, we have the outflow for cars (or flow rate leaving the
network) as follows:

od,w,a =
nd,w,a · vd,a

ld,w,a
. (8)

The outflow for buses is

Od,b =
Nd,b · vd,b

Ld,b
. (9)

The outflow for bus passengers is

od,w,b =
nd,w,b · Vd,w,b

ld,w,b
. (10)
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2.3. Travel cost formulation

Now we discuss how the experienced cost and real-time instantaneous cost estimates (which simulate the percep-
tion of real-time traffic conditions) mentioned in Section 2.1 can be determined.

Experienced conditions and costs. For all travelers from group w and in direction d, the trip distance is ld,w,m for
mode m. The experienced car travel time (driving time) T (q)

d,w,a(t) on day q can be determined by solving the following
equation numerically (the driving time is in the upper limit of the integral):

∫ t+T (q)
d,w,a(t)

t
v(q)

d,a (µ) dµ = ld,w,a, (11)

where v(q)
d,a (µ) is the realized regional speed at time µ on day q for car traffic in direction d, and ld,w,a is the driving

distance, which is time-invariant. Similarly, we can determine the experienced journey time for bus trips, which is
obtained by solving

∫ t+T (q)
d,w,b(t)

t
V (q)

d,w,b (µ) dµ = ld,w,b, (12)

where V (q)
d,w,b (µ) is the realized speed at time µ for bus trips, and ld,w,b is the bus trip distance, which is also time-

invariant.
We are now ready to formulate the experienced travel costs. For group w travelers departing at time t, the experi-

enced travel cost of mode m on day q is the sum of travel time cost and monetary cost, which is given by

C(q)
d,w,m(t) = α · T (q)

d,w,m(t) + τ(q)
d,w,m(t), (13)

where α is value of time (VOT), T (q)
d,w,m(t) is the experienced travel time of mode m, and τ(q)

d,w,a(t) is the monetary cost

for private car mode including private car running cost, parking fee, and τ(q)
d,w,b(t) is the monetary cost for bus mode,

i.e., the distance-dependent bus fee in this study.
Perception of real-time traffic condition. We now discuss the instantaneous cost estimate based on real-time traf-

fic conditions. The instantaneous cost estimate for private cars can be determined in a similar way as the experienced
cost. We simply need to replace the experienced speed v(q)

d,w,a(µ) in Eq.(13) with the speed v(q)
d,w,a(t) at departure time t

to have an instantaneous estimation of travel time. It follows then

p(q)
d,w,a(t) = α ·


ld,w,a

v(q)
d,w,a(t)

 + τ(q)
d,w,a(t). (14)

Similarly, we can determined that for buses, which is

p(q)
d,w,b(t) = α ·


ld,w,b

V (q)
d,w,b(t)

 + τ(q)
d,w,b(t). (15)

2.4. System efficiency measures

The major objective in this study is to improve bus utilization and increase net revenue for the bus operator. Thus,
the main efficiency measure of interest in this paper is the bus operator’s revenue. For alternative objective functions,
one can found in, e.g., Zhang et al. (2016). We now list a few relevant efficiency measures.

Firstly, the total bus fare-box revenue (collected from the travelers) is calculated as follows:

T BF(q) =
∑

d

∑
w

∫
t
r(q)

d,w,b(t) · τ(q)
d,w,b(t)dt, (16)

Secondly, the total operating cost for buses is given by

T BC(q) = β ·
∑

d

∫
t
N(q)

d,b(t)dt, (17)
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where β is the operating cost per unit time for one bus, and
∑

d

∫
t N(q)

d,b(t)dt is the total bus operating time. The total net
revenue (profit) is then

T BN(q) = T BF(q) − T BC(q). (18)

From the traveler’s perspective, the total user cost is

TUC(q) =
∑

d

∑
w

∑
m

∫
t
r(q)

d,w,m(t) ·C(q)
d,w,m(t)dt, (19)

and the total system cost is

TS C(q) = TUC(q) + T BC(q) − T BF(q). (20)

In the following analysis of bus dispatching strategy, we are interested in not only bus operator’s revenue but also
user cost. We will examine how much the proposed adaptive bus operation to improve revenue could harm the travelers
in the bi-modal system as a whole, or how much it will help to reduce user cost.

3. Responsive bus dispatching strategy and effect of dispatched fleet size

In last section, we discuss both the day-to-day traffic variation and the within-day multi-modal traffic interactions.
Given these, we now develop a responsive (adaptive) bus dispatching strategy for determining time-dependent dis-
patched fleet size, which is to improve bus utilization efficiency and net revenue while maintaining certain level of
services for passengers. Responsive bus operating strategies have been considered in Zhang et al. (2014), Zhang et al.
(2016), and Li and Yang (2016). However, dynamic dispatching strategy considered here is much more complex and
realistic than those in the literature. The main reason is that providing a larger dispatched fleet size does not guarantee
a higher frequency due to potential larger congestion delays resulting from the increased number of bus in service. In
short, this study takes into account the endogenously multi-modal and multi-directional flow interaction when adjust-
ing the dispatched fleet size. Those in the literature often ignore this issue and implicitly assume that the planned bus
frequency will not be affected by endogenous congestion and can be achieved as planned. Throughout this paper, the
variable of interest is the size of dispatched fleet rather than whole available fleet (including both operating and idling
vehicles) with the assumption that the size of whole fleet is large enough to cover the studied period of time.

3.1. Objective loading factor

The bus dispatching strategy discussed in this paper aims at an exogenously proposed target loading factor λob j.
In practice, the target loading factor can be determined by comprehensively calibrating the relationship between
dispatched fleet size and net revenue. Alternatively, the optimal loading factor can be estimated by the aggregate
demand elasticity with respect to the dispatched fleet size. We provide a brief discussion in the below. For simplicity,
the trip direction, trip distance, and time-dimension are ignored, and indices d, w, q, and t are thus omitted (this also
eases the notation burden). We introduce the elasticity of the travel demand for bus with respect to the dispatched fleet
size, which is given by

ξrb
Nb
=

drb

dNb

Nb

rb
, (21)

where rb represents the aggregate travel demand and Nb represents the dispatched fleet size. It is generally expected
that employing more buses will attract more demand, namely the demand elasticity is normally positive. With the
abbreviated notation, the bus operator’s fare-box revenue is BF = rb · τb, the operating cost is BC = β ·Nb, and the net
revenue (profit) of the bus operator is BN = BF − BC. When the dispatched fleet size changes, the marginal revenue
is

dBF
dNb

=
drb

dNb
· τb, (22)
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and the marginal operating cost is

dBC
dNb

= β. (23)

When selecting the dispatched fleet size to maximize net revenue, the optimal dispatched fleet size should strike
a balance between the marginal fare-box revenue and the marginal operating cost, i.e, dBF/dNb = dBC/dNb, or
equivalently,

drb

dNb
· τb = β. (24)

Substituting Eq.(21) into Eq.(24) and with some manipulations, we obtain the following proposition regarding the
objective loading factor.

Proposition 1. Given the unit operating cost, ticket price and the demand elasticity with respect to dispatched fleet
size, the optimal loading factor is

λob j =
β

τbξ
rb
Nb

. � (25)

Proposition 1 indicates that the objective loading factor should be determined based on unit operating cost, ticket
price and demand elasticity. Given that β represents the unit operating cost per unit time per bus and τ the unit ticket
price, β/τ signifies the minimum patronage that is required to cover the operating cost per unit time. Eq.(25) prescribes
that the optimal loading factor is equal to the minimum patronage multiplied by the inverse demand elasticity. This
implies that the more sensitive the demand is to the density of bus service, the lower the optimal loading factor should
be.

Proposition 1 provides the analytical form of the objective loading factor, which entails precedent information
of demand elasticity. In practice, the selection of objective loading factor requires dedicated sensitivity analysis and
parameter calibration.

3.2. Effect of dispatched fleet size

This section presents a comparative analysis of the effect of dispatched fleet size on the level of service, in par-
ticular reflected by the mean bus headway. Following Section 3.1, this section adopts the steady-state analysis with
abbreviated notions. As shown in Section 2.2, the mean bus headway is given by hb = Lb/(γb · Nb · vb). When there is
a marginal increase in dispatched fleet size, the change in the mean bus headway is

dhb

dNb
= − L
γbv2

bN2
b

· (vb + Nb
dvb

dNb
). (26)

The first term on the RHS of Eq.(26) is negative, and thus hb decreases with Nb if and only if the term in the brackets
is positive as a whole, i.e., dvb

dNb
> −vb/Nb. Eq.(26) suggests that the change direction of bus headway depends on how

the bus speed changes with the fleet size dvb
dNb

. Since vb = ϕ(λb) · va and λb = nb/Nb, we can further derive

dvb

dNb
= ϕ′va ·

dλb

dNb
+ ϕ · dva

dNb
. (27)

dλb

dNb
=

1
Nb

dnb

dNb
− nb

N2
b

(28)

where ϕ′ = dϕ/dλb < 0. Substituting Eqs.(27) and (28) into Eq.(26), we have

dhb

dNb
< 0⇔ ϕ′va

dλb

dNb
+ ϕ

dva

dNb
> − vb

Nb
⇔ dλb

dNb
< − 1

Nb

ϕ

ϕ′
(1 +

dva

dNb

Nb

va
)⇔ dλb

dNb

N2
b

nb
< − ϕ
λbϕ′

(1 +
dva

dNb

Nb

va
).(29)

We thus obtain the following proposition regarding the effect of dispatched fleet size.
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Proposition 2. An increase in the dispatched fleet size leads to the increase in the level of service of bus service
(reduced mean headway) if and only if

ξλb
Nb
< − ϕ
λbϕ′

(1 + ξva
Nb

), (30)

where ξλb
Nb

and ξva
Nb

represent the elasticities of loading factor λb and normal traffic speed va with respect to the dis-
patched fleet size Nb respectively. �

Proposition 2 establishes the sufficient and necessary condition for the dispatched fleet size positively improving
the level of service. It implies that how the level of service changes with the dispatched fleet size is driven by how
loading factor and traffic congestion change with it. With endogenous mode choice, the effects of dispatched fleet size
on these key performance indicators (level of service, loading factor, traffic speed) are complex. This is because the
change of dispatched fleet size has not only direct impacts on the bus vehicle density, but also indirect impacts through
modal split and demand redistribution. The traffic speed, for example, is determined by the total vehicle accumulation
which is the sum of car accumulation and bus accumulation. Increasing dispatched fleet size directly enlarges the bus
accumulation which may reduces the traffic speed, but its impact on car accumulation is not straightforward. Given
denser bus service, there will a modal shift from driving mode to bus mode leading to a decreased driving demand
which in turn reduces the car accumulation. As the consequence, the actual change of traffic speed depends on the
relative magnitude of the direct and indirect impacts. When the mode shift effect is large enough, enlarging dispatched
fleet size may improve the overall traffic speed by substantially reducing driving demand. This is to say, the elasticity
of the traffic speed with respect to the dispatched fleet size is not necessarily negative (direct impact dominating) nor
positive (indirect impact dominating); instead, it can take any value. The similar argument is applicable to the effect of
dispatched fleet size on loading factor – the direct impact reduces the loading factor and the indirect impact increases
the demand for bus travel which potentially intensifies the loading factor.

Therefore, the sufficient and necessary condition of Eq.(30) does not always stand. When the direct impact of
dispatched fleet size on traffic speed substantially overwhelms, ξva

Nb
can be less than -1, and the RHS of Eq.(30) is

negative. If at the same time, the direct impact on loading factor is dominated by the indirect impact, the LHS of
Eq.(30) is positive, which contradicts Eq.(30). We thus have the following Corollary.

Corollary. When ξva
Nb
< −1 and ξλb

Nb
> 0, increasing the dispatched fleet size reduces the service headway.

This Corollary provides a sufficient condition for the counterproductive outcome to occur when the dispatched fleet
size is increased. Intuitively, this Corollary states that if adding buses in service attracts more bus demand and slows
the traffic speed substantially and simultaneously, the level of service will be reduced.

This is likely to happen when the traffic congestion is highly intensive to the extent that both traffic speed and modal
split are very sensitive to the change of dispatched fleet size. In practice, in the downtown areas of many mega-cities
with limited road space, such as London, Sydney, Hong Kong, and Beijing, peak-hour traffic congestion is significant.
It is frequently observed that the density of transit vehicles (especially long bus vehicles) stuck in the traffic congestion
is substantial. In such systems, it is expected that adding more bus vehicles will further exacerbate traffic congestion
and reduce the level of service.

3.3. Responsive bus dispatching strategy

Now we proceed to discuss how the size of dispatched bus fleet should be adjusted over calendar time given
day-to-day traffic variations for a given target loading factor λob j. The strategy we introduce here is to update the
dispatched fleet size adaptively to drive the actual average loading factor λd,b =

∑
w nd,w,b

Nd,b
to the objective λob j. Note that

the dynamic dispatched fleet size is not updated from day to day; instead, it is updated once over a certain period of
time, i.e., a certain number of days (denoted by Q), e.g., a month, or a quarter.

The modeling period is [ts, te], and t ∈ [ts, te]. Suppose we divide [ts, te] into M intervals with an identical length of
δ = te−ts

M , and the i-th interval is [(i − 1) · δ, i · δ]. For each time interval, the dispatched fleet size is identical.
If the time-dependent dispatched fleet size is lastly updated on day q−Q, then the next update round will take place

on day q + 1 as follows:

F(q+1)
d (t) = F(q)

d (t) + Fd,0 ·



∫
µ∈[(i−1)·δ,i·δ] λ

(q)
d,b(µ)dµ

δ
− λob j

 (31)
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where t ∈ [(i − 1) · δ, i · δ]. If we increase M and decrease δ, for every t, we can find (i − 1) · δ→ t and i · δ→ t. This
means, the dispatched fleet size at time t is updated based on system conditions at time t. Later we will test different
values for δ and explore how it will affect the efficiency of the adaptive fleet management strategy.

The planned dispatched fleet size F(q)
d (t) is realized by adding buses into the roadway when we have to increase

the dispatched fleet over clock time, and by stopping buses completing their trips and arriving at the end of the bus
route when we want to decrease real-time dispatched fleet size. Note that the rate/intensity for stopping bus services
is bounded by the rate of or the number of arriving buses at the final stops.

4. Numerical studies

This section presents numerical examples to illustrate the model developed and analysis presented. Firstly, we
present and elaborate the common numerical setting. Secondly, we examine day-to-day traffic variations, under either
asymmetric or symmetric demand profile for the two trip directions, and how bus frequency (the number of running
or dispatched buses) evolve with clock time governed by congestion dynamics. Thirdly, we examine the adaptive
strategy for the time-dependent bus dispatching. In particular, we look into the impact of the value of δ, which is the
bus operation interval where the dispatched fleet size remains constant. We test and compare the model performance
under different demand and congestion conditions. We also compare our adaptive approach with a direct optimization
approach for the time-dependent bus dispatching strategy.

4.1. Numerical setting

We start with describing the common numerical setting, a significant part of which is summarized in Table 1. The
modeling duration is [ts, te] = [0, 3](h), which has been discretized into time intervals with a length of ∆t = 1 (min)
for computing the traffic dynamics.

Table 1. Basic numerical setting.

Variables or parameters Specification

Modeling duration 3 hours: [ts, te] = [0, 3] (h)
VOT α = 48.45 (AUD/h)
Monetary cost for a car trip τd,w,a = 0.703 · ld,w,a + 15 (AUD per trip): 0.703 · ld,w,a: running cost; 15 (AUD): parking fee
Speed function parameters vcri = 40 (km/h); ncri = 1 × 104 (PCE); ρ = 0.2; λcri = 25 (passenger-minute per bus)
Day-to-day traveler learning parameters ηc = 0.5, ηC = 0.5, ηp = 0.8
Logit model parameter θd,w = 0.15
Bus route one-way length Ld,b = 30 (km), proportion of overlapping routes γd,b = 5%
Operating cost for unit time of one running bus β = 98.10 (AUD per one hour operation of one bus)
Bus target loading factor λob j = 15 (passenger-minute per bus)
Bus dispatching adjustment factor Fd,0 = 1.75 (bus per loading factor unit)
Number of days between two fleet adjustments Q = 30 (day)

The travel demand intensity over time is presented in Fig. 2(a), where demands in direction d = 1 and direction
d = 2 are different (asymmetric demand). While this is the benchmark demand, we have also tested the case with
symmetric demand (however, to be comparable, the total demand density for both directions is still the same). This
reflects typical patterns in morning or evening peak durations. Moreover, there are five groups of trip distances among
the demand, i.e., for w = 1, 2, 3, 4, 5, the trip lengths are 2, 4, 6, 8,10 (km) for car mode and 2.15, 4.30, 6.45, 8.60,
10.75 for bus mode, respectively. The proportions of these groups among the total demand are 56.0%, 25.2%, 11.4%,
5.1%, 2.3%. Note that the length of the bus route (30km for both directions) is larger than the trip distance of all
passengers.

To examine the adaptive approach for adjusting the running bus fleet size (the number of buses dispatched), we
look at 10 periods and each period has 30 days, i.e., Q = 30. Time-dependent bus dispatching is adjusted from period
to period. The whole modeling duration (3 hours) is equally divided into 36 intervals with a length of δ = 5 (min).
Within each interval, the dispatched fleet size is the same, and is adjusted identically over periods. Note that δ is the
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Fig. 2. (a) Total demand rate over time; (b) Evolution of error term ε in Eq.(32) from day to day.

length of a bus operation time interval with the same bus dispatching frequency, which is different from ∆t. Different
values of δ (2, 5, 15, 30, 45, and 60) are tested for sensitivity analysis.

The dispatched bus fleet size for the whole region is constantly equal to 300 as a benchmark case. The whole
dispatched fleet is proportional to the demand level for both travel directions at the beginning of the modeling duration
(2:1 in the benchmark case with asymmetric demand for both directions). The objective loading factor is set to be
λob j = 15 (passenger-minute per bus). In practice, determination of λob j requires calibration and sensitivity analysis
following the discussion in Section 3.1 and Section 3.2. In this paper, we can approximate its value by our simulation
model. In particular, we test the performance (in terms of revenue) under different values of λob j and choose the λob j

with the best performance.

4.2. Day-to-day dynamics

Firstly, we examine the convergence of traffic patterns to an equilibrium state after day-to-day evolution under the
benchmark numerical setting. We define the error term (for a specific day q) as follows:

ε(q) =

∑
d
∑

w
∑

m

∫
t r(q)

d,w,m(t) ·
∣∣∣∣c(q)

d,w,m(t) −C(q)
d,w,m(t)

∣∣∣∣ dt
∑

d
∑

w

∫
t rd,w(t)dt

(32)

The error term is the absolute error between mean perceived cost and experienced cost, which is averaged over the
direction, group, and departure time. Fig. 2(b) shows the error term for 90 days of traffic evolution, which indicate
convergence of the traffic pattern. Note that here the ”90 days” are used for illustration purpose (for convergence).
Later on we adopt ”30 days” for each period, as mentioned earlier.

We now compare the car accumulation profile, bus passenger accumulation, bus accumulation profile, and the
PCE-based accumulation profile over clock time at the equilibrium solution under asymmetric demand and symmetric
demand (for two directions) cases. The total demand intensity over time is identical. In Fig. 3, ‘AS’ and ‘S‘ refer to
cases with asymmetric and symmetric directional demand respectively. ‘AS1’ and ‘AS2’ refer to two initial dispatched
bus fleet allocations for two directions: ‘AS1’ means the initial allocation is proportional to the total travel demand,
and ‘AS2’ is for equal allocation for both directions. Note that for the ‘S’ case, the two different allocations for
‘AS’ are identical since the demand is symmetric. d = 1 and d = 2 refer to moving directions of traffic. We have
several key observations from Fig. 3. Firstly, traffic conditions under asymmetric and symmetric demand cases are
very different, although the total demand intensity over time is the same. Therefore, it is important to incorporate
asymmetrical demand in the multi-directional system. Secondly, under two different initial bus allocations for two
directions in the asymmetric demand case, the bus accumulation over clock time (also the bus density or frequency)
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endogenously evolve to the same pattern (refer to Fig. 3(c)). Thirdly, in the asymmetric case, due to spatially and
temporally heterogeneous congestion, the real time bus densities for the two directions are different. This means that,
traditional ways for setting bus schedules or service frequency might not necessarily provide the planned level of
service due to congestion. Fourthly, the traffic condition in the symmetric case is generally in between of those in
directions d = 1 and d = 2 since the demand level is also in between.

We now further illustrate the importance to incorporate traffic dynamics, where bus accumulation in the network
as shown in Fig. 3(b) is endogenously determined. Fig. 4 shows the bus accumulations (for both directions) when
we adopt constant speed for buses (i.e., 0.8 × vcri = 32km/h here), while all other demand setting and parameters
are identical to those for Fig. 3(b). It can be seen that for case ‘AS1’ (the initial allocation is proportional to the total
travel demand), the bus accumulations for both directions will evolve to the same value, i.e., steady state bus operation
for two directions with equal bus frequency. In line with this, for the case ‘AS2’ (i.e., equal bus allocation for both
directions initially), the bus accumulation remains constant over clock time (steady state again). These only occur
where we adopt constant speed (without consideration of congestion). The performance is very different from those
in Fig. 3(b). The observation in Fig. (4) might occur when there are dedicated bus lanes. If this is not the case, these
results indicate that without taking into traffic dynamics, modeling of bus operation can be largely inaccurate.

4.3. Adaptive bus dispatching fleet size

We now illustrate the adaptive time-dependent bus dispatching shown in Fig. 5(a). For δ = 5 (min), we adjust the
planned bus dispatching for each discretized time interval with a length of δ = 5 (min). In Fig. 5(a), ‘2P6’, for example,
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 (b) Dispatched bus fleet under different time resolutions
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Fig. 5. (a) Evolution of bus dispatching (adaptive bus dispatching) with δ = 5; (b) Evolution of the bus dispatching (adaptive bus dispatching) under
different values for δ.

refers to the dispatched fleet size plan for direction d = 2 traffic in period 6 (after 5 adjustments, i.e., 5 × Q = 120
days). The same interpretation applies for others in Fig. 5(a), where we pick up those in periods 1, 3, 6, 9, and 10
for illustration purpose. As can be seen, the planned bus dispatching approaches a time-dependent pattern, which is
compatible with the travel demand intensity over time. In particular, it is noted that there is a time lag between the
peaked bus service and the peak demand duration. This is caused by the time lag between departure time and arrival
time of travelers.

We also examine the cases with different values of δ, representing how frequent the dispatched fleet size is updated.
In particular, we test six values, i.e., 2, 5, 15, 30, 45, and 60. Fig. 5(b) displays the planned time-dependent bus
dispatching after 8 periods (with 7 adjustments). Fig. 5(b) is comparable to Fig. 5(a) with only the case of δ = 5.
It can be seen that, with a smaller δ, the dispatched fleet size profile over time becomes smoother, which can better
accommodate temporal variations of travel demand. This is reflected in Table 2, where resultant net revenues and
total system costs under different values of δ are summarized. We have the following observations. Firstly, with the
increase of δ, the net revenue generally decreases and total system cost generally increases. Secondly, the changing
rates of the net revenue and system cost are sharper for δ > 15, and is relatively flat for δ < 15. This means that,
in practice, a smaller time interval of updating the dispatched fleet size (or frequency) does not necessarily bring too
much additional benefit.

Table 2. Efficiency comparison under different values for δ.

δ (minute) 2 5 15 30 45 60

Total net revenue (105 AUD) 1.434 1.435 1.422 1.401 1.358 1.204
Total system cost (106 AUD) 1.480 1.478 1.480 1.493 1.516 1.568

Under the period-dependent bus dispatching adjustment in Fig. 5(a), Fig. 6 further displays evolutions of the total
bus fee collected T BF, the total bus operating cost T BC, the total net revenue for operating bus services T BN, the
modal-split, total user cost TUC and total system cost TS C over calendar time. It is evident that these measures have
relatively sharp changes when we update the planned dispatched fleet size. As shown in Fig. 6, both fare-box revenue
and operating cost increase, and the net revenue increases (i.e., fare-box revenue increases at a sharper rate). At the
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Fig. 6. Evolution of system efficiency measure against the bus dispatching.

same time, bus mode share increases (refer to Fig. 6(c)), and the total user cost and system cost almost remain constant.
This is driven by the time-varying services. In response to demand, the general strategy is to dispatch a larger fleet size
during the demand peak to increase competitiveness of bus services, a smaller fleet before the beginning of the peak
to save operating cost, and a moderate size after the peak demand duration to transport the passenger accumulation to
their destinations. as mentioned earlier, there is a time lag between departure time and arrival time).

There are several key points to be noted. Firstly, the bus operating cost is proportional to the total travel time of all
operating buses. While this has taken into account the larger cost of a larger dispatched fleet, it does not consider that
cost associated with the idling bus fleet during non-peak durations. This is reasonable in the sense that the life time
of a bus is proportional to the time duration that it has been used, and the cost can be considered proportional to that
time duration. However, this consideration can be readily relaxed by adding a cost for the un-utilized fleet during the
non-peak. Secondly, the initial net revenue for bus operator is positive. This is dependent on the unit cost for operating
bus and bus fares. If the unit operating cost is increased, or a lower bus fare is adopted, the initial net revenue can be
negative (in some particular cases, the net revenue might never be positive). However, in this example, the revenue is
positive and can be raised by the adaptive strategy by reducing the total operating cost. Thirdly, while the adaptive bus
dispatching strategy aims at the net revenue of the bus operator, the user cost and total system cost is reduced at the
same time. This implies that the two objectives do not necessarily conflict one another.

We now test our model under different demand conditions. Fig. 7 displays bus dispatching adjustment, the total
net revenue for operating bus services, the total user cost, and total system cost over calendar time, where demand is
only 5% of the benchmark example in Fig. 5(a) and Fig. 6 and other setting is identical. As can be seen in Fig 7(b),
due to very low demand, initially the bus net revenue is significantly negative. With our adaptive bus dispatching
adjustment, the dispatched bus fleet is decreasing over periods while the pattern over clock time still accounts for
temporal variation for demand, which are shown in Fig. 7(a). This helps to reduce the loss of the bus operator, i.e., the
net revenue becomes less negative. It should noted that reducing bus fleet under very low demand conditions, while
reducing loss of the operator, may sacrifice user’s benefit, as shown in Fig. 7(c). This means that the government might
have to subsidize the bus operator to dispatch more buses for social welfare.
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4.4. Comparing the adaptive dispatching strategy with direct optimization

We proceed to compare the adaptive strategy with the direct optimization of the time-dependent bus dispatching
fleet size (to maximize net revenue). In particular, the numbers of dispatched buses in each time interval (δ = 5(min))
are decision variables. One may find that due to the complexity of the traffic dynamics, this optimization problem is
highly nonlinear and non-convex. How to obtain the global optimal solution is not the focus of this paper. Instead, we
take the time-dependent bus dispatching strategy after implementing the proposed period to period adjustment (for
10 periods) as an initial solution and search locally to find a feasible and improved solution. We then implement the
improved bus dispatching solution, which can lead to a net revenue of 1.451 × 105 AUD, as shown in Fig. 8(b). This
is slightly higher than our adaptive approach. However, there are several advantages of our proposed that we would
like to highlight in the following.

Firstly, implementing the directly optimized bus dispatching strategy (even if the numerical solution is sub-
optimal), as can be seen in Fig. 8(a) for modal-split and in Fig. 8(b) for net revenue, can lead to larger fluctuations
in the system. In practice, the fluctuation might be even larger, last for longer, and yield instability and unreliability
for transport systems. Instead, our period-to-period adjustment could guide the system to an improved system grad-
ually with less fluctuations. Secondly, the underlying assumption for the direct optimization is that we have all the
parameters (including characteristics of the population and the system) calibrated and the solving algorithm to provide
a good-quality optimization solution. If, for example, the value of time of the population is not well estimated, the
direct optimization will not give us the ”correct” solution for bus dispatching. The proposed approach in this paper
does not require such detailed information of the population and the system. As can be seen in Eq.(31), our approach
mainly requires observation of passenger volumes or loading. These are usually readily observable with current smart
transit card technologies. Thirdly, if the demand conditions or other parameters in the system change, with the direct
optimization approach, the system needs to be re-calibrated and re-optimized. With our proposed adaptive approach,
these changes will be automatically incorporated since we take into account day-to-day changes in the system and
update the bus dispatching strategy from period-to-period.

5. Conclusions

This paper, by adopting the doubly dynamical approach proposed in Liu and Geroliminis (2017), examines the
time-dependent bus dispatching problem in a multi-modal context. Existing explorations of the cross-modal con-
gestion interaction often have limitations on modeling the time-dependent multi-modal and multi-directional flow
interactions and the impact of bus dispatching on traffic conditions. Therefore, traditional studies optimizing the bus
frequency or schedule may fail as the realized bus frequency or schedule is constrained by the dynamic traffic con-
gestion on the road. In this context, this paper provides the methodology to model and optimize the time-dependent
dispatched fleet size with complex multi-modal and multi-modal flow interactions taken into account. The traffic
dynamics is modeled through the MFD framework. The proposed adaptive feet size adjustment mechanism utilizes
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Fig. 8. Evolution of modal-split and total net revenue with an optimized bus dispatching scheme.

system conditions observed from day to day and drives the bus system to operate at a target level of bus loading. This
study offers a new perspective for determining bus dispatching strategy and improves our understanding of multi-
modal traffic dynamics.

This study is based on a single region city. It is of our interest to extend the current models to the multiple-region
case, where a network can be partitioned into multiple regions with a well-defined Macroscopic Fundamental
Diagram (MFD) by approaches studied in , e.g., Saeedmanesh and Geroliminis (2016). In this case, the modeling of
cross-region buses becomes very relevant. Traffic conditions in one region might affect future bus supplies in other
regions. Multiple-region pricing strategies or controllers and bus fleet management might have to be considered for
improving traffic efficiency, such as those in Ramezani et al. (2015) and Kouvelas et al. (2017). While focusing on the
mode choice, this study treats the departure time as exogenously given. Future study could incorporate the trip-timing
choice into the doubly dynamic framework and examine the efficiency of the adaptive bus dispatching strategy. It is
expected that the real-time traffic information will play a major role in the stability of such a system following the
findings of Liu et al. (2017) and Guo et al. (2018).
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