

Incorporating Safety Reliability into Route Choice Model: Heterogeneous Crash Risk Aversions

Helai Huang¹, Chunyang Han¹, Guangming Xu^{1*}, Mengxi Jiang², S.C. Wong³, Md Mazharul Haque⁴

1. School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province,

Central South University, Changsha, 410075, China

2. Chengdu Municipal Engineering and Research Design Institute, Chengdu, China.

3. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

4. School of Civil Engineering and Built Environment, Queensland University of Technology, 2 George Street, Brisbane City, QLD, 4001, Australia

* Corresponding Author (Guangming Xu): E-mail: xuguangming@csu.edu.cn

Abstract: In this study, a route choice model which accounts for both travelers' safety concern—route safety reliability—and travel time concern is proposed. Route safety reliability (variability) is defined by the distribution of the travel crash risk cost (CRC) to represent the safety condition of travel routes. We further associate the travel safety variability due to stochastic crash occurrence with travelers' crash risk aversion route choice behaviors, and postulate that travelers acquire the variability of route travel safety based on the past experience and factor it into their route choice in the form of an effective crash risk cost (effective CRC). This effective crash cost is formed depending on travelers' requirements on safe arrivals, and thus varies with individuals and trip specific factors (e.g. purposes). Moreover, all travelers want to minimize the summing of their travel time and their effective CRC. A route-based solution algorithm is designed to solve the route choice model. Two networks including Nguyen and Dupis' network and Sioux falls network are conducted as numerical studies to illustrate the model. The results show that (1) the travelers' route choice behaviors are sensitive to the route safety performance, including the average safety condition (the mean of the CRC distribution) and safety reliability (the standard deviation of the CRC distribution); (2) the safety performance of movements at intersection would significantly influence the travelers' route choice decisions; and (3) travelers with different safety attitudes (heterogeneous crash risk aversions) would make different route choice decisions.

Keyword: traffic assignment method; safety reliability; heterogeneous risk aversion; effective crash risk cost

1. INTRODUCTION

Numerous route choice models have long been developed for traffic assignment on a network according to travel demand. Researchers postulate that travelers tend to choose the most effective route to minimize their travel cost. Different types of cost-effective routes have been studied, such as the least cost travel time (Goczyła and Cielatkowski, 1995), eco-friendly routes (Tzeng and Chen, 1993; Rilett and Benedek, 1994; Nie and Li, 2013) and the most reliable routes (Lo and Tung, 2003; Shao et al., 2006; Chen and Zhou, 2010). However, few studies have been reported for how safety aspects could be quantified into trip planning of travelers, even though travel safety is undoubtedly an essential for travelers to measure the performance of candidate routes. In other words, conventional route choice models are not suitable for representing traveler's route choice behavior regarding their safety concern. This demand of research becomes more realistic and urgent when accurate and individual-based safety information could be available for pre-trip and en-route phases in the upcoming era of intelligent and connected vehicles (Gerla et al., 2014; Park et al., 2018; Elliott et al., 2019).

Travel safety is considered as 'crash risk potential' of a vehicle navigating through streets and intersections (Chandra, 2014). Crash prediction model has been extensively used to evaluate the safety

46 performance of a site, facility or roadway network by estimating the expected average crash frequency of
47 investigated site type given traffic exposure and associated risk factors (AASHTO, 2014). However, this
48 technique aims to reflect the safety aspect of an objectively underlying road property, similar to capacity,
49 which has a nature of long-term average. Only using the aspect of the safety property of a road site to
50 indicate the crash risk potential that an individual traveler might encounter may be inadequate. Recently,
51 predicting the probability of a crash occurring during a short period is becoming increasingly common in
52 crash risk estimation (Lee et al., 2003; Abdel-Aty and Pemmanaboina, 2006; Payyanadan et al., 2017;
53 Hossain et al., 2019). This method associates the potential of having a crash with several traffic
54 characteristics and their real-time status, reflecting the crash risk via an estimated value. Nevertheless,
55 crashes are rare and random events. Crashes occur as a function of a set of events that are influenced by a
56 large number of factors. These factors are partly deterministic and measurable; but partly stochastic (i.e.,
57 data maybe uncollectable or unavailable) (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et
58 al., 2018). Moreover, many of these relevant factors, such as traffic, road user behavior, vehicle fleet and
59 weather, change autonomously over time, and some even change on a continual basis. The variation of
60 factors over time would result in uncertainty of crash occurrence. An estimated certain value may be
61 inefficient to represent such uncertainty during a trip. It is difficult to accurately predict how safe a trip is.

62 In fact, these stochastic or random variations both of measurable factors and those factors that cannot
63 be predicted add variability to crash risk potential. This variation naturally tends to randomly fluctuate
64 around an expected value. This expected value is the embodiment of a usual, normal or average safety
65 condition of road site, and can be materialized by relevant conditions of the properties of the road site.
66 The unpredictable fluctuation is closely linked to the related risk factors and their recurrent variations,
67 which reflects the reliability of safety performance of the road site. In such cases, travelers cannot predict
68 what the exact crash risk potential along a route is; but they may have the knowledge (for the familiar
69 route) of safety reliability of a route based on past experience or informed by the real-time safety status of
70 selectable route. For example, travelers figure out (or be informed) that certain routes contain mixed
71 traffic flows or needs high workloads (e.g. in snowy mountain highway) during driving tend to induce
72 high crash risk and travel safety variability. They may then factor such variability into their route
73 planning and settle into their habitual routing plans for their daily commute. In forming their habitual
74 routing plans, travelers select routes to lower both their mean crash risk potential and travel safety
75 variability.

76 The reliability of a particular route has been found to play an important role in traveler's choice
77 behavior (Jackson and Jucker, 1982; Abdel-Aty et al., 1997). Route choice models based on reliability
78 assumptions and concepts have received considerable attention over the last two decades, such as the
79 proposed travel time budget (TTB) traffic equilibrium model (Smith et al., 2008; Nie, 2011; Carrion and
80 Levinson, 2012; Lo et al., 2006; Shao et al., 1985; Xu et al., 2018) which defines the reliability aspect of
81 travel time variability in the route choice decision process, and the so-called α -reliable mean-excess
82 model that explicitly considers both reliability and/or unreliability aspects of travel time variability (Chen
83 and Zhou, 2010; Chen et al., 2011; Xu et al., 2014a; Xu et al., 2014b; Xu et al., 2017). However, the efforts
84 have been made only on the concern about travel efficiency—how much time (cost) do travelers spend on
85 route, and traveler's route choice behaviors that aim to increase travel efficiency—how can a trip be
86 finished more quickly. Moreover, in the context of traffic safety research, most studies have only focused
87 on objectively evaluating the safety reliability of road entities (Jovanović, 2011; Oh and Mun, 2012;
88 Baćkalić et al., 2014; Yu et al., 2016; Jalayer and Zhou, 2016). When individual's travel safety becomes a
89 primary concern for the traveler—how much probability a trip can be finished safely, understanding how
90 traveler's safety-concern behavior in coping with travel safety reliability affects the performance of the
91 overall transportation system would be extremely essential for transport planners and transport system
92 managers. To fill this research gap, this paper provides a basis by formulating and solving a route choice
93 model which incorporates such safety-consideration route choice behavior.

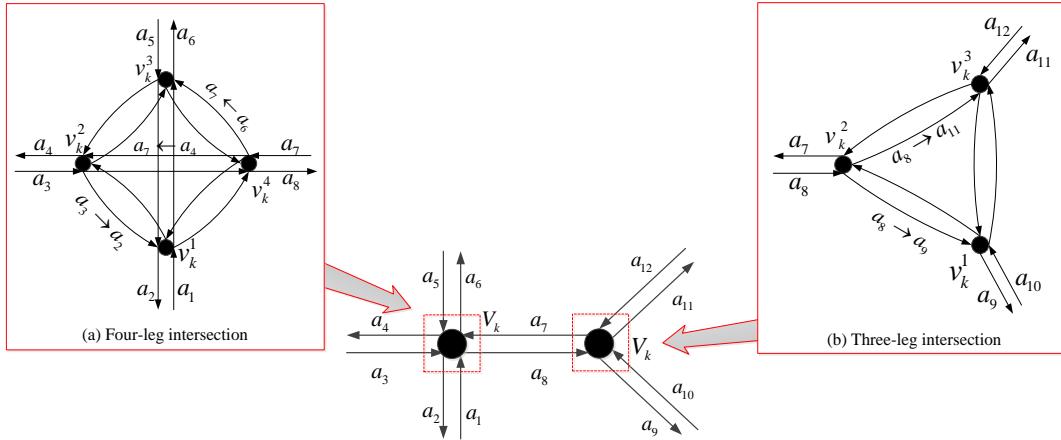
94 In this study, we develop a route choice model which accounts for both travelers' travel safety

concern—route safety reliability—and travel time concern. In particular, route safety reliability (variability) is defined by the distribution of the travel crash risk cost (CRC) to represent the safety condition of travel routes. The mean of the distribution represents the expected average safety condition of a road network element, while the standard deviation reflects its safety reliability. These two parameters are determined according to the classical safety evaluation approach. Specifically, the parameters of the CRC distribution of segments are quantified by using the proposed average-speed-based crash risk model, and those of turning links are defined by accounting for the risk effect of the traffic volume. Furthermore, the mean-and-variance-based effective CRC is applied to model travelers' evaluation of different routes for different crash risk aversions. The effective CRC relates to the traveler's crash risk aversion which depends on the characteristics of travelers and the trip features (e.g. trip purpose). It was assumed that all travelers want to minimize their effective CRC and travel time in the choice of routes. Correspondingly, an algorithm has been designed and tested for solving the proposed route choice model. In the end, we explore the effect on the overall network performance by including this safety consideration in the modeling of route choice.

The rest of this paper is organized as follows. Section 2 develops the formulation. Section 3 proposes the solution method of developed formulation. Numerical experiments are given in Section 4. Finally, Section 5 contains concluding remarks.

2. FORMULATION

2.1. Travel safety quantification


2.1.1 Notation

The notations used throughout the paper are listed as follows, unless otherwise specified.

G	road network
V	set of nodes
A	set of links
$a \rightarrow b$	turning and crossing movements at a node
W	set of origin-destination (OD) pairs
p_w	set of all single routes between O-D pair w
\bar{A}	set of turning and crossing movements
v_a	average speed of vehicles on link a
r_a	CRC of link a
t_a	travel time of link a with flow q_a
$r_{a \rightarrow b}$	CRC of an intersection turning movement $a \rightarrow b$
$E(r_a)$	mean CRC per exposure unit of link a
σ_a	standard deviation of CRC per exposure unit of link a
$E(x_{a \rightarrow b})$	mean CRC of an intersection turning movement $a \rightarrow b$
$\sigma_{a \rightarrow b}$	standard deviation of CRC of an intersection turning movement $a \rightarrow b$
$\gamma/\bar{\gamma}$ and $\tau/\bar{\tau}$	adjustment coefficient
$\eta_a/\bar{\eta}_a$	parameters of traveler's risk perceptions
$\omega_{a \rightarrow b}/\bar{\omega}_{a \rightarrow b}$	parameters of traveler's safety reliability perceptions
r_p	CRC of route p
δ_a^p	route-link incidence parameter
$\delta_{a \rightarrow b}^p$	route-turn incidence parameter
$E(r_p)$	mean CRC of route p

138	σ_p	standard deviation of CRC of route p
139	R_p	effective CRC of route p
140	λ	degree of risk aversion of travelers
141	ρ	probability that the actual trip CRC is within the specified CRC R_p
142	S_p	standard normal variate of r_p
143	R_p^m	effective CRC of m class travelers of route p
144	λ^m	degree of risk aversion of m class travelers
145	C_p^m	generalized travel cost of m class travelers of route p
146	T_p	travel time of route p
147	θ	cost converting factor of travel time
148	t_a^0	free-flow travel time of link a
149	c_a	capacity of link a
150	α and β	deterministic parameters in BPR function
151	f_p^m	traffic flow on route p
152	μ_w^m	minimum generalized cost of class m travelers of all the routes linking O-D pair w
153	q_w^m	O-D demand
154	x_a	flows of link a
155	$x_{a \rightarrow b}$	flows of intersection turning movement $a \rightarrow b$ at intersections

156 2.1.2 Road network representation

157

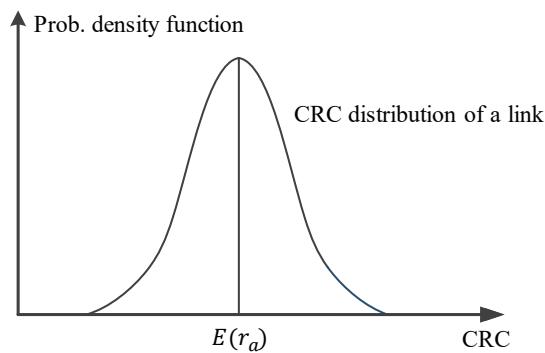
158 **Fig. 1** Model description about link and node turn

159 A road network consists of a number of individual intersections and road segments, referred to as
160 'sites'. Assume a road network represented by a directed graph $G = (V, A)$, as shown in Fig. 1, where V
161 and A , respectively, denote the set of nodes and links which can be regarded respectively as intersections
162 and road segments. Fig. 1 also shows the micro representation of the intersections, where each turning or
163 crossing movement at a node can be represented by a dummy link of two connected segments a and b ,
164 i.e. $a \rightarrow b$. For example, for the four-leg intersection in Fig. 1(a), there are three movement classes
165 including left-turn, right-turn and crossing movement. For link a_1 , the left-turn movement is represented
166 by a dummy link $a_1 \rightarrow a_4$. Denote \bar{A} as the set of turning and crossing movements at the intersections.
167 Then a route p can be represented as $\{a_1, a_1 \rightarrow a_2, a_2, a_2 \rightarrow a_3, a_3, \dots, a_i \rightarrow a_{i+1}, \dots, a_{n-1}, a_{n-1} \rightarrow a_n, a_n\}$
168 which consist of the set of links $\{a_1, a_2, \dots, a_{n-1}, a_n\}$ and the dummy links $\{a_1 \rightarrow a_2, a_2 \rightarrow a_3, \dots, a_i \rightarrow$
169 $a_{i+1}, \dots, a_{n-1} \rightarrow a_n\}$. For the road network $G = (V, A)$, let W denotes the set of origin-destination (O-D)
170 pairs and p^w denotes the set of all single route between O-D pair w , $w \in W$.

171 2.1.3 Link and route crash risk distribution

172 **(1) Safety evaluation model**

173 For a transportation system, the safety is defined as the product of the probability of having a crash
174 per unit of exposure (crash risk) and the number of units of exposure occurring on the system during the
175 specified period of time (Chapman, 1973; Hauer, 1982; Hauer, 2002):


$$176 \text{Safety of system} = \text{Crash risk of system} \times \text{Number of exposure units of system.} \quad (1).$$

177 For travelers, the crash risk is determined by factors related to their characteristics (e.g. gender, age or
178 driver experience), driving conditions (e.g. travel speed) and road features (or environmental factors,
179 such as weather). The exposure factors measure the likelihood of the traveler being involved in a
180 dangerous or hazardous situation, thus a reliable and meaningful comparison of safety risk between
181 different travelers (Chipman et al., 1992; Qin et al., 2004; Hong et al., 2016). Traffic volume (Qin et al., 2004;
182 Wong et al., 2007) and travel time (Chipman et al., 1992; Xin et al., 2012) are usually used as proxies for
183 exposure.

184 **(2) Crash risk cost distribution**

185 As set forth in the introduction, this study aims to model the flow pattern of travelers who acquire
186 information on the route travel safety, factor this into their route choice consideration, and settle into a
187 long-term habitual equilibrium pattern. The link flows and route flows are associated with this long-term
188 habitual equilibrium flow pattern. Therefore, the link and route safety should be properly represented
189 from the view of travelers.

190 In the aforementioned transportation network modeled by a directed graph $G = (V, A)$, due to the
191 intrinsic features such as predesigned geometry and specified traffic flow pattern, each link, $a \in A$ or
192 $a \rightarrow b \in \bar{A}$, has a certain average crash risk under a specific driving condition. This average safety
193 condition can be estimated according to the features of the road and is related to the traveler's driving
194 conditions (e.g. travel speed). However, for each traveler on the link, the crash risk is random, because
195 the stochastic factors introduce variability into the safety. The individual safety condition of a traveler is
196 difficult to accurately evaluate or predict (Huang and Abdel-Aty, 2010; Mannering and Bhat, 2014; Han et
197 al., 2018). When planning a trip, travelers may not only consider the average crash risk of each link, but
198 also its variability. They may have knowledge based on experience about the safety reliability (variability)
199 of a link and factor such variability into their travel plan.

200
201 **Fig. 2** CRC distribution with mean CRC $E(r_a)$
202

203 According to the discussion above, we use the social costs (e.g., the incurred monetary losses and
204 time spent) of crash occurrence to indicate the level of crash risk, referred to as the crash risk cost (CRC).
205 The CRC gives a more psychologically realistic assessment of traveler's decision-making, rather than only
206 using the crash frequency or severity. In this study, we assume the CRC to follow a distribution with a
207 mean value and variance, denoted the CRC distribution:

208 $r \sim \text{Dist}(E(r), \sigma^2)$ (2)

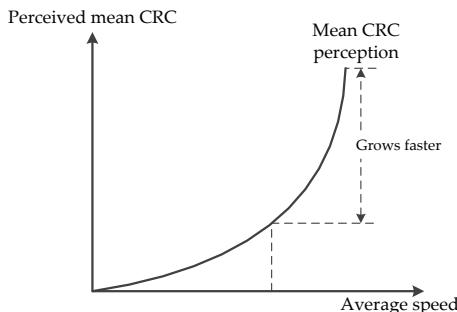
209 where r is the CRC, $E(r)$ is the mean CRC, which is related to the safety aspects of the road properties
 210 and the traveler's local travel situation, and σ^2 is the variance of the CRC, which represents the safety
 211 reliability. [Fig. 2](#) presents the example of a normal distribution with its mean value and deviation. Such a
 212 CRC distribution can properly describe the average safety condition and safety reliability and thus is
 213 closely in accord with travelers' subjective perception of travel crash risk.

214 **(3) CRC distribution of road segment**

215 Following the definition of [Eq. \(2\)](#), we first introduce the CRC distribution for the road segment
 216 which is expressed as:

217 $r_a \sim \text{Dist}_1(E(r_a), \sigma_a^2) \quad \forall a \in A$ (3)

218 where r_a denotes the CRC of road segment a . $E(r_a)$ is the expected mean CRC of segment a ; and σ_a is
 219 the standard deviation of the CRC of segment a . In this study, the safety evaluation model ([Eq.1](#)) is used
 220 as the framework to quantify the mean and variance of the CRC distribution. Specifically, travel time is
 221 used as the exposure variable, because the time exposure can explain the crash risk variance among
 222 drivers with different driving patterns and environments ([Chipman et al., 1992; Xin et al., 2012](#)). The
 223 travel time of segment a is calculated by using the Bureau of Public Roads (BPR) link performance
 224 function:


225 $t_a = t_a^0 \left[1 + \alpha \left(\frac{x_a}{c_a} \right)^\beta \right]$ (4)

226 where t_a is the travel time of segment a with flow x_a ; t_a^0 is the free-flow travel time, which is
 227 deterministic; c_a is the capacity of link a ; α and β are deterministic parameters.

228 In regard to the mean CRC per unit of exposure, travel speed has not only been found in many
 229 empirical studies to be associated with the crash occurrence, it is also one of the most important factors, in
 230 travelers' minds, that influence the travel safety ([Aljahani et al., 1999; Elvik, 2002; Charlton and Starkey,
 231 2016; Xu et al., 2019](#)). Based on the actual risk function built via a meta-analysis conducted by [Elvik et al.
 232 \(2004\)](#), we proposed an average-speed-based crash risk model to quantify the relationship between the
 233 segment average speed and travelers' perception of the mean CRC:

234 Mean CRC/Unit of exposure = $\gamma v_a^{\eta_a}$ (5)

235 where v_a is the average travel speed of vehicles on segment a , which is obtained by dividing the travel
 236 time t_a by the segment length l_a . γ is the adjustment coefficient, and η_a is a parameter determined by
 237 travelers' risk perception of driving on segment a with speed v_a according to their long-term
 238 experience (and is assumed to take a value higher than 1). [Fig. 3](#) shows the perception curve output by [Eq.
 239 \(5\)](#), which is evidently plausible. Two conditions are met: 1) the perceived mean CRC grows with the
 240 average speed and; 2) the perceived mean CRC grows faster when the average speed is already high. This
 241 model supports the use of the CRC distribution to better depict travelers' perceived crash risk.

242
 243 **Fig. 3** Relationship between mean CRC and average speed for a road segment
 244

245 Correspondingly, the mean CRC of segment link a is expressed as:

246 $E(r_a) = t_a \gamma v_a^{\eta_a}$ (6)

247 Unfortunately, few empirical studies have investigated the safety reliability in regard to travelers' 248 perceptions. We assume that the perceived CRC variance per unit of exposure is also associated with the 249 segment average speed, which is expressed as:

$$250 \text{ CRC variance / Unit of exposure} = \bar{\gamma} v_a^{\bar{\eta}_a} \quad (7)$$

251 where $\bar{\gamma}$ is the adjustment coefficient; $\bar{\eta}_a$ is a parameter reflecting traveler's risk perception of safety 252 variance for segment a at speed v_a . Thus, the variance of CRC distribution of the segment link a is 253 expressed as:

$$254 \sigma_a^2 = t_a^2 \bar{\gamma} v_a^{\bar{\eta}_a} \quad (8)$$

255 (4) CRC distribution of intersection

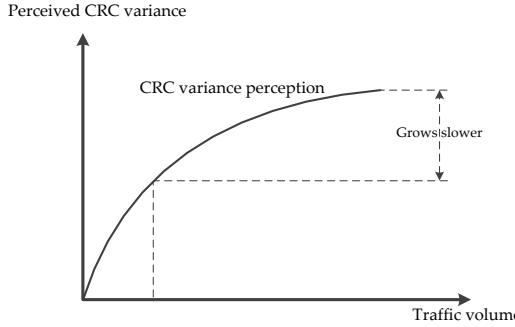
256 Intersections are hazardous locations on the transport network because of the crossing traffic streams 257 (Xie et al., 2014; Xu et al., 2014c; Huang et al., 2017). It is estimated that nearly 45% of all crashes and 23% 258 of crashes with fatalities occur at or near intersections throughout the United States (Bagloee and Asadi, 259 2016). Rather than representing the intersection as a simple node, it is more accurate to separately model 260 each movement type (turning or crossing) at an intersection. The CRC distribution of intersection 261 movement $a \rightarrow b$ is expressed as:

$$262 r_{a \rightarrow b} \sim Dist_2(E(r_{a \rightarrow b}), \sigma_{a \rightarrow b}^2) \quad \forall a \rightarrow b \in \bar{A} \quad (9)$$

263 where $r_{a \rightarrow b}$ denotes the CRC of an intersection movement $a \rightarrow b$; $E(r_{a \rightarrow b})$ is the corresponding mean 264 CRC, and $\sigma_{a \rightarrow b}$ is the standard deviation.

265 Moreover, different movements on an intersection have different hazard levels depending on the 266 different number of conflicts created by competing traffic streams. Left-turning traffic, for example, is a 267 major source of conflicts at intersections, accounting for approximately 45% of all intersection crashes. 268 However, travelers usually spend only a short time in an intersection, and there is no significant 269 difference between various turning movements in terms of the duration or the speed of travel. Therefore, 270 the frequency of the conflicts is closely related to the traffic volume, which is a relatively reliable proxy 271 for exposure to indicate the crash risk of different turnings. Thus, in this study, we quantify the CRC of 272 each movement type at intersections with regard to the traffic volume. Accordingly, the mean and 273 variance of the CRC distribution of turning link $a \rightarrow b$ can be expressed as:

$$274 E(r_{a \rightarrow b}) = \tau g(x_{a \rightarrow b}) \quad (10)$$


$$275 \sigma_{a \rightarrow b}^2 = \bar{\tau} \bar{g}(x_{a \rightarrow b}) \quad (11)$$

276 where $x_{a \rightarrow b}$ is the traffic volume on turning link $a \rightarrow b$; τ and $\bar{\tau}$ are adjustment coefficients; and $g(\cdot)$ 277 and $\bar{g}(\cdot)$ are the functional relationships between the traffic volume and the mean and variance of the 278 CRC distribution, respectively. McDonald (1953), in early research, found a certain exponential relation 279 (as shown in Fig. 4) between traffic volume and intersection safety by investigating the crashes at 150 280 intersections. Therefore, the volume-safety relations, as perceived by travelers, for different movements at 281 intersections can be represented by a power function. In this function, the exponent parameter can be set 282 to various values to account for the variation of travelers' perceptions of the hazard-level of different 283 intersection movements. Consequently, Eq. (10) and Eq. (11) can be expressed as:

$$284 E(r_{a \rightarrow b}) = \tau x_{a \rightarrow b}^{\omega_{a \rightarrow b}} \quad (12)$$

$$285 \sigma_{a \rightarrow b}^2 = \bar{\tau} x_{a \rightarrow b}^{\bar{\omega}_{a \rightarrow b}} \quad (13)$$

286 where $\omega_{a \rightarrow b}$ and $\bar{\omega}_{a \rightarrow b}$ are variable parameters reflecting the perceived hazard-level of different 287 intersection movements, whose values are both assumed to be lower than 1.

288

289

290

291

292

293

294

Fig. 4 Relationship between CRC and traffic volume at intersection

291 Note that, as shown in Fig. 4, because the value of $\omega_{a \rightarrow b}$ and $\bar{\omega}_{a \rightarrow b}$ are both below 1, the perceived
 292 crash risk grows more slowly as a function of traffic volume as the traffic volume increases. This
 293 relationship captures the widely reported empirical phenomenon that the crash risk at an intersection
 294 increases more slowly as the number of vehicles growth (Geyer et al., 2006).

295

(5) Route CRC distribution

296 On the basis of the CRC distribution of road segment and intersection turning movement, the route
 297 CRC variable can be expressed by summing the corresponding link (road sites) CRC variables:

298

$$r_p = \sum_{a \in A} r_a \delta_a^p + \sum_{a \rightarrow b \in A} r_{a \rightarrow b} \delta_{a \rightarrow b}^p \quad (14)$$

299 where r_p is the CRC of route p . δ_a^p is the route-link incidence parameter whose value is one if a is on
 300 p ; zero otherwise. Similarly, $\delta_{a \rightarrow b}^p$ is the route-turn incidence parameter whose value is one if $a \rightarrow b$ is on
 301 p ; zero otherwise.

302 This study assumes that the link CRC distributions (of segments and intersection movements) in the
 303 road network are independent and bounded with finite and non-zero variance. Regardless of the link and
 304 turn CRC distribution, as long as the distributions are independent and bounded with finite and non-zero
 305 variance, the route CRC follows a normal distribution according to the Central Limit Theorem (Lo et al.,
 306 2006). Thus, the route CRC mean and standard deviation may be assumed as:

307

308

309

$$r_p \sim N(E(r_p), \sigma_p^2)$$

$$E(r_p) = \sum_{a \in A} [\delta_a^p \cdot E(r_a)] + \sum_{a \rightarrow b \in A} [\delta_{a \rightarrow b}^p \cdot E(r_{a \rightarrow b})]$$

$$\sigma_p = \sqrt{\sum_{a \in A} [\delta_a^p \cdot \sigma_a^2] + \sum_{a \rightarrow b \in A} [\delta_{a \rightarrow b}^p \cdot \sigma_{a \rightarrow b}^2]} \quad (15)$$

310

where $E(r_p)$ is the mean CRC of route p and σ_p is the standard deviation of the CRC of route p .

311

2.2 Definition of effective CRC

312 In the transportation literature, Jackson and Jucker (1982) introduced a framework from the view of
 313 travel reliability. It assumes that traveler looks to maximize the option's return (minimize the cost of the
 314 choice) while minimize its associated risk/uncertainty. The option's return is represented by the expected
 315 value, and the risk/uncertainty by the variance¹. Most studies that try to model traveler's travel time
 316 reliability concerns, such as Uchida and Iida (1993), Lo and Tung (2003), Lo et al. (2006) and Ni (2011),
 317 Chen et al. (2010 and 2011), Xu et al. (2017) and Xu et al. (2018), are basically built on this theoretical
 318 framework. This framework prescribes how travelers deal with unreliable prospects based on distinct
 319 states of nature of each alternative, and represents the states by a distribution of outcomes (Carrión and
 320 Levinson, 2012). In this framework, it is assumed that the traveler has a priori information of the mean
 321 and variance of the nature of each alternative in their choice set within a category. In the context of travel

¹ This framework is developed on the basis of risk-return model in finance (see Markowitz (1999) for an overview) and the expected utility theory proposed by Von and Morgenstern (1944).

safety reliability, the set of alternatives could be routes between an O-D pair. The states of nature could be extreme weather, mountainous region, bad road surface, hazard conflict and crash. The outcomes are likely to be the distribution of the CRC for each alternative. Next, we will try to reset this framework in the context of travel safety reliability according to the CRC distribution which is specified in above section.

The randomness of crash occurrence causes the variability of the route CRC. With the safety reliability requirements of travelers, they create a larger CRC budget than the expected CRC to hedge against the variability of the CRC. In this study, we define travelers' safety reliability requirement to be ρ . As shown in Fig. 5, it means the probability that the actual trip CRC is within the specified CRC, denoted as R_p . This specific CRC is referred to as the effective crash risk cost (effective CRC):

$$p\{r_p \leq R_p\} = \rho. \quad (16)$$

For example, in Fig. 6 we present two different routes that have the same mean CRC but perform distinct safety reliabilities. Travelers who have the same higher safety reliability requirement would not prefer to select route 2, because they need to create a larger CRC budget (R_2) if traveling through route 2 to avoid the possible higher loss caused by its lower safety reliability.

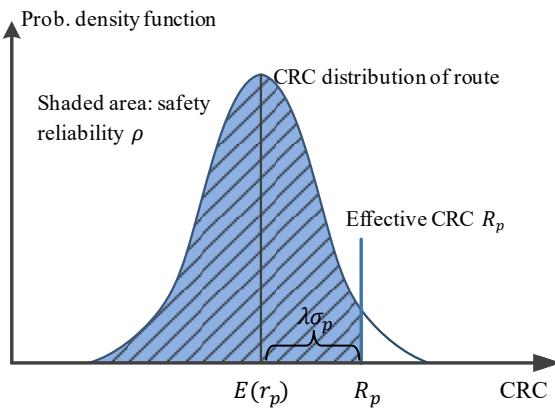


Fig. 5 Within specified safety reliability and effective CRC

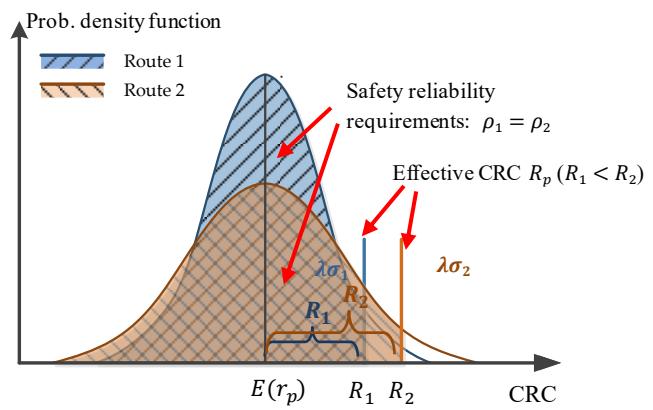


Fig. 6 Two route with same mean CRC but different safety reliabilities

Travelers, in reality, do not exactly know their certain prior risk of being involved in a traffic crash. Their crash risk aversions may vary in different traveler groups. Those travelers who attach great importance to travel safety would add a travel CRC margin to the expected travel CRC, to avoid crash occurrence. Thus, the effective CRC associated with route p can be defined as:

$$[\text{Effective CRC}] = [\text{Expected CRC}] + [\text{CRC Margin}] \quad (17)$$

and mathematically expressed as:

$$R_p = E(r_p) + \lambda \sigma_p \quad \forall p \in P_w, \forall w \in W \quad (18)$$

where λ is the parameter related to the requirement on safe reliability. $\lambda \sigma_p$ denotes the added travel CRC margin, r_p represents the CRC of route p which is a random variable, $E(r_p)$ and σ_p are the mean and standard deviation of r_p . The relation between the safety reliability and the effective CRC is clearly showing in Fig. 5. Obviously, a large λ demonstrates that the traveler has a greater aversion for crash risk and vice versa. They would allow for a larger effective CRC so as to maintain their safety reliability at a high level. Thus, λ is the indicator of representing the degree of risk aversion of travelers.

Then, combining Eq. (16) and Eq. (18), the relation between the effective CRC and safety reliability can be obtained as the following (as shown in Fig. 5):

$$p\{r_p \leq R_p\} = E(r_p) + \lambda \sigma_p = \rho. \quad (19)$$

By rearranging terms, the (16) can be transformed as:

359
$$p \left\{ \frac{r_p - E(r_p)}{\sigma_p} \leq \lambda \right\} = \rho. \quad (20)$$

360 We set $s_p = \frac{r_p - E(r_p)}{\sigma_p}$, then s_p is the standard normal variate of r_p , from which it can be deduced that the
361 value λ is determined by ρ .

362 **2.3 Route choice model**

363 In general, travelers with different degrees of crash risk aversions exist in a road network.
364 Hypothesize that there are M classes of travelers in a network, and m labels their different degrees of
365 crash risk aversion. For the travelers of class m with the safety reliability requirement ρ^m , the effective
366 CRC R_p^m follows from Eq. (18) with the corresponding value λ^m :

367
$$R_p^m = E(r_p) + \lambda^m \sigma_p \quad \forall p \in P_w, \forall w \in W \quad (21)$$

368 Undoubtedly, in reality, travelers take into account both road safety and travel time to choose the
369 optimal route. Therefore, the generalized travel cost consists of the travel CRC and the travel time (which
370 is calculated by the BPR function):

371
$$C_p^m = R_p^m + \theta T_p \quad (22)$$

372 where θ is cost converting factor of travel time. Similarly, the route travel time variable equals to the total
373 travel time variable of corresponding links:

374
$$T_p = \sum_{a \in A} (t_a \delta_a^p) \quad (23)$$

375 Accordingly, the long-term habitual equilibrium route choice pattern of the class m travelers can be
376 stated as: Their flow f_p^m on route p is positive if the generalized travel cost on route p is equal and
377 minimal; all unused routes have an equal or higher generalized travel cost. This equilibrium flow pattern
378 can be expressed by the complementarity conditions as follows:

379
$$f_p^m (C_p^m - \mu_w^m) = 0 \quad \forall p \in P_w, \forall w \in W$$

380
$$C_p^m \geq \mu_w^m \quad \forall p \in P_w, \forall w \in W \quad (24)$$

381 where C_p^m is the generalized cost of class m travelers on route p ; μ_w^m is the minimum generalized cost of
382 class m travelers among all the routes linking O-D pair w .

383 The complementarity conditions (24) can be extended to cover a mixed-equilibrium pattern among
384 these different classes. We model this mixed-equilibrium problem with the following mathematical
385 program as:

386
$$\min f = \sum_{m=1}^M \sum_{w \in W} \sum_{p \in P_w} f_p^m (C_p^m - \mu_w^m) \quad (25)$$

387 s.t. $\sum_{p \in P_w} f_p^m = q_w^m \quad \forall w \in W, \quad \forall m = 1, \dots, M \quad (26)$

388
$$x_a = \sum_{m=1}^M \sum_{w \in W} \sum_{p \in P_w} f_p^m \delta_a^p \quad \forall a \in A \quad (27)$$

389
$$x_{a \rightarrow b} = \sum_{m=1}^M \sum_{w \in W} \sum_{p \in P_w} f_p^m \delta_{a \rightarrow b}^p \quad \forall a \rightarrow b \in \bar{A} \quad (28)$$

390
$$C_p^m - \mu_w^m \geq 0 \quad \forall m = 1, \dots, M \quad (29)$$

391
$$f_p^m \geq 0, \mu_w^m \geq 0 \quad \forall p \in P_w, \forall w \in W, \forall m = 1, \dots, M \quad (30)$$

392 The parameter q_w^m is the O-D demand for user class m on O-D pair w ; x_a is the flows of link a ;
393 $x_{a \rightarrow b}$ is the flow of intersection turning movement $a \rightarrow b$ at intersections. The function f refers to the
394 overall gap to capture the complementarity conditions for the M classes of travelers as in Eq. (24).
395 Constraint (26) represents the relationship between route flow and demand conservation condition for
396 class m travelers on O-D pair w . Constraints (27) and (28) convert the route flows into link flows x_a and
397 $x_{a \rightarrow b}$ through the route-link incident indictor δ_a^p and $\delta_{a \rightarrow b}^p$ respectively.

398 **3. MODEL SOLUTION ALGORITHM**

399 As the route cost is non-additive with arc costs for the reason that the standard deviation of the
400 effective travel cost on a route is route-specific and not equal to the sum of the standard deviations of the
401 arc cost, the above passenger assignment model should be route-based, and cannot be translated into a
402 link-based model (Gabriel and Bernstein, 1997). Thus, we also let the algorithm for solving the passenger

403 assignment model be route-based. [Lo and Chen \(2000\)](#) proposed a route-based algorithm for solving the
 404 traffic equilibrium problem with route-specific cost. Similarly, we use the k -shortest route algorithm to
 405 find k -lowest mean travel cost routes and generate a route subset. The minimum effective CRC route can
 406 be solved in the obtained route set for each O-D pair. In each iteration, the All-or-Nothing (AON)
 407 assignment is applied to load the passenger demand. In the solving algorithm, the method of successive
 408 averages (MSA) is adopted to determine the step size. The details of the algorithmic steps are described as
 409 follows:

410 Step 1: initialization

- 411 • Initialize parameters and variables: the degree of risk aversion of class m travelers, λ^m ;
 412 impedance parameters, α and β ; the free-flow travel time t_a^0 ; the capacity of link a , c_a ;
 413 conversion coefficient, θ ; the stopping tolerance, ε ; the demand of class m travelers between
 414 O-D pair w , q_w^m .
- 415 • Set iteration counter $n \leftarrow 1$
- 416 • Let $x_a^n \leftarrow 0$; $x_{a \rightarrow b}^n \leftarrow 0$; initial route set $\bar{P}_w \leftarrow \emptyset$.

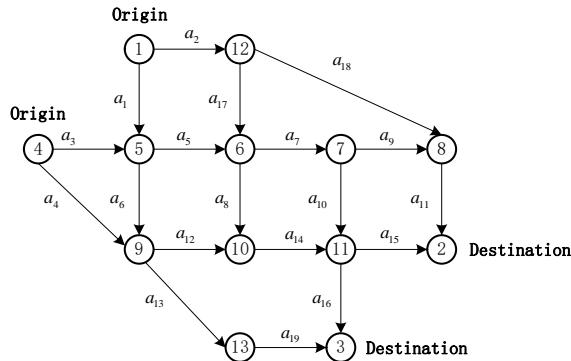
417 Step 2: update route flow

- 418 • Compute the expected CRC of links, i.e., $E(r_a)$ and $E(r_{a \rightarrow b})$, and travel times of links t_a .
- 419 • Compute link costs: $C_a \leftarrow E(r_a) + \theta T_a$ and $C_{a \rightarrow b} \leftarrow E(r_{a \rightarrow b})$.
- 420 • Compute the k -shortest route set \hat{P}_w with the above link costs C_a and $C_{a \rightarrow b}$ using the k -shortest
 421 route algorithm.
- 422 • Compute the generalized travel costs C_p^m for $p \in \hat{P}_w$ and each class $m = 1, \dots, M$.
- 423 • Obtain the shortest route in the obtained shortest route set $p_w^m \leftarrow \arg \min \{C_p^m | p \in \hat{P}_w\}$, and
 424 update the route set $\bar{P}_w = \bar{P}_w \cup p_w^m$ for each class $m = 1, \dots, M$.
- 425 • Perform AON assignment: load the demand q_w^m to route p_w^m , i.e. for each route $p \in \bar{P}_w$, if
 426 $p = p_w^m$, let $h(p_w^m) \leftarrow q_w^m$; otherwise, let $h(p_w^m) \leftarrow 0$.
- 427 • Update route flow $f_p^m \leftarrow \frac{n-1}{n} f_p^m + \frac{1}{n} h(p) \quad \forall p \in \bar{P}_w, \forall w \in W, \forall m \in M$.

428 Step 3: Update links and nodes flow

- 429 • Update the main iteration counter $n \leftarrow n + 1$.
- 430 • Calculate the arc flow $x_a^n \leftarrow \sum_{m=1}^M \sum_{w \in W} \sum_{p \in \bar{P}_w} f_p^m \delta_a^p$.
- 431 • Calculate the turning flow $x_{a \rightarrow b}^n \leftarrow \sum_{m=1}^M \sum_{w \in W} \sum_{p \in \bar{P}_w} f_p^m \delta_{a \rightarrow b}^p$.

432 Step 4: Check convergence


- 433 • If $\frac{\sqrt{\sum_{a \in A} (x_a^n - x_a^{n-1})^2 + \sum_{a \rightarrow b \in A} (x_{a \rightarrow b}^n - x_{a \rightarrow b}^{n-1})^2}}{\sum_{a \in A} x_a^{n-1} + \sum_{a \rightarrow b \in A} x_{a \rightarrow b}^{n-1}} < \varepsilon$, then terminate, otherwise repeat the step 2.

434 For solving the large-scale networks, it will take much calculating time to use the k -shortest route
 435 algorithm for finding k -lowest mean travel cost routes in each iteration. In the real cases, the number of
 436 routes chosen by the users may be limited for each O-D pair. Consequently, for saving the calculating
 437 time, we can find a route subset in the initialization step and replace the whole route set with it for each
 438 O-D pair. It saves the process of computing the k -shortest route set in Step 2. It is obvious that the method
 439 of choosing this route subset will affects the solution. The k -shortest route algorithm ([Xu et al., 2018](#)) and
 440 the penalty method ([De La Barra et al., 1993](#)) can be used to choose this route subset. For further
 441 improving the efficiency of the algorithm, a self-regulated averaging method can be adopted to determine
 442 the step size ([Liu et al., 2009](#)).

443 **4. NUMERICAL STUDIES**

444 **4.1 A toy network: Nguyen and Dupuis' network**

445 The formulations are firstly applied to a test network called the Nguyen and Dupuis fall network for
446 demonstrating its application. As shown in Fig. 7, the network consists of 13 nodes, 19 links and 4 O-D
447 pairs. Letter a_n is the code of each link. Definitions of intersection movements in each node are shown in
448 **Table 1**. The free-flow travel time, design capacity values, the length of each road segment and traveler's
449 risk perceptions related to segment features and driving speed are shown in **Table 2**. The values of
450 adjustment coefficients in Eq. (12) and Eq. (13) are predefined in **Table 3** according to the type of turning
451 movement with different hazard level. The demands of the O-D pair (1,2), (1,3), (4,2), (4,3) are 400, 800,
452 600, 200 pcu/h, respectively. The unit crash risk evaluation functions and safety reliability evaluation
453 functions are as shown in (6), (8) and (12), (13), with $\gamma = 3 \times 10^{-4}$, $\bar{\gamma} = 7 \times 10^{-5}$, $\tau = 5 \times 10^{-3}$ and $\bar{\tau} = 5 \times 10^{-4}$. The
454 parameters of link generalized cost function and performance function are $\alpha = 0.15$, $\beta = 4$ and $\theta = 3$,
455 respectively.

456 **Fig. 7** Nguyen and Dupuis' network

457 **Table 1** Definition on Each Turn in Nguyen and Dupuis Network

Movement	Definition					
Left-turn	$a_1 \rightarrow a_5$, $a_1 \rightarrow a_6$,	$a_6 \rightarrow a_{12}$, $a_2 \rightarrow a_{18}$,	$a_8 \rightarrow a_{14}$, $a_3 \rightarrow a_5$,	$a_{10} \rightarrow a_{15}$, $a_4 \rightarrow a_{12}$,	$a_4 \rightarrow a_{13}$, $a_{12} \rightarrow a_{14}$,	$a_{17} \rightarrow a_7$, $a_{13} \rightarrow a_{19}$,
Crossing	$a_6 \rightarrow a_{13}$, $a_{17} \rightarrow a_8$,	$a_7 \rightarrow a_9$, $a_{18} \rightarrow a_{11}$	$a_{10} \rightarrow a_{16}$, $a_{12} \rightarrow a_{14}$	$a_{12} \rightarrow a_{14}$, $a_{13} \rightarrow a_{19}$,	$a_{14} \rightarrow a_{15}$,	
Right-turn	$a_2 \rightarrow a_{17}$, $a_3 \rightarrow a_6$,	$a_5 \rightarrow a_8$, $a_7 \rightarrow a_{10}$,	$a_7 \rightarrow a_{10}$, $a_9 \rightarrow a_{11}$,	$a_9 \rightarrow a_{11}$,	$a_{14} \rightarrow a_{16}$	

459 **Table 2** Nguyen and Dupuis Network Parameters

Link	t_a^0 / min^{-1}	$c_a / (\text{pcu } h^{-1})$	Length (km)	η_a	$\bar{\eta}_a$	Link	t_a^0 / min^{-1}	$c_a / (\text{pcu } h^{-1})$	Length (km)	η_a	$\bar{\eta}_a$
a_1	7	800	5	2.1	2.6	a_{11}	9	550	5	2.1	2.6
a_2	9	400	5	2.1	2.6	a_{12}	10	550	5	2	2.5
a_3	9	200	5	2.1	2.6	a_{13}	9	600	5	2.1	2.6
a_4	12	800	5	2	2.5	a_{14}	6	700	5	2.1	2.6
a_5	3	350	5	2.2	2.7	a_{15}	9	500	5	2.1	2.6
a_6	9	400	5	2.1	2.6	a_{16}	8	300	5	2.1	2.6
a_7	5	800	5	2.2	2.7	a_{17}	7	200	5	2.1	2.6
a_8	13	250	5	2	2.5	a_{18}	14	400	5	2	2.5
a_9	5	250	5	2.2	2.7	a_{19}	11	600	5	2	2.5
a_{10}	9	300	5	2.1	2.6	-	-	-	-	-	-

461 **Table 3** CRC Parameters of Intersection Turns

Movement	$\omega_{a \rightarrow b}$	$\bar{\omega}_{a \rightarrow b}$
Left-turn	0.5	0.8
Crossing	0.4	0.6
Right-turn	0.25	0.4

463
464
465
466
467
468
469
470
471
472

Four cases are discussed in this study. Two types of travelers are considered, including low reliability (LR) class travelers, who set the effective CRC to be simply the mean trip CRC ($\lambda=0$, $\rho=0.5$), and high reliability (HR) class travelers, who reserve a large effective CRC of 95% ($\lambda=1.64$, $\rho=0.95$). In the first three cases, we consider that there exists only one type of traveler in the entire network: either LR or HR. The travel cost in these three cases, respectively, are only considering: (1) the travel time; (2) both the travel time and the travel CRC of links and nodes; and (3) the travel time and the travel CRC of only links. In the last case, (4) both types of travelers are considered in the network and are evenly split, with half LR travelers and half HR travelers. The travel cost includes the travel time and the travel CRC of links and nodes. The assumptions of each case are shown in Table 4.

473

Table 4 Assumptions of Four Cases

Cases	Generalized travel cost	Traveler class
1	Travel time	Single-class travelers
2	Travel time, CRC of links and nodes	Single-class travelers
3	Travel time, CRC of links	Single-class travelers
4	Travel time, CRC of links and nodes	Multi-class travelers

474 4.1.1 Single-class travelers

475 In Table 5, the travel time on all utilized routes of each O-D pair is equal and minimal, which
476 indicates that the equilibrium state is achieved. In the following section, the O-D pair (1, 3) is used for
477 analyzing the equilibrium state of other cases when changing the assumptions.

478

Table 5 Traffic Equilibrium Results with Considering Travel Time Only

O-D pair	Route	Link sequence	Route time/min	Route flow/ ($pcu \cdot h^{-1}$)
(1,2)	1	{ $a_1, a_1 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_9, a_9, a_9 \rightarrow a_{11}, a_{11}$ }	36.50	27.22
	2	{ $a_1, a_1 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{10} \rightarrow a_{15}, a_{15}$ }	41.68	0.00
	3	{ $a_1, a_1 \rightarrow a_5, a_5, a_5 \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}$ }	43.55	0.00
	4	{ $a_1, a_1 \rightarrow a_6, a_6, a_6 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}$ }	45.14	0.00
	5	{ $a_2, a_2 \rightarrow a_{17}, a_{17}, a_{17} \rightarrow a_7, a_7, a_7 \rightarrow a_9, a_9, a_9 \rightarrow a_{11}, a_{11}$ }	38.65	0.00
	6	{ $a_2, a_2 \rightarrow a_{17}, a_{17}, a_{17} \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{10} \rightarrow a_{15}, a_{15}$ }	43.81	0.00
	7	{ $a_2, a_2 \rightarrow a_{17}, a_{17}, a_{17} \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}$ }	45.68	0.00
	8	{ $a_2, a_2 \rightarrow a_{18}, a_{18}, a_{18} \rightarrow a_{11}, a_{11}$ }	36.50	372.78
(1,3)	9	{ $a_1, a_1 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{10} \rightarrow a_{16}, a_{16}$ }	42.79	366.32
	10	{ $a_1, a_1 \rightarrow a_5, a_5, a_5 \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}$ }	44.66	0.00
	11	{ $a_1, a_1 \rightarrow a_6, a_6, a_6 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}$ }	46.26	0.00
	12	{ $a_2, a_2 \rightarrow a_{17}, a_{17}, a_{17} \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{10} \rightarrow a_{16}, a_{16}$ }	44.92	0.00
	13	{ $a_2, a_2 \rightarrow a_{17}, a_{17}, a_{17} \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}$ }	46.80	0.00
	14	{ $a_1, a_1 \rightarrow a_6, a_6, a_6 \rightarrow a_{13}, a_{13}, a_{13} \rightarrow a_{19}, a_{19}$ }	42.79	433.68
(4,2)	15	{ $a_3, a_3 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_9, a_9, a_9 \rightarrow a_{11}, a_{11}$ }	38.65	199.31
	16	{ $a_3, a_3 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{15} \rightarrow a_{15}, a_{15}$ }	43.81	0.00
	17	{ $a_3, a_3 \rightarrow a_5, a_5, a_5 \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}$ }	45.68	0.00
	18	{ $a_3, a_3 \rightarrow a_6, a_6, a_6 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}$ }	47.28	0.00

19	$\{a_4, a_4 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{15}, a_{15}\}$	38.65	400.69
20	$\{a_3, a_3 \rightarrow a_5, a_5, a_5 \rightarrow a_7, a_7, a_7 \rightarrow a_{10}, a_{10}, a_{16} \rightarrow a_{16}, a_{16}\}$	44.93	0.00
21	$\{a_3, a_3 \rightarrow a_5, a_5, a_5 \rightarrow a_8, a_8, a_8 \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}\}$	46.80	0.00
(4,3)	$\{a_3, a_3 \rightarrow a_6, a_6, a_6 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}\}$	48.39	0.00
23	$\{a_3, a_3 \rightarrow a_6, a_6, a_6 \rightarrow a_{13}, a_{13}, a_{13} \rightarrow a_{19}, a_{19}\}$	44.92	0.00
24	$\{a_4, a_4 \rightarrow a_{12}, a_{12}, a_{12} \rightarrow a_{14}, a_{14}, a_{14} \rightarrow a_{16}, a_{16}\}$	39.77	0.00
25	$\{a_4, a_4 \rightarrow a_{13}, a_{13}, a_{13} \rightarrow a_{19}, a_{19}, a_{19}\}$	36.30	200.00

479 *Bold number is the focused route in this study

480

481 **Table 6** depicts the route flow results for the LR and HR route choice models considering both
482 travel time and the travel CRC. It shows that comparing the result with case 1, when considering the
483 CRC of links and nodes, the route choice model allocates a different amount of flow to the routes.
484 Because route 5 and 6 have lower mean CRC ($E(r_p)$), the flows shift from route 1 (which has the highest
485 mean and standard deviation of CRC) to these two relatively safer routes. In addition, as the safest route
486 among six routes, in this case, most amount of flow is allocated on route 5. Further comparing the
487 results between two road choice models, the HR model allocates less flow than the LR model to route 6.
488 This is because route 6 have the highest standard deviations (σ_p) of the CRC comparing with other
489 routes, which means the CRC distributions of route 6 are much more dispersed than other routes. The
490 HR model seriously considers the safety reliability in determining the effective CRC. However, LR
491 travelers are only concerned about mean travel safety and travel time. Thus, HR travelers allocate more
492 flows on route 5 to avoid the links in which crashes are more likely to occur.

493

Table 6 Traffic Equilibrium Results of LR (HR) travelers (considering link and turning safety)

Route	$E(r_{a \rightarrow b})$	$\sigma_{a \rightarrow b}$	$E(r_p)$	σ_p	R_p	T_p	C_p	Route flow
1	0.00	0.00	148.92 (148.20)	41.09 (41.01)	148.92 (215.46)	97.90 (99.34)	246.82 (314.80)	0.00 (0.00)
2	0.00	0.00	118.91 (116.41)	37.04 (36.75)	118.91 (176.67)	121.37 (130.48)	240.28 (307.15)	0.00 (0.00)
3	23.54	38.20	80.87 (78.90)	48.53 (46.73)	80.87 (155.54)	151.41 (150.88)	232.27 (306.42)	0.00 (0.00)
4	1.09	3.79	84.33 (79.06)	34.48 (33.84)	84.33 (134.57)	142.67 (163.15)	227.01 (297.72)	0.00 (0.00)
5	4.37	10.02	57.60 (51.49)	30.97 (30.92)	57.60 (102.19)	166.14 (194.29)	223.75 (296.48)	218.58 (281.18)
6	34.98	50.19	70.92 (69.74)	56.03 (51.99)	70.92 (155.01)	152.83 (141.47)	223.75 (296.49)	581.42 (518.82)

494 * Bracketed figures are the HR travelers; the figures without bracket are LR travelers.

495

496 The route flow pattern for two route choice models considering travel time cost and travel safety of
497 only links are shown in **Table 7**. As expected, when ignoring the travel safety of intersections, a large
498 amount of flow shifts from route 5 to route 6. This is because that in case 2 the movements at the
499 intersections seriously influence the travel safety conditions of route 6 (which have the highest mean
500 and standard deviation of the turning CRC). The ignorance of turning safety makes this route seemingly
501 safer, so that attract more travelers. Furthermore, in contrast with case 2, HR travelers allocate more
502 flow to route 6 but lower to route 5 than LR travelers, in order to avoid the dangerous links on route 5

503 (route 6 is relatively more reliable in safety, i.e. higher σ_p value, than route 5).

504 **Table 7** Traffic Equilibrium Results of LR (HR) travelers (considering only links safety)

Route	The number of intersections	$E(r_p)$	σ_p	R_p	T_p	C_p	Route flow
1	4	149.02 (148.92)	41.10 (41.09)	149.02 (216.31)	97.61 (97.73)	246.63 (314.04)	0.00 (0.00)
2	4	120.56 (120.89)	37.23 (37.26)	120.56 (182.00)	116.79 (116.09)	237.35 (298.09)	0.00 (0.00)
3	4	57.12 (56.92)	29.80 (29.73)	57.12 (105.68)	160.39 (164.78)	217.51 (270.46)	0.00 (0.00)
4	4	87.70 (88.70)	34.86 (34.99)	87.70 (146.09)	129.19 (126.18)	216.89 (272.26)	0.00 (0.00)
5	4	59.25 (60.67)	30.20 (30.40)	59.25 (110.53)	148.37 (144.54)	207.61 (255.07)	146.24 (121.02)
6	3	32.46 (31.26)	24.15 (23.87)	32.46 (70.40)	175.15 (184.67)	207.61 (255.07)	653.76 (678.98)

505 [#] Bracketed figures are the HR travelers; the figures without bracket are LR travelers.

506 **4.1.2 Multi-class travelers**

507 In this case, we consider that the network consists of two types of travelers forming the
508 mix-equilibrium model. Each type of traveler accounts for half of the total network. **Table 8** shows the
509 route flow result. As we can see, the route mean CRC ($E(r_p)$), standard deviation of the route CRC (σ_p)
510 and route travel time (T_p) are consistent for these two type of travelers. All of the LR travelers select
511 route 6, which has the lowest general cost (C_p) between O-D pair (1, 3). By contrast, since the route travel
512 safety dispersions are of concern to the HR travelers, most of them select route 5, which have the highest
513 safety reliability (lowest σ_p) than other routes. This route flow result reflects the nature of route choice
514 behavior that the travelers with higher effective CRC tend to choose more reliable routes.

515 **Table 8** Traffic Equilibrium State of Multi-class Users

Traveler class	Route	$E(r_p)$	σ_p	R_p	T_p	C_p	Route flow
LR model	1	148.20	41.01	148.20	99.34	247.54	0.00
	2	116.41	36.75	116.41	130.48	246.89	0.00
	3	78.90	46.73	78.90	150.87	229.77	0.00
	4	79.06	33.84	79.06	163.15	242.21	0.00
	5	51.49	30.92	51.49	194.29	245.78	0.00
	6	69.75	51.99	69.75	141.47	211.21	400.00
HR model	1	148.20	41.01	215.46	99.34	314.80	0.00
	2	116.41	36.75	176.67	130.48	307.15	0.00
	3	78.90	46.73	155.54	150.87	306.41	0.00
	4	79.06	33.84	134.57	163.15	297.72	0.00
	5	51.49	30.92	102.19	194.29	296.48	281.10
	6	69.75	51.99	155.02	141.47	296.48	118.90

516 **4.2 A real network: Sioux falls network**

517 This case aims to test the proposed route choice model and the algorithm including its feasibility
518 and efficiency for the well-known Sioux falls network ([Fig. 8](#)). As shown in [Fig. 8](#), in this case, each node
519 is disintegrated into a set of turns. Consequently, this network consists of 76 nodes and 254 links
520

521 (including the total number of turn links). There are 528 O-D pairs in this network. The definition of
 522 intersection movements in each node and the information of each link are shown in [Table 9](#) and [Table 10](#),
 523 respectively. The CRC parameters of different intersection turning movement are the same with those in
 524 the example in [Section 5.1](#). The parameters in safety evaluation function, generalized cost function and
 525 performance function are $\gamma = 3 \times 10^{-6}$, $\bar{\gamma} = 7 \times 10^{-7}$, $\tau = 5 \times 10^{-5}$, $\bar{\tau} = 5 \times 10^{-6}$, $\alpha = 0.15$, $\beta = 4$ and $\theta = 3$,
 526 respectively.

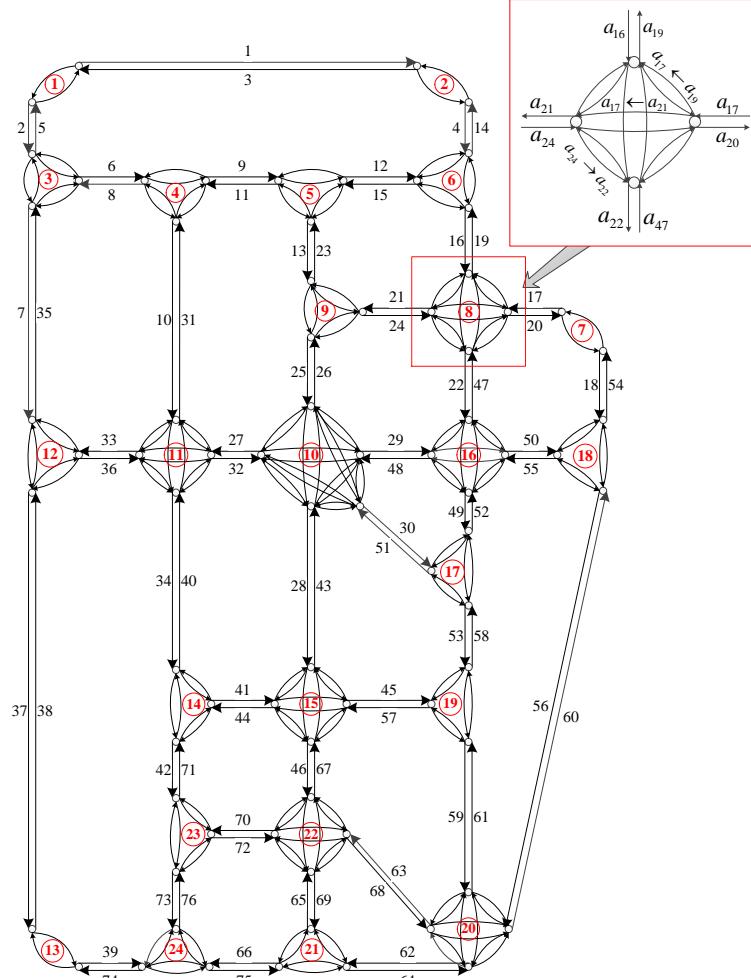


Fig. 8 Sioux falls network

Table 9 Definition on Each Turn in Sioux Falls Network

Nodes	1	2	3	4	5	6	7	8
Left	$a_3 \rightarrow a_2$	$a_{14} \rightarrow a_3$	$a_2 \rightarrow a_6, a_8 \rightarrow a_7$	$a_{31} \rightarrow a_8, a_{11} \rightarrow a_{10}$	$a_{23} \rightarrow a_{11}, a_{15} \rightarrow a_{13}$	$a_{19} \rightarrow a_{15}, a_{12} \rightarrow a_{14}$	$a_{54} \rightarrow a_{17}$	$a_{47} \rightarrow a_{21}, a_{17} \rightarrow a_{22}, a_{16} \rightarrow a_{20}, a_{24} \rightarrow a_{19}$
Straight	-	-	$a_2 \rightarrow a_7, a_{35} \rightarrow a_5$	$a_{11} \rightarrow a_8, a_6 \rightarrow a_9$	$a_{15} \rightarrow a_{11}, a_9 \rightarrow a_{12}$	$a_{19} \rightarrow a_{14}, a_4 \rightarrow a_{16}$	-	$a_{17} \rightarrow a_{21}, a_{24} \rightarrow a_{20}, a_{16} \rightarrow a_{22}, a_{47} \rightarrow a_{19}$
Right	$a_5 \rightarrow a_1$	$a_1 \rightarrow a_4$	$a_8 \rightarrow a_5, a_{35} \rightarrow a_6$	$a_{31} \rightarrow a_9, a_6 \rightarrow a_{10}$	$a_9 \rightarrow a_{13}, a_{23} \rightarrow a_{12}$	$a_{12} \rightarrow a_{16}, a_4 \rightarrow a_{15}$	$a_{20} \rightarrow a_{18}$	$a_{24} \rightarrow a_{22}, a_{47} \rightarrow a_{20}, a_{17} \rightarrow a_{19}$

$a_{16} \rightarrow a_{21}$								
Nodes	9	10	11	12	13	14	15	
Left		$a_{32} \rightarrow a_{26}$,						
		$a_{43} \rightarrow a_{27}$,						
		$a_{48} \rightarrow a_{28}$,	$a_{36} \rightarrow a_{31}$,					
	$a_{21} \rightarrow a_{25}$,	$a_{25} \rightarrow a_{29}$,	$a_{40} \rightarrow a_{33}$,	$a_7 \rightarrow a_{36}$,	$a_{37} \rightarrow a_{39}$	$a_{34} \rightarrow a_{41}$,	$a_{28} \rightarrow a_{45}$,	
	$a_{13} \rightarrow a_{24}$	$a_{48} \rightarrow a_{30}$,	$a_{27} \rightarrow a_{34}$,	$a_{33} \rightarrow a_{37}$		$a_{41} \rightarrow a_{43}$,	$a_{29} \rightarrow a_{47}$,	
		$a_{51} \rightarrow a_{28}$,	$a_{10} \rightarrow a_{32}$			$a_{44} \rightarrow a_{42}$	$a_{52} \rightarrow a_{48}$,	
Straight		$a_{25} \rightarrow a_{30}$,					$a_{67} \rightarrow a_{44}$,	
		$a_{51} \rightarrow a_{27}$					$a_{55} \rightarrow a_{49}$,	
		$a_{48} \rightarrow a_{27}$,	$a_{27} \rightarrow a_{33}$,			$a_{71} \rightarrow a_{40}$	$a_{57} \rightarrow a_{46}$,	
	$a_{13} \rightarrow a_{25}$,	$a_{32} \rightarrow a_{29}$,	$a_{36} \rightarrow a_{32}$,	$a_7 \rightarrow a_{37}$,	-	$a_{28} \rightarrow a_{46}$,	$a_{52} \rightarrow a_{47}$,	
Right		$a_{26} \rightarrow a_{23}$	$a_{25} \rightarrow a_{28}$,	$a_{10} \rightarrow a_{34}$,	$a_{38} \rightarrow a_{35}$		$a_{67} \rightarrow a_{43}$	
		$a_{43} \rightarrow a_{26}$	$a_{40} \rightarrow a_{31}$				$a_{22} \rightarrow a_{49}$	
		$a_{25} \rightarrow a_{27}$,						
		$a_{32} \rightarrow a_{28}$,						
		$a_{43} \rightarrow a_{29}$,	$a_{10} \rightarrow a_{33}$,					
	$a_{26} \rightarrow a_{24}$,	$a_{48} \rightarrow a_{26}$,	$a_{36} \rightarrow a_{34}$,	$a_{33} \rightarrow a_{35}$,	$a_{74} \rightarrow a_{38}$	$a_{44} \rightarrow a_{40}$,	$a_{57} \rightarrow a_{43}$,	
Left		$a_{21} \rightarrow a_{23}$	$a_{51} \rightarrow a_{29}$,	$a_{40} \rightarrow a_{32}$,	$a_{38} \rightarrow a_{36}$	$a_{71} \rightarrow a_{41}$	$a_{29} \rightarrow a_{49}$,	
			$a_{43} \rightarrow a_{30}$,	$a_{27} \rightarrow a_{31}$			$a_{52} \rightarrow a_{50}$,	
			$a_{51} \rightarrow a_{26}$,				$a_{67} \rightarrow a_{45}$	
			$a_{32} \rightarrow a_{30}$				$a_{55} \rightarrow a_{47}$	
Nodes	17	18	19	20	21	22	23	24
Left	$a_{30} \rightarrow a_{52}$,	$a_{50} \rightarrow a_{54}$,	$a_{45} \rightarrow a_{58}$,	$a_{68} \rightarrow a_{61}$,		$a_{72} \rightarrow a_{67}$,		
	$a_{58} \rightarrow a_{51}$	$a_{60} \rightarrow a_{55}$	$a_{61} \rightarrow a_{57}$	$a_{64} \rightarrow a_{63}$,	$a_{75} \rightarrow a_{65}$	$a_{65} \rightarrow a_{70}$,	$a_{42} \rightarrow a_{72}$,	$a_{73} \rightarrow a_{75}$
				$a_{56} \rightarrow a_{62}$,	$a_{69} \rightarrow a_{64}$	$a_{46} \rightarrow a_{68}$,	$a_{70} \rightarrow a_{73}$	$a_{39} \rightarrow a_{76}$
				$a_{59} \rightarrow a_{60}$		$a_{63} \rightarrow a_{69}$		
Straight	$a_{49} \rightarrow a_{53}$,	$a_{18} \rightarrow a_{56}$,	$a_{53} \rightarrow a_{59}$,	$a_{68} \rightarrow a_{60}$,		$a_{72} \rightarrow a_{68}$,		
	$a_{58} \rightarrow a_{52}$	$a_{60} \rightarrow a_{54}$	$a_{61} \rightarrow a_{58}$	$a_{56} \rightarrow a_{63}$,	$a_{62} \rightarrow a_{66}$,	$a_{63} \rightarrow a_{70}$,	$a_{76} \rightarrow a_{71}$,	$a_{39} \rightarrow a_{75}$
				$a_{64} \rightarrow a_{61}$,	$a_{75} \rightarrow a_{64}$	$a_{46} \rightarrow a_{69}$,	$a_{42} \rightarrow a_{73}$	$a_{66} \rightarrow a_{74}$
				$a_{59} \rightarrow a_{62}$		$a_{65} \rightarrow a_{67}$		
Right	$a_{49} \rightarrow a_{51}$,	$a_{18} \rightarrow a_{55}$,	$a_{53} \rightarrow a_{57}$,	$a_{59} \rightarrow a_{63}$,		$a_{46} \rightarrow a_{70}$,		
	$a_{30} \rightarrow a_{53}$	$a_{50} \rightarrow a_{56}$	$a_{45} \rightarrow a_{59}$	$a_{68} \rightarrow a_{62}$,	$a_{69} \rightarrow a_{66}$,	$a_{72} \rightarrow a_{69}$,	$a_{70} \rightarrow a_{71}$,	$a_{66} \rightarrow a_{76}$
				$a_{64} \rightarrow a_{60}$,	$a_{62} \rightarrow a_{65}$	$a_{63} \rightarrow a_{67}$,	$a_{76} \rightarrow a_{72}$	$a_{73} \rightarrow a_{74}$
				$a_{56} \rightarrow a_{61}$		$a_{65} \rightarrow a_{68}$		

530

531

Table 10 Sioux Falls Network Parameters

Link	t_a^0 / min^{-1}	$c_a / (\text{pc } u \text{ } h^{-1})$	η_a	$\bar{\eta}_a$	Length (km)	Link	t_a^0 / min^{-1}	$c_a / (\text{pc } u \text{ } h^{-1})$	η_a	$\bar{\eta}_a$	Length (km)
a_1	1	2590	2.3	2.6	0.6	a_{39}	0.7	2590	2.1	2.5	0.4
a_2	0.7	2340	2.1	2.5	0.4	a_{40}	0.7	509	2.1	2.5	0.4
a_3	0.1	2590	2.3	2.6	0.6	a_{41}	0.9	488	2.1	2.5	0.5
a_4	0.9	496	2.1	2.5	0.5	a_{42}	0.7	513	2.1	2.5	0.4
a_5	0.7	2340	2.1	2.5	0.4	a_{43}	1	492	2.3	2.6	0.6
a_6	0.7	1711	2.1	2.5	0.4	a_{44}	0.9	1351	2.1	2.5	0.5
a_7	0.7	2340	2.1	2.5	0.4	a_{45}	0.5	513	2	2.4	0.3
a_8	0.7	1711	2.1	2.5	0.4	a_{46}	0.5	1456	2	2.4	0.3
a_9	0.3	1778	2	2.4	0.2	a_{47}	0.9	960	2.1	2.5	0.5

a_{10}	1	491	2.3	2.6	0.6	a_{48}	0.7	505	2.1	2.5	0.4
a_{11}	0.3	1778	2	2.4	0.2	a_{49}	0.3	485	2	2.4	0.2
a_{12}	0.7	495	2.1	2.5	0.4	a_{50}	0.5	523	2	2.4	0.3
a_{13}	0.9	1000	2.1	2.5	0.5	a_{51}	1.4	1968	2.3	2.6	0.8
a_{14}	0.9	496	2.1	2.5	0.5	a_{52}	0.3	499	2	2.4	0.2
a_{15}	0.7	495	2.1	2.5	0.4	a_{53}	0.3	523	2	2.4	0.2
a_{16}	0.3	490	2	2.4	0.2	a_{54}	0.3	482	2	2.4	0.2
a_{17}	0.5	784	2	2.4	0.3	a_{55}	0.5	2340	2	2.4	0.3
a_{18}	0.3	2340	2	2.4	0.2	a_{56}	0.7	1968	2.1	2.5	0.4
a_{19}	0.3	490	2	2.4	0.2	a_{57}	0.5	2340	2	2.4	0.3
a_{20}	0.5	784	2	2.4	0.3	a_{58}	0.3	1456	2	2.4	0.2
a_{21}	1.7	505	2.3	2.6	1	a_{59}	0.7	482	2.1	2.5	0.4
a_{22}	0.9	505	2.1	2.5	0.5	a_{60}	0.7	500	2.1	2.5	0.4
a_{23}	0.9	1000	2.1	2.5	0.5	a_{61}	0.7	2340	2.1	2.5	0.4
a_{24}	1.7	505	2.3	2.6	1	a_{62}	1	500	2.3	2.6	0.6
a_{25}	0.5	1392	2	2.4	0.3	a_{63}	0.9	506	2.1	2.5	0.5
a_{26}	0.5	1392	2	2.4	0.3	a_{64}	1	508	2.3	2.6	0.6
a_{27}	0.9	1000	2.1	2.5	0.5	a_{65}	0.3	506	2	2.4	0.2
a_{28}	1	1351	2.3	2.6	0.6	a_{66}	0.5	523	2	2.4	0.3
a_{29}	0.7	485	2.1	2.5	0.4	a_{67}	0.5	489	2	2.4	0.3
a_{30}	1.4	499	2.3	2.6	0.8	a_{68}	0.9	960	2.1	2.5	0.5
a_{31}	1	491	2.3	2.6	0.6	a_{69}	0.3	508	2	2.4	0.2
a_{32}	0.9	1000	2.1	2.5	0.5	a_{70}	0.7	523	2.1	2.5	0.4
a_{33}	1	491	2.3	2.6	0.6	a_{71}	0.7	500	2.1	2.5	0.4
a_{34}	0.7	488	2.1	2.5	0.4	a_{72}	0.7	492	2.1	2.5	0.4
a_{35}	0.7	2340	2.1	2.5	0.4	a_{73}	0.3	500	2	2.4	0.2
a_{36}	1	491	2.3	2.6	0.6	a_{74}	0.7	508	2.1	2.5	0.4
a_{37}	0.5	2590	2	2.4	0.3	a_{75}	0.5	509	2	2.4	0.3
a_{38}	0.5	2590	2	2.4	0.3	a_{76}	0.3	489	2	2.4	0.2

532

In this case, both low reliability (LR) class travelers with $\lambda=0.52$, $\rho=0.7$ and high reliability (HR) class travelers with $\lambda=1.28$, $\rho=0.9$ are involved in the network. Also, each type of traveler accounts for half (50%) of the total network. For each O-D pair and each traveler class, we calculate the k -lowest mean travel cost routes, denoted by \hat{P}_w , for $k = 10$ and $x_a = 0$ in the initialization step, and then find the route with the smallest effective travel cost from the route set \hat{P}_w in each iteration (before convergence). The algorithms were coded in MATLAB (R2014A) and tested on a PC with Inter® Quad-Core 3.00 GHz processor and 3.00 GB RAM. There are totally 5280 route that generated by k -lowest algorithm for each user class, and the total CPU times is 3.92s with $\varepsilon = 10^{-3}$ and 38.31s with $\varepsilon = 10^{-4}$.

542

Table 11 Traffic Equilibrium State of Multi-class Users

O-D pair	Route	$E(r_p)$	σ_p	T_p	LR model		HR model	
					c_p	Route flow	c_p	Route flow

	1	4.00	31.45	6.47	26.82	600.00	50.73	0.00
(10, 4)	2	2.12	7.91	20.62	26.85	0.00	32.87	600.00
	3	3.97	32.22	37.84	58.57	0.00	83.06	0.00
	4	5.22	25.62	27.21	45.75	0.00	65.22	0.00
	5	6.53	40.42	31.44	58.99	0.00	89.71	0.00
	6	10.03	30.35	22.20	48.01	0.00	71.08	0.00
	7	5.33	14.71	42.62	55.60	0.00	66.78	0.00
	8	6.04	34.02	40.52	64.25	0.00	90.11	0.00
	9	14.00	23.86	35.88	62.28	0.00	80.42	0.00
	10	4.45	23.87	64.72	81.58	0.00	99.71	0.00
	1	2.48	22.41	5.54	19.68	500.00	36.71	246.27
(10, 5)	2	2.65	9.77	21.56	29.28	0.00	36.71	253.73
	3	2.81	23.53	36.91	51.95	0.00	69.83	0.00
	4	5.37	33.90	30.51	53.50	0.00	79.26	0.00
	5	8.86	20.89	21.27	41.00	0.00	56.88	0.00
	6	6.39	33.97	28.15	52.21	0.00	78.02	0.00
	7	4.87	25.94	39.60	57.95	0.00	77.67	0.00
	8	5.86	15.79	43.56	57.63	0.00	69.62	0.00
	9	12.48	9.06	34.95	52.14	0.00	59.03	0.00
	10	7.11	33.17	33.20	57.56	0.00	82.76	0.00
	1	1.30	14.39	32.39	41.17	0.00	52.11	0.00
(10, 6)	2	3.15	22.88	10.09	25.14	400.00	42.53	0.00
	3	3.86	28.33	25.99	44.58	0.00	66.11	0.00
	4	7.36	9.49	16.75	29.04	0.00	36.26	400.00
	5	3.92	22.61	26.11	41.79	0.00	58.97	0.00
	6	3.37	18.06	35.07	47.83	0.00	61.56	0.00
	7	6.96	35.83	36.11	61.70	0.00	88.93	0.00
	8	5.61	27.45	28.67	48.56	0.00	69.42	0.00
	9	6.24	39.16	45.04	71.65	0.00	101.41	0.00
	10	9.20	41.36	29.71	60.42	0.00	91.86	0.00
	1	2.14	17.36	17.64	28.81	0.00	42.00	0.00
(10, 7)	2	1.15	7.02	29.02	33.82	0.00	39.16	661.93
	3	3.89	15.88	20.33	32.48	0.00	44.55	0.00
	4	7.84	14.01	13.39	28.51	950.00	39.16	288.07
	5	4.75	32.06	20.19	41.61	0.00	65.98	0.00
	6	4.52	32.13	36.70	57.92	0.00	82.34	0.00
	7	3.21	12.98	31.71	41.67	0.00	51.54	0.00
	8	7.48	34.78	21.36	46.93	0.00	73.37	0.00
	9	7.54	33.62	18.02	43.04	0.00	68.59	0.00
	10	5.71	28.92	32.22	52.97	0.00	74.95	0.00

543

544 Due to the limited length that is impossible to touch on all the O-D pairs in this network, parts of
545 the O-D pairs which originate from node 10 are selected for analyzing the equilibrium state. Table 11
546 shows the route flow results of the O-D pairs that present different equilibrium state for two types of
547 travelers. It is consistent with case 4 on the toy network that the route mean CRC ($E(r_p)$), standard
548 deviation of the route CRC (σ_p) and route travel time (T_p) are consistent for these two type of travelers.
549 However, due to the higher concerns of travel safety dispersions, HR travelers select the routes that
550 have relatively lower travel safety standard deviation. For example, between O-D pair 10 and 4, all HR
551 travelers select route 2 which is more reliable in safety than other routes. Also, all HR travelers select the
552 most reliable route in safety—route 4—between node 10 and node 6. Again, it reflects the nature of route
553 choice behavior that the travelers with higher effective CRC tend to choose more reliable routes. It also

554 validates the proposed model and confirms the feasibility and efficiency of algorithm for the real
555 network.

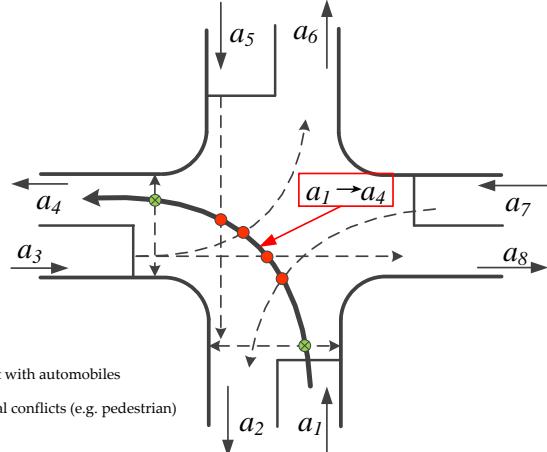
556 **5. CONCLUSION**

557 **5.1 Summary**

558 The present study proposes a route choice model for multi-class travelers, which considered both
559 travelers' travel safety concern, i.e. route safety reliability, and travel time concern. The relation between
560 travel safety variability and traveler's route choice behavior is innovatively established. Due to the
561 random nature of crash occurrence, the travel crash risk cost (CRC) of each link (including the dummy
562 links) is described as a distribution. It is assumed that travelers evaluate the travel CRC of a route
563 considering the variability of the route CRC with their safety requirements and factor such information
564 into their route choice consideration in the form of an effective CRC. This effective CRC reflects the
565 degree of the traveler's crash risk aversions. A mixed-equilibrium mathematical program is formulated
566 to describe this route choice behavior of multiple classes of travelers. Two networks including Nguyen
567 and Dupuis' network and Sioux falls network are used to demonstrate the formulations. It is found that
568 (1) the route choice behavior is sensitive to the route safety performance, including route average travel
569 safety and route travel safety variability; (2) the travel safety of intersections would significantly
570 influence the traveler's route choice decision; and (3) travelers with different effective CRC (crash risk
571 aversions) would have different route choice decisions: The HR travelers are strict with route travel
572 safety variability, whereas the LR travelers consider only the route average CRC in their determinations.

573 **5.2 Implications**

574 The proposed traffic assignment method has a great potential for traffic planners and managers in
575 network analysis and in making safety-related policies or regulations. First, this method provides a
576 safety-based travel behavior modeling tool for accommodating the increasing safety demands of travelers.
577 This implies possible new opportunities for transportation planners and managers to reshape travel and
578 activity patterns on both the planning and operational levels when taking into account the impact of road
579 safety on travelers' travel behavior. It will be very useful especially in the upcoming era of intelligent
580 connected vehicles in which abundant in-vehicle safety-related information will be presented to travelers.
581 Second, this method can further be adopted to scientifically and systematically assess the effects of
582 proposed traffic safety policies or regulations on network equilibrium in advance. Depending on an
583 estimation of travelers' behavioral responses² to the proposed safety countermeasures, the possible
584 changes of traffic circulation and the corresponding effects on the road network could be clearly specified.
585 This could be helpful for the traffic planners and operators to formulate traffic policies and regulations in
586 a scientific way, beyond making the decisions on the basis of past experience.


587 **5.3 Extension to conflict-based CRC evaluation**

588 In section 3, the traffic volume is applied as a proxy to evaluate the crash risk of turning and crossing
589 movements at intersections and to shape its CRC distribution. In fact, for an intersection movement,

² For example, a stricter safety policy or a more effective safety education project would enhance public safety awareness, and thus could further change their travel behaviors.

590 conflicts with traffic flows from other directions are the significant causes of the high crash risk and thus
 591 are highly associated with the shape of the CRC distribution. At an intersection, the number of conflicts is
 592 decided by its configuration and geometric features, and the frequency of conflicts occurring along a
 593 traffic stream is related to the volume of passing traffic. For example, as shown in Fig. 9, for a four-legged
 594 intersection, the left-turn flow ($x_{a_1 \rightarrow a_4}$) is not only in conflict with four automobile streams (the crossing
 595 flow ($x_{a_3 \rightarrow a_8}$), the left-turn flow ($x_{a_3 \rightarrow a_6}$), the left-turn flow ($x_{a_7 \rightarrow a_2}$), and the crossing flow ($x_{a_5 \rightarrow a_2}$)), but
 596 also competes with the potential streams of other types of traffic modes (e.g. pedestrian movements).

597
 598 **Fig. 9** Conflicts faced by flow in turning $a \rightarrow d$ at a four-legged intersection
 599

600 However, due to a dearth of studies, there is no a well-founded equation that can be used in this
 601 study to represent the conflict-CRC relations of different intersection types. Moreover, considering the
 602 interactions of flows with different traffic volumes would cause a significant increase in the complexity
 603 of computing. Therefore, in this study, the CRC of each intersection movement is estimated simply by
 604 accounting for the risk effect posed by the traffic volume along one traffic stream, with the aim of
 605 ensuring high computational efficiency. If a reliable function for the relationship between conflicts and
 606 the CRC (i.e. $E(r_{a \rightarrow d}) = f(x_{a_3 \rightarrow a_8}, x_{a_3 \rightarrow a_6}, x_{a_7 \rightarrow a_2}, x_{a_5 \rightarrow a_2})$) was available, Eq. (10) and (11) in proposed
 607 model could be replaced to enable the model to account for the effect of flow-related conflicts more
 608 explicitly. Meanwhile, an effective algorithm, that can handle the link interactions with an asymmetric
 609 CRC, would be essential to solve the resulting conflict-based route choice model (Dafermoss, 1982; Fisk
 610 and Nguyen, 1982). These extensions can be accommodated in further by modifying the proposed
 611 model and algorithm.

612 **5.4 Limitations and Future researches**

613 To the best of our knowledge, there is no exclusive research that has been performed for modeling
 614 traveler's safety-concern route choice behavior. This study fills this gap by developing a route choice
 615 model for multi-class travelers both accounting their safety and time concern, which will help the
 616 transportation planners and managers to better understand the travelers' safety-concern route choice
 617 behavior in the upcoming era of connected vehicles. However, several limitations and some following
 618 researches should be noted for this study.

- 619 • Due to the shortage of widely used method which is able to model the relationship between road
620 safety reliability and relevant risk factors, only the average driving speed are involved in shaping the
621 CRC distribution of segment link. Our future efforts will consist of refining the segment CRC
622 distribution by incorporating other risk factors, such as the environmental factors (e.g. adverse
623 weather) and road specific factors.
- 624 • Since the lack of the empirical studies that investigate the travelers' behavioral characteristics of safe
625 route choice, the trade-off behavior between travel safety and efficiency is hypothetically modeled to
626 be a sample linear relationship. Further research should pay more attention on investigating such
627 behavioral characteristics. The possible complex nonlinear relationships between perceived travel
628 safety cost and travel time cost should be explicitly considered.

629

630 ACKNOWLEDGEMENTS

631 This work was jointly supported by: 1) The Joint Research Scheme of National Natural Science
632 Foundation of China/Research Grants Council of Hong Kong (No. 71561167001 & N_HKU707/15); 2) The
633 National Natural Science Foundation of China (Project No. 71701216); 3) National Key Research and
634 Development Plan (No. 2018YFB1201601).

635

636 REFERENCES

- 637 Abdel-Aty, M., Kitamura, R., Jovanis, P., 1997. Using stated preference data for studying the effect of
638 advanced traffic information on drivers' route choice. *Transportation Research Part C* 5, 39–50.
- 639 Abdel-Aty, M., Pemmanaboina, R., 2006. Calibrating a real-time traffic crash-prediction model using
640 archived weather and ITS traffic data. *IEEE Transactions on Intelligent Transportation Systems* 7 (2),
641 167–174.
- 642 Aljahani, A., Rhodes A, Metcalfe A., 1999. Speed, speed limits and road traffic accidents under free flow
643 conditions. *Accident Analysis and Prevention* 31, 161-168.
- 644 Baćkalić, S., Jovanović, D., Baćkalić, T., 2014. Reliability reallocation models as a support tools in traffic
645 safety analysis. *Accident Analysis Prevention* 65, 47-52.
- 646 Bagloee, S., Asadi, M., 2016. Crash analysis at intersections in the CBD: a survival analysis model.
647 *Transportation Research Part A* 94, 558-572.
- 648 Carrion, C., Levinson, D., 2012. Value of travel time reliability: A review of current evidence.
649 *Transportation Research Part A* 46, 720-741.
- 650 Chapman, R., 1973. The concept of exposure. *Accident Analysis Prevention* 5, 95-110.
- 651 Chandra, S., 2014. Safety-based path finding in urban areas for older drivers and bicyclists.
652 *Transportation Research Part C* 48, 143-157.
- 653 Charlton, S., Starkey, N., 2016. Risk in our midst: centrelines, perceived risk, and speed choice. *Accident
654 Analysis and Prevention*, 95, 192-201.
- 655 Chen, A., Zhou, Z., Lam, W., 2011. Modeling stochastic perception error in the mean-excess traffic
656 equilibrium model. *Transportation Research Part B* 45, 1619-1640.
- 657 Chen, A., Zhou, Z., 2010. The α -reliable mean-excess traffic equilibrium model with stochastic travel
658 times. *Transportation Research Part B* 44, 493-513.
- 659 Chipman, M., MacGregor, C., Smiley, A., Lee, G., 1992. Time vs. distance as measures of exposure in

- 660 driving surveys. *Accident Analysis and Prevention* 24, 679–684.
- 661 Dafermoss, S., 1982. Relaxation Algorithms for the General Asymmetric Traffic Equilibrium Problem.
662 *Transportation Science* 16, 231-240.
- 663 De La Barra, T., Perez, B., Anez, J., 1993. Multidimensional path search and assignment. In 21st PTRC
664 Summer Annual Meeting, University of Manchester, United Kingdom, 307-319.
- 665 Elliott, D., Keen, W., Miao, L., 2019. Recent advances in connected and automated vehicles. *Journal of*
666 *Traffic and Transportation Engineering* In Press.
- 667 Elvik, R., 2002. Optimal speed limits: the limits of optimality models. *Transportation Research Record*,
668 1818, 32-38.
- 669 Elvik, R., Christensen, P., Amundsen, A., 2004. Speed and road accidents—an evaluation of the power
670 model. *Institute of Transportation Economics. TOI report*, 740/2004, Oslo.
- 671 Fisk, C., Nguyen, S., 1982. Solution Algorithms for Network Equilibrium Models with Asymmetric User
672 Costs. *Transportation Science* 16, 361-381.
- 673 Gabriel, S., Bernstein, D., 1997. The traffic equilibrium problem with non-additive path costs.
674 *Transportation Science* 31, 337–348.
- 675 Gerla, M., Lee, E., Pau, G., Lee, U, 2014. Internet of vehicles: From intelligent grid to autonomous cars
676 and vehicular clouds. In *IEEE World Forum on Internet of Things* 241–246.
- 677 Geyer, J., Raftord, N., Pham, T., Ragland, D.R., 2006. Safety in Numbers. Data from Oakland, California.
678 *Transportation Research Record* 1982, 150–154.
- 679 Goczyłła, K., Cielatkowski, J., 1995. Optimal routing in a transportation network. *European Journal*
680 *Operational Research* 87, 214–222.
- 681 Han, C., Huang, H., Lee, J., Wang, J., 2018. Investigating varying effect of road-level factors on crash
682 frequency across regions: A Bayesian hierarchical random parameter modeling approach. *Analytic*
683 *Methods in Accident Research* 20, 81-91
- 684 Hauer, E., 1982. Traffic conflicts and exposure. *Accident Analysis and Prevention* 14, 359–364.
- 685 Hauer, E., 2002. *Observational Before–After Studies in Road Safety*. Pergamon/Elsevier Science, Inc.,
686 Tarrytown, New York.
- 687 Hong, J., Shankar, V., Venkataraman, N., 2016. A spatially autoregressive and heteroskedastic
688 space-time pedestrian exposure modeling framework with spatial lags and endogenous network
689 topologies. *Analytic Methods in Accident Research*, 10, 26-46.
- 690 Hossain, M., Abdel-Aty, M., Quddus, M.A., Muromachi, Y., Sadeek, S.N., 2019. Real-time crash
691 prediction models: state-of-the-art, design pathways and ubiquitous requirements. *Accident Analysis*
692 *and Prevention* 124, 66–84.
- 693 Huang, H., Abdel-Aty, M., 2010. Multilevel data and Bayesian analysis in traffic safety. *Accident*
694 *Analysis Prevention* 42, 1556–1565.
- 695 Huang, H., Zhou, H., Wang, J., Chang, F., Ma, M., 2017. A multivariate spatial model of crash frequency
696 by transportation modes for urban intersections. *Analytic Methods in Accident Research* 14, 10-21.
- 697 Jackson, W., Jucker, J., 1982. An Empirical Study of Travel Time Variability and Travel Choice Behavior.
698 *Transportation Science* 16, 460-475.
- 699 Jalayer, M., Zhou, H., 2016. Evaluating the safety risk of roadside features for rural two-lane roads using
700 reliability analysis. *Accident Analysis Prevention* 93, 101-113.
- 701 Jovanović, D., 2011. The application of reliability models in traffic accident frequency analysis. *Safety*

- 702 Science 49, 1246-1251.
- 703 Lee, C., Hellinga, B., Saccomanno, F., 2003. Real-time crash prediction model for the application to crash
704 prevention in freeway traffic. *Transportation Research Record: Journal of Transportation Research*
705 Board 1840, 67-77.
- 706 Liu, H., He, X., He, B., 2009. Method of successive weighted averages (MSWA) and self-regulated
707 averaging schemes for solving stochastic user equilibrium problem. *Networks and Spatial Economics*,
708 9(4), 485-503.
- 709 Lo, H., Chen, A., 2000. Traffic equilibrium problem with route-specific costs: formulation and
710 algorithms. *Transportation Research Part B* 34, 493-513.
- 711 Lo, H., Luo, X., Siu, B., 2006. Degradable transport network: travel time budget of travelers with
712 heterogeneous risk aversion. *Transportation Research Part B* 40, 792-806.
- 713 Lo, H., Tung, Y., 2003. Network with degradable links: capacity analysis and design. *Transportation*
714 *Research Part B* 37 (4), 345-363.
- 715 Mannering, F., Bhat, C., 2014. Analytic methods in accident research: methodological frontier and future
716 directions. *Analytic Methods in Accident Research* 1, 1-22.
- 717 Markowitz, H., 1999. The early history of portfolio theory: 1600-1960. *Financial Analysis Journal* 55, 5-
718 16.
- 719 Mcdonald, J., 1953. Relation between number of accidents and traffic volume at divided -highway
720 intersections. *Highway Research Board Bulletin*, Issue Number: 74, Highway Research Board.
- 721 Nie, Y., Li, Q., 2013. An eco-routing model considering microscopic vehicle operating conditions.
722 *Transportation Research Part B* 55, 154-170.
- 723 Nie, Y., 2011. Multi-class percentile user equilibrium with flow-dependent stochasticity. *Transportation*
724 *Research Part B* 45, 1641-1659.
- 725 Oh, H., Mun, S., 2012. Design speed based reliability index model for roadway safety evaluation. *Ksce*
726 *Journal of Civil Engineering* 16, 845-854.
- 727 Park, J., Abdel-Aty, M., Wu, Y., Mattei, I., 2018. Enhancing in-vehicle driving assistance information
728 under connected vehicle environment. *IEEE Transactions on Intelligent Transportation Systems* 99,
729 1-10.
- 730 Payyanadan, R., Sanchez, F., Lee, J., 2017. Assessing Route Choice to Mitigate Older Driver Risk. *IEEE*
731 *Transactions on Intelligent Transportation Systems* 18, 527-536.
- 732 Qin, X., Ivan, J., Ravishanker, N., 2004. Selecting exposure measures in crash rate prediction for two-lane
733 highway segments. *Accident Analysis and Prevention*, 36, 183-191.
- 734 Rilett, L., Benedek, C., 1994. Traffic assignment under environmental and equity objectives.
735 *Transportation Research Record* 1443, 92-92.
- 736 Shao, H., Meng, Q., Tam, M., 1985. Demand-driven traffic assignment problem based on travel time
737 reliability. *Transportation Research Record* 2006, 220-230.
- 738 Shao H., Lam W., Mei L., 2006. A Reliability-Based Stochastic Traffic Assignment Model for Network
739 with Multiple User Classes under Uncertainty in Demand. *Networks & Spatial Economics* 6, 173-204.
- 740 Smith T., Hsu C., Hsu Y., 2008. Stochastic User Equilibrium Model with Implicit Travel Time Budget
741 Constraint. *Transportation Research Record* 2085, 95-103.
- 742 Tzeng, G., Chen, C., 1993. Multiobjective decision making for traffic assignment. *IEEE Transactions on*
743 *Engineering Management* 40 (2), 180-187.

- 744 Uchida, T., Iida, Y., 1993. , Risk assignment: a new traffic assignment model considering risk of travel
745 time variation. In: Daganzo, C. (Ed.), *Proceedings of the 12th International Symposium on*
746 *Transportation and Traffic Theory*. Elsevier, Amsterdam, pp. 89–105.
- 747 Von, N., Morgenstern, O., 1944. *Theory of Games and Economic Behavior*. Princeton University Press.
- 748 Wong, S., Sze, N., Li, Y., 2007. Contributory factors to traffic crashes at signalized intersections in Hong
749 Kong. *Accident Analysis and Prevention* 39, 1107-1113.
- 750 Xu, C., Wang, X., Yang, H., Xie, K., Chen, X., 2019. Exploring the impacts of speed variances on safety
751 performance of urban elevated expressways using GPS data. *Analytic Methods in Accident Research*
752 123, 29-38.
- 753 Xie, K., Wang, X., Ozbay, K., Yang, H., 2014. Crash frequency modeling for signalized intersections in a
754 high-density urban road network. *Analytic Methods in Accident Research* 2, 39-51.
- 755 Xin, P., Wong, S., Sze, N.N., 2012. The roles of exposure and speed in road safety analysis. *Accident
756 Analysis and Prevention* 48, 646-471.
- 757 Xu, G., Liu, W., Yang, H., 2018. A reliability-based assignment method for railway networks with
758 heterogeneous passengers. *Transportation Research Part C* 93, 501-524.
- 759 Xu, X., Chen, A., Cheng, L., Lo, H., 2014a. Modeling distribution tail in network performance assessment:
760 a mean-excess total travel time risk measure and analytical estimation method. *Transportation
761 Research Part B* 66, 32–49 .
- 762 Xu, X., Chen, A., Zhou, Z., Cheng, L., 2014b. A multi-class mean-excess traffic equilibrium model with
763 elastic demand. *Journal of Advanced Transportation* 48 (3), 203–222 .
- 764 Xu, X., Wong, S., Choi, K., 2014c. A two-stage bivariate logistic-Tobit model for the safety analysis of
765 signalized intersections. *Analytic Methods in Accident Research* 3-4, 1-10.
- 766 Xu, X., Chen, A., Cheng, L., Yang, C., 2017. A link-based mean-excess traffic equilibrium model under
767 uncertainty. *Transportation Research Part B* 95, 53-75.
- 768 Yu, B., Chen, Y., Wang, R., Dong, Y., 2016. Safety reliability evaluation when vehicles turn right from
769 urban major roads onto minor ones based on driver's visual perception. *Accident Analysis Prevent* 95,
770 487-494.