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Abstract: In this study, a route choice model which accounts for both travelers’ safety concern—route 13 

safety reliability—and travel time concern is proposed. Route safety reliability (variability) is defined by 14 

the distribution of the travel crash risk cost (CRC) to represent the safety condition of travel  routes. We 15 

further associate the travel safety variability due to stochastic crash occurrence with travelers’ crash risk 16 

aversion route choice behaviors, and postulate that travelers acquire the variability of route travel safety 17 

based on the past experience and factor it into their route choice in the form of an effective crash risk cost 18 

(effective CRC). This effective crash cost is formed depending on travelers’ requirements on safe arrivals, 19 

and thus varies with individuals and trip specific factors (e.g. purposes). Moreover, all travelers want to 20 

minimize the summing of their travel time and their effective CRC. A route-based solution algorithm is 21 

designed to solve the route choice model. Two networks  including Nguyen and Dupis’ network and 22 

Sioux falls network are conducted as numerical studies to illustrate the model. The results show that (1) 23 

the travelers’ route choice behaviors are sensitive to the route safety performance, including the average 24 

safety condition (the mean of the CRC distribution) and safety reliability (the standard deviation of the 25 

CRC distribution); (2) the safety performance of movements at intersection would significantly influence 26 

the travelers’ route choice decisions; and (3) travelers  with different safety attitudes  (heterogeneous crash 27 

risk aversions) would make different route choice decisions. 28 

Keyword: traffic assignment method; safety reliability; heterogeneous risk aversion; effective crash 29 

risk cost 30 

1. INTRODUCTION 31 

Numerous route choice models have long been developed for traffic assignment on a network 32 

according to travel demand. Researchers postulate that travelers tend to choose the most effective route to 33 

minimize their travel cost. Different types  of cost-effective routes have been studied, such as the least cost 34 

travel time (Goczyłla and Cielatkowski, 1995), eco-friendly routes (Tzeng and Chen, 1993; Rilett and 35 

Benedek, 1994; Nie and Li, 2013) and the most reliable routes (Lo and Tung, 2003; Shao et al., 2006; Chen 36 

and Zhou, 2010). However, few studies have been reported for how safety aspects could be quantified 37 

into trip planning of travelers, even though travel safety is undoubtedly an essential for travelers to 38 

measure the performance of candidate routes. In  other words, conventional route choice models are not 39 

suitable for representing traveler’s route choice behavior regarding their safety concern. This demand of 40 

research becomes more realistic and urgent when accurate and individual-based safety information could 41 

be available for pre-trip and en-route phases in the upcoming era of intelligent and connected vehicles 42 

(Gerla et al., 2014; Park et al., 2018; Elliott et al., 2019).  43 

Travel safety is considered as ‘crash risk potential’ of a  vehicle navigating through streets and 44 

intersections (Chandra, 2014). Crash prediction model has been extensively used to evaluate the safety 45 
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performance of a  site, facility or roadway network by estimating the expected average crash frequency of 46 

investigated site type given traffic exposure and associated risk factors (AASHTO, 2014). However, this 47 

technique aims  to reflect the safety aspect of an objectively underlying road property, similar to capacity, 48 

which has a nature of long-term average. Only using the aspect of the safety property of a  road site to 49 

indicate the crash risk potential that an individual traveler might encounter may be inadequate.  Recently, 50 

predicting the probability of a crash occurring during a short period is becoming increasingly common  in 51 

crash risk estimation (Lee et al., 2003; Abdel-Aty and Pemmanaboina, 2006; Payyanadan et al., 2017; 52 

Hossain et al., 2019). This method associates the potential of having a crash with several traffic 53 

characteristics and their real-time status, reflecting the crash risk via an estimated value. Nevertheless, 54 

crashes are rare and random events. Crashes occur as a function of a set of events that are influenced by a 55 

large number of factors. These factors are partly deterministic and measurable ; but partly stochastic (i.e., 56 

data maybe uncollectable or unavailable) (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et 57 

al., 2018). Moreover, many of these relevant factors, such as traffic, road user behavior, vehicle fleet and 58 

weather, change autonomously over time, and some even change on a  continual basis. The variation of 59 

factors over time would result in uncertainty of crash occurrence. An estimated certain value may be 60 

inefficient to represent such uncertainty during a trip. It is difficult to accurately predict how safe a trip is. 61 

In fact, these stochastic or random variations both of measurable factors and those factors that cannot 62 

be predicted add variability to crash risk potential. This variation naturally tends to randomly fluctuate 63 

around an expected value. This expected value is the embodiment of a  usual, normal or average safety  64 

condition of road site, and can be materialized by relevant conditions of the properties of the road site. 65 

The unpredictable fluctuation is closely linked to the related risk factors and their recurrent variations, 66 

which reflects the reliability of safety performance of the road site. In such cases, travelers  cannot predict 67 

what the exact crash risk potential along a route is; but they may have the knowledge (for the familiar 68 

route) of safety reliability of a route based on past experience or informed by the real-time safety s tatus of 69 

selectable route. For example, travelers figure out (or be informed) that certain routes contain mixed 70 

traffic flows or needs high workloads (e.g. in snowy mountain highway) during driving tend to induce 71 

high crash risk and travel safety variability. They may then factor such variability into their route 72 

planning and settle into their habitual routing plans for their daily commute. In  forming their habitual 73 

routing plans, travelers select routes to lower both their mean crash risk potential and travel safety 74 

variability. 75 

The reliability of a particular route has been found to play an important role in traveler’s choice 76 

behavior ( Jackson and Jucker, 1982; Abdel-Aty et al., 1997). Route choice models based on reliability 77 

assumptions and concepts have received considerable attention over the last two decades, such as the 78 

proposed travel time budget (TTB) traffic equilibrium model (Smith et al., 2008; Nie, 2011; Carrion and 79 

Levinson, 2012; Lo et al., 2006; Shao et al., 1985; Xu et al., 2018) which defines the reliability aspect of 80 

travel time variability in  the route choice decision process, and the so-called α-reliable mean-excess 81 

model that explicitly considers both reliability and/or unreliability aspects of travel time  variability (Chen 82 

and Zhou, 2010; Chen et al., 2011; Xu et al., 2014a; Xu et al., 2014b; Xu et al., 2017). However, the efforts 83 

have been made only on the concern  about travel efficiency—how much time (cost) do travelers spend on 84 

route, and traveler’s route choice behaviors that aim to increase travel efficiency—how can a trip be 85 

finished more quickly. Moreover, in the context of traffic safety research, most studies have only focused 86 

on objectively evaluating the safety reliability of road entities ( Jovanović, 2011; Oh and Mun, 2012; 87 
Bačkalić et al., 2014; Yu et al., 2016; Jalayer and Zhou, 2016). When individual’s travel safety becomes a 88 

primary concern for the traveler—how much probability a trip can be finished safely, understanding how 89 

traveler’s safety-concern behavior in coping with travel safety reliability affects the performance of the 90 

overall transportation system would be extremely essential for transport planners and transport system 91 

managers. To fill  this research gap, this paper provides a  basis by formulating and solving a route choice 92 

model which incorporates such safety-consideration route choice behavior. 93 

In this study, we develop a route choice model  which accounts for both travelers’ travel safety 94 



 

 

concern—route safety reliability—and travel time concern. In particular, route safety reliability 95 

(variability) is defined by the distribution of the travel crash risk cost (CRC) to represent the safety 96 

condition of travel routes. The mean of the distribution represents the expected average safety condition 97 

of a road network element, while the standard deviation reflects its safety reliability. These two 98 

parameters are determined according to the classical safety evaluation approach. Specifically, the 99 

parameters of the CRC distribution  of segments are quantified by using the proposed 100 

average-speed-based crash risk model, and those of turning links are defined by accounting for the risk 101 

effect of the traffic volume. Furthermore, the mean-and-variance-based effective CRC is applied to model 102 

travelers’ evaluation of different routes for different crash risk aversions. The effective CRC relates to the 103 

traveler’s crash risk aversion which depends on the characteristics of travelers and the trip features (e.g. 104 

trip purpose). It was assumed that all travelers want to minimize their effective CRC and travel time in 105 

the choice of routes. Correspondingly, an algorithm has been designed and tested for solving the 106 

proposed route choice model. In  the end, we explore the effect on the overall network performance by 107 

including this safety consideration in the modeling of route choice.  108 

The rest of this paper is organized as follows. Section 2  develops the formulation. Section 3 proposes 109 

the solution method of developed formulation. Numerical experiments are given in Section 4. Finally, 110 

Section 5 contains concluding remarks. 111 

2. FORMULATION 112 

2.1. Travel safety quantification 113 

2.1.1 Notation 114 

The notations used throughout the paper are listed as follows, unless otherwise specified. 115 

𝐺   road network 116 

𝑉   set of nodes 117 

𝐴   set of links 118 

𝑎 → 𝑏   turning and crossing movements at a node 119 

𝑊   set of origin-destination (OD) pairs 120 

𝑝𝑤    set of all single routes between O-D pair 𝑤 121 

𝐴̅   set of turning and crossing movements 122 

𝑣𝑎    average speed of vehicles on link 𝑎 123 

𝑟𝑎    CRC of link 𝑎 124 

𝑡𝑎    travel time of link 𝑎 with flow 𝑞𝑎  125 

𝑟𝑎 →𝑏   CRC of an intersection turning movement 𝑎 → 𝑏  126 

𝐸(𝑟𝑎 )   mean CRC per exposure unit of link 𝑎 127 

𝜎𝑎   standard deviation of CRC per exposure unit of link 𝑎 128 

𝐸(𝑥𝑎→𝑏)   mean CRC of an intersection turning movement 𝑎 → 𝑏  129 

𝜎𝑎→𝑏   standard deviation of CRC of an intersection turning movement 𝑎 → 𝑏  130 

𝛾/𝛾̅ and 𝜏/𝜏̅  adjustment coefficient 131 

𝜂𝑎 /𝜂̅𝑎   parameters of traveler’s risk perceptions 132 

𝜔𝑎 →𝑏/𝜔𝑎→𝑏   parameters of traveler’s safety reliability perceptions 133 

𝑟𝑝    CRC of route 𝑝 134 

𝛿𝑎
𝑝
   route-link incidence parameter  135 

𝛿𝑎→𝑏
𝑝

   route-turn incidence parameter  136 

𝐸(𝑟𝑝 )   mean CRC of route 𝑝 137 



 

 

𝜎𝑝   standard deviation of CRC of route 𝑝 138 

𝑅𝑝    effective CRC of route 𝑝 139 

𝜆   degree of risk aversion of travelers 140 

𝜌   probability that the actual trip CRC is within the specified CRC 𝑅𝑝  141 

𝑆𝑝   standard normal variate of 𝑟𝑝  142 

𝑅𝑝
𝑚   effective CRC of 𝑚 class travelers of route 𝑝 143 

𝜆𝑚   degree of risk aversion of 𝑚 class travelers 144 

𝐶𝑝
𝑚   generalized travel cost of 𝑚 class travelers of route 𝑝 145 

𝑇𝑝    travel time of route 𝑝 146 

𝜃   cost converting factor of travel time 147 

𝑡𝑎
0   free-flow travel time of link 𝑎 148 

𝑐𝑎   capacity of link 𝑎 149 

α and 𝛽   deterministic parameters in BPR function 150 

𝑓𝑝
𝑚    traffic flow on route 𝑝 151 

𝜇𝑤
𝑚    minimum generalized cost of class 𝑚 travelers of all the routes linking O-D pair 𝑤 152 

𝑞𝑤
𝑚   O-D demand 153 

𝑥𝑎   flows of link 𝑎 154 

𝑥𝑎→𝑏   flows of intersection turning movement 𝑎 → 𝑏 at intersections 155 

2.1.2 Road network representation 156 
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Fig. 1 Model description about link and node turn 158 

A road network consists of a number of individual intersections and road segments, referred to as 159 

‘sites’. Assume a road network represented by a  directed graph  𝐺 = (𝑉, 𝐴) , as shown in Fig. 1, where V 160 

and A, respectively, denote the set of nodes  and links which can be regarded respectively as intersections 161 

and road segments. Fig. 1 also shows the micro representation of the intersections, where each turning or 162 

crossing movement at a node can be represented by a dummy link of two connected segments 𝑎 and 𝑏, 163 

i.e. 𝑎 → 𝑏 . For example, for the four-leg intersection in Fig. 1(a), there are three movement classes 164 

including left-turn, right-turn and crossing movement. For link 𝑎1, the left-turn movement is represented 165 

by a dummy link  𝑎1 → 𝑎4 . Denote 𝐴̅ as the set of turning and crossing movements at the intersections. 166 
Then a route 𝑝 can be represented as {𝑎1 , 𝑎1 → 𝑎2, 𝑎2 , 𝑎2 → 𝑎3, 𝑎3, … , 𝑎𝑖 → 𝑎𝑖+1 ,… , 𝑎𝑛−1 , 𝑎𝑛 −1 → 𝑎𝑛 , 𝑎𝑛

}  167 

which consist of the set of links {𝑎1, 𝑎2, … , 𝑎𝑛 −1, 𝑎𝑛
} and the dummy links {𝑎1 → 𝑎2 , 𝑎2 → 𝑎3 , … , 𝑎𝑖 →168 

𝑎𝑖+1 , … , 𝑎𝑛 −1 → 𝑎𝑛
}. For the road network  𝐺 = (𝑉, 𝐴) , let 𝑊 denotes the set of origin-destination (O-D) 169 

pairs and 𝑝𝑤 denotes the set of all single route between O-D pair 𝑤, 𝑤 ∈ 𝑊.  170 



 

 

2.1.3 Link and route crash risk distribution 171 

(1) Safety evaluation model 172 

For a transportation system, the safety is defined as the product of the probability of having a crash 173 

per unit of exposure (crash risk) and the number of units of exposure occurring on the system during the 174 

specified period of time (Chapman, 1973; Hauer, 1982; Hauer, 2002): 175 
Safety of system = Crash risk of system × Number of exposure units of system.   (1). 176 

For travelers, the crash risk is determined by factors related to their characteristics (e.g. gender, age or 177 

driver experience), driving conditions (e.g. travel speed) and road features (or environmental factors, 178 

such as weather). The exposure factors measure the likelihood of the traveler being involved in a 179 

dangerous or hazardous situation, thus a reliable and meaningful comparison of safety risk between 180 

different travelers (Chipman et al., 1992; Qin et al., 2004; Hong et al., 2016). Traffic volume (Qin et al., 2004; 181 

Wong et al., 2007) and travel time (Chipman et al., 1992; Xin et al., 2012) are usually used as proxies for 182 

exposure. 183 

(2) Crash risk cost distribution 184 

As set forth in the introduction, this study aims to model the flow pattern of travelers who acquire 185 

information on the route travel safety, factor this into their route choice consideration, and settle into a 186 

long-term habitual equilibrium pattern.  The link flows and route flows are associated with this long -term 187 

habitual equilibrium flow pattern. Therefore, the link and route safety should be properly represented 188 

from the view of travelers. 189 

In the aforementioned transportation network modeled by a directed graph 𝐺 = (𝑉, 𝐴), due to the 190 

intrinsic features such as predesigned geometry and specified traffic flow pattern, each link, 𝑎 ∈ 𝐴 or 191 

𝑎 → 𝑏 ∈ 𝐴̅, has a certain average crash risk under a specific driving condition. This average safety 192 

condition can be estimated according to the features  of the road and is  related to the traveler’s  driving 193 

conditions (e. g. travel speed). However, for each traveler on the link, the crash risk is random, because 194 

the stochastic factors introduce variability into the safety. The individual safety condition of a traveler is 195 

difficult to accurately evaluate or predict  (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et 196 

al., 2018). When planning a trip, travelers may not only consider the average crash risk of each link, but 197 

also its variability. They may have knowledge based on experience about the safety reliability (variability) 198 

of a link and factor such variability into their travel plan. 199 

  200 
Fig. 2 CRC distribution with mean CRC 𝐸(𝑟𝑎) 201 

 202 

According to the discussion above, we use the social costs (e.g., the incurred monetary losses and 203 

time spent) of crash occurrence to indicate the level of crash risk, referred to as the crash risk cost (CRC). 204 

The CRC gives a more psychologically realistic assessment of traveler’s decision-making, rather than only 205 

using the crash frequency or severity. In this study, we assume the CRC to follow a  distribution with a 206 

mean value and variance, denoted the CRC distribution: 207 

CRC 

Prob. density function 

𝐸(𝑟𝑎) 

 

CRC distribution of a link 



 

 

𝑟~ 𝐷𝑖𝑠𝑡(𝐸 (𝑟), 𝜎 2)          (2) 208 

where 𝑟 is the CRC, 𝐸(𝑟)  is the mean CRC, which is related to the safety aspects of the road properties 209 

and the traveler’s local travel situation, and 𝜎 2 is the variance of the CRC, which represents  the safety 210 

reliability. Fig. 2 presents the example of a normal distribution with its  mean value and deviation. Such a 211 

CRC distribution  can properly describe the average safety condition and safety reliability and thus is 212 

closely in accord with travelers’ subjective perception of travel crash risk.  213 

(3) CRC distribution of road segment 214 

Following the definition of Eq. (2), we first introduce the CRC distribution for the road segment 215 

which is expressed as:  216 

𝑟𝑎  ~ 𝐷𝑖𝑠𝑡1
(𝐸(𝑟𝑎

), 𝜎𝑎
2)   ∀𝑎 ∈ 𝐴        (3) 217 

where 𝑟𝑎  denotes the CRC of road segment 𝑎. 𝐸(𝑟𝑎 ) is the expected mean CRC of segment 𝑎; and 𝜎𝑎 is 218 

the standard deviation of the CRC of segment 𝑎. In  this study, the safety evaluation model  (Eq.1) is used 219 

as the framework to quantify the mean and variance of the CRC distribution. Specifically, travel time is 220 

used as the exposure variable, because the time exposure can explain the crash risk variance among 221 

drivers  with different driving patterns and environments (Chipman et al., 1992; Xin et al., 2012). The 222 
travel time of segment 𝑎 is calculated by using the Bureau of Public Roads (BPR) link performance 223 

function: 224 

𝑡𝑎 = 𝑡𝑎
0 [1 + 𝛼 (

𝑥𝑎

𝑐𝑎
)

𝛽
]          (4) 225 

where 𝑡𝑎  is the travel time of segment 𝑎  with flow 𝑥𝑎 ; 𝑡𝑎
0 is the free-flow travel time, which is 226 

deterministic; 𝑐𝑎  is the capacity of link 𝑎; α and 𝛽 are deterministic parameters. 227 

In regard to the mean CRC per unit of exposure, travel speed has not only been found in many 228 

empirical studies to be associated with the crash occurrence, it is also one of the most important factors, in 229 

travelers’ minds, that influence the travel safety (Aljahani et al., 1999; Elvik, 2002; Charlton and Starkey, 230 

2016; Xu et al., 2019). Based on the actual risk function built via a meta-analysis conducted by Elvik et al. 231 

(2004), we proposed an average-speed-based crash risk model to quantify the relationship between the 232 

segment average speed and travelers’ perception of the mean CRC: 233 

Mean CRC  ⁄ Unit of exposure = 𝛾𝑣𝑎
𝜂𝑎        (5) 234 

where 𝑣𝑎  is the average travel speed of vehicles on segment 𝑎, which is obtained by dividing the travel 235 

time 𝑡𝑎  by the segment length 𝑙𝑎. 𝛾 is the adjustment coefficient, and 𝜂𝑎  is a parameter determined by 236 

travelers’ risk perception of driving on segment 𝑎  with speed 𝑣𝑎  according to their long-term 237 

experience (and is assumed to take a value higher than 1). Fig. 3 shows the perception curve output by Eq. 238 

(5), which is evidently plausible. Two conditions are met: 1) the perceived mean CRC grows with the 239 

average speed and; 2) the perceived mean CRC grows faster when the average speed is already high . This 240 

model supports the use of the CRC distribution to better depict travelers’ perceived crash risk. 241 

Average speed

Perceived mean CRC
Mean CRC 
perception

Grows faster

 242 
Fig. 3 Relationship between mean CRC and average speed for a road segment 243 

 244 
Correspondingly, the mean CRC of segment link 𝑎 is expressed as:  245 

𝐸(𝑟𝑎 ) = 𝑡𝑎 𝛾𝑣𝑎
𝜂𝑎           (6) 246 



 

 

Unfortunately, few empirical studies have investigated the safety reliability in regard to travelers’ 247 

perceptions. We assume that the perceived CRC variance per unit of exposure is also associated with the 248 

segment average speed, which is expressed as:  249 

CRC variance  ⁄ Unit of exposure = 𝛾̅𝑣𝑎
𝜂̅𝑎       (7) 250 

where 𝛾̅ is the adjustment coefficient; 𝜂̅𝑎  is a parameter reflecting traveler’s risk perception of safety 251 

variance for segment 𝑎 at speed 𝑣𝑎 . Thus, the variance of CRC distribution of the segment link 𝑎 is 252 

expressed as: 253 

𝜎𝑎
2 = 𝑡𝑎

2𝛾̅𝑣𝑎
𝜂̅𝑎           (8) 254 

(4) CRC distribution of intersection 255 

Intersections are hazardous locations on the transport network because of the crossing traffic streams 256 

(Xie et al., 2014; Xu et al., 2014c; Huang et al., 2017). It is estimated that nearly 45% of all crashes and 23% 257 

of crashes with fatalities occur at or near intersections throughout the United States (Bagloee and Asadi, 258 

2016). Rather than representing the intersection as a simple node, it is more accurate to separately model 259 

each movement type (turning or crossing) at an intersection. The CRC distribution of intersection 260 

movement  𝑎 → 𝑏  is expressed as: 261 

𝑟𝑎 →𝑏 ~ 𝐷𝑖𝑠𝑡2
(𝐸(𝑟𝑎 →𝑏

), 𝜎𝑎→𝑏
2)          ∀𝑎 → 𝑏 ∈ 𝐴̅      (9) 262 

where 𝑟𝑎 →𝑏 denotes the CRC of an intersection movement 𝑎 → 𝑏; E(𝑟𝑎 →𝑏) is the corresponding mean 263 

CRC, and 𝜎𝑎→𝑏 is the standard deviation.  264 

Moreover, different movements  on an intersection have different hazard levels depending on the 265 

different number of conflicts created by competing traffic streams. Left-turning traffic, for example, is a 266 

major source of conflicts at intersections, accounting for approximately 45% of all intersection crashes. 267 

However, travelers usually spend only a short time in an intersection, and there is no significant 268 

difference between various  turning movements  in terms of the duration or the speed of travel. Therefore, 269 

the frequency of the conflicts is closely related to the traffic volume, which is a relatively reliable proxy 270 

for exposure to indicate the crash risk of different turnings. Thus, in this study, we quantify the CRC of 271 

each movement type at intersections with regard to the traffic volume. Accordingly, the mean and 272 

variance of the CRC distribution of turning link 𝑎 → 𝑏  can be expressed as: 273 

𝐸(𝑟𝑎 →𝑏) = 𝜏𝑔(𝑥𝑎→𝑏)         (10) 274 

𝜎𝑎→𝑏
2 = 𝜏̅𝑔̅(𝑥𝑎→𝑏)          (11) 275 

where 𝑥𝑎→𝑏 is the traffic volume on turning link 𝑎 → 𝑏; 𝜏 and 𝜏̅ are adjustment coefficients; and 𝑔(·) 276 

and 𝑔̅(·) are the functional relationships between the traffic volume and the mean and variance of the 277 

CRC distribution, respectively. McDonald (1953), in early research, found a  certain exponential relation 278 

(as shown in Fig. 4) between traffic volume and intersection safety by investigating the crashes at 150 279 

intersections. Therefore, the volume-safety relations, as perceived by travelers, for different movements at 280 

intersections can be represented by a power function. In this function, the exponent parameter can be set 281 

to various  values to account for the variation  of travelers’ perceptions of the hazard-level of different 282 

intersection movements. Consequently, Eq. (10) and Eq. (11) can be expressed as: 283 

𝐸(𝑟𝑎 →𝑏) = 𝜏𝑥𝑎→𝑏
𝜔𝑎→𝑏         (12) 284 

𝜎𝑎→𝑏
2 = 𝜏̅𝑥𝑎→𝑏

𝜔̅𝑎→𝑏          (13) 285 

where 𝜔𝑎→𝑏  and 𝜔𝑎→𝑏  are variable parameters  reflecting the perceived hazard-level of different 286 

intersection movements, whose values are both assumed to be lower than 1. 287 



 

 

Traffic volume

Perceived CRC variance

CRC variance perception

Grows slower

 288 
Fig. 4 Relationship between CRC and traffic volume at intersection 289 

 290 

Note that, as shown in Fig. 4, because the value of 𝜔𝑎→𝑏  and 𝜔𝑎→𝑏 are both below 1, the perceived 291 

crash risk grows more slowly as a function of traffic volume as the traffic volume increases. This 292 

relationship captures the widely reported empirical phenomenon that the crash risk at an intersection 293 

increases more slowly as the number of vehicles growth (Geyer et al., 2006).  294 

(5) Route CRC distribution 295 

On the basis of the CRC distribution of road segment and intersection turning movement, the route 296 

CRC variable can be expressed by summing the corresponding link (road sites) CRC variables: 297 

𝑟𝑝 = ∑ 𝑟𝑎 𝛿𝑎
𝑝

𝑎 ∈𝐴 + ∑ 𝑟𝑎→𝑏𝑎→𝑏∈𝐴 ̅ 𝛿𝑎→𝑏
𝑝

        (14) 298 

where 𝑟𝑝  is the CRC of route 𝑝. 𝛿𝑎
𝑝
 is the route-link incidence parameter whose value is one if 𝑎 is on 299 

𝑝; zero otherwise. Similarly, 𝛿𝑎→𝑏
𝑝

 is the route-turn incidence parameter whose value is one if  𝑎 → 𝑏  is on 300 

𝑝; zero otherwise.  301 

This study assumes that the link CRC distributions (of segments and intersection movements) in the 302 

road network are independent and bounded with finite and non-zero variance. Regardless of the link and 303 

turn CRC distribution, as long as the distributions are independent and bounded with finite and non -zero 304 

variance, the route CRC follows a normal distribution according to the Central Limit Theorem (Lo et al., 305 

2006). Thus, the route CRC mean and standard deviation may be assumed as: 306 

𝑟𝑝  ~ 𝑁(𝐸(𝑟𝑝 ), 𝜎𝑝
2)            307 

𝐸(𝑟𝑝 ) = ∑ [𝛿𝑎
𝑝

∙ 𝐸(𝑟𝑎 )]𝑎∈𝐴 + ∑ [𝛿𝑎→𝑏
𝑝

𝑎 →𝑏∈𝐴 ̅ ∙ 𝐸(𝑟𝑎 →𝑏
)]        308 

𝜎𝑝 = √∑ [𝛿𝑎
𝑝

∙ 𝜎𝑎
2]𝑎∈𝐴 + ∑ [𝛿

𝑎→𝑏

𝑝
𝑎→𝑏∈𝐴 ̅ ∙ 𝜎𝑎→𝑏

2]       (15) 309 

where 𝐸(𝑟𝑝 ) is the mean CRC of route 𝑝 and 𝜎𝑝 is the standard deviation of the CRC of route 𝑝. 310 

2.2 Definition of effective CRC 311 

In the transportation literature, Jackson and Jucker (1982) introduced a framework from the view of 312 

travel reliability. It assumes that traveler looks to maximize the option’s return (minimize the cost of the 313 

choice) while minimize its  associated risk/uncertainty. The option’s return is represented by the expected 314 

value, and the risk/uncertainty by the variance1. Most studies that try to model traveler’s travel time 315 

reliability concerns, such as Uchida and Iida  (1993), Lo and Tung (2003), Lo et al. (2006) and Ni (2011), 316 

Chen et al. (2010 and 2011), Xu et al. (2017) and Xu et al. (2018), are basically built on this theoretical 317 

framework. This framework prescribes how travelers deal with unreliable prospects based on distinct 318 

states of nature of each alternative, and represents the states by a distribution of outcomes (Carrion and 319 

Levinson, 2012). In this framework, it is assumed that the traveler has a priori information of the mean 320 

and variance of the nature of each alternative in their choice set within a  category. In the context of travel 321 

 
1 This framework is developed on the basis of risk-return model in finance (see Markowitz (1999) for an 

overview) and the expected utility theory proposed by Von and Morgenstern (1944).  



 

 

safety reliability, the set of alternatives could be routes between an O-D pair. The states of nature could be 322 

extreme weather, mountainous region, bad road surface, hazard conflict and crash. The outcomes are 323 

likely to be the distribution of the CRC for each alternative. Next, we will try to reset this framework in 324 

the context of travel safety reliability according to the CRC distribution which is specified in above 325 

section.  326 

The randomness of crash occurrence causes the variability of the route CRC. With the safety 327 

reliability requirements of travelers, they create a larger CRC budget than the expected CRC to hedge 328 

against the variability of the CRC. In this study, we define travelers’ safety reliability requirement to be 𝜌. 329 

As shown in Fig. 5, i t means the probability that the actual trip CRC is within the specified CRC, denoted 330 

as  𝑅𝑝 . This specific CRC is referred to as the effective crash risk cost (effective CRC): 331 

𝑝{𝑟𝑝 ≤ 𝑅𝑝 } = 𝜌.          (16). 332 

For example, in Fig. 6 we present two different routes that have the same mean CRC but perform distinct 333 

safety reliabilities. Travelers who have the same higher safety reliability requirement would not prefer to 334 

select route 2, because they need to create a larger CRC budget (𝑅2) if traveling through route 2 to avoid 335 

the possible higher loss caused by its lower safety reliability. 336 

 337 

Route 1

Route 2

 338 

 339 

 340 

 341 

Travelers, in reality, do not exactly know their certain priori risk of being involved in a traffic crash. 342 

Their crash risk aversions may vary in different traveler groups. Those travelers who attach great 343 

importance to travel safety would add a  travel CRC margin to the expected travel CRC, to avoid crash 344 

occurrence. Thus, the effective CRC associated with route 𝑝 can be defined as: 345 

[Effective CRC] = [Expected CRC] + [CRC Margin]      (17) 346 

and mathematically expressed as: 347 

𝑅𝑝 = 𝐸(𝑟𝑝 ) + 𝜆𝜎𝑝           ∀𝑝 ∈ 𝑃𝑤 , ∀𝑤 ∈ 𝑊       (18) 348 

where 𝜆 is the parameter related to the requirement on safe reliability. 𝜆𝜎𝑝 denotes the added travel 349 

CRC margin, 𝑟𝑝  represents the CRC of route 𝑝 which is a  random variable, 𝐸(𝑟𝑝 ) and 𝜎𝑝 are the mean 350 

and standard deviation of 𝑟𝑝 . The relation between the safety reliability and the effective CRC is clearly 351 

showing in Fig. 5. Obviously, a large 𝜆 demonstrates that the traveler has a greater aversion for crash 352 
risk and vice versa. They would allow for a larger effective CRC so as to maintain their safety reliability at 353 

a high level. Thus, 𝜆 is the indicator of representing the degree of risk aversion of travelers.  354 

Then, combining Eq. (16) and Eq. (18), the relation between the effective CRC and safety reliability 355 

can be obtained as the following (as shown in Fig. 5): 356 

𝑝{𝑟𝑝 ≤ 𝑅𝑝 = 𝐸(𝑟𝑝 ) + 𝜆𝜎𝑝 } = 𝜌.        (19) 357 

By rearranging terms, the (16) can be transformed as: 358 
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𝑝 {
𝑟𝑝−𝐸(𝑟𝑝)

𝜎𝑝
≤ 𝜆} = 𝜌.         (20) 359 

We set 𝑠𝑝 =
𝑟𝑝−𝐸(𝑟𝑝)

𝜎𝑝
, then 𝑠𝑝 is the standard normal variate of 𝑟𝑝 , from which it can be deduced that the 360 

value 𝜆 is determined by 𝜌.  361 

2.3 Route choice model 362 

In general, travelers with different degrees of crash risk aversions exist in a road network. 363 

Hypothesize that there are 𝑀 classes of travelers in a  network, and 𝑚 labels their different degrees  of 364 

crash risk aversion. For the travelers of class 𝑚 with  the safety reliability requirement  𝜌𝑚, the effective 365 

CRC 𝑅𝑝
𝑚  follows from Eq. (18) with the corresponding value 𝜆𝑚: 366 

𝑅𝑝
𝑚 = 𝐸(𝑟𝑝 ) + 𝜆𝑚𝜎𝑝           ∀𝑝 ∈ 𝑃𝑤 , ∀𝑤 ∈ 𝑊       (21) 367 

Undoubtedly, in reality, travelers take into account both road safety and travel time to choose the 368 

optimal route. Therefore, the generalized travel cost consists of the travel CRC and the travel time (which 369 

is calculated by the BPR function): 370 

𝐶𝑝
𝑚 = 𝑅𝑝

𝑚 + 𝜃𝑇𝑝           (22) 371 

where 𝜃 is cost converting factor of travel time. Similarly, the route travel time variable equals to the total 372 

travel time variable of corresponding links: 373 

𝑇𝑃 = ∑ (𝑡𝑎 𝛿𝑎
𝑝

)𝑎 ∈𝐴           (23) 374 

Accordingly, the long-term habitual equilibrium route choice pattern of the class m travelers can be 375 

stated as: Their flow 𝑓𝑝
𝑚  on route 𝑝 is positive if the generalized travel cost on route 𝑝 is equal and 376 

minimal; all unused routes have an equal or higher generalized travel cost. This equilibrium flow pattern 377 

can be expressed by the complementarity conditions as follows: 378 

𝑓𝑝
𝑚 (𝐶𝑝

𝑚 − 𝜇𝑤
𝑚 ) = 0     ∀𝑝 ∈ 𝑃𝑤 , ∀𝑤 ∈ 𝑊 379 

𝐶𝑝
𝑚 ≥ 𝜇𝑤

𝑚                         ∀𝑝 ∈ 𝑃𝑤 , ∀𝑤 ∈ 𝑊       (24) 380 

where 𝐶𝑝
𝑚 is the generalized cost of class m travelers on route 𝑝; 𝜇𝑤

𝑚  is the minimum generalized cost of 381 

class 𝑚 travelers among all the routes linking O-D pair 𝑤. 382 

The complementarity conditions (24) can be extended to cover a mixed -equilibrium pattern among 383 

these different classes. We model this mixed -equilibrium problem with the following mathematical 384 

program as: 385 

𝑚𝑖𝑛 𝑓 = ∑ ∑ ∑ 𝑓𝑝
𝑚 (𝐶𝑝

𝑚 − 𝜇𝑤
𝑚 )𝑝 ∈𝑃𝑤𝑤∈𝑊

𝑀
𝑚=1        (25) 386 

s.t. ∑ 𝑓𝑝
𝑚 = 𝑞𝑤

𝑚       ∀𝑤 ∈ 𝑊,                 ∀𝑚 = 1, … , 𝑀𝑝∈𝑃𝑤
     (26) 387 

𝑥𝑎 = ∑ ∑ ∑ 𝑓𝑝
𝑚 𝛿𝑎

𝑝
             ∀𝑎 ∈ 𝐴𝑝∈𝑃𝑤𝑤 ∈𝑊

𝑀
𝑚=1        (27) 388 

𝑥𝑎→𝑏 = ∑ ∑ ∑ 𝑓𝑝
𝑚 𝛿𝑎→𝑏

𝑝
    ∀𝑎 → 𝑏 ∈ 𝐴̅𝑝∈𝑃𝑤𝑤∈𝑊

𝑀
𝑚 =1       (28) 389 

𝐶𝑝
𝑚 − 𝜇𝑤

𝑚 ≥ 0                                            ∀𝑚 = 1, … , 𝑀          (29) 390 

𝑓𝑝
𝑚 ≥ 0, 𝜇𝑤

𝑚 ≥ 0                                       ∀𝑝 ∈ 𝑃𝑤 , ∀𝑤 ∈ 𝑊 ,   ∀𝑚 = 1, … , 𝑀  (30) 391 

The parameter 𝑞𝑤
𝑚 is the O-D demand for user class 𝑚 on O-D pair 𝑤; 𝑥𝑎  is the flows of link 𝑎; 392 

𝑥𝑎→𝑏 is the flow of intersection turning movement 𝑎 → 𝑏 at intersections. The function 𝑓 refers to the 393 

overall gap to capture the complementarity conditions for the 𝑀  classes of travelers  as in Eq. (24). 394 

Constraint (26) represents the relationship between route flow and demand conservation condition for 395 

class 𝑚 travelers on O-D pair 𝑤. Constraints (27) and (28) convert the route flows into link flows 𝑥𝑎  and 396 

𝑥𝑎→𝑏 through the route-link incident indictor 𝛿𝑎
𝑃  and 𝛿𝑎→𝑏

𝑃  respectively. 397 

3. MODEL SOLUTION ALGORITHM 398 

As the route cost is non -additive with arc costs for the reason that the standard deviation of the 399 

effective travel cost on a route is route-specific and not equal to the sum of the standard deviations of the 400 

arc cost, the above passenger assignment model should be route -based, and cannot be translated into a 401 

link-based model (Gabriel and Bernstein, 1997). Thus, we also let the algorithm for solving the passenger 402 



 

 

assignment model be route-based. Lo and Chen (2000) proposed a route-based algorithm for solving the 403 

traffic equilibrium problem with route -specific cost. Similarly, we use the k-shortest route algorithm to 404 

find k-lowest mean travel cost routes and generate a route subset. The minimum effective CRC route can 405 

be solved in the obtained route set for each O-D pair. In  each iteration, the All-or-Nothing (AON) 406 

assignment is applied to load the passenger demand. In the solving algorithm, the method of successive 407 

averages (MSA) is adopted to determine the step size. The details of the algorithmic steps are described as 408 

follows:  409 

Step 1: initialization 410 

⚫ Initialize parameters and variables: the degree of risk aversion of class m travelers, 𝜆𝑚 ; 411 

impedance parameters, 𝛼 and 𝛽; the free-flow travel time 𝑡𝑎
0 ; the capacity of link 𝑎,  𝑐𝑎  ; 412 

conversion coefficient, 𝜃 ; the stopping tolerance, 𝜀 ; the demand of class m travelers between 413 

O-D pair w, 𝑞𝑤
𝑚 . 414 

⚫ Set iteration counter 𝑛 ← 1 415 

⚫ Let 𝑥𝑎
𝑛 ← 0 ; 𝑥𝑎→𝑏

𝑛 ← 0 ; initial route set 𝑃̅𝑤 ← ∅. 416 

Step 2: update route flow 417 

⚫ Compute the expected CRC of links, i.e., 𝐸(𝑟𝑎 ) and 𝐸(𝑟𝑎 →𝑏
), and travel times of links 𝑡𝑎 . 418 

⚫ Compute link costs: 𝐶𝑎 ← 𝐸(𝑟𝑎 ) + 𝜃𝑇𝑎  and 𝐶𝑎→𝑏 ← 𝐸(𝑟𝑎 →𝑏). 419 

⚫ Compute the k-shortest route set 𝑃𝑤  with the above link costs 𝐶𝑎 and 𝐶𝑎→𝑏 using the k-shortest 420 

route algorithm. 421 

⚫ Compute the generalized travel costs 𝐶𝑝
𝑚 for 𝑝 ∈ 𝑃𝑤 and each class 𝑚 = 1, … , 𝑀. 422 

⚫ Obtain the shortest route in the obtained shortest route set 𝑝𝑤
𝑚 ← 𝑎𝑟𝑔 𝑚𝑖𝑛 {𝐶𝑝

𝑚|𝑝 ∈ 𝑃𝑤 }, and 423 

update the route set 𝑃̅𝑤 = 𝑃̅𝑤 ∪ 𝑝𝑤
𝑚  for each class 𝑚 = 1, … , 𝑀. 424 

⚫ Perform AON assignment: load the demand 𝑞𝑤
𝑚 to route 𝑝𝑤

𝑚, i .e. for each route 𝑝 ∈ 𝑃̅𝑤, if  425 

𝑝 = 𝑝𝑤
𝑚, let ℎ(𝑝𝑤

𝑚) ← 𝑞𝑤
𝑚; otherwise, let ℎ(𝑝𝑤

𝑚) ← 0. 426 

⚫ Update route flow 𝑓𝑝
𝑚 ←

𝑛−1

𝑛
𝑓𝑝

𝑚 +
1

𝑛
ℎ(𝑝) ∀𝑝 ∈ 𝑃̅𝑤, ∀𝑤 ∈ 𝑊 , ∀𝑚 ∈ 𝑀. 427 

Step 3: Update links and nodes flow 428 

⚫ Update the main iteration counter 𝑛 ← 𝑛 + 1. 429 

⚫ Calculate the arc flow 𝑥𝑎
𝑛 ← ∑ ∑ ∑ 𝑓𝑝

𝑚 𝛿𝑎
𝑝

𝑝∈𝑃𝑤𝑤 ∈𝑊
𝑀
𝑚 =1 .  430 

⚫ Calculate the turning flow 𝑥𝑎→𝑏
𝑛 ← ∑ ∑ ∑ 𝑓𝑝

𝑚 𝛿𝑎→𝑏
𝑝

𝑝 ∈𝑃𝑤𝑤 ∈𝑊
𝑀
𝑚=1 . 431 

Step 4: Check convergence 432 

⚫ If 
√∑ (𝑥𝑎

𝑛 −𝑥𝑎
𝑛−1)2+∑ (𝑥𝑎→𝑏

𝑛 −𝑥𝑎→𝑏
𝑛−1 )2

𝑎→𝑏∈𝐴̅𝑎∈𝐴

∑ 𝑥𝑎
𝑛−1

𝑎∈𝐴 +∑ 𝑥𝑎→𝑏
𝑛 −1

𝑎→𝑏∈𝐴̅

< 𝜀 , then terminate, otherwise repeat the step 2. 433 

For solving the large-scale networks, it will take much calculating time to use the k-shortest route 434 

algorithm for finding k-lowest mean travel cost routes  in each iteration. In the real cases, the number of 435 

routes chosen by the users may be limited for each O-D pair. Consequently, for saving the calculating 436 

time, we can find a route subset in the initialization step and replace the whole route set with it for each 437 

O-D pair. It saves the process of computing the k-shortest route set in Step 2. It is obvious that the method 438 

of choosing this route subset will affects the solution. The k-shortest route algorithm (Xu et al., 2018) and 439 

the penalty method (De La Barra et al., 1993) can be used to choose this route subset. For further 440 

improving the efficiency of the algorithm, a self-regulated averaging method can be adopted to determine 441 

the step size (Liu et al., 2009). 442 

4. NUMERICAL STUDIES 443 



 

 

4.1 A toy network: Nguyen and Dupuis’ network 444 

The formulations are firstly applied to a test network called the Nguyen and Dupuis fall network for 445 

demonstrating its  application. As shown in Fig. 7, the network consists of 13 nodes, 19 links and 4 O-D 446 

pairs. Letter 𝑎𝑛  is the code of each link. Definitions of intersection movements in each node are shown in 447 

Table 1. The free-flow travel time, design capacity values, the length of each road segment and traveler’s 448 

risk perceptions related to segment features and driving speed are shown in Table 2. The values of 449 

adjustment coefficients in Eq. (12) and Eq. (13) are predefined in Table 3 according to the type of turning 450 

movement with different hazard level. The demands of the O -D pair (1,2), (1,3), (4,2), (4,3) are 400, 800, 451 

600, 200 pcu/h, respectively. The unit crash risk evaluation functions and safety reliability evaluation 452 

functions are as shown in (6), (8) and (12), (13), with 𝛾 =3×10-4, 𝛾̅ =7×10-5, 𝜏 =5×10-3 and 𝜏̅ =5×10-4. The 453 

parameters of link generalized cost function and performance function are α =0.15, 𝛽=4 and 𝜃 =3, 454 

respectively. 455 
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Fig. 7 Nguyen and Dupuis’ network 457 

Table 1 Definition on Each Turn in Nguyen and Dupuis Network 458 

Movement Definition 

Left-turn 𝑎1 → 𝑎5, 𝑎6 → 𝑎12, 𝑎8 → 𝑎14, 𝑎10 → 𝑎15, 𝑎17 → 𝑎7 

Crossing 
𝑎1 → 𝑎6, 𝑎2 → 𝑎18, 𝑎3 → 𝑎5, 𝑎4 → 𝑎12, 𝑎4 → 𝑎13, 𝑎5 → 𝑎7, 
𝑎6 → 𝑎13, 𝑎7 → 𝑎9, 𝑎10 → 𝑎16, 𝑎12 → 𝑎14, 𝑎13 → 𝑎19, 𝑎14 → 𝑎15, 
𝑎17 → 𝑎8, 𝑎18 → 𝑎11 

Right-turn 𝑎2 → 𝑎17, 𝑎3 → 𝑎6, 𝑎5 → 𝑎8, 𝑎7 → 𝑎10, 𝑎9 → 𝑎11, 𝑎14 → 𝑎16 
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Table 2 Nguyen and Dupuis Network Parameters 460 

Link 
𝑡𝑎

0 / 

min-1 

𝑐𝑎/(pc

u h-1) 

Length 

(km) 
𝜂𝑎  𝜂̅𝑎  Link 

𝑡𝑎
0/ 

min-1 

𝑐𝑎/(pc

u h-1) 

Length 

(km) 
𝜂𝑎  𝜂̅𝑎  

𝑎1 7 800 5 2.1 2.6 𝑎11 9 550 5 2.1 2.6 

𝑎2 9 400 5 2.1 2.6 𝑎12 10 550 5 2 2.5 

𝑎3 9 200 5 2.1 2.6 𝑎13 9 600 5 2.1 2.6 

𝑎4 12 800 5 2 2.5 𝑎14 6 700 5 2.1 2.6 

𝑎5 3 350 5 2.2 2.7 𝑎15 9 500 5 2.1 2.6 

𝑎6 9 400 5 2.1 2.6 𝑎16 8 300 5 2.1 2.6 

𝑎7 5 800 5 2.2 2.7 𝑎17 7 200 5 2.1 2.6 

𝑎8 13 250 5 2 2.5 𝑎18 14 400 5 2 2.5 

𝑎9 5 250 5 2.2 2.7 𝑎19 11 600 5 2 2.5 

𝑎10 9 300 5 2.1 2.6 - - - - - - 
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Table 3 CRC Parameters of Intersection Turns 462 



 

 

Movement 𝜔𝑎 →𝑏 𝜔𝑎→𝑏 

Left-turn 0.5 0.8 

Crossing 0.4 0.6 

Right-turn 0.25 0.4 
 463 
Four cases are discussed in this study. Two types of travelers are considered, including low reliability 464 

(LR) class travelers, who set the effective CRC to be simply the mean trip CRC (𝜆=0, 𝜌=0.5), and high 465 

reliability (HR) class travelers, who reserve a large effective CRC of 95% (𝜆=1.64, 𝜌=0.95). In the first three 466 

cases, we consider that there exists only one type of traveler in the entire network: either LR or HR. The 467 

travel cost in these three cases, respectively, are only considering: (1) the travel time; (2) both the travel 468 

time and the travel CRC of links and nodes; and (3) the travel time and the travel CRC of only links. In 469 

the last case, (4) both types of travelers are considered in the network and are evenly split, with half LR 470 

travelers and half HR travelers. The travel cost includes the travel time and the travel CRC of links and 471 

nodes. The assumptions of each case are shown in Table 4. 472 

Table 4 Assumptions of Four Cases 473 

Cases Generalized travel cost Traveler class 

1 Travel time Single-class travelers 

2 Travel time, CRC of links and nodes Single-class travelers 

3 Travel time, CRC of links Single-class travelers 

4 Travel time, CRC of links and nodes Multi-class travelers 

4.1.1 Single-class travelers 474 

In Table 5, the travel time on all utilized routes of each O-D pair is equal and minimal, which 475 

indicates that the equilibrium state is achieved. In the following section, the O -D pair (1, 3) is used for 476 

analyzing the equilibrium state of other cases when changing the assumptions.  477 

Table 5 Traffic Equilibrium Results with Considering Travel Time Only  478 

O-D  

pair 
Route Link sequence 

Route 

time/min 

Route flow/

 

（1,2） 

1 {𝑎1, 𝑎1 → 𝑎5, 𝑎5 , 𝑎5 → 𝑎7, 𝑎7, 𝑎7 → 𝑎9, 𝑎9, 𝑎9 → 𝑎11, 𝑎11} 36.50  27.22  

2 {𝑎1, 𝑎1 → 𝑎5, 𝑎5 , 𝑎5 → 𝑎7, 𝑎7, 𝑎7 → 𝑎10, 𝑎10, 𝑎10 → 𝑎15, 𝑎15} 41.68  0.00  

3 {𝑎1, 𝑎1 → 𝑎5, 𝑎5 , 𝑎5 → 𝑎8, 𝑎8, 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 43.55  0.00  

4 {𝑎1, 𝑎1 → 𝑎6, 𝑎6 , 𝑎6 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 45.14  0.00  

5 {𝑎2, 𝑎2 → 𝑎17, 𝑎17, 𝑎17 → 𝑎7, 𝑎7 , 𝑎7 → 𝑎9, 𝑎9, 𝑎9 → 𝑎11, 𝑎11} 38.65  0.00  

6 {𝑎2, 𝑎2 → 𝑎17, 𝑎17, 𝑎17 → 𝑎7, 𝑎7 , 𝑎7 → 𝑎10, 𝑎10, 𝑎10, → 𝑎15, 𝑎15} 43.81  0.00  

7 {𝑎2, 𝑎2 → 𝑎17, 𝑎17, 𝑎17 → 𝑎8, 𝑎8 , 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 45.68  0.00  

8 {𝑎2, 𝑎2 → 𝑎18, 𝑎18, 𝑎18 → 𝑎11, 𝑎11} 36.50  372.78  

（1,3）  

9 {𝑎1, 𝑎1 → 𝑎5, 𝑎5 , 𝑎5 → 𝑎7, 𝑎7, 𝑎7 → 𝑎10, 𝑎10, 𝑎10 → 𝑎16, 𝑎16} 42.79  366.32  

10 {𝑎1, 𝑎1 → 𝑎5, 𝑎5, 𝑎5 → 𝑎8, 𝑎8, 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 44.66  0.00  

11 {𝑎1, 𝑎1 → 𝑎6, 𝑎6 , 𝑎6 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 46.26  0.00  

12 {𝑎2, 𝑎2 → 𝑎17, 𝑎17, 𝑎17 → 𝑎7, 𝑎7 , 𝑎7 → 𝑎10, 𝑎10, 𝑎10 → 𝑎16, 𝑎16} 44.92  0.00  

13 {𝑎2, 𝑎2 → 𝑎17, 𝑎17, 𝑎17 → 𝑎8, 𝑎8 , 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 46.80  0.00  

14 {𝑎1, 𝑎1 → 𝑎6, 𝑎6 , 𝑎6 → 𝑎13, 𝑎13, 𝑎13 → 𝑎19, 𝑎19} 42.79  433.68  

（4,2） 

15 {𝑎3, 𝑎3 → 𝑎5, 𝑎5, 𝑎5 → 𝑎7 , 𝑎7, 𝑎7 → 𝑎9, 𝑎9, 𝑎9 → 𝑎11, 𝑎11} 38.65  199.31  

16 {𝑎3, 𝑎3 → 𝑎5, 𝑎5, 𝑎5 → 𝑎7 , 𝑎7, 𝑎7 → 𝑎10, 𝑎10, 𝑎15 → 𝑎15, 𝑎15} 43.81  0.00  

17 {𝑎3, 𝑎3 → 𝑎5, 𝑎5, 𝑎5 → 𝑎8 , 𝑎8, 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 45.68  0.00  

18 {𝑎3, 𝑎3 → 𝑎6, 𝑎6, 𝑎6 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 47.28  0.00  

( )1pcu h−



 

 

19 {𝑎4 , 𝑎4 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎15, 𝑎15} 38.65  400.69  

（4,3） 

20 {𝑎3, 𝑎3 → 𝑎5, 𝑎5, 𝑎5 → 𝑎7 , 𝑎7, 𝑎7 → 𝑎10, 𝑎10, 𝑎16 → 𝑎16, 𝑎16} 44.93  0.00  

21 {𝑎3, 𝑎3 → 𝑎5, 𝑎5, 𝑎5 → 𝑎8 , 𝑎8, 𝑎8 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 46.80  0.00  

22 {𝑎3, 𝑎3 → 𝑎6, 𝑎6, 𝑎6 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 48.39  0.00  

23 {𝑎3, 𝑎3 → 𝑎6, 𝑎6, 𝑎6 → 𝑎13, 𝑎13, 𝑎13 → 𝑎19, 𝑎19} 44.92  0.00  

24 {𝑎4 , 𝑎4 → 𝑎12, 𝑎12, 𝑎12 → 𝑎14, 𝑎14, 𝑎14 → 𝑎16, 𝑎16} 39.77  0.00  

25 {𝑎4 , 𝑎4 → 𝑎13, 𝑎13, 𝑎13 → 𝑎19, 𝑎19, 𝑎19} 36.30  200.00  

#Bold number is the focused route in this study 479 

 480 

Table 6 depicts the route flow results for the LR and HR route choice models considering both 481 

travel time and the travel CRC. It shows that comparing the result with case 1, when considering the 482 

CRC of links and nodes, the route choice model allocates a different amount of flow to the routes. 483 

Because route 5 and 6 have lower mean CRC (𝐸(𝑟𝑝 )), the flows shift from route 1 (which has the highest 484 

mean and standard deviation of CRC) to these two relatively safer routes. In addition, as the safest route 485 

among six routes, in this case, most amount of flow is allocated on  route 5. Further comparing the 486 

results between two road choice models, the HR model allocates less flow than the LR model to route 6. 487 

This is because route 6  have the highest standard deviations (𝜎𝑝) of the CRC comparing with other 488 

routes, which means the CRC distributions of route 6 are much more dispersed than other routes. The 489 

HR model seriously considers the safety reliability in determining the effective CRC. However, LR 490 

travelers are only concerned about mean travel safety and travel time. Thus, HR travelers allocate more 491 

flows on route 5 to avoid the links in which crashes are more likely to occur. 492 

Table 6 Traffic Equilibrium Results of LR (HR) travelers (considering link and turning safety)  493 

Route 𝐸(𝑟𝑎→𝑏) 𝜎𝑎→𝑏 𝐸(𝑟𝑝) 𝜎𝑝 𝑅𝑝 𝑇𝑝  𝐶𝑝 
Route 

flow 

1 0.00 0.00 
148.92 

(148.20) 

41.09 

(41.01) 

148.92 

(215.46) 

97.90 

(99.34) 

246.82 

(314.80) 

0.00 

(0.00) 

2 0.00 0.00 
118.91 

(116.41) 

37.04 

(36.75) 

118.91 

(176.67) 

121.37 

(130.48) 

240.28 

(307.15) 

0.00 

(0.00) 

3 23.54 38.20 
80.87 

(78.90) 

48.53 

(46.73) 

80.87 

(155.54) 

151.41 

(150.88) 

232.27 

(306.42) 

0.00 

(0.00) 

4 1.09 3.79 
84.33 

(79.06) 

34.48 

(33.84) 

84.33 

(134.57) 

142.67 

(163.15) 

227.01 

(297.72) 

0.00 

(0.00) 

5 4.37 10.02 
57.60 

(51.49) 

30.97 

(30.92) 

57.60 

(102.19) 

166.14 

(194.29) 

223.75 

(296.48) 

218.58 

(281.18) 

6 34.98 50.19 
70.92 

(69.74) 

56.03 

(51.99) 

70.92 

(155.01) 

152.83 

(141.47) 

223.75 

(296.49) 

581.42 

(518.82) 
# Bracketed figures are the HR travelers; the figures without bracket are LR travelers. 494 

 495 

The route flow pattern for two route choice models considering travel time cost and travel safety of 496 

only links  are shown in  Table 7. As expected, when ignoring the travel safety of intersections, a  large 497 

amount of flow shifts from route 5  to route 6. This is  because that in case 2 the movements at the 498 

intersections seriously influence the travel safety conditions of route 6 (which have the highest mean 499 

and standard deviation of the turning CRC). The ignorance of turning safety makes this route seemingly 500 

safer, so that attract more travelers. Furthermore, in contrast with case 2, HR travelers allocate more 501 

flow to route 6 but lower to route 5 than LR travelers, in order to avoid the dangerous links on route 5 502 



 

 

(route 6 is relatively more reliable in safety, i.e. higher 𝜎𝑝 value, than route 5). 503 

Table 7 Traffic Equilibrium Results of LR (HR) travelers (considering only links safety) 504 

Route 
The number of 

intersections 
𝐸(𝑟𝑝) 𝜎𝑝 𝑅𝑝 𝑇𝑝  𝐶𝑝 Route flow 

1 4 
149.02 

(148.92) 

41.10 

(41.09) 

149.02 

(216.31) 

97.61 

(97.73) 

246.63 

(314.04) 

0.00 

(0.00) 

2 4 
120.56 

(120.89) 

37.23 

(37.26) 

120.56 

(182.00) 

116.79 

(116.09) 

237.35 

(298.09) 

0.00 

(0.00) 

3 4 
57.12 

(56.92) 

29.80 

(29.73) 

57.12 

(105.68) 

160.39 

(164.78) 

217.51 

(270.46) 

0.00 

(0.00) 

4 4 
87.70 

(88.70) 

34.86 

(34.99) 

87.70 

(146.09) 

129.19 

(126.18) 

216.89 

(272.26) 

0.00 

(0.00) 

5 4 
59.25 

(60.67) 

30.20 

(30.40) 

59.25 

(110.53) 

148.37 

(144.54) 

207.61 

(255.07) 

146.24 

(121.02) 

6 3 
32.46 

(31.26) 

24.15 

(23.87) 

32.46 

(70.40) 

175.15 

(184.67) 

207.61 

(255.07) 

653.76 

(678.98) 
# Bracketed figures are the HR travelers; the figures without bracket are LR travelers. 505 

4.1.2 Multi-class travelers 506 

In this case, we consider that the network consists of two types of travelers forming the 507 

mix-equilibrium model. Each type of traveler accounts  for half of the total network. Table 8 shows the 508 

route flow result. As we can see, the route mean CRC (𝐸(𝑟𝑝 )), standard deviation of the route CRC (𝜎𝑝) 509 

and route travel time (𝑇𝑝 ) are consistent for these two type of travelers. All of the LR travelers select 510 

route 6, which has the lowest general cost (𝐶𝑝) between O-D pair (1, 3). By contrast, since the route travel 511 

safety dispersions are of concern to the HR travelers, most of them select route 5, which have the highest 512 

safety reliability (lowest 𝜎𝑝) than other routes. This route flow result reflects the nature of route choice 513 

behavior that the travelers with higher effective CRC tend to choose more reliable routes. 514 

Table 8 Traffic Equilibrium State of Multi-class Users 515 

Traveler class Route 𝐸(𝑟𝑝) 𝜎𝑝 𝑅𝑝 𝑇𝑝  𝐶𝑝 Route flow 

LR model 

1 148.20  41.01  148.20  99.34  247.54  0.00  

2 116.41  36.75  116.41  130.48  246.89  0.00  

3 78.90  46.73  78.90  150.87  229.77  0.00  

4 79.06  33.84  79.06  163.15  242.21  0.00  

5 51.49  30.92  51.49  194.29  245.78  0.00  

6 69.75  51.99  69.75  141.47  211.21  400.00  

HR model 

1 148.20  41.01  215.46  99.34  314.80  0.00  

2 116.41  36.75  176.67  130.48  307.15  0.00  

3 78.90  46.73  155.54  150.87  306.41  0.00  

4 79.06  33.84  134.57  163.15  297.72  0.00  

5 51.49  30.92  102.19  194.29  296.48  281.10  

6 69.75  51.99  155.02  141.47  296.48  118.90  

 516 

4.2 A real network: Sioux falls network 517 

This case aims to test the proposed route choice model and the algorithm including its  feasibility 518 

and efficiency for the well-known Sioux falls network (Fig. 8). As shown in Fig. 8, in this case, each node 519 

is disintegrated into a set of turns. Consequently, this network consists of 76 nodes and 254 links 520 



 

 

(including the total number of turn links). There are 528 O-D pairs in this network. The definition of 521 

intersection movements  in each node and the information of each link are shown in Table 9 and Table 10, 522 

respectively. The CRC parameters of different intersection turning movement are the same with those in 523 

the example in Section 5.1. The parameters in safety evaluation function, generalized cost function and 524 

performance function are 𝛾 = 3 × 10-6, 𝛾̅ = 7 × 10-7, 𝜏 = 5 × 10-5, 𝜏̅ = 5 × 10-6 α =0.15, 𝛽 =4 and 𝜃 =3, 525 

respectively.  526 
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 527 

Fig. 8 Sioux falls network 528 

Table 9 Definition on Each Turn in Sioux Falls Network 529 

Nodes 1 2 3 4 5 6 7 8 

Left 𝑎3 → 𝑎2 𝑎14 → 𝑎3 
𝑎2 → 𝑎6, 

𝑎8 → 𝑎7 

𝑎31 → 𝑎8, 

𝑎11 → 𝑎10 

𝑎23 → 𝑎11, 

𝑎15 → 𝑎13 

𝑎19 → 𝑎15, 

𝑎12 → 𝑎14 
𝑎54 → 𝑎17 

𝑎47 → 𝑎21, 

𝑎17 → 𝑎22, 

𝑎16 → 𝑎20, 

𝑎24 → 𝑎19 

Straight - - 
𝑎2 → 𝑎7, 

𝑎35 → 𝑎5 

𝑎11 → 𝑎8, 

𝑎6 → 𝑎9 

𝑎15 → 𝑎11, 

𝑎9 → 𝑎12 

𝑎19 → 𝑎14, 

𝑎4 → 𝑎16 
- 

𝑎17 → 𝑎21, 

𝑎24 → 𝑎20, 

𝑎16 → 𝑎22, 

𝑎47 → 𝑎19 

Right 𝑎5 → 𝑎1 𝑎1 → 𝑎4 
𝑎8 → 𝑎5, 

𝑎35 → 𝑎6 

𝑎31 → 𝑎9, 

𝑎6 → 𝑎10 

𝑎9 → 𝑎13, 

𝑎23 → 𝑎12 

𝑎12 → 𝑎16, 

𝑎4 → 𝑎15 
𝑎20 → 𝑎18 

𝑎24 → 𝑎22, 

𝑎47 → 𝑎20, 

𝑎17 → 𝑎19, 



 

 

𝑎16 → 𝑎21 

Nodes 9 10 11 12 13 14 15 16 

Left 
𝑎21 → 𝑎25, 

𝑎13 → 𝑎24 

𝑎32 → 𝑎26, 

𝑎43 → 𝑎27, 

𝑎48 → 𝑎28, 

𝑎25 → 𝑎29, 

𝑎48 → 𝑎30, 

𝑎51 → 𝑎28, 

𝑎25 → 𝑎30, 

𝑎51 → 𝑎27 

𝑎36 → 𝑎31, 

𝑎40 → 𝑎33, 

𝑎27 → 𝑎34, 

𝑎10 → 𝑎32 

𝑎7 → 𝑎36, 

𝑎33 → 𝑎37 
𝑎37 → 𝑎39 

𝑎34 → 𝑎41, 

𝑎44 → 𝑎42 

𝑎28 → 𝑎45, 

𝑎41 → 𝑎43, 

𝑎67 → 𝑎44, 

𝑎57 → 𝑎46 

𝑎29 → 𝑎47, 

𝑎52 → 𝑎48, 

𝑎55 → 𝑎49 , 

𝑎22 → 𝑎50 

Straight 
𝑎13 → 𝑎25, 

𝑎26 → 𝑎23 

𝑎48 → 𝑎27, 

𝑎32 → 𝑎29, 

𝑎25 → 𝑎28, 

𝑎43 → 𝑎26 

𝑎27 → 𝑎33, 

𝑎36 → 𝑎32, 

𝑎10 → 𝑎34, 

𝑎40 → 𝑎31 

𝑎7 → 𝑎37, 

𝑎38 → 𝑎35 
- 

𝑎34 → 𝑎42, 

𝑎71 → 𝑎40 

𝑎41 → 𝑎45, 

𝑎57 → 𝑎44, 

𝑎28 → 𝑎46, 

𝑎67 → 𝑎43 

𝑎29 → 𝑎50, 

𝑎55 → 𝑎48, 

𝑎52 → 𝑎47, 

𝑎22 → 𝑎49  

Right 
𝑎26 → 𝑎24, 

𝑎21 → 𝑎23 

𝑎25 → 𝑎27, 

𝑎32 → 𝑎28, 

𝑎43 → 𝑎29, 

𝑎48 → 𝑎26, 

𝑎51 → 𝑎29, 

𝑎43 → 𝑎30, 

𝑎51 → 𝑎26, 

𝑎32 → 𝑎30 

𝑎10 → 𝑎33, 

𝑎36 → 𝑎34, 

𝑎40 → 𝑎32, 

𝑎27 → 𝑎31 

𝑎33 → 𝑎35, 

𝑎38 → 𝑎36 
𝑎74 → 𝑎38 

𝑎44 → 𝑎40, 

𝑎71 → 𝑎41 

𝑎57 → 𝑎43, 

𝑎28 → 𝑎44, 

𝑎41 → 𝑎46, 

𝑎67 → 𝑎45 

𝑎22 → 𝑎48, 

𝑎29 → 𝑎49 , 

𝑎52 → 𝑎50, 

𝑎55 → 𝑎47 

Nodes 17 18 19 20 21 22 23 24 

Left 
𝑎30 → 𝑎52, 

𝑎58 → 𝑎51 

𝑎50 → 𝑎54, 

𝑎60 → 𝑎55 

𝑎45 → 𝑎58, 

𝑎61 → 𝑎57 

𝑎68 → 𝑎61,

𝑎64 → 𝑎63, 

𝑎56 → 𝑎62, 

𝑎59 → 𝑎60 

𝑎75 → 𝑎65, 

𝑎69 → 𝑎64 

𝑎72 → 𝑎67, 

𝑎65 → 𝑎70, 

𝑎46 → 𝑎68, 

𝑎63 → 𝑎69 

𝑎42 → 𝑎72, 

𝑎70 → 𝑎73 

𝑎73 → 𝑎75, 

𝑎39 → 𝑎76 

Straight 
𝑎49 → 𝑎53, 

𝑎58 → 𝑎52 

𝑎18 → 𝑎56, 

𝑎60 → 𝑎54 

𝑎53 → 𝑎59, 

𝑎61 → 𝑎58 

𝑎68 → 𝑎60, 

𝑎56 → 𝑎63, 

𝑎64 → 𝑎61, 

𝑎59 → 𝑎62 

𝑎62 → 𝑎66, 

𝑎75 → 𝑎64 

𝑎72 → 𝑎68, 

𝑎63 → 𝑎70, 

𝑎46 → 𝑎69, 

𝑎65 → 𝑎67 

𝑎76 → 𝑎71, 

𝑎42 → 𝑎73 

𝑎39 → 𝑎75, 

𝑎66 → 𝑎74 

Right 
𝑎49 → 𝑎51, 

𝑎30 → 𝑎53 

𝑎18 → 𝑎55, 

𝑎50 → 𝑎56 

𝑎53 → 𝑎57, 

𝑎45 → 𝑎59 

𝑎59 → 𝑎63, 

𝑎68 → 𝑎62, 

𝑎64 → 𝑎60, 

𝑎56 → 𝑎61 

𝑎69 → 𝑎66, 

𝑎62 → 𝑎65 

𝑎46 → 𝑎70, 

𝑎72 → 𝑎69, 

𝑎63 → 𝑎67, 

𝑎65 → 𝑎68 

𝑎70 → 𝑎71, 

𝑎76 → 𝑎72 

𝑎66 → 𝑎76, 

𝑎73 → 𝑎74 

 530 

Table 10 Sioux Falls Network Parameters 531 

Link 
𝑡𝑎

0 / 

min-1 

𝑐𝑎/(pc

u h-1) 
𝜂𝑎 𝜂̅𝑎

 
Length 

(km) 
Link 

𝑡𝑎
0/ 

min-1 

𝑐𝑎/(pc

u h-1) 
𝜂𝑎 𝜂̅𝑎

 
Length 

(km) 

𝑎1 1 2590  2.3 2.6 0.6 𝑎39 0.7 2590  2.1 2.5 0.4 

𝑎2 0.7 2340  2.1 2.5 0.4 𝑎40 0.7 509  2.1 2.5 0.4 

𝑎3 0.1 2590  2.3 2.6 0.6 𝑎41 0.9 488  2.1 2.5 0.5 

𝑎4 0.9 496  2.1 2.5 0.5 𝑎42 0.7 513  2.1 2.5 0.4 

𝑎5 0.7 2340  2.1 2.5 0.4 𝑎43 1 492  2.3 2.6 0.6 

𝑎6 0.7 1711  2.1 2.5 0.4 𝑎44 0.9 1351  2.1 2.5 0.5 

𝑎7 0.7 2340  2.1 2.5 0.4 𝑎45 0.5 513  2 2.4 0.3 

𝑎8 0.7 1711  2.1 2.5 0.4 𝑎46 0.5 1456  2 2.4 0.3 

𝑎9 0.3 1778  2 2.4 0.2 𝑎47 0.9 960  2.1 2.5 0.5 



 

 

𝑎10 1 491  2.3 2.6 0.6 𝑎48 0.7 505  2.1 2.5 0.4 

𝑎11 0.3 1778  2 2.4 0.2 𝑎49  0.3 485  2 2.4 0.2 

𝑎12 0.7 495  2.1 2.5 0.4 𝑎50 0.5 523  2 2.4 0.3 

𝑎13 0.9 1000  2.1 2.5 0.5 𝑎51 1.4 1968  2.3 2.6 0.8 

𝑎14 0.9 496  2.1 2.5 0.5 𝑎52 0.3 499  2 2.4 0.2 

𝑎15 0.7 495  2.1 2.5 0.4 𝑎53 0.3 523  2 2.4 0.2 

𝑎16 0.3 490  2 2.4 0.2 𝑎54 0.3 482  2 2.4 0.2 

𝑎17 0.5 784  2 2.4 0.3 𝑎55 0.5 2340  2 2.4 0.3 

𝑎18 0.3 2340  2 2.4 0.2 𝑎56 0.7 1968  2.1 2.5 0.4 

𝑎19 0.3 490  2 2.4 0.2 𝑎57 0.5 2340  2 2.4 0.3 

𝑎20 0.5 784  2 2.4 0.3 𝑎58 0.3 1456  2 2.4 0.2 

𝑎21 1.7 505  2.3 2.6 1 𝑎59 0.7 482  2.1 2.5 0.4 

𝑎22 0.9 505  2.1 2.5 0.5 𝑎60 0.7 500  2.1 2.5 0.4 

𝑎23 0.9 1000  2.1 2.5 0.5 𝑎61 0.7 2340  2.1 2.5 0.4 

𝑎24 1.7 505  2.3 2.6 1 𝑎62 1 500  2.3 2.6 0.6 

𝑎25 0.5 1392  2 2.4 0.3 𝑎63 0.9 506  2.1 2.5 0.5 

𝑎26 0.5 1392  2 2.4 0.3 𝑎64 1 508  2.3 2.6 0.6 

𝑎27 0.9 1000  2.1 2.5 0.5 𝑎65 0.3 506  2 2.4 0.2 

𝑎28 1 1351  2.3 2.6 0.6 𝑎66 0.5 523  2 2.4 0.3 

𝑎29 0.7 485  2.1 2.5 0.4 𝑎67 0.5 489  2 2.4 0.3 

𝑎30 1.4 499  2.3 2.6 0.8 𝑎68 0.9 960  2.1 2.5 0.5 

𝑎31 1 491  2.3 2.6 0.6 𝑎69 0.3 508  2 2.4 0.2 

𝑎32 0.9 1000  2.1 2.5 0.5 𝑎70 0.7 523  2.1 2.5 0.4 

𝑎33 1 491  2.3 2.6 0.6 𝑎71 0.7 500  2.1 2.5 0.4 

𝑎34 0.7 488  2.1 2.5 0.4 𝑎72 0.7 492  2.1 2.5 0.4 

𝑎35 0.7 2340  2.1 2.5 0.4 𝑎73 0.3 500  2 2.4 0.2 

𝑎36 1 491  2.3 2.6 0.6 𝑎74 0.7 508  2.1 2.5 0.4 

𝑎37 0.5 2590  2 2.4 0.3 𝑎75 0.5 509  2 2.4 0.3 

𝑎38 0.5 2590  2 2.4 0.3 𝑎76 0.3 489  2 2.4 0.2 

 532 

In this case, both low reliability (LR) class travelers with 𝜆=0.52, 𝜌=0.7 and high reliability (HR) 533 

class travelers with 𝜆=1.28, 𝜌=0.9 are involved in the network. Also, each type of traveler accounts  for 534 

half (50%) of the total network. For each O-D pair and each traveler class, we calculate the k-lowest 535 

mean travel cost routes, denoted by 𝑃𝑤 , for 𝑘 = 10 and 𝑥𝑎 = 0 in the initialization step, and then find 536 

the route with the smallest effective travel cost from the route set 𝑃𝑤  in each iteration (before 537 

convergence). The algorithms were coded in MATLAB (R2014A) and tested on a PC with Inter®  538 

Quad-Core 3.00 GHz processor and 3.00 GB RAM. There are totally 5280 route that generated by 539 

k-lowest algorithm for each user class, and the total CPU times  is 3.92s with 𝜀 = 10−3and 38.31s with 540 

𝜀 = 10−4. 541 

Table 11 Traffic Equilibrium State of Multi-class Users 542 

O-D pair Route 𝐸(𝑟𝑝) 𝜎𝑝 𝑇𝑝  

LR model HR model 

𝐶𝑝 
Route 

flow 
𝐶𝑝 

Route 

flow 



 

 

(10, 4) 

1 4.00 31.45 6.47 26.82 600.00 50.73 0.00 

2 2.12 7.91 20.62 26.85 0.00 32.87 600.00 

3 3.97 32.22 37.84 58.57 0.00 83.06 0.00 

4 5.22 25.62 27.21 45.75 0.00 65.22 0.00 

5 6.53 40.42 31.44 58.99 0.00 89.71 0.00 

6 10.03 30.35 22.20 48.01 0.00 71.08 0.00 

7 5.33 14.71 42.62 55.60 0.00 66.78 0.00 

8 6.04 34.02 40.52 64.25 0.00 90.11 0.00 

9 14.00 23.86 35.88 62.28 0.00 80.42 0.00 

10 4.45 23.87 64.72 81.58 0.00 99.71 0.00 

(10, 5) 

1 2.48 22.41 5.54 19.68 500.00 36.71 246.27 

2 2.65 9.77 21.56 29.28 0.00 36.71 253.73 

3 2.81 23.53 36.91 51.95 0.00 69.83 0.00 

4 5.37 33.90 30.51 53.50 0.00 79.26 0.00 

5 8.86 20.89 21.27 41.00 0.00 56.88 0.00 

6 6.39 33.97 28.15 52.21 0.00 78.02 0.00 

7 4.87 25.94 39.60 57.95 0.00 77.67 0.00 

8 5.86 15.79 43.56 57.63 0.00 69.62 0.00 

9 12.48 9.06 34.95 52.14 0.00 59.03 0.00 

10 7.11 33.17 33.20 57.56 0.00 82.76 0.00 

(10, 6) 

1 1.30 14.39 32.39 41.17 0.00 52.11 0.00 

2 3.15 22.88 10.09 25.14 400.00 42.53 0.00 

3 3.86 28.33 25.99 44.58 0.00 66.11 0.00 

4 7.36 9.49 16.75 29.04 0.00 36.26 400.00 

5 3.92 22.61 26.11 41.79 0.00 58.97 0.00 

6 3.37 18.06 35.07 47.83 0.00 61.56 0.00 

7 6.96 35.83 36.11 61.70 0.00 88.93 0.00 

8 5.61 27.45 28.67 48.56 0.00 69.42 0.00 

9 6.24 39.16 45.04 71.65 0.00 101.41 0.00 

10 9.20 41.36 29.71 60.42 0.00 91.86 0.00 

(10, 7) 

1 2.14 17.36 17.64 28.81 0.00 42.00 0.00 

2 1.15 7.02 29.02 33.82 0.00 39.16 661.93 

3 3.89 15.88 20.33 32.48 0.00 44.55 0.00 

4 7.84 14.01 13.39 28.51 950.00 39.16 288.07 

5 4.75 32.06 20.19 41.61 0.00 65.98 0.00 

6 4.52 32.13 36.70 57.92 0.00 82.34 0.00 

7 3.21 12.98 31.71 41.67 0.00 51.54 0.00 

8 7.48 34.78 21.36 46.93 0.00 73.37 0.00 

9 7.54 33.62 18.02 43.04 0.00 68.59 0.00 

10 5.71 28.92 32.22 52.97 0.00 74.95 0.00 
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Due to the limited length that is impossible to touch on all the O-D pairs in this network, parts of 544 

the O-D pairs which originate from node 10 are selected for analyzing the equilibrium state. Table 11 545 

shows the route flow results  of the O-D pairs that present different equilibrium state  for two types  of 546 

travelers. It is consistent with case 4 on the toy network that the route mean CRC (𝐸(𝑟𝑝 )), standard 547 

deviation of the route CRC (𝜎𝑝) and route travel time (𝑇𝑝 ) are consistent for these two type of travelers. 548 

However, due to the higher concerns of travel safety dispersions, HR travelers select the routes that 549 

have relatively lower travel safety standard deviation. For example, between O-D pair 10 and 4, all HR 550 

travelers select route 2 which is more reliable in safety than other routes. Also, all HR travelers select the 551 

most reliable route in safety—route 4—between node 10 and node 6. Again, it reflects the nature of route 552 

choice behavior that the travelers with higher effective CRC tend to choose more reliable routes. It also 553 



 

 

validates the proposed model and confirms the feasibility and efficiency of algorithm for the real 554 

network. 555 

5. CONCLUSION 556 

5.1 Summary 557 

The present study proposes a route choice model  for multi-class travelers, which considered both 558 

travelers’ travel safety concern, i.e. route safety reliability, and travel time concern. The relation between 559 

travel safety variability and traveler’s route choice behavior is innovatively established. Due to the 560 

random nature of crash occurrence, the travel crash risk cost (CRC) of each link (including the dummy 561 

links) is described as a distribution. It is assumed that travelers evaluate the travel CRC of a route 562 

considering the variability of the route CRC with their safety requirements and factor such information 563 

into their route choice consideration in the form of an effective CRC. This effective CRC reflects the 564 

degree of the traveler’s crash risk aversions. A mixed-equilibrium mathematical program is formulated 565 

to describe this route choice behavior of multiple classes of travelers. Two networks including Nguyen 566 

and Dupuis’ network and Sioux falls network are used to demonstrate the formulations. It is found that 567 

(1) the route choice behavior is sensitive to the route safety performance, including route average travel 568 

safety and route travel safety variability; (2 ) the travel safety of intersections would significantly 569 

influence the traveler’s route choice decision; and (3) travelers  with different effective CRC (crash risk 570 

aversions) would have different route choice decisions: The HR travelers are strict with route travel 571 

safety variability, whereas the LR travelers consider only the route average CRC in their determinations.  572 

5.2 Implications  573 

The proposed traffic assignment method has a  great p otential for traffic planners and managers in 574 

network analysis and in making safety-related policies or regulations. First, this method provides a 575 

safety-based travel behavior modeling tool  for accommodating the increasing safety demands of travelers. 576 

This implies possible new opportunities for transportation planners and managers to reshape travel and 577 

activity patterns on both the planning and operational levels  when taking into account the impact of road 578 

safety on travelers’ travel behavior. It will be very useful especially in the upcoming era of intelligent 579 

connected vehicles in which abundant in-vehicle safety-related information will be presented to travelers. 580 

Second, this method can further be adopted to scientifically and systematically assess the effects of 581 

proposed traffic safety policies or regulations on network equilibrium in advance. Depending on an 582 

estimation of travelers’ behavioral responses2 to the proposed safety countermeasures, the possible 583 

changes of traffic circulation and the corresponding effects on the road network could be clearly specified. 584 

This could be helpful for the traffic planners and operators to formulate traffic policies and regulations in 585 

a scientific way, beyond making the decisions on the basis of past experience.  586 

5.3 Extension to conflict-based CRC evaluation 587 

In section 3, the traffic volume is applied as a proxy to evaluate the crash risk of turning and crossing 588 

movements at intersections and to shape its CRC distribution. In fact, for an intersection movement, 589 

 
2 For example, a stricter safety policy or a more effective safety education project would enhance public safety awareness, 

and thus could further change their travel behaviors. 



 

 

conflicts with traffic flows from other directions are the significant causes of the high crash risk and thus 590 

are highly associated with the shape of the CRC distribution. At an intersection, the number of conflicts is 591 

decided by its  configuration and geometric features, and the frequency of conflicts  occurring along a 592 

traffic s tream is related to the volume of passing traffic. For example, as shown in  Fig. 9, for a four-legged 593 

intersection, the left-turn flow (𝑥𝑎1→𝑎4
) is not only in conflict with four automobile streams (the crossing 594 

flow (𝑥𝑎3→𝑎8
), the left-turn flow (𝑥𝑎3→𝑎6

), the left-turn flow (𝑥𝑎7→𝑎2
), and the crossing flow (𝑥𝑎5→𝑎2

)), but 595 

also competes with the potential streams of other types of traffic modes (e.g. pedestrian movements).  596 

Conflict with automobiles

Potential conflicts (e.g. pedestrian)
a1

a1→a4

a2

a3

a4

a5 a6

a7

a8

 597 
Fig. 9 Conflicts faced by flow in turning 𝑎 → 𝑑 at a four-legged intersection 598 

 599 

However, due to a dearth of studies, there is no a well-founded equation  that can be used in this 600 

study to represent the conflict-CRC relations of different intersection types. Moreover, considering the 601 

interactions of flows with different traffic volumes would cause a significant increase in the complexity 602 

of computing. Therefore, in this study, the CRC of each intersection movement is estimated simply by 603 

accounting for the risk effect posed by the traffic volume along one traffic stream, with the aim of 604 

ensuring high computational efficiency. If a reliable function for the relationship between conflicts and 605 

the CRC (i.e. 𝐸(𝑟𝑎 →𝑑 ) = 𝑓(𝑥𝑎3→𝑎8
,𝑥𝑎3→𝑎6

,𝑥𝑎7→𝑎2
,𝑥𝑎5→𝑎2

)) was available, Eq. (10) and (11) in proposed  606 

model could be replaced to enable the model to account for the effect of flow-related conflicts more 607 

explicitly. Meanwhile, an effective algorithm, that can handle the link interactions with an asymmetric 608 

CRC, would be essential to solve the resulting conflict-based route choice model (Dafermoss, 1982; Fisk 609 

and Nguyen, 1982). These extensions can be accommodated in further by modifying the proposed 610 

model and algorithm. 611 

5.4 Limitations and Future researches 612 

To the best of our knowledge, there is no exclusive research that has been performed for modeling 613 

traveler’s safety-concern route choice behavior. This study fills this gap by developing a route choice 614 

model for multi-class travelers both accounting their safety and time concern, which will help the 615 

transportation planners and managers to better understand the travelers’ safety-concern route choice 616 

behavior in the upcoming era of connected vehicles. However, several limitations and some following 617 

researches should be noted for this study.  618 



 

 

⚫ Due to the shortage of widely used method which is able to model the relationship between road 619 

safety reliability and relevant risk factors, only the average driving speed are involved in shaping the 620 

CRC distribution of segment link. Our future efforts  will consist of refining the segment CRC 621 

distribution by incorporating other risk factors, such as the environmental factors  (e.g. adverse 622 

weather) and road specific factors.  623 

⚫ Since the lack of the empirical studies  that investigate the travelers’  behavioral characteristics of safe 624 

route choice, the trade-off behavior between travel safety and efficiency is hypothetically modeled to 625 

be a sample linear relationship. Further research should pay more attention on investigating such 626 

behavioral characteristics. The possible complex nonlinear relationships between perceived travel 627 

safety cost and travel time cost should be explicitly considered.  628 
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