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Abstract

Traditional production planning is primarily a quantity or capacity decision, which must be

made at the beginning of a planning horizon before production starts. Adding to this decision a

real-time control, a risk-hedging strategy carried out throughout the horizon can better mitigate

the risk involved in demand volatility. We demonstrate how this can be done in terms of jointly

optimizing the capacity and the hedging decisions, addressing both the mean-variance and the

shortfall objectives. Solution techniques, results and insights are highlighted. In particular, we

illustrate that our approach readily accommodates data analytics and explicitly quantifies the

improvement to the efficient frontier contributed by hedging.
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1 Introduction

Production planning teaches how to make a production quantity (or capacity) decision at time zero

(t = 0) so as to cope with demand uncertainty at a future time t = T , the end of the planning

horizon. The decision has to be made at t = 0, because only then all other actions and decisions

can follow — ordering raw materials and/or sub-assemblies, organizing the work force, setting up

production lines, as well as carrying out the physical process that produces the goods. Demand,

however, will not realize until all units are produced at t = T . Thus, the decision made at t = 0

tries to strike a balance between the risk of over-production (units that cannot be sold will incur a

loss) and the risk of under-production (unmet demand means reduced profit).

The classical approach to managing this risk is embodied in the newsvendor (NV) model. It

tries to find a production quantity Q so as to maximize the expected net profit from sales (the

smaller of Q and the realized demand at T , denoted DT ) minus the net cost (cost minus salvage

value). The optimal production quantity QNV is widely known to be determined by the so-called

“critical ratio,” p/(p + c), with p being per unit profit and c per unit cost, applied to the inverse

distribution function of DT .

This simple model is lacking in several ways. First, maximizing the expected payoff (net profit)

appears to be the wrong objective when it comes to managing risk. Simple calculation (in §2 below)

will show that QNV, which achieves the maximal expected payoff, also maximizes the variance of

the payoffs (for Q ≤ QNV; more on this in §2). In other words, QNV is merely one point of the

mean-variance efficient frontier. Thus, instead of maximizing the expected payoff, it will be far

more desirable to derive the entire efficient frontier. In this regard, other risk measures can also be

considered, e.g., shortfall from a given target payoff, which only penalizes the downside risk. (The

variance, in contrast, penalizes both above and below the mean.) The notion of efficient frontier

also applies here — increasing the target payoff is conceivably associated with an increased risk of

falling short from the target.

Second, the starting point of the NV model is the demand distribution, which is often determined

by some forecasting scheme or time series analysis that typically returns a mean (or rate) plus a

Gaussian noise (fluctuation from the mean). Yet, for a wide range of goods and services, demand

will often depend on certain tradable assets in the financial market, or on the general economy,
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which can be proxied by a broad market index (such as the S&P500 index), of which there are

ETF’s traded in the market. Listed below are a few examples:

• Wal-Mart experienced increased demand during the last financial crisis as consumers sought

lower-priced goods and its smaller-sized competitors went out of business. (Wall Street Jour-

nal, Nov 14, 2008, “Wal-Mart Flourishes as Economy Turns Sour.”)

• The U.S. automobile industry sharply increased forecast and production when the last re-

cession ended. (Wall Street Journal, Jan 14, 2014, “Auto Makers Dare to Boost Capacity:

North American Factories Will Build One Million More Cars a Year.”)

• A manufacturer for farming equipment experienced low demand amid falling prices of agri-

cultural commodities. (Forbes, February 20, 2015, “Deere Sales Suffer From Farming Down-

turn.”)

Thus, instead of forecasting the demand rate, a single parameter, one can (and should) do

better with a rate function — to capture the dependence of demand on certain financial assets.

This can be done by applying machine learning to data sets on both product sales and asset prices.

The resulting rate function will capture the first-order functional dependence of demand on asset

price (as opposed to statistical dependence like correlation between the two).

Third, in the NV model, the time-zero quantity decision is the only tool to cope with demand

uncertainty at the end of horizon. And in most application context, this decision, once made,

cannot be easily changed or modified without substantial penalty (as it will affect raw material

ordered, equipment purchased, work force hired, etc). Yet, with the new demand model one can

devise a hedging strategy, in the form of taking a position on the underlying tradable asset(s) and

adjust it from time to time throughout the planning horizon. This real-time hedging strategy will

not only add to the one-time quantity decision (at t = 0), it is clearly a more effective way to

mitigate the risk in demand uncertainty, and to improve the risk-return tradeoff.

The main goal of this paper is to highlight risk analytics as a fundamental tool—applying

analytical methods to turn data and problems into models and optimal decisions—much the same

way as business analytics has in recent years supported, with considerable success, the end-to-end

supply chains of most enterprises. The difference between the two also makes them distinctly
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complementary to each other. The focus of business analytics is on issues of efficiency: cost savings

and revenue/profit optimization; whereas the emphasis of risk analytics is on issues of resiliency:

risk-return tradeoff, catastrophe mitigation, and related resource allocation decisions and hedging

strategies.

In the remainder of the paper, we start with a quick overview of related literature in §1.1,

followed by a critique of the classical production planning model in §2. We then present a new

demand model based on machine learning in §3, and formulate the integrated production-hedging

models in §4. Solution techniques, main results and insights are highlighted in §5. These are

supplemented with possible extensions in §6, along with concluding remarks in §7.

1.1 Related Literature

The mean-variance hedging model highlighted in §4 below is largely motivated by Caldentey and

Haugh (2006), where the production model is more general, but the solutions obtained are not as

explicit as ours, and characterizing the efficient frontier is not a concern in their study. Furthermore,

to derive the optimal hedging strategy, they follow the approach of Schweizer (1992), while we

follow the numeraire-based technique of Gourieroux et al. (1998) (also see Pham (2009)). Other

related papers also include Gaur and Seshadri (2005), Wang and Wissel (2013) and Kouvelis et

al. (2013). Gaur and Seshadri (2005) study a single-period NV problem, and model demand at

T as a linear and increasing function of a tradable asset price (also at T ), and thus turn the NV

model into a contingent claim. They then construct a portfolio of options (and the underlying) as

a hedging strategy. Wang and Wissel (2013) study mean-variance hedging of price risk born by

kerosene consumers (or producers) with prespecified consumption (or production) in a continuous-

time setting using crude oil futures. Kouvelis et al. (2013) consider a model that is similar to Wang

and Wissel (2013): optimization under the mean-variance criterion, and financial hedging is in the

setting of producing or storing a commodity that can be used to supply customer demand. They use

a discrete-time dynamic programming approach to generate the hedging strategy, as opposed to the

continuous-time stochastic control approach in Wang and Wissel (2013). Other related papers all

pursue a discrete-time approach to hedging, in addition to the single-period setting in making the

production or capacity decisions. Besides demands, the uncertainty linked to tradable assets that

motivate hedging can include raw materials costs (Martinez-de-Albeniz and Simchi-Levi (2006))
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and currency exchange rate risk (Chowdhry and Howe (1999) and Ding et al. (2007)).

Studies in the area of shortfall hedging are mostly motivated by asset allocation/pricing (e.g.,

Fishburn (1977), Harlow and Rao (1989)), which is quite different from the production planning

context here. Yet, one of the models highlighted in this paper (§5.2) is to study a shortfall objective

while meeting a certain “budget” constraint, we find it useful to explore the approach of convex

duality in the shortfall hedging literature, in particular, the approach developed in Föllmer and

Leukert (1999, 2000). Furthermore, in the operations management literature, there have been

studies in recent years that use risk measures such as CVaR as objective functions in the NV model

(e.g., Chen et al. (2015), Chen et al. (2009), Choi et al. (2011), Gao et al. (2011)). CVaR, being a

quantile measure, relates naturally to shortfall; refer to Rockafellar and Uryasev (2000, 2002). Gao

et al. (2011) considered demands that are negatively affected by weather, and use options written

on weather indices for risk hedging. The other studies focus only on the production decision (Chen

et al. (2009) studies pricing as well), and are not concerned with taking hedging strategies in the

financial market.

Besides optimization of mean-variance tradeoff or CVaR, another stream of literature considers

utility maximization. For example, Chen et al. (2007) consider a multi-period inventory and con-

sumption planning model under which the risk-averse utility takes the form of a sum of exponential

functions. While the main part of the paper does not concern financial hedging, in an extension

section, a dynamic programming model is outlined to allow hedging using tradable securities.

In addition to financial hedging, there have been studies in the last decade or so advocating op-

erational hedging in using production and other logistical means to increase operational flexibility

to hedge against risk; refer to Boyabatli and Toktay (2004), which presents a critique on exist-

ing definitions of operational hedging in the literature, focusing on activities creating operational

flexibility, thus decreasing negative impacts, without using financial instruments. To study the

relationship between operational flexibility and financial hedging, Chod et al. (2010) consider cor-

related demands that are also correlated with tradable contracts, along with one-shot hedging using

options. Van Mieghem (2010) gives an overview of risk mitigation in operations, and emphasizes

the importance of using financial hedging as a tool to assist operational hedging. To illustrate, the

author cites the example of a high correlation between a retail sales growth index and the S&P500

index, and hence the possibility to mitigate demand risk using index options. This is also the basic
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premise that motivates our study.

2 A Critique on Traditional Production Planning

The classical approach to production planning is the newsvendor (NV) model and its many vari-

ations. The basic model tries to find a production quantity Q at time t = 0 to supply a random

demand DT , which is realized at time T > 0, the end of the planning horizon (or production lead

time) when the finished goods will supply demand; and the objective is to maximize the expected

payoff, maxQ≥0 E[HT (Q)], with

HT (Q) := p(Q ∧DT )− c(Q−DT )+ = pQ− (p+ c)(Q−DT )+, (1)

where p is the unit profit (selling price minus cost), c is the net cost (cost minus salvage value) per

unit, ∧ denotes the min operator, and (x)+ := max{x, 0}. As motivated earlier, in the context of

production planning, Q can be viewed as a proxy for capacity.

Taking derivative w.r.t. Q, and recognizing

d

dQ
E[(Q−DT )+] = P(DT ≤ Q) := F (Q),

where F (·) denotes the distribution function of DT , yields the optimal solution:

QNV = F−1
( p

p+ c

)
. (2)

This is the celebrated “critical ratio” solution.

Taking variance on HT (Q) in (1), we have

Var[HT (Q)] = (p+ c)2Var[(Q−DT )+].

Direct derivation yields

d

dQ
Var[HT (Q)] = 2(p+ c)2E[(Q−DT )+][1− P(DT ≤ Q)] ≥ 0.
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That is, Var[HT (Q)] is increasing in Q, for all Q. Furthermore, from (1), we know E[HT (Q)]

is concave in Q; and specifically, it is increasing in Q ∈ [0, QNV] and decreasing in Q > QNV.

Therefore, any Q > QNV does not induce efficient return-risk tradeoff and should not be considered.

In summary, we have:

Efficient Frontier of the Mean-Variance Model. Given m, let Qm ≤ QNV be the solution

to E[HT (Q)] = m; and let mNV := E[HT (QNV)], where QNV is the NV solution in (2). Then,

it is readily verified (by taking derivatives) that Var[HT (Qm)] is increasing and convex in m, for

m ∈ [0,mNV]. That is, a larger m corresponds to a larger variance, thus forming an efficient

frontier.

That the variance is increasing and convex in m is a sobering fact: increase in the mean will

lead to acceleratingly steeper increase in variance, and the increment is at its steepest when the

mean approaches its maximum mNV.

Denote v(m) := Var[HT (Qm)]. Then, the efficient frontier (m, v(m)) is an increasing and

convex curve, meaning at a higher level of return (mean) any further increase is associated with a

even steeper incremental increase in risk (variance). Thus, as we increase the production quantity

towards the profit-maximizing QNV, the price we pay is the maximal incremental increase in risk.

Another weakness of the NV model is its lacking of an application context: who is exactly its

intended user? Production planning is part of a firm’s sales and operations planning process (SOP),

by which the executive in charge works out production decisions together with sales and operations

managers. In that context, the profit/revenue target has already been set by the firm’s board. The

executive’s mandate is to meet or beat the target, not to set the target let alone to maximize the

profit. In other words, maximizing profit is not even a relevant objective, not to add the enormous

risk associated with such a pursuit as analyzed above.

With this application context in mind, it is useful to modify the classical NV model, replacing

the profit-maximizing objective by minimizing a risk measure, the shortfall: [m−HT (Q)]+, where

the constant m ≥ 0 is a pre-specified profit target. From the HT expression in (1), we can write

[m−HT (Q)]+ =
[
m+ cQ− (p+ c)DT

]+
, m ≤ pQ, (3)
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and

[m−HT (Q)]+ = m− pQ+ (p+ c)(Q−DT )+, m ≥ pQ. (4)

Clearly, the shortfall is increasing in the first case above, and it is equal to m − E[HT (Q)] in the

second case. Thus, direct verification leads to the following result.

Efficient Frontier of the Shortfall Model. Given m, the solution to minQ≥0 E[m−HT (Q)]+ :=

sNV(m) is QNV(m) := m
p ∧Q

NV, with QNV following (2). Furthermore, sNV(m) is increasing (and

convex) in m, which constitutes an efficient frontier.

Note from (4), when m > pQNV the shortfall will grow linearly in m. In this case, a production-

only decision becomes a handicap; and this motivates the risk-hedging strategy, to be detailed

below.

3 Machine Learning for Demand Modeling

A typical demand forecasting scheme will assume a normal distribution for DT . The rest is then

carried out via some statistical analysis applied to past data (time series), so as to discern any

trend (mean or rate) and to characterize the fluctuation around the mean (variance or “noise”).

As motivated in §1, a better demand model is to allow the demand rate to be a function of certain

financial assets:

dDt = µ̃(Xt)dt+ σ̃dB̃t, (5)

where Xt = (Xkt)
K
k=1 is a vector, with Xkt representing the price of k-th financial asset at time t.

B̃t is a Brownian motion that represents the noise independent from Xt and σ > 0 is the associated

parameter.

Note that the second term on the right hand side of (5), the noise part, can make dDt negative,

i.e., the cumulative demand is not necessarily increasing over time. While this may seem counter-

intuitive, keep in mind that Dt for t < T is understood as a forecast for cumulative demand up to t.

For example, automobile industry is known to have complex supply chains, and the capacity decision

for manufacturing needs to be made well in advance of the sales season. Over this planning horizon,

demand forecast is updated over time and does fluctuate (e.g. certain orders may be canceled or
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reduced). In particular, on t = T , the demand forecast equals the realized demand.

We can apply machine learning (ML) to obtain the function µ̃(·) from data set specific to each

application. This involves: (i) identifying, from historical data of a set of financial assets in the

market, the ones that impact the demand rate; and (ii) learning how the demand rate moves with

the selected variables. Technically, this means finding the arguments (i.e. assets to be included in

Xt) and the functional form of µ̃(·).

3.1 Learning the Demand Rate Function

We start with describing the approach with data sets of realized demands, and then extend the

approach to incorporate demand forecasts data in §3.2. Suppose the data sets of realized demands

take the following format.

• Demand: {Di, i = 1, · · · , N}, where Di is the demand realized for the i-th period which starts

on time ti and ends on ti+1. (i.e., ti (resp. ti+1) is the time “0” (resp. time “T”) for the i-th

period; writing T = Ti, then Di = DTi .)

• Asset: The daily (closing) price data of asset k is in form of {Xktij , i = 1, · · · , N, j =

1, · · · , Ni}. Here tij is the time of j-th trading day within the time frame [ti, ti+1] (i.e. period

i), and thus Ni is the total number of trading days within this period. Then, Xtij = (Xktij )
K
k=1

is the vector of asset prices at each time tij .

Compared to the daily asset price data, demand data is typically in longer time scale (monthly,

quarterly and yearly). Therefore, for each demand data point Di, which is associated with a time

frame [ti, ti+1], there are Ni asset price vectors within this time frame. Accordingly, (5) is discretized

as the following:

Di =

Ni∑
j=1

δijµ̃(Xtij ) + σ
√
δiξi, i = 1, · · · , N. (6)

On the right hand side, the first term (the sum) is the quadrature approximation for the time-

integral in (5), and {δij} are the associated weights which only depend on the time points {tij}.

The second term uses the distribution of Brownian increments, and ξi are i.i.d. standard normal

random variables (which are also independent from Xtij ); δi = ti+1 − ti are also constants. The

discretization in (6) effectively separates the noise (i.e. ξi) from the financial assets, and this defines
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the sum of residual squares throughout the following text.

Variable Selection Although the initial selection of asset types can be guided by risk factors

recognized by the manufacturer (e.g., the risk factors disclosed in the firm’s annual report), the

number of potentially relevant assets could be large. The goal here is to select, from a possibly

large set of candidate assets (indexed by k = 1, · · · ,K), a subset of assets exhibiting most relevance

to the demand. In this regard, there are well-established methods; for instance, refer to Guyon

and Elisseeff (2003). Among others, linear predictor with a variable selection feature as a filter is

immediately applicable. Specifically, this means imposing µ̃(x) = β0 +
∑K

k=1 βkxk (for the purpose

of variable selection) and using algorithms to reduce some of the βk to 0; then, variables associated

with non-zero βk are the selected ones. One commonly used approach is `1-regularization, and here

it amounts to solving:

min
β0,β1,··· ,βK

N∑
i=1

1

δi

[
Di − β0

( Ni∑
j=1

δij

)
−

K∑
k=1

βk

( Ni∑
j=1

δijXktij

)]2
+ λ

K∑
k=1

|βk|;

λ > 0 is a chosen tuning parameter that can be set to control the number of selected assets.

The formulation above is essentially a Least Absolute Shrinkage and Selection Operator (LASSO)

(Tibshirani (1996)) with
∑Ni

j=1 δijXktij , the daily average asset price over the i-th period, as the

k-th predictor.

Function Learning Based on (6), finding the functional form of µ̃(·) in the prices of the selected

assets can be cast into the following generic least squares problem:

min
µ̃∈U

N∑
i=1

1

δi

[
Di −

Ni∑
j=1

δijµ̃(Xtij )
]2

; (7)

where U is the function space of candidates of µ̃(·).

The problem in (7) can be further reduced to structured regression by restricting U . Specifically,

µ̃(·) is represented by a linear combination of basis functions (Hastie et al. (2009)):

µ̃(x) =
M∑
m=1

βmbm(x; θ). (8)

Each bm(x; θ) is a selected basis function with a specified functional form parameterized by θ.
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Figure 1: Monthly sales versus asset prices. y-axis represents monthly sales (in units) and x-axis
represents daily average of asset price within the same month. “linear” stands for µ̃(x) = β0 + β1x
(where x is the daily average asset price). “logit” stands for µ̃(x̂) = β0 + β1 log(x̂/(1− x̂)), where
0 ≤ x̂ ≤ 1 is the transformed asset price: x̂ = (x − L)/(U − L); (L, U) = (15, 60) for corn price
and (1000, 5000) for S&P500.

Rearranging the terms, (7) reduces to:

min
βm,θ

N∑
i=1

1

δi

[
Di −

M∑
m=1

βm

( Ni∑
j=1

δijbm(Xtij ; θ)
)]2

. (9)

Common choices of the basis functions include, e.g., polynomials, log, and logit functions.

In Figure 1, we illustrate a preliminary study that applies the above approach to data from

two firms, John Deere and General Motors, respectively. For John Deere, the underlying asset is

corn futures; for General Motors, it is the S&P500 index. In both cases, we study the relationship

between the firm’s monthly sales (y-axis) and the daily (average) asset price within the same

month (x-axis). A linear fit appears to capture the relationship quite well, and the learning is

further improved by using a logit function. (This study is slightly different from the demand model

in (5) since the predictor is µ̃(
∫ T
0 Xtdt) as opposed to

∫ T
0 µ̃(Xt)dt.)

3.2 Integration with Forecasting

Demand forecasts data can be incorporated with the machine learning component. For simplicity,

denote the i-th production cycle over [ti, ti+1] as [0, Ti]. Suppose within the firm there are demand
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forecasts (say, generated by existing blackbox routine) of Di (:= DTi) taking place on dates 0 <

si1 < si2 < · · · < sini < Ti, denoted by {D̂ij , j = 1, · · · , ni}. Following usual convention to let

si(ni+1) = Ti, hence D̂i(ni+1) is recognized as Di (note this means forecast made at the time of

demand realization is just the realized demand). Each D̂ij relates to the demand model in (5) by:

D̂ij = E[Di | Fsij ] = E
[
Dsij +

∫ Ti

sij

µ̃(Xu)du+ σ̃(B̃Ti
− B̃sij )

∣∣∣Fsij

]
=

∫ sij

0

µ̃(Xs)ds+ σ̃B̃sij + E
[ ∫ Ti

sij

µ̃(Xu)du
∣∣∣Fsij

]
. (10)

Fsij stands for all the information accumulated over [0, sij ], to which Dsij is known and BTi −Bsij

is independent.

Apply discretization to (10) and define:

∆D̂i0 := D̂i1 =

si1∑
ti`=0

δi`µ̃(Xti`) + σ

√
δ̂i0ξi0 + gi1;

∆D̂ij := D̂i(j+1) − D̂ij

=

si(j+1)∑
ti`=sij

δi`µ̃(Xti`) + σ

√
δ̂ijξij + gi(j+1) − gij , j = 1, · · · , ni. (11)

ti` stands for the `-th trading day of period i and the terms involving sums are the quadrature

approximations of
∫ si(j+1)

sij
µ̃(Xs)ds (with δi` being the weights). δ̂ij = si(j+1)−sij are constants

(si0 := 0) and ξij are i.i.d. standard normal variables. The quantity gij is defined as follows:

gij := E
[ ∫ Ti

sij

µ̃(Xu)du
∣∣∣Fsij] =

∫ Ti

sij

E
[
µ̃(Xu)

∣∣∣Fsij]du. (12)

(The switch of order of expectation and integral requires some mild technical condition on µ̃(·).)

The computation of gij , in particular the conditional expectation involved, can be done via Monte

Carlo by simulating sample paths of Xu. This, in turn, requires first fitting an asset price model

for Xt (such as the geometric Brownian motion). For the structured regression discussed above,

the computation of gij over realized samples of Xu is straightforward for each chosen set of basis

functions.
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The i.i.d. noises ξij in (11) are separated out to formulate the least squares problem:

min
µ̃

N∑
i=1

{ ni∑
j=1

1

δ̂ij

[
∆D̂ij −

si(j+1)∑
ti`=sij

δi`µ̃(Xti`)− gi(j+1) + gij

]2
+

1

δ̂i0

[
∆D̂i0 −

si1∑
ti`=0

δi`µ̃(Xti`)− gi1
]2}

. (13)

Restricting µ̃(·) to (8), the problem in (13) is cast as a structured regression. Solving this problem

is more challenging than solving (9), as evaluation of gij in (12) is computationally expensive.

Efficient global optimization algorithms are appropriate; refer to Jones et al. (1998) and Gutmann

(2001).

4 Production-Hedging Models

To facilitate exposition, assume the demand model in (5) depends on a single asset price, Xt; and

assume Xt follows the geometric Brownian motion (GBM), a standard asset price process:

dXt = Xt(µdt+ σdBt); (14)

where µ and σ are parameters, and Bt is a Brownian motion independent from the demand noise,

B̃t, in (5).

With hedging, there are two components in the payoff function — the terminal wealth (at t = T )

from hedging (χT ) as well as from production (HT ):

HT (Q) := pQ− (p+ c)(Q−D+
T )+, χT (ϑ) :=

∫ T

0
θtdXt

where HT (Q) follows the same expression in the NV model in §2, except here we use D+
T to

enforce the non-negativity of the realized demand at T (which is needed when DT is assumed to

have a normal noise component); θt is the position (number of shares) taken on the asset with

per share price Xt, and hence χT the terminal wealth due to hedging. The decisions are Q and

ϑ := {θt, t ∈ [0, T ]}, with the latter required to be adapted to the information dynamics of both

demand forecast and asset price, i.e., θt ∈ Ft for all t ∈ [0, T ], where {Ft} is the filtration associated
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with {(Dt, Xt)}.

For a mean-variance formulation, the problem we want to solve is:

B(m) := inf
Q≥0,ϑ

{Var[HT (Q) + χT (ϑ)] |E[HT (Q) + χT (ϑ)] ≥ m}, (15)

i.e., we want to minimize the variance of the total payoff, subject to its mean at or above a given

target level m. This formulation essentially follows the same spirit as Markowitz mean-variance

portfolio optimization model, refer to Markowitz (1987).

Write the terminal wealth at t = T as WT := HT + χT . It can be shown that at optimality

the constraint in (15) must be binding, i.e., E(WT ) = m. (More on this at the end of §5.1 below.)

Hence, the objective reduces to minimizing the second moment of WT , E(W 2
T ), given the constraint

E(WT ) = m.

In general, minimizing the variance, Var(WT ), will suffer from the so-called “time inconsistency”

(see, e.g., Basak and Chabakauri (2010)), mainly because it does not satisfy the law of iterated

conditioning: Var(WT ) 6= E[Var(WT |Ft)]. Yet, this is not an issue in the formulation above: we do

have E(W 2
T ) = E[E(W 2

T |Ft)], for all t ∈ [0, T ].

As the variance objective penalizes both up- and down-side deviation from the target, alterna-

tively, we can minimize a shortfall objective as follows.

inf
Q≥0,ϑ

E
{[
m−HT (Q)− χT (ϑ)

]+}
(16)

s.t. χt :=

∫ t

0
θsdXs ≥ −C, θt ∈ FXt , t ∈ [0, T ],

where C > 0 is a given limit to bound the possible loss from trading, and {FXt } is the filtration

generated by {Xt} (or, equivalently, by {Bt}). These are two features not present in the mean-

variance model. So, let’s motivate.

First, the constraint χT ≥ −C is necessary to make the shortfall formulation above a meaningful

model; in particular, C can be viewed as a “budget” to carry out the hedging strategy. With an

infinite budget, it is conceivable that one can always achieve any given target m, and hence, zero

shortfall; and this can be done with hedging alone, with no need for production (Q = 0). On the

practical side, a limited C value not only controls the possible loss due to trading (i.e., hedging), it
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may also reflect the firm’s desire not to deviate from its main line of business, which is production.

Second, by restricting the hedging strategy to the filtration generated by {Xt} alone, we are

pursuing a formulation with “partial information”. This is often a good representation of reality:

in practice the hedging/trading decision is often a real-time decision taking input from the financial

market, as embodied in the filtration {FXt }. It would be unrealistic to assume that one could simul-

taneously also keep track of demand projection, which typically involves piecing together disperse

information garnered from polling the sales force, and is hence updated much less frequently, at

much longer time scales. Thus, in the research literature partial information is an important model

in its own right; see, e.g., Caldentey and Haugh (2006).

5 Approaches, Solutions and Insights

5.1 Mean-Variance Hedging

To solve the problem in (15), first assume Q is given (and hence omit it from the arguments of B

and HT ), so that we can focus on deriving the hedging strategy ϑ. Consider the conjugate dual of

B(m):

A(λ) := inf
ϑ

E
{[
λ−HT − χT (ϑ)

]2}
, (17)

where λ is a given parameter, in parallel to m. The pair, A(λ) and B(m) are connected as follows.

Write Y := HT + χT , and note

B(m) = Var(Y ) = Var(Y − λ) = E[(Y − λ)2]− [E(Y − λ)]2

= E[(λ− Y )2]− (m− λ)2 = A(λ)− (m− λ)2. (18)

Thus, finding the optimal hedging strategy ϑ via solving the B(m) problem in (15) is the same as via

solving the A(λ) problem in (17), since the difference between the two, (m−λ)2, is independent of ϑ,

involving given parameters only. Furthermore, the relation in (18) above leads to (see Proposition
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6.6.5 in Pham (2009)):

A(λ) = min
m

[
B(m) + (m− λ)2

]
, B(m) = max

λ

[
A(λ)− (m− λ)2

]
. (19)

The problem in (17) belongs to a class of control problems known as MSE (mean-square error), from

which the optimal hedging strategy (given Q) can be derived using a numeraire-based approach

(Gourieroux et al. (1998)), and expressed explicitly as follows (refer to Wang and Yao (2017) for

details):

θ∗t = −ξt(Q) +
η

σXt

[
λ− Vt(Q)− χ∗t

]
, (20)

where η := µ/σ, and Vt(Q) := EM [HT (Q)|Ft]. Here EM denotes expectation with respect to

the risk-neutral measure PM , as opposed to the original, physical measure P, and the change of

measures is induced by η. Specifically, the Radon-Nikodym derivative is

dPM

dP
= eηBT−η2T/2 := ZT . (21)

Note that Vt is a PM -martingale, and admits the following representation:

Vt(Q) = V0(Q) +

∫ t

0
ξs(Q)dXs +

∫ t

0
δs(Q)dB̃s, (22)

and the two processes ξt and δt can be derived explicitly via Itô’s formula.

Having solved the A(λ) problem in (17), for a given λ, we can obtain B(m) from (19) by

further optimizing λ. The resulting solution can be expressed as follows (with Q now added back

to emphasize the dependence on Q, as well as the fact that Q has yet to be optimized):

B(m,Q) =
[m− V0(Q)]2

eη2T − 1
+

∫ T

0
e−η

2(T−t)E[δ2t (Q)]dt. (23)

Furthermore, λ and m relate to each other as follows:

λ =
meη

2T − V0(Q)

eη2T − 1
. (24)
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From (23), B(m,Q) is (strictly) increasing in m when m ≥ V0 (for any given Q). This also explains

why the constraint in (15) must be binding. Furthermore, B(m,Q) is (strictly) decreasing in m for

m < V0. Hence, setting the target m at any level less than V0 is not efficient.

5.2 Shortfall Hedging

Again, we first assume Q is given and focus on deriving the optimal hedging strategy. Applying

Jensen’s inequality, along with conditional expectation on XT and AT :=
∫ T
0 µ̃(Xt)dt, we can turn

the real-time hedging problem in (16) into a static optimization problem below:

min
VT

E
[(
m−HT − VT

)+]
s.t. VT ≥ −C, EM (VT ) ≤ 0 . (25)

It is important to point out that, due to Jensen’s inequality, the objective function in the above

optimization problem is a lower bound of the original objective in (16). In this regard, the above

cannot be equivalent to the original problem. Yet, the constraint EM (VT ) ≤ 0 is not present in

the original problem; and with this additional constraint, the two problems can be shown to be

equivalent. This constraint follows from χt being a PM -supermartingale. Here, as in the mean-

variance model above, the change of measure is induced by η = µ/σ via the Radon-Nikodym

derivative in (21).

This dual (lower-bound) problem can be solved by a Lagrangian multiplier approach (for details,

refer to Wang and Yao (2019)), and the solution is:

V ∗T = (p+ c)(Q− D̂+
T )+ + (m− pQ+ C)1{λ∗ZT ≤ 1} − C, (26)

where ZT follows (21), λ∗ is the positive Lagrangian multiplier, and D̂T := AT + σ̃
√
TΦ−1(λ∗ZT ) is

the “proxy” for DT (as the latter is not accessible due to partial information) with Φ−1 being the

inverse distribution function of the standard normal random variable. Once V ∗T (= χ∗T ) is derived,

the optimal hedging strategy θ∗t follows from Itô’s Lemma along with martingale representation

theorem, similar to what’s outlined in the mean-variance model.

Substituting V ∗T in (26) back into the shortfall objective, and denoting the latter as s(m,Q), we
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can derive the following expression:

s(m,Q) = (p+ c)E
[
(Q ∧ D̂+

T −D
+
T )+

]
+ (m− pQ+ C)P(λ∗ZT ≥ 1). (27)

5.3 Optimal Production Quantity and Efficient Frontiers

The shortfall under the optimal hedging strategy, s(m,Q) in (27) can be shown (with considerable

effort, as both λ∗ and D̂T also depend on Q) to be convex in Q. Thus, finding the optimal solution

Q∗(m), jointly with the optimal hedging strategy, is a readily solvable convex minimization problem.

To make it even better, a universal upper bound (i.e., independent of m) on the optimal Q can be

explicitly identified, and this further facilitates the (line) search for Q∗(m). Furthermore, it can

be shown that s(m,Q∗(m)) is increasing in m, hence constitutes an efficient frontier — setting a

higher target will lead to a higher shortfall.

Similarly, the optimal production quantity in the mean-variance model can also be obtained

from a line search on the B(m,Q) expression in (23), which, however, need not be convex in Q (its

first term is, but not the second one). Also, B(m,Q∗(m)) is increasing in m, forming an efficient

frontier — a higher mean return corresponds to a higher variance.

In Figure 2, we compare the efficient frontier of the NV model (with a shortfall objective) with

the efficient frontier of the shortfall hedging model. In the left panel, we plot the two efficient

frontiers. Clearly, the hedging strategy leads to a significant improvement: for any target value

(x-axis), the corresponding shortfall (y-axis) is substantially lower. Of particular interest is the

range of high target values. Recall from (4), for m ≥ pQNV (= 4100 in this problem instance), the

shortfall of the NV model will increase linearly in m, at a slope of 1; and this is confirmed here

in the figure. (In particular, note the right panel, which plots the rate of increase of the frontier

curves.) In contrast, with the addition of the hedging strategy, the increase of the shortfall is at a

substantially lower slope (peaked at slightly below 0.7), and this is achieved via a modest hedging

budget of C = 0.1m, one-tenth of the target.

Similarly, for mean-variance hedging, Figure 3 compares the efficient frontiers of the NV model

and the hedging model, for two problem instances, corresponding to the two panels in the figure.

The improvement contributed by the hedging strategy is also quite substantial, in particular at the

higher end of the mean, which is where the risk increases more steeply. (Note here all the frontier
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Figure 2: Shortfall Efficient Frontiers. The right panel shows the derivative (w.r.t. the target) of
the two curves in the left panel.

curves are increasing and convex.)

5.4 Insights

First, let’s take a closer look at the hedging strategies. The optimal mean-variance hedging in (20),

θ∗t , maintains two positions in the asset (Xt) at any time t:

• a position to “cancel” out the ξt in Vt;

• a position equal to the gap between the current wealth (Vt+χ∗t ) and the target (λ), weighted

by the ratio η/σ, so as to “catch up.”

For the shortfall hedging, the V ∗T expression in (26) has two terms, both try to close the gap from

m left by the production payoff, m−HT (Q) = (p+ c)(Q−D+
T )+ + (m− pQ).

• The first term, (p+ c)(Q− D̂+
T )+, can be viewed as a “put option.” It tries to close the first

part of the gap, but needs to use D̂T as a surrogate for DT due to partial information.

• The second term, (m− pQ+C)1{λ∗ZT ≤ 1}, is a “digital option.” It aims to close the other

part of the gap (after subtracting C).

In summary, the hedging strategy in the mean-variance model is to dynamically maintain a portfolio

of two positions on the underlying financial asset. The first position cancels out the tradable
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Figure 3: Mean-Variance Efficient Frontiers. Each panel corresponds to one problem instance.

component of the projected wealth from production, i.e., revenue from supplying demand; thus, its

function is one of pure risk mitigation. The second position uses trading gains to catch up with

the target mean return. In contrast, the shortfall hedging strategy takes the form of two options,

a put option and a digital option, and the underlying for both is the “surrogate demand” D̂T ,

necessitated by the lack of full information on the real demand. (Note, the Lagrangian multiplier

λ∗ also depends on D̂T , since it is the solution to EM (V ∗T ) = 0, the binding constraint in (25).)

Since the risk measure is shortfall, both options are designed to contribute more terminal wealth so

as to supplement production and help closing the gap from the target. In other words, there is no

“cancelling” component in the hedging strategy; and this is only natural as the shortfall measure

does not penalize any upside risk.

Next, let’s specify the contribution of the hedging strategies, i.e., what they can add to the

production-only decision. Specifically, for the mean-variance hedging, we examine the variance

reduction it can achieve, from the variance of the NV model. Suppose Q is given, and m =

E[HT (Q)] + E(χ∗T ), where χ∗T is the terminal wealth attained by the optimal hedging strategy that

minimizes B(m,Q) in (23): B(m,Q) = Var[HT (Q) + χ∗T ]. Denote

mmin := E[HT (Q)] ∧ EM [HT (Q)], mmax := E[HT (Q)] ∨ EM [HT (Q)].
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Then, we can show

B(m,Q) ≤ Var[HT (Q)]− Var(χ∗T ), ∀m ∈ [mmin,mmax]. (28)

In particular, when m = mmin or m = mmax, we have B(m,Q) = Var[HT (Q)]− Var(χ∗T ). That is,

the hedging strategy reduces the variance by an amount that is at least Var(χ∗T ).

For shortfall hedging, its contribution to reducing the shortfall has been illustrated in the

efficient frontiers in Figure 2. Here’s a different but related insight. One concern is that by

minimizing a shortfall objective, one might do poorly in the expected terminal wealth, in comparison

against the NV model (which maximizes the expected terminal wealth as its objective). It turns

out this concern is unwarranted. It can be shown that the shortfall-minimizing objective leads to

a jointly optimized production-hedging decision that will contribute more profit than the profit-

maximizing production-only decision of the NV model. Indeed, the improvement in expected total

terminal wealth (at T ), above and beyond the NV model, can be quantified as follows:

E[HT (Q∗(m)) + V ∗T ]− E[HT (QNV(m))] ≥ β(m− pQNV)+ + Cψ ≥ 0, (29)

where β ∈ [0, 1] and ψ ∈ [0, λ∗]. (Recall λ∗ is the Lagrangian multiplier from solving the hedging

problem.)

6 Extensions

6.1 Multiple Products

A firm typically produces multiple products; and customer demands on its various product lines

are not only correlated in a statistical manner, they may actually form certain functional relations:

a demand surge on one product typically leads to decreases on other products. This functional

dependence may also originate from the demand on each product depending (in its own way) on

multiple financial assets such as commodities, and on the general economy as well. Consider, for

instance, the following cases widely reported in business news:

• During the (quite recent) period when oil price was plunging, many car buyers switched
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out of smaller models into SUV’s and other gas guzzlers. Yet, due to relevant standards

and regulations (such as Corporate Average Fuel Economy), car producers had already in-

creased the production of more fuel-efficient models only to see them suffering from reduced

demand. (Wall Street Journal, November 19, 2014, “Ford Presses Ahead With Developing

Fuel-Efficient Vehicles.”; Wall Street Journal, January 13, 2015, “Clash Looms Over Fuel

Economy Standard.”)

• Quite recently, automakers was financing the development of electric vehicles by shifting

production to SUV’s (which has higher profit margin) from the smaller, fuel-efficient sedans.

Then, the fuel price began rising, and customers switched from the gas guzzlers to smaller

cars. (Bloomberg, April 26, 2018, “It’s a Bad Time to Stop Making Small Cars: Automakers

Are Financing Their Electric-Vehicle Research by Selling SUV’s, But Rising Gas Prices Will

Turn Off Consumers.”)

Of course, in addition to dependence on fuel price, the above demand can also be a function of the

general economy, as indicated in the second bullet point in §1 (“automakers”). Therefore, we want

to study the integrated risk hedging and capacity planning in a multi-product setting.

There are J products, indexed by j = 1, . . . , J . Each product j has a demand rate that is a

function of K financial assets, indexed by k = 1, . . . ,K. Let Xt := (Xkt)
K
k=1 denote the vector of

asset prices at time t. Assume the asset prices follow the stochastic differential equations below:

dXkt = Xkt

(
µkdt+

K∑
`=1

σk`dB`t

)
, k = 1, ...,K; (30)

where B`t, ` = 1, . . . ,K, are components of Bt. µk and σk` are constant parameters. Denote

µ := (µk)
K
k=1, the vector of rates; and Σ := [σk`]

K
k,`=1, the covariance matrix. Assume Σ is invertible,

and denote

η := Σ−1µ. (31)

Then, η is the vector of “market price of risk” that induces the risk-neutral measure. (Assume, as

before and without loss of generality, that the risk-free interest rate is zero.)

Next, we specify the demand processes. Let Djt denote the (forecast) cumulative demand up
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to t for product j:

dDjt = µ̃j(Xt)dt+
K∑
i=1

σ̃jidB̃it, j = 1, ..., J ; (32)

where µ̃j(·) : <K+ 7→ <+ is a nonnegative function and σ̃ji are constants. Note here, B̃it’s are the

random factors that model demand forecasts errors and how many of these factors one needs is

often an issue of modeling. Here the choice of K, same as the number of random factors in the

asset price model, is only for notational simplicity. (It can be changed to K ′, for instance.) B̃it,

i = 1, · · · ,K, are components of B̃t, and recall they are independent from the (Bkt)
K
k=1 involved in

the asset prices in (30).

We expect the approach that derives the optimal hedging strategy (with the production decision

given) as outlined in §5 can be extended, with effort, to the high-dimensional demand/asset model

as spelled out above. Optimize the production quantities Q := (Qj)
J
j=1, jointly with the hedging

strategy, will be a challenge, due to the lack of second-order properties in Q. (Recall, as explained

above, even in the single-dimensional case, the objective function is not convex in Q.) Numerical

computation will be needed. Another line of attack is to dig deeper into the problem structure, and

to explore special cases. (For instance, assume the product demands have independent or positively

correlated forecast noise — due to using a common forecasting scheme/tool.)

6.2 General Asset-Price Processes

The geometric Brownian motion (GBM) model in (14) has been a standard (as well as the most

basic) model for financial assets (e.g., Hull (2014) and Luenberger (1998)). Yet, the price dynamics

of many asset classes have been observed to follow a mean-reverting pattern that cannot be captured

by the GBM. These include futures, commodities, interest rates and exchange rates (e.g., Anthony

and MacDonald (1998), Casassus and Collin-Dufresne (2005), Larsen and Srensen (2007)), and

even equities (e.g., Gropp (2004) and Poterba and Summers (1988)). In addition, mean-reversion

is also a key feature in many trading strategies such as pairs trading (e.g., Leung and Li (2015)).

A popular diffusion process that is mean reverting is the Ornstein-Uhlenbeck (OU) process:

dXt = µ(κ−Xt)dt+ σdBt ⇒ Xt = X0e
−µt + κ(1− e−µt) +

∫ t

0
σe−µ(t−s)dBs,

23



where µ and σ are the same parameters as in (14) and so is the Brownian motion Bt; in addition,

κ is the mean to which the process will revert (in the long run). Clearly, E(Xt) = E(X0)e
−µt +

κ(1−e−µt)→ κ when t→∞. We plan to extend both the mean-variance hedging and the shortfall

hedging models, allowing the asset price Xt to follow the OU process instead of the GBM in (14).

Even more generally, we want to consider asset-price models following general diffusion processes.

7 Concluding Remarks

Our approaches to deriving the optimal hedging strategies outlined above are “duality” based.

Consider shortfall hedging in §5.2: instead of solving the original problem, we consider its “dual”,

the lower-bound problem, which is easy (or at least, easier) to solve. However, to satisfy primal

feasibility, and thereby closing the duality gap, is the key. And that is represented by identifying

the additional constraint EM (VT ) ≤ 0. Indeed in a more abstract setting involving general utility

functions as objectives, this falls into so-called convex-duality approach; refer to Föllmer and Leuk-

ert (2000) and Pham (2002).) At a general level, this is also very much in the same spirit as the

approach outlined in §5.1, where instead of directly solving B(m,Q), we solve its conjugate dual

A(λ).

This simple and elegant idea has been effectively used in other applications. Consider, for

instance, the real-time scheduling of server(s) among different job classes in a queueing network.

Finding the optimal control policy (the primal problem) can be solved in two steps: (i) first solve

a dual, optimization problem to find the best “state”, an equilibrium measure, in which to operate

the system; (ii) then find a control policy that drives the system to the best state. It turns out that

the dual problem in step (i) has a very appealing polymatroid structure, which not only facilitates

finding the (dual) optimal solution, but also suggests how to enforce primal feasibility. For a broad

class of queueing systems, this primal feasibility turns out to take the form of so-called strong

conservation laws (or its variation and generalization). Refer to Shanthikumar and Yao (1992);

also, Chen and Yao (2001), Yao (2002).

For both mean-variance and shortfall objectives, we have measured the terminal wealth using

the physical (or “real world”) measure P (as opposed to the martingale, or risk-neutral, measure

PM ). Recall, the terminal wealth has two components, one from production (HT ), and the other
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from hedging/trading (χT ). It goes without saying that the former should be measured by P; after

all, production contributes real wealth. In the same spirit, hedging/trading also leads to gain/loss

that adds to (or subtracts from) the production wealth. Thus, measuring χT by P is only natural,

and consistent as well. This said, it is also worth noting that the martingale measure PM does

come out at the right places in our models. In the mean-variance hedging, Vt is a PM -martingale,

and a key component of the hedging strategy, ξt, is derived from the martingale representation of

Vt; refer to (20) and (22). The same applies to the the shortfall model, where the role of PM is

even more striking: as noted before, it is the constraint EM (VT ) ≤ 0 in (25) that closes the duality

gap of the lower-bound problem by enforcing no-arbitrage.
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