© 00 N O Ol WON -

e
N RO

WRNNMRNRNNMNNNNRE R R R R PP
OWWOWNOURWNRPLROWOOOD~NOD UMW

w
-

A BB BEEDOOOWLWWWWWW
OO OWNPFPOOOLO~NOOOITR,WDN

Incorporating Safety Reliability into Route Choice Model: Heterogeneous Crash

Risk Aversions

Helai Huang!, Chunyang Han!, Guangming Xu1*, Mengxi Jiang?, S.C. Wong3, Md Mazharul Haque+
1. School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province,
Central South University, Changsha, 410075, China
2. Chengdu Municipal Engineering and Research Design Institute, Chengdu, China.
3. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
4. School of Civil Engineeringand Built Environment, Queensland University of Technology, 2 George Street,
Brisbane City, QLD, 4001, Australia

* Corresponding Author (Guangming Xu): E-mail: xuguangming@csu.edu.cn

Abstract: In this study, a route choice model which accounts for both travelers’ safety concern—route
safety reliability—and travel time concern is proposed. Route safety reliability (variability) is defined by
the distribution of the travel crash risk cost (CRC) to represent the safety condition of travel routes. We
further associate the travel safety variability due to stochastic crash occurrence with travelers’ crash risk
aversion route choice behaviors, and postulate that travelers acquire the variability of route travel safety
based on the past experience and factor it into their route choice in the form of an effective crash risk cost
(effective CRC). This effective crash cost is formed depending on travelers’ requirements on safe arrivals,
and thus varies with individuals and trip specific factors (e.g. purposes). Moreover, all travelers want to
minimize the summing of their travel time and their effective CRC. A route-based solution algorithm is
designed to solve the route choice model. Two networks including Nguyen and Dupis’ network and
Sioux falls network are conducted as numerical studies to illustrate the model. The results show that (1)
the travelers’ route choice behaviors are sensitive to the route safety performance, including the average
safety condition (the mean of the CRC distribution) and safety reliability (the standard deviation of the
CRC distribution); (2) the safety performance of movements at intersection would significantly influence
the travelers’ route choice decisions; and (3) travelers with different safety attitudes (heterogeneous crash
risk aversions) would make different route choice decisions.

Keyword: traffic assignment method; safety reliability; heterogeneous risk aversion; effective crash
risk cost

1.INTRODUCTION

Numerous route choice models have long been developed for traffic assignment on a network
according to travel demand. Researchers postulate that travelers tend to choose the most effective route to
minimize their travel cost. Different types of cost-effective routes have been studied, such as the least cost
travel time (Goczylla and Cielatkowski, 1995), eco-friendly routes (Tzeng and Chen, 1993; Rilett and
Benedek, 1994; Nie and Li, 2013) and the most reliable routes (Lo and Tung, 2003; Shao et al., 2006; Chen
and Zhou, 2010). However, few studies have been reported for how safety aspects could be quantified
into trip planning of travelers, even though travel safety is undoubtedly an essential for travelers to
measure the performance of candidate routes. In other words, conventional route choice models are not
suitable for representing traveler’s route choice behavior regarding their safety concern. This demand of
research becomes more realistic and urgent when accurate and individual-based safety information could
be available for pre-trip and en-route phases in the upcoming era of intelligent and connected vehicles
(Gerla et al., 2014; Park et al., 2018; Elliott et al., 2019).

Travel safety is considered as ‘crash risk potential’ of a vehicle navigating through streets and
intersections (Chandra, 2014). Crash prediction model has been extensively used to evaluate the safety
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performance of a site, facility or roadway network by estimating the expected average crash frequency of
investigated site type given traffic exposure and associated risk factors (AASHTO, 2014). However, this
technique aims to reflect the safety aspect of an objectively underlying road property, similar to capacity,
which has a nature of long-term average. Only using the aspect of the safety property of a road site to
indicate the crash risk potential that an individual traveler might encounter may be inadequate. Recently,
predicting the probability of a crash occurring during a short period is becoming increasingly common in
crash risk estimation (Lee et al, 2003; Abdel-Aty and Pemmanaboina, 2006; Payyanadan et al,, 2017;
Hossain et al, 2019). This method associates the potential of having a crash with several traffic
characteristics and their real-time status, reflecting the crash risk via an estimated value. Nevertheless,
crashes are rare and random events. Crashes occur as a function of a set of events thatare influenced by a
large number of factors. These factors are partly deterministic and measurable; but partly stochastic (i.e.,
data maybe uncollectable or unavailable) (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et
al., 2018). Moreover, many of these relevant factors, such as traffic, road user behavior, vehicle fleet and
weather, change autonomously over time, and some even change on a continual basis. The variation of
factors over time would result in uncertainty of crash occurrence. An estimated certain value may be
inefficient to represent such uncertainty during a trip. It is difficult to accurately predict how safe a trip is.

In fact, these stochastic or random variations both of measurable factors and those factors that cannot
be predicted add variability to crash risk potential. This variation naturally tends to randomly fluctuate
around an expected value. This expected value is the embodiment of a usual, normal or average safety
condition of road site, and can be materialized by relevant conditions of the properties of the road site.
The unpredictable fluctuation is closely linked to the related risk factors and their recurrent variations,
which reflects the reliability of safety performance of the road site. In such cases, travelers cannot predict
what the exact crash risk potential along a route is; but they may have the knowledge (for the familiar
route) of safety reliability of a route based on past experience or informed by the real-time safety status of
selectable route. For example, travelers figure out (or be informed) that certain routes contain mixed
traffic flows or needs high workloads (e.g. in snowy mountain highway) during driving tend to induce
high crash risk and travel safety variability. They may then factor such variability into their route
planning and settle into their habitual routing plans for their daily commute. In forming their habitual
routing plans, travelers select routes to lower both their mean crash risk potential and travel safety
variability.

The reliability of a particular route has been found to play an important role in traveler’s choice
behavior (Jackson and Jucker, 1982; Abdel-Aty et al., 1997). Route choice models based on reliability
assumptions and concepts have received considerable attention over the last two decades, such as the
proposed travel time budget (TTB) traffic equilibrium model (Smith et al., 2008; Nie, 2011; Carrion and
Levinson, 2012; Lo et al., 2006; Shao et al., 1985; Xu et al., 2018) which defines the reliability aspect of
travel time variability in the route choice decision process, and the so-called a-reliable mean-excess
model that explicitly considers both reliability and/or unreliability aspects of travel time variability (Chen
and Zhou, 2010; Chen et al., 2011; Xu et al., 2014a; Xu et al., 2014b; Xu et al., 2017). However, the efforts
have been made only on the concern about travel efficiency —how much time (cost) do travelers spend on
route, and traveler’s route choice behaviors that aim to increase travel efficiency —how can a trip be
finished more quickly. Moreover, in the context of traffic safety research, most studies have only focused
on objectively evaluating the safety reliability of road entities (Jovanovi¢, 2011; Oh and Mun, 2012;
Backali¢ et al., 2014; Yu et al., 2016; Jalayer and Zhou, 2016). When individual’s travel safety becomes a
primary concern for the traveler—how much probability a trip can be finished safely, understanding how
traveler’s safety-concern behavior in coping with travel safety reliability affects the performance of the
overall transportation system would be extremely essential for transport planners and transport system
managers. To fill this research gap, this paper provides a basis by formulating and solving a route choice
model which incorporates such safety-consideration route choice behavior.

In this study, we develop a route choice model which accounts for both travelers’ travel safety
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concern—route safety reliability—and travel time concern. In particular, route safety reliability
(variability) is defined by the distribution of the travel crash risk cost (CRC) to represent the safety
condition of travel routes. The mean of the distribution represents the expected average safety condition
of a road network element, while the standard deviation reflects its safety reliability. These two
parameters are determined according to the classical safety evaluation approach. Specifically, the
parameters of the CRC distribution of segments are quantified by wusing the proposed
average-speed-based crash risk model, and those of turning links are defined by accounting for the risk
effect of the traffic volume. Furthermore, the mean-and-variance-based effective CRC is applied to model
travelers” evaluation of different routes for different crash risk aversions. The effective CRC relates to the
traveler’s crash risk aversion which depends on the characteristics of travelers and the trip features (e.g.
trip purpose). It was assumed that all travelers want to minimize their effective CRC and travel time in
the choice of routes. Correspondingly, an algorithm has been designed and tested for solving the
proposed route choice model. In the end, we explore the effect on the overall network performance by
including this safety consideration in the modeling of route choice.

The rest of this paper is organized as follows. Section 2 develops the formulation. Section 3 proposes
the solution method of developed formulation. Numerical experiments are given in Section 4. Finally,
Section 5 contains concluding remarks.

2. FORMULATION
2.1. Travel safety quantification

2.1.1 Notation

The notations used throughout the paper are listed as follows, unless otherwise specified.

G road network

%4 set of nodes

A set of links

a—-b turning and crossing movements ata node

set of origin-destination (OD) pairs

Pw set of all single routes between O-D pair w

A set of turning and crossing movements

Vg average speed of vehicles on link a

7 CRC of link a

ty travel time of link a with flow gq,

Tassh CRC of an intersection turning movement a — b

E(1,) mean CRC per exposure unit of link a

o, standard deviation of CRC per exposure unit of link a
E(xqsp) mean CRC of an intersection turning movement a — b
Oassp standard deviation of CRC of anintersection turning movement a — b
yly and t/T adjustment coefficient

Nalla parameters of traveler’s risk perceptions

Wqpl@D g parameters of traveler’s safety reliability perceptions

T, CRC of route p

7 route-link incidence parameter

st route-turn incidence parameter

E(r) mean CRC of route p
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oy standard deviation of CRC of route p

R, effective CRC of route p

A degree of risk aversion of travelers

p probability that the actual trip CRC is within the specified CRCR,,
Sy standard normal variate of r,

Ry effective CRC of m class travelers of route p

Am degree of risk aversion of m class travelers

cy generalized travel cost of m class travelers of route p

T, travel time of route p

0 cost converting factor of travel time

t2 free-flow travel time of link a

Cq capacity of link a

a and B deterministic parameters in BPR function

" traffic flow on route p

wy minimum generalized cost of class m travelers of all the routes linking O-D pair w
qam O-D demand

Xq flows of link a

X qob flows of intersection turning movement a — b atintersections

2.1.2 Road network representation

(a) Four-leg intersection

(b) Three-leg intersection

Fig.1 Model description aboutlink and node turn

A road network consists of a number of individual intersections and road segments, referred to as
‘sites’. Assume a road network represented by a directed graph G = (V, 4), as shown in Fig. 1, where V
and A, respectively, denote the set of nodes and links which can be regarded respectively as intersections
and road segments. Fig. 1 also shows the micro representation of the intersections, where each turning or
crossing movement at a node can be represented by a dummy link of two connected segments a and b,
ie.a—b. For example, for the four-leg intersection in Fig. 1(a), there are three movement classes
including left-turn, right-turn and crossing movement. For link a,, the left-turn movement is represented
by a dummy link a; - a,. Denote A as the set of turning and crossing movements at the intersections.
Then a route p can be represented as {a;,a; = a,, a,,a;, = a3,03, ..., 0; > Qjiq,0, Ay, g = Ay, An}
which consist of the set of links {a;,a,,..,a,_,,a,} and the dummy links {a, - a,,a, > a;,...,a; >
Qj41, ) Gy_1 = @y} For the road network G = (V,4) , let W denotes the set of origin-destination (O-D)
pairs and p" denotes the set of all single route between O-D pair w, w € W.
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2.1.3 Link and route crash risk distribution

(1) Safety evaluation model

For a transportation system, the safety is defined as the product of the probability of having a crash
per unit of exposure (crash risk) and the number of units of exposure occurring on the system during the
specified period of time (Chapman, 1973; Hauer, 1982; Hauer, 2002):

Safety of system = Crash risk of system X Number of exposure units of system. (1).

For travelers, the crash risk is determined by factors related to their characteristics (e.g. gender, age or

driver experience), driving conditions (e.g. travel speed) and road features (or environmental factors,

such as weather). The exposure factors measure the likelihood of the traveler being involved in a

dangerous or hazardous situation, thus a reliable and meaningful comparison of safety risk between

different travelers (Chipman et al., 1992; Qin et al., 2004; Hong et al., 2016). Traffic volume (Qin et al., 2004;
Wong et al.,, 2007) and travel time (Chipman et al., 1992; Xin et al., 2012) are usually used as proxies for

exposure.

(2) Crash risk cost distribution

As set forth in the introduction, this study aims to model the flow pattern of travelers who acquire
information on the route travel safety, factor this into their route choice consideration, and settle into a
long-term habitual equilibrium pattern. The link flows and route flows are associated with this long-term
habitual equilibrium flow pattern. Therefore, the link and route safety should be properly represented
from the view of travelers.

In the aforementioned transportation network modeled by a directed graph G = (V, A), due to the
intrinsic features such as predesigned geometry and specified traffic flow pattern, each link, a € A or
a— b €4, has a certain average crash risk under a specific driving condition. This average safety
condition can be estimated according to the features of the road and is related to the traveler’s driving
conditions (e. g. travel speed). However, for each traveler on the link, the crash risk is random, because
the stochastic factors introduce variability into the safety. The individual safety condition of a traveler is
difficult to accurately evaluate or predict (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et
al., 2018). When planning a trip, travelers may not only consider the average crash risk of each link, but
also its variability. They may have knowledge based on experience about the safety reliability (variability)
of a link and factor such variability into their travel plan.

A Prob. density function

CRC distribution of a link

-
E(rd CRC
Fig.2 CRC distribution with mean CRC E(r,)

According to the discussion above, we use the social costs (e.g., the incurred monetary losses and
time spent) of crash occurrence to indicate the level of crash risk, referred to as the crash risk cost (CRC).
The CRC gives a more psychologically realistic assessment of traveler’s decision-making, rather than only
using the crash frequency or severity. In this study, we assume the CRC to follow a distribution with a
mean value and variance, denoted the CRC distribution:
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r~ Dist(E(r), a?) ()
where r is the CRC, E(r) is the mean CRC, which is related to the safety aspects of the road properties
and the traveler’s local travel situation, and o2 is the variance of the CRC, which represents the safety
reliability. Fig. 2 presents the example of a normal distribution with its mean value and deviation. Such a
CRC distribution can properly describe the average safety condition and safety reliability and thus is
closely in accord with travelers’ subjective perception of travel crash risk.

(3) CRC distribution of road segment

Following the definition of Eq. (2), we first introduce the CRC distribution for the road segment
which is expressed as:

1, ~ Dist, (E(r,), 0,%) Va €A 3)
where 1, denotes the CRC ofroad segment a. E(7,) is the expected mean CRC of segment a;and o, is
the standard deviation of the CRC of segment a. In this study, the safety evaluation model (Eq.1) is used
as the framework to quantify the mean and variance of the CRC distribution. Specifically, travel time is
used as the exposure variable, because the time exposure can explain the crash risk variance among
drivers with different driving patterns and environments (Chipman et al,, 1992; Xin et al., 2012). The
travel time of segment a is calculated by using the Bureau of Public Roads (BPR) link performance
function:

B
ta=tg[1+a(’;—z) ] @)
where ¢, is the travel time of segment a with flow x,; t2 is the free-flow travel time, which is
deterministic; c, is the capacity of link a; a and § are deterministic parameters.

In regard to the mean CRC per unit of exposure, travel speed has not only been found in many
empirical studies to be associated with the crash occurrence, it is also one of the most important factors, in
travelers” minds, that influence the travel safety (Aljahani et al., 1999; Elvik, 2002; Charlton and Starkey,
2016; Xu et al., 2019). Based on the actual risk function built via a meta-analysis conducted by Elvik et al.
(2004), we proposed an average-speed-based crash risk model to quantify the relationship between the
segment average speed and travelers’ perception of the mean CRC:

Mean CRC/Unit of exposure =yv," ®)
where v, is the average travel speed of vehicles on segment a, which is obtained by dividing the travel
time t, by the segment length [,. y is the adjustment coefficient, and 7, is a parameter determined by
travelers’ risk perception of driving on segment a with speed v, according to their long-term
experience (and is assumed to take a value higher than 1). Fig. 3 shows the perception curve output by Eq.
(5), which is evidently plausible. Two conditions are met: 1) the perceived mean CRC grows with the
average speed and; 2) the perceived mean CRC grows faster when the average speed is already high . This
model supports the use of the CRC distribution to better depict travelers” perceived crash risk.

Perceived mean CRC

A Mean CRC

perception
_“ -
|

|
Grows faster

Average gpeed

Fig. 3 Relationship between mean CRC and average speed for a road segment

Correspondingly, the mean CRC of segment link a is expressed as:
E@) = tayva™ ©6)
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Unfortunately, few empirical studies have investigated the safety reliability in regard to travelers’
perceptions. We assume that the perceived CRC variance per unit of exposure is also associated with the

segment average speed, which is expressed as:

CRC variance/ Unit of exposure = yv,7a 7)
where 7 is the adjustment coefficient; 77, is a parameter reflecting traveler’'s risk perception of safety
variance for segment a at speed v,. Thus, the variance of CRC distribution of the segment link a is
expressed as:

0,* = ta*¥v, " ®)

(4) CRC distribution of intersection

Intersections are hazardous locations on the transport network because of the crossing traffic streams
(Xie et al., 2014; Xu et al., 2014c; Huang et al., 2017). It is estimated that nearly 45% of all crashes and 23%
of crashes with fatalities occur at or near intersections throughout the United States (Bagloee and Asadi,
2016). Rather than representing the intersection as a simple node, it is more accurate to separately model
each movement type (turning or crossing) at an intersection. The CRC distribution of intersection
movement a — b is expressed as:

Taop ~ Dist, (E(r, L), 04552) Va—->b€EA 9)
where 7,_,, denotes the CRC of an intersection movement a — b; E(r,_,) is the corresponding mean
CRC, and o, is the standard deviation.

Moreover, different movements on an intersection have different hazard levels depending on the
different number of conflicts created by competing traffic streams. Left-turning traffic, for example, is a
major source of conflicts at intersections, accounting for approximately 45% of all intersection crashes.
However, travelers usually spend only a short time in an intersection, and there is no significant
difference between various turning movements in terms of the duration or the speed of travel. Therefore,
the frequency of the conflicts is closely related to the traffic volume, which is a relatively reliable proxy
for exposure to indicate the crash risk of different turnings. Thus, in this study, we quantify the CRC of
each movement type at intersections with regard to the traffic volume. Accordingly, the mean and
variance of the CRC distribution of turning link a - b canbe expressed as:

E(asp) = 19 (qp) (10)

Ogmp” = TG qmp) a1
where x,_,;, is the traffic volume on turning link a — b; 7 and 7 are adjustment coefficients; and g(-)
and g(-) are the functional relationships between the traffic volume and the mean and variance of the
CRC distribution, respectively. McDonald (1953), in early research, found a certain exponential relation
(as shown in Fig. 4) between traffic volume and intersection safety by investigating the crashes at 150
intersections. Therefore, the volume-safety relations, as perceived by travelers, for different movements at
intersections can be represented by a power function. In this function, the exponent parameter can be set
to various values to account for the variation of travelers’ perceptions of the hazard-level of different
intersection movements. Consequently, Eq. (10) and Eq. (11) canbe expressed as:

E(Tyop) = Tqp“o (12)

O-a—>b2 = fxa—»bwa_)b (13)
where w,_, and &,,, are variable parameters reflecting the perceived hazard-level of different
intersection movements, whose values are both assumed to be lower than 1.
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A

CRC variance perception -
]

Growslslower
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Fig.4 Relationship between CRC and traffic volume at intersection

Note that, as shown in Fig. 4, because the value of w,_;, and &,_, are both below 1, the perceived
crash risk grows more slowly as a function of traffic volume as the traffic volume increases. This
relationship captures the widely reported empirical phenomenon that the crash risk at an intersection
increases more slowly as the number of vehicles growth (Geyer et al., 2006).

(5) Route CRC distribution

On the basis of the CRC distribution of road segment and intersection turning movement, the route
CRC variable can be expressed by summing the corresponding link (road sites) CRC variables:

P P
1 = YaeataOq + LasbesTasb Saop (14)
where 7, is the CRC of route p. &} is the route-link incidence parameter whose value is one if a is on

p; zero otherwise. Similarly, 65—»19 is the route-turn incidence parameter whose value is one if a = b is on
p; zero otherwise.

This study assumes that the link CRC distributions (of segments and intersection movements) in the
road network are independent and bounded with finite and non-zero variance. Regardless of the link and
turn CRC distribution, as long as the distributions are independent and bounded with finite and non-zero
variance, the route CRC follows a normal distribution according to the Central Limit Theorem (Lo et al,,
2006). Thus, the route CRC mean and standard deviation may be assumed as:
~ N(E(?;,), O-pz)

E(r) = Zacaldq - EC) + LapealSgp £ ()]

0y = (BacalO] - 021+ Zacpeddl, - Gacs’] (15)
where E (rp) is the mean CRC of route p and o, is the standard deviation of the CRC of route p.

=3

2.2 Definition of effective CRC

In the transportation literature, Jackson and Jucker (1982) introduced a framework from the view of
travel reliability. It assumes that traveler looks to maximize the option’s return (minimize the cost of the
choice) while minimize its associated risk/uncertainty. The option’s return is represented by the expected
value, and the risk/uncertainty by the variance!. Most studies that try to model traveler’s travel time
reliability concerns, such as Uchida and Iida (1993), Lo and Tung (2003), Lo et al. (2006) and Ni (2011),
Chen et al. (2010 and 2011), Xu et al. (2017) and Xu et al. (2018), are basically built on this theoretical
framework. This framework prescribes how travelers deal with unreliable prospects based on distinct
states of nature of each alternative, and represents the states by a distribution of outcomes (Carrion and
Levinson, 2012). In this framework, it is assumed that the traveler has a priori information of the mean
and variance of the nature of each alternative in their choice set within a category. In the context of travel

1 This framework is developed on the basis of risk-return model in finance (see Markowitz (1999) for an
overview) and the expected utility theory proposedby Vonand Morgenstern (1944).
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safety reliability, the set of alternatives could be routes between an O-D pair. The states of nature could be
extreme weather, mountainous region, bad road surface, hazard conflict and crash. The outcomes are
likely to be the distribution of the CRC for each alternative. Next, we will try to reset this framework in
the context of travel safety reliability according to the CRC distribution which is specified in above
section.

The randomness of crash occurrence causes the variability of the route CRC. With the safety
reliability requirements of travelers, they create a larger CRC budget than the expected CRC to hedge
against the variability of the CRC. In this study, we define travelers’ safety reliability requirement to be p.
As shown in Fig. 5, it means the probability that the actual trip CRC is within the specified CRC, denoted
as R,,. Thisspecific CRC is referred to as the effective crash risk cost (effective CRC):

p{rp < Rp} =p. (16).
For example, in Fig. 6 we present two different routes that have the same mean CRC but perform distinct
safety reliabilities. Travelers who have the same higher safety reliability requirement would not prefer to
select route 2, because they need to create a larger CRC budget (R,) if traveling through route 2 to avoid
the possible higher loss caused by its lower safety reliability.

kProb. density function y kProb . density function

A .

F = =2 Routel
o= Route2

CRC distribution of route

Shaded area: safety Safety reliability

reliability p requirements: p; = p,

Effective CRC R, (R; <R;)
Effective CRC R,

Ao,
E(Tp) R, CRC E(Tp) R, R, CRC
Fig.5 Within specified safety reliability and Fig. 6 Two route with same mean CRC but
effective CRC different safety reliabilities

Travelers, in reality, do not exactly know their certain priori risk of being involved in a traffic crash.
Their crash risk aversions may vary in different traveler groups. Those travelers who attach great
importance to travel safety would add a travel CRC margin to the expected travel CRC, to avoid crash
occurrence. Thus, the effective CRC associated with route p can be defined as:

[Effective CRC] = [Expected CRC] + [CRC Margin] 17)
and mathematically expressed as:
R, =E(r,)+210, Vp€ER,VWEW (18)

where 1 is the parameter related to the requirement on safe reliability. Ao, denotes the added travel
CRC margin, 7, represents the CRC of route p which is a random variable, E (1;,) and o, are the mean
and standard deviation of r,. The relation between the safety reliability and the effective CRC is clearly
showing in Fig. 5. Obviously, a large 1 demonstrates that the traveler has a greater aversion for crash
risk and vice versa. They would allow for a larger effective CRC so as to maintain their safety reliability at
a high level. Thus, 4 is the indicator of representing the degree of risk aversion of travelers.
Then, combining Eq. (16) and Eq. (18), the relation between the effective CRC and safety reliability
can be obtained as the following (as shown in Fig. 5):
p{r, <R, = E(%,) + 10, } = p. 19)
By rearranging terms, the (16) canbe transformed as:
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p{r”d—:r")sz}= p. 20)
We set s, = Tp_:(rp), then s, is the standard normal variate of 7,, from which it can be deduced that the
P

value A isdetermined by p.

2.3 Route choice model

In general, travelers with different degrees of crash risk aversions exist in a road network.
Hypothesize that there are M classes of travelers in a network, and m labels their different degrees of
crash risk aversion. For the travelers of class m with the safety reliability requirement p™, the effective
CRC Ry follows from Eq. (18) with the corresponding value A™:

R™=E(3)+ 1m0,  VpER, VWEW (21)

Undoubtedly, in reality, travelers take into account both road safety and travel time to choose the
optimal route. Therefore, the generalized travel cost consists of the travel CRC and the travel time (which
is calculated by the BPR function):

Cy' =Ry +6T, (22)
where 0 is cost converting factor of travel time. Similarly, the route travel time variable equals to the total
travel time variable of corresponding links:

Tp = Zaealte6y) (23)

Accordingly, the long-term habitual equilibrium route choice pattern of the class m travelers can be
stated as: Their flow £ on route p is positive if the generalized travel cost on route p is equal and
minimal; all unused routes have an equal or higher generalized travel cost. This equilibrium flow pattern
can be expressed by the complementarity conditions as follows:

frer—um)=0 VpeER,YWEW

Cpt = wy Vp €PR,,Vw EW (24)
where €' is the generalized cost of class m travelers on route p; uy, is the minimum generalized cost of
class m travelers among all the routes linking O-D pair w.

The complementarity conditions (24) can be extended to cover a mixed-equilibrium pattern among
these different classes. We model this mixed-equilibrium problem with the following mathematical
program as:

min f = XH_1 Xyew Zp ery o (Cp" — 1) (25)
st Xpep, ot = Q. YWEW, vm=1,.., M (26)
Xq= 2oy Zwew Zpen, fo" On Va €A (27)
Xgop = Lom=1Lwew 2pep, Sy Ou,y Va>bEA (28)
Clr— =0 vm=1,..,M (29)
Lt =0,uy =0 VpERB, VWeEW, Yym=1,..,M (30)

The parameter g, is the O-D demand for user class m on O-D pair w; x,is the flows of link a;
X4.pis the flow of intersection turning movement a — b at intersections. The function f refers to the
overall gap to capture the complementarity conditions for the M classes of travelers as in Eq. (24).
Constraint (26) represents the relationship between route flow and demand conservation condition for
class m travelers on O-D pair w. Constraints (27) and (28) convert the route flows into link flows x, and
X 4p through the route-link incident indictor §f and 6/, respectively.

3.MODEL SOLUTION ALGORITHM

As the route cost is non-additive with arc costs for the reason that the standard deviation of the
effective travel cost on a route is route-specific and not equal to the sum of the standard deviations of the
arc cost, the above passenger assignment model should be route-based, and cannot be translated into a
link-based model (Gabriel and Bernstein, 1997). Thus, we also let the algorithm for solving the passenger
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assignment model be route-based. Lo and Chen (2000) proposed a route-based algorithm for solving the
traffic equilibrium problem with route-specific cost. Similarly, we use the k-shortest route algorithm to
find k-lowest mean travel cost routes and generate a route subset. The minimum effective CRC route can
be solved in the obtained route set for each O-D pair. In each iteration, the All-or-Nothing (AON)
assignment is applied to load the passenger demand. In the solving algorithm, the method of successive
averages (MSA) is adopted to determine the step size. The details of the algorithmic steps are described as
follows:

Step 1:initialization

® Initialize parameters and variables: the degree of risk aversion of class m travelers, A™;
impedance parameters, a and f5; the free-flow travel time td; the capacity of link a, ¢, ;
conversion coefficient, 6 ; the stopping tolerance, ¢; the demand of class m travelers between
O-D pairw, qy; .

®  Setiteration counter n « 1

® Let x} < 0; x}, « 0;initial route set B, « @.

Step 2: update route flow

e Compute the expected CRC of links,i.e, E(r,) and E(r,_,), and travel times of links t,.

e Compute link costs: C, « E(1;) + 0T, and C,_,, « E(7,_p)-

e  Compute the k-shortest route set B, with the abovelink costs C, and C,_, usingthe k-shortest

route algorithm.
Compute the generalized travel costs C;" for p € ﬁw and each class m =1, ..., M.

Obtain the shortest route in the obtained shortest route set py' < arg min {C;"|p € B,}, and
update the route set B, =P, Upy' for eachclass m =1, ..., M.
e Perform AON assignment: load the demand g, to route p’, i.e. for each route p € B,, if

p =pl, let h(p™) « q™ otherwise, let h(p™) « 0.
e Update route flow f;" « nT_lﬂ,m + ih(p) Vp € P,,Yw € W,¥m € M.

Step 3: Update links and nodes flow

® Update the main iteration counter n « n + 1.

e Calculate the arc flow x7 « XM _ ¥ Zpepwfgndg.

® Calculate the turning flow x%., « ZM_ X, cw X, cp, fi" 60,

Step 4: Check convergence

JEacatl -4 peatei s ? . :
o If — pry < g, then terminate, otherwise repeat the step 2.
Baca B +Zq L pea*ash

For solving the large-scale networks, it will take much calculating time to use the k-shortest route
algorithm for finding k-lowest mean travel cost routes in each iteration. In the real cases, the number of
routes chosen by the users may be limited for each O-D pair. Consequently, for saving the calculating
time, we can find a route subset in the initialization step and replace the whole route set with it for each
O-D pair. It saves the process of computing the k-shortest route set in Step 2. It is obvious that the method
of choosing this route subset will affects the solution. The k-shortest route algorithm (Xu et al., 2018) and
the penalty method (De La Barra et al, 1993) can be used to choose this route subset. For further
improving the efficiency of the algorithm, a self-regulated averaging method can be adopted to determine
the step size (Liu et al., 2009).

4. NUMERICAL STUDIES
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4.1 A toy network: Nguyen and Dupuis’ network

The formulations are firstly applied to a test network called the Nguyen and Dupuis fall network for
demonstrating its application. As shown in Fig. 7, the network consists of 13 nodes, 19 links and 4 O-D
pairs. Letter a, is the code of each link. Definitions of intersection movements in each node are shown in
Table 1. The free-flow travel time, design capacity values, the length of each road segment and traveler’s
risk perceptions related to segment features and driving speed are shown in Table 2. The values of
adjustment coefficients in Eq. (12) and Eq. (13) are predefined in Table 3 according to the type of turning
movement with different hazard level. The demands of the O-D pair (1,2), (1,3), (4,2), (4,3) are 400, 800,
600, 200 pcu/h, respectively. The unit crash risk evaluation functions and safety reliability evaluation
functions are as shown in (6), (8) and (12), (13), with y =3x10-4, ¥ =7%x10-5, t =5x10-3and T =5x10-4 The
parameters of link generalized cost function and performance function are o=0.15, f=4 and 6=3,

respectively.
Origin
Fig.7 Nguyen and Dupuis’ network
Table 1 Definition on Each Turnin Nguyen and Dupuis Network
Movement Definition
Left-turn a; = as, ag = Ay ag = Ay a9 = Q15 17 = a7
a; = dg az; = g az = as, ay = Qg g = Qg3 as = az
Crossing g = 13 az = ay, a0~ A1 12 = Qg a3 = Qg9 A4 = Qs
a,7 — ag A1 = Aqq
Right-turn 4 2Q177 A3 2dg s> dg A7 2Q1p Q92 A1y, Q142 e
Table 2 Nguyen and Dupuis Network Parameters
Link tg /[ cg/(pc  Length - 7 Link tfg/ cg/(pc  Length - 7
mint!  uh?) (km) min!  u h?) (km)

a, 7 800 5 2.1 2.6 agq 9 550 5 2.1 2.6
a, 9 400 5 2.1 2.6 aq, 10 550 5 2 2.5
as 9 200 5 2.1 2.6 a3 9 600 5 2.1 2.6
ay 12 800 5 2 2.5 Qqq 6 700 5 2.1 2.6
as 3 350 5 22 2.7 aqg 9 500 5 2.1 2.6
ae 9 400 5 2.1 2.6 a6 8 300 5 2.1 2.6
a, 5 800 5 2.2 2.7 a; 7 200 5 2.1 2.6
ag 13 250 5 2 2.5 aqg 14 400 5 2 2.5
aqg 5 250 5 2.2 2.7 aq9 11 600 5 2 2.5
asg 9 300 5 2.1 2.6 - - - - - -

Table 3 CRC Parameters of Intersection Turns
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Movement Wy p WDyp

Left-turn 0.5 0.8
Crossing 0.4 0.6
Right-turn 0.25 0.4

Four cases are discussed in this study. Two types of travelers are considered, including low reliability
(LR) class travelers, who set the effective CRC to be simply the mean trip CRC (4=0, p=0.5), and high
reliability (HR) class travelers, who reserve a large effective CRC of 95% (4=1.64, p=0.95). In the first three
cases, we consider that there exists only one type of traveler in the entire network: either LR or HR. The
travel cost in these three cases, respectively, are only considering: (1) the travel time; (2) both the travel
time and the travel CRC of links and nodes; and (3) the travel time and the travel CRC of only links. In
the last case, (4) both types of travelers are considered in the network and are evenly split, with half LR
travelers and half HR travelers. The travel cost includes the travel time and the travel CRC of links and
nodes. The assumptions of each case are shown in Table 4.

Table 4 Assumptions of Four Cases

Cases Generalized travel cost Traveler class

Travel time Single-class travelers
2 Travel time, CRC of links and nodes Single-class travelers
3 Travel time, CRC of links Single-class travelers
4 Travel time, CRC of links and nodes Multi-class travelers

4.1.1 Single-class travelers

In Table 5, the travel time on all utilized routes of each O-D pair is equal and minimal, which
indicates that the equilibrium state is achieved. In the following section, the O-D pair (1, 3) is used for

analyzingthe equilibrium state of other cases when changing the assumptions.

Table 5 Traffic Equilibrium Results with Considering Travel Time Only

O-D . Route Route flow/
. Route Link sequence . . -1
pair time/min ( pcu-h
1 {apa; = asas,a5 = az az,a; = ag,a9,a9 = a43,a43} 36.50 27.22
2 {a;,a; = as,as,as > a, a,,a; = aq0, Q10,10 = A1z A1} 41.68 0.00
3 {a;,a; > ag,as,as = ag ag ag = Aqyy A1y 014 = A5, Aqs) 43.55 0.00
(1,2) 4 {apa; = a6 06,06 = 15,015, @13 = A1y, Q14,014 = A35,845} 45.14 0.00
5 {aza, = a5, 047,017 2 a7,05,0; = Ag,Qg, Ag = Ay, Aqq} 38.65 0.00
6 {aza, > a7 447,017 = aza7,a; > aq9,a40, A0, g5, Aq5} 43.81 0.00
7 {aza; = ag7, 017,017 = agag,ag > A4 14 14 = Ag5, Aqs} 45.68 0.00
8 faza; » ajg a1 015 2 a45,444} 36.50 372.78
9 {a;,a; > ag,as,as = a;, a,a; = aqg A1 010 = Aig A1g) 42.79 366.32
10 {a,a; 2 ag as,as = ag ag g = Q1401414 = A1 A16} 44.66 0.00
(13) 1 {apa; = agaga6 > a13,a15,a15 > Q14 Q14014 2 G16 016} 46.26 0.00
12 {aza; = ay5,a17,a47 = a5,a7,a7 = a40,a49, A1 = A1 A1} 44.92 0.00
13 {aga; = ay7,a17,017 = ag ag,ag = A14, 014, Q14 = A1 A1} 46.80 0.00
14 {aj a1 - agag,aq > agz,a43 a3 = qq, 19} 42.79 433.68
15 {as as = as, as, as > a;,a, a; > ag,ag, Ag = Aqq, 11} 38.65 199.31
(42) 16 {as az - as a5, a5~ a;,47,a; > a10,a40,a15 = Ay5, A5} 43.81 0.00
17 {as az = as, as, a5 = ag,ag, Gg = A14,A14,A14 = Ay, g5} 45.68 0.00
18 {as as = ag a6 A= a1 a12,a1p = 14,14 Q14 = G55 045} 47.28 0.00
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19 {ag,a, = aqy A12,012 = Q14,014,014 = Aq5, A5} 38.65 400.69

20 {az a3 — as a5, a5 > a;,a,,a;, > a10,010,16 ~ Q16 16} 4493 0.00
21 {as, a3 = as,as, a5 > ag,ag Ag = Aq4,014,A14 = Q16 A1} 46.80 0.00
(43) 22 {as az = ag ag a6 = a1, A12,a15 = 14,014, Q14 > A1 A16} 48.39 0.00
23 {as a3 = ag ag ag = a3, 043,043 = A19,019} 44.92 0.00
24 {ag,ay = a15, 015,015 = Q14,014,014 = A6 A16} 39.77 0.00
25 {ag, a4 = aq3, 043,013 = a49,019,a10} 36.30 200.00

‘Bold number is the focused route in this study

Table 6 depicts the route flow results for the LR and HR route choice models considering both
travel time and the travel CRC. It shows that comparing the result with case 1, when considering the
CRC of links and nodes, the route choice model allocates a different amount of flow to the routes.
Because route 5 and 6 have lower mean CRC (E(r;,)), the flows shift from route 1 (which has the highest
mean and standard deviation of CRC) to these two relatively safer routes. In addition, as the safest route
among six routes, in this case, most amount of flow is allocated on route 5. Further comparing the
results between two road choice models, the HR model allocates less flow than the LR model to route 6.
This is because route 6 have the highest standard deviations (o,) of the CRC comparing with other
routes, which means the CRC distributions of route 6 are much more dispersed than other routes. The
HR model seriously considers the safety reliability in determining the effective CRC. However, LR
travelers are only concerned about mean travel safety and travel time. Thus, HR travelers allocate more

flows on route 5 to avoid the links in which crashes are more likely to occur.

Table 6 Traffic Equilibrium Results of LR (HR) travelers (considering link and turning safety)

Route
Route E(resp) Oasb E(r,) o, R, T, ¢y flow
1 0.00 0.00 148.92 41.09 148.92 97.90 246.82 0.00
' ' (14820)  (41.01)  (21546)  (99.34)  (314.80) (0.00)
” 0.00 0.00 118.91 37.04 118.91 121.37 240.28 0.00
' ' (11641)  (3675)  (176.67)  (130.48)  (307.15) (0.00)
80.87 48.53 80.87 151.41 232.27 0.00
23.54 2
3 35 38.20 (78.90) 4673)  (155.54)  (150.88)  (306.42) (0.00)
4 1.09 3.79 84.33 34.48 84.33 142.67 227.01 0.00
' ' (79.06) (33.84)  (13457)  (163.15)  (297.72) (0.00)
5 437 10.02 57.60 30.97 57.60 166.14 223.75 218.58
(51.49) (30.92)  (10219)  (19429)  (296.48)  (281.18)
6 34.98 50.19 70.92 56.03 70.92 152.83 223.75 581.42

(69.74) (51.99)  (155.01)  (14147)  (296.49)  (518.82)

# Bracketed figures are the HR travelers; the figures without bracket are LR travelers.

The route flow pattern for two route choice models considering travel time cost and travel safety of
only links are shown in Table 7. As expected, when ignoring the travel safety of intersections, a large
amount of flow shifts from route 5 to route 6. This is because that in case 2 the movements at the
intersections seriously influence the travel safety conditions of route 6 (which have the highest mean
and standard deviation of the turning CRC). The ignorance of turning safety makes this route seemingly
safer, so that attract more travelers. Furthermore, in contrast with case 2, HR travelers allocate more

flow to route 6 but lower to route 5 than LR travelers, in order to avoid the dangerous links on route 5
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(route 6 is relatively more reliable in safety, i.e. higher g, value, than route 5).

Table 7 Traffic Equilibrium Results of LR (HR) travelers (considering only links safety)

The number of

Route intersections E (rp) Op R, T, Cp Route flow
1 4 149.02 41.10 149.02 97.61 246.63 0.00
(148.92) (41.09) (216.31) (97.73) (314.04) (0.00)
5 4 120.56 37.23 120.56 116.79 237.35 0.00
(120.89) (37.26) (182.00) (116.09) (298.09) (0.00)
3 4 57.12 29.80 57.12 160.39 217.51 0.00
(56.92) (29.73) (105.68) (164.78) (270.46) (0.00)
4 4 87.70 34.86 87.70 129.19 216.89 0.00
(88.70) (34.99) (146.09) (126.18) (272.26) (0.00)
5 4 59.25 30.20 59.25 148.37 207.61 146.24
(60.67) (30.40) (110.53) (144.54) (255.07) (121.02)
6 3 32.46 24.15 32.46 175.15 207.61 653.76
(31.26) (23.87) (70.40) (184.67) (255.07) (678.98)

# Bracketed figures are the HR travelers; the figures without bracket are LR travelers.

4.1.2 Multi-class travelers

In this case, we consider that the network consists of two types of travelers forming the
mix-equilibrium model. Each type of traveler accounts for half of the total network. Table 8 shows the
route flow result. As we can see, the route mean CRC (E(r,)), standard deviation of the route CRC (o)
and route travel time (T,) are consistent for these two type of travelers. All of the LR travelers select
route 6, which has the lowest general cost (C,) between O-D pair (1, 3). By contrast, since the route travel
safety dispersions are of concern to the HR travelers, most of them select route 5, which have the highest
safety reliability (lowest o) than other routes. This route flow result reflects the nature of route choice

behavior that the travelers with higher effective CRC tend to choose more reliable routes.

Table 8 Traffic Equilibrium State of Multi-class Users

Traveler class Route E (rp) I, Ry T, Cp Route flow

1 148.20 41.01 148.20 99.34 247.54 0.00
2 116.41 36.75 116.41 130.48 246.89 0.00

LR model 3 78.90 46.73 78.90 150.87 229.77 0.00
4 79.06 33.84 79.06 163.15 24221 0.00
5 51.49 30.92 51.49 194.29 245.78 0.00
6 69.75 51.99 69.75 141.47 211.21 400.00
1 148.20 41.01 215.46 99.34 314.80 0.00
2 116.41 36.75 176.67 130.48 307.15 0.00

HR model 3 78.90 46.73 155.54 150.87 306.41 0.00
4 79.06 33.84 134.57 163.15 297.72 0.00
5 51.49 30.92 102.19 194.29 296.48 281.10
6 69.75 51.99 155.02 141.47 296.48 118.90

4.2 A real network: Sioux falls network

This case aims to test the proposed route choice model and the algorithm including its feasibility
and efficiency for the well-known Sioux falls network (Fig. 8). As shown in Fig. 8, in this case, each node

is disintegrated into a set of turns. Consequently, this network consists of 76 nodes and 254 links
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(including the total number of turn links). There are 528 O-D pairs in this network. The definition of
intersection movements in each node and the information of each link are shown in Table 9 and Table 10,
respectively. The CRC parameters of different intersection turning movement are the same with those in
the example in Section 5.1. The parameters in safety evaluation function, generalized cost function and
performance function are y =3x10¢ y =7x107, t=5x10% T=5x106 a=0.15, f=4 and 6 =3,

respectively.

Fig. 8 Sioux falls network

Table 9 Definition on Each Turnin Sioux Falls Network

Nodes 1 2 3 4 5 6 7 8
Aq7 = A3,
a, ->a a1 > a Ay > a Q19— a a7 = Ay
Left a; - a, Ay s 2 6 31 8 23 11> 19 15 g, apy >
ag = ay A13 > 419 Q157> Q13 Q13> Ay Q16 = A3,
A4 = Qg9
ay7 = Az,
. a, > a a4 > a ac—> a a9 a A4 = Q20

Stralght _ _ 2 7> 11 8> 15 11> 19 14> _ N
Q35 = dg ag = dg ag— aqy a, = a6 Q16 = A225
A7 = Qg9
ag = a as = a ag—= a a1, = a 424 = Q22>
Right - a @ —a 8 5 31 9 9 13 12 6 4 a4 ey = o,
5 1 1 4 Qs = @ @ —a on = @ @ = a 20 18 47 20

35 6 6 10 23 12 4 15

a17 2 G449
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Q16 = A1

Nodes 9 10 11 12 13 14 15 16
A3z = Qg6
Qy3 = A37,
(ag — A28, a3 = A3q, QAzg = Q45, Qp9 = Uy7,
Left Ay = Ays, %25 2 Q20 @y — Az, A7 — Az, f ) A3q = Qa1 Qu1 43, Ogz 2 Qug,
37 39
A3 0y g 7300 A7 > Az, A3z > A3y Aug 2 Ay Qg7 7 Qyq, Q55 7 Uy,
Gs1 = Q28 ay9— Az As7 = Oue Qg = Qsp
Qs = A3,
a5y = Qp7
Qug = Ap7, Ap7 = Az, Ay = Gy, Q9= Agp,
- -
Straight aq3 = Qps, 932 7 G200 Q36 7 d32,  ay; > agy, _ 34 7 U4, Q57 7 (g4, Qg5 7 Ugg,
Gye = A3 @25 7 Qzg, Q10 Q320 dzg = A3g Q71 2 Q49 Qg = Qug, A5y = Uy,
Qu3 = Q6 Q40 = A3q Ag7 2 Q43 Qpp 2 Gyo
Qs = Az7,
A3y = Qag,
Q43 = dz9, Qg9 ™ A3z, Qg7 = Qu3, Ay = Oug,
Right Ayg = Aoy, Qug = Qz6,  QAgzg = A3y, a3z = dss, @l > a Qg = Ay, Ayg = Quq, Q9 = Qug,
74 38
Ay > Az3 Qs 70z, Qg9 2 A3y, Azg 2 Agg Q71 2 Ay Ay 2 Que, A5z > Asp,
Qy3 7 430, Ap7 > A3q Qg7 = Q45 Agg = Uuy
Asy = Qg6
A3z = A3zp
Nodes 17 18 19 20 21 22 23 24
Aeg =~ Aoy Q72 = Ag7,
Left A3p = A5z, Agg > Asy, Qg5 7 Gsg,  Ggq > Qg3  Ays 2 Ags,  Ags ™ Ayg, Qg 2 Ayp,  Ay3 2 Ags,
e
Asg > A5y Q60 2 Ass dgp— Ag;  Ose 7~ A6y Qoo ™ Aesa Q46 — Aegy Q70 7 A73 (39 > Qyg
Qg9 = Qgp Qg3 = Qgg
QAeg = Ags A7y = Qgg,
Straight Q49 = Qs3, A4 Agg,  As53 7 A5, (Agg > Qg3 Ay ™ Qg Qg3 ™ A7, Q76 > A71, Q39 ™ Qs
sg > A5,  Gep 054 agy > agg  dea 7 g1, Q75 2 Agg Uyg = Agg, G4y 7 A7z Agg = A7y
Q59 = Qg2 QAes = Qg7
Qg9 = Qg3, Qe = Q705
Right (49 = A5y, A= Ass, @53 7 A57,  Ggg > Qg Qg9 ™ Qg A7z ™ Agg, Q79 2> A7p, Qg = A7,
Q39— Agz 50 2 Qs6 Gy = Agg  %ea ™ A6 Qo2 ™ Qg5 Qo3 ™ Ag7, A7 > A7z Q73 2 A7y
QA5 = Qg1 Aes = Qeg
Table 10 Sioux Falls Network Parameters
0 0
Link tq/ cq/(pc _ Length Link ta/  c4f(pc _ Length
mn - 1 Na a mn - . Na Na
min u ht) (km) min u ht) (km)
a, 1 2590 2.3 2.6 0.6 asg 0.7 2590 2.1 25 0.4
a, 0.7 2340 2.1 2.5 0.4 Qg 0.7 509 2.1 25 0.4
a . . . . a, . . . .

3 0.1 2590 2.3 2.6 0.6 41 0.9 488 2.1 25 0.5
a, 0.9 496 2.1 25 0.5 Ay 0.7 513 2.1 25 0.4
as 0.7 2340 2.1 2.5 04 43 1 492 2.3 2.6 0.6
a . . . . a, . . . .

6 0.7 1711 2.1 2.5 0.4 44 0.9 1351 2.1 25 0.5
a, 0.7 2340 2.1 25 04 Qs 0.5 513 2 24 0.3
ag 0.7 1711 2.1 2.5 0.4 Qe 0.5 1456 2 24 0.3
aqg 0.3 1778 2 2.4 0.2 Qg7 0.9 960 2.1 25 0.5




532
533
534
535
536
537
538
539
540
541
542

aqg 1 491 23 2.6 0.6 (ug 0.7 505 2.1 25 0.4

a;; 03 1778 2 24 02 a, 03 485 2 24 02
a,, 07 495 2.1 25 0.4 as, 05 523 2 24 0.3
a;; 09 1000 2.1 25 05 as;, 14 1968 23 26 0.8
a;, 09 496 2.1 25 05 as, 03 499 2 24 02
a;s 07 495 2.1 25 0.4 as; 03 523 2 24 0.2
a;e 03 490 2 24 02 as, 03 482 2 24 02
a;; 05 784 2 24 03 ass 05 2340 2 24 0.3
a;g 03 2340 2 24 02 ass 0.7 1968 2.1 25 0.4
a;o 03 490 2 24 02 as;, 05 2340 2 24 0.3
ayy 05 784 2 24 03 asg 03 1456 2 24 02
ay, 17 505 23 26 1 asg 07 482 2.1 25 0.4
ay, 09 505 2.1 25 05 ag, 07 500 2.1 25 0.4
ay; 09 1000 2.1 25 0.5 ag, 07 2340 2.1 25 0.4
a,, 17 505 23 26 1 ag; 1 500 23 26 0.6
ays 05 1392 2 24 03 ag; 09 506 2.1 25 0.5
ae 05 1392 2 24 03 gy 1 508 23 26 0.6
ay, 09 1000 2.1 25 0.5 ags 03 506 2 24 02
agg 1 1351 23 26 0.6 age 05 523 2 24 0.3
aye 07 485 2.1 25 0.4 ag; 05 489 2 24 0.3
az, 14 499 23 26 0.8 agg 09 960 2.1 25 0.5
sy 1 491 23 2.6 0.6 agg 03 508 2 24 02
az, 09 1000 2.1 25 0.5 a,, 07 523 2.1 25 0.4
33 1 491 23 26 0.6 a,, 07 500 2.1 25 0.4
as, 07 488 2.1 25 0.4 a, 07 492 2.1 25 0.4
azs 07 2340 2.1 25 0.4 ay; 03 500 2 24 0.2
ase 1 491 23 26 0.6 a,, 07 508 2.1 25 0.4
az; 05 2590 2 24 03 a;s 05 509 2 24 0.3
azg 05 2590 2 24 03 ae 03 489 2 24 0.2

In this case, both low reliability (LR) class travelers with 1=0.52, p=0.7 and high reliability (HR)
class travelers with 1=1.28, p=0.9 are involved in the network. Also, each type of traveler accounts for
half (50%) of the total network. For each O-D pair and each traveler class, we calculate the k-lowest
mean travel cost routes, denoted by B, for k = 10 and x, = 0 in the initialization step, and then find
the route with the smallest effective travel cost from the route set P, in each iteration (before
convergence). The algorithms were coded in MATLAB (R2014A) and tested on a PC with Inter®
Quad-Core 3.00 GHz processor and 3.00 GB RAM. There are totally 5280 route that generated by
k-lowest algorithm for each user class, and the total CPU times is 3.92s with ¢ = 10~ 3and 38.31s with
e=10""

Table 11 Traffic Equilibrium State of Multi-class Users
LR model HR model

Route Route
P flow P flow

O-D pair  Route E(ry) 0
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1 4.00 31.45 6.47 26.82 600.00 50.73 0.00

2 2.12 791 20.62 26.85 0.00 32.87 600.00

3 3.97 32.22 37.84 58.57 0.00 83.06 0.00

4 522 25.62 27.21 45.75 0.00 65.22 0.00

(10, 4) 5 6.53 40.42 31.44 58.99 0.00 89.71 0.00
6 10.03 30.35 22.20 48.01 0.00 71.08 0.00

7 5.33 14.71 42.62 55.60 0.00 66.78 0.00

8 6.04 34.02 40.52 64.25 0.00 90.11 0.00

9 14.00 23.86 35.88 62.28 0.00 80.42 0.00

10 4.45 23.87 64.72 81.58 0.00 99.71 0.00

1 2.48 2241 5.54 19.68 500.00 36.71 246.27

2 2.65 9.77 21.56 29.28 0.00 36.71 253.73

3 2.81 23.53 36.91 51.95 0.00 69.83 0.00

4 5.37 33.90 30.51 53.50 0.00 79.26 0.00

(10, 5) 5 8.86 20.89 21.27 41.00 0.00 56.88 0.00
6 6.39 33.97 28.15 52.21 0.00 78.02 0.00

7 4.87 25.94 39.60 57.95 0.00 77.67 0.00

8 5.86 15.79 43.56 57.63 0.00 69.62 0.00

9 12.48 9.06 34.95 52.14 0.00 59.03 0.00

10 7.11 33.17 33.20 57.56 0.00 82.76 0.00

1 1.30 14.39 32.39 41.17 0.00 52.11 0.00

2 3.15 22.88 10.09 25.14 400.00 42.53 0.00

3 3.86 28.33 25.99 44.58 0.00 66.11 0.00

4 7.36 9.49 16.75 29.04 0.00 36.26 400.00

(10, 6) 5 3.92 22.61 26.11 41.79 0.00 58.97 0.00
6 3.37 18.06 35.07 47.83 0.00 61.56 0.00

7 6.96 35.83 36.11 61.70 0.00 88.93 0.00

8 5.61 27.45 28.67 48.56 0.00 69.42 0.00

9 6.24 39.16 45.04 71.65 0.00 101.41 0.00

10 9.20 41.36 29.71 60.42 0.00 91.86 0.00

1 2.14 17.36 17.64 28.81 0.00 42.00 0.00

2 1.15 7.02 29.02 33.82 0.00 39.16 661.93

3 3.89 15.88 20.33 32.48 0.00 44.55 0.00

4 7.84 14.01 13.39 28.51 950.00 39.16 288.07

(10,7) 5 4.75 32.06 20.19 41.61 0.00 65.98 0.00
’ 6 4.52 32.13 36.70 57.92 0.00 82.34 0.00

7 3.21 12.98 31.71 41.67 0.00 51.54 0.00

8 7.48 34.78 21.36 46.93 0.00 73.37 0.00

9 7.54 33.62 18.02 43.04 0.00 68.59 0.00

10 5.71 28.92 32.22 52.97 0.00 74.95 0.00

Due to the limited length that is impossible to touch on all the O-D pairs in this network, parts of
the O-D pairs which originate from node 10 are selected for analyzing the equilibrium state. Table 11
shows the route flow results of the O-D pairs that present different equilibrium state for two types of
travelers. It is consistent with case 4 on the toy network that the route mean CRC (E(7,)), standard
deviation of the route CRC (0,,) and route travel time (T,) are consistent for these two type of travelers.
However, due to the higher concerns of travel safety dispersions, HR travelers select the routes that
have relatively lower travel safety standard deviation. For example, between O-D pair 10 and 4, all HR
travelers select route 2 which is more reliable in safety than other routes. Also, all HR travelers select the
most reliable route in safety —route 4 —between node 10 and node 6. Again, it reflects the nature of route

choice behavior that the travelers with higher effective CRC tend to choose more reliable routes. It also
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validates the proposed model and confirms the feasibility and efficiency of algorithm for the real
network.

5. CONCLUSION

5.1 Summary

The present study proposes a route choice model for multi-class travelers, which considered both
travelers’ travel safety concern, i.e. route safety reliability, and travel time concern. The relation between
travel safety variability and traveler's route choice behavior is innovatively established. Due to the
random nature of crash occurrence, the travel crash risk cost (CRC) of each link (including the dummy
links) is described as a distribution. It is assumed that travelers evaluate the travel CRC of a route
considering the variability of the route CRC with their safety requirements and factor such information
into their route choice consideration in the form of an effective CRC. This effective CRC reflects the
degree of the traveler’s crash risk aversions. A mixed-equilibrium mathematical program is formulated
to describe this route choice behavior of multiple classes of travelers. Two networks including Nguyen
and Dupuis’ network and Sioux falls network are used to demonstrate the formulations. It is found that
(1) the route choice behavior is sensitive to the route safety performance, including route average travel
safety and route travel safety variability; (2) the travel safety of intersections would significantly
influence the traveler’s route choice decision; and (3) travelers with different effective CRC (crash risk
aversions) would have different route choice decisions: The HR travelers are strict with route travel

safety variability, whereas the LR travelers consider only the route average CRC in their determinations.

5.2 Implications

The proposed traffic assignment method has a great p otential for traffic planners and managers in
network analysis and in making safety-related policies or regulations. First, this method provides a
safety-based travel behavior modeling tool for accommodating the increasing safety demands of travelers.
This implies possible new opportunities for transportation planners and managers to reshape travel and
activity patterns on both the planning and operational levels when taking into account the impact of road
safety on travelers’ travel behavior. It will be very useful especially in the upcoming era of intelligent
connected vehicles in which abundant in-vehicle safety-related information will be presented to travelers.
Second, this method can further be adopted to scientifically and systematically assess the effects of
proposed traffic safety policies or regulations on network equilibrium in advance. Depending on an
estimation of travelers’ behavioral responses? to the proposed safety countermeasures, the possible
changes of traffic circulation and the corresponding effects on the road network could be clearly specified.
This could be helpful for the traffic planners and operators to formulate traffic policies and regulations in

a scientific way, beyond making the decisions on the basis of past experience.

5.3 Extension to conflict-based CRC evaluation

In section 3, the traffic volume is applied as a proxy to evaluate the crash risk of turning and crossing

movements at intersections and to shape its CRC distribution. In fact, for an intersection movement,

2 Forexample, a stricter safety policy or a more effective safety education project would enhance public safety awareness,
and thus could further change their travel behaviors.
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conflicts with traffic flows from other directions are the significant causes of the high crash risk and thus
are highly associated with the shape of the CRC distribution. At an intersection, the number of conflicts is
decided by its configuration and geometric features, and the frequency of conflicts occurring along a
traffic stream is related to the volume of passing traffic. For example, as shown in Fig. 9, for a four-legged

intersection, the left-turn flow (x ) is not only in conflict with four automobile streams (the crossing

a1—agy

flow (xg4,.q,), the left-turn flow (x,,,,), the left-turn flow (x, 4,), and the crossing flow (x,,_,,)), but

also competes with the potential streams of other types of traffic modes (e.g. pedestrian movements).

o

@ Conflict with automobiles

® Potential conflicts (e.g. pedestrian) l a
2

Fig.9 Conflicts faced by flow in turning a — d at a four-legged intersection

However, due to a dearth of studies, there is no a well-founded equation that can be used in this
study to represent the conflict-CRC relations of different intersection types. Moreover, considering the
interactions of flows with different traffic volumes would cause a significant increase in the complexity
of computing. Therefore, in this study, the CRC of each intersection movement is estimated simply by
accounting for the risk effect posed by the traffic volume along one traffic stream, with the aim of
ensuring high computational efficiency. If a reliable function for the relationship between conflicts and
the CRC (i.e. E(rynq) = f (Xqina9XassagXa,—apyXas—a,)) Was available, Eq. (10) and (11) in proposed
model could be replaced to enable the model to account for the effect of flow-related conflicts more
explicitly. Meanwhile, an effective algorithm, that can handle the link interactions with an asymmetric
CRC, would be essential to solve the resulting conflict-based route choice model (Dafermoss, 1982; Fisk
and Nguyen, 1982). These extensions can be accommodated in further by modifying the proposed

model and algorithm.

5.4 Limitations and Future researches

To the best of our knowledge, there is no exclusive research that has been performed for modeling
traveler’s safety-concern route choice behavior. This study fills this gap by developing a route choice
model for multi-class travelers both accounting their safety and time concern, which will help the
transportation planners and managers to better understand the travelers’ safety-concern route choice
behavior in the upcoming era of connected vehicles. However, several limitations and some following

researches should be noted for this study.



619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

® Due to the shortage of widely used method which is able to model the relationship between road
safety reliability and relevant risk factors, only the average driving speed are involved in shaping the
CRC distribution of segment link. Our future efforts will consist of refining the segment CRC
distribution by incorporating other risk factors, such as the environmental factors (e.g. adverse
weather) and road specific factors.

®  Since the lack of the empirical studies that investigate the travelers’ behavioral characteristics of safe
route choice, the trade-off behavior between travel safety and efficiency is hypothetically modeled to
be a sample linear relationship. Further research should pay more attention on investigating such
behavioral characteristics. The possible complex nonlinear relationships between perceived travel

safety cost and travel time cost should be explicitly considered.
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