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41 Abstract 

42 Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The 

43 approaches used to represent stomatal conductance (gs) in models vary. In particular, current 

44 understanding of drivers of the variation in a key parameter in those models, the slope parameter 

45 (i.e. a measure of intrinsic plant water-use-efficiency), is still limited, particularly in the tropics. 

46 Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and 

47 a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian 

48 forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, 

49 leaf-mass-per-area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of 

50 isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf-

51 level gs models with and without the inclusion of Ψleaf as an additional predictor variable 

52 influence the ability to predict gs, and then explored the abiotic (i.e. month, site-month 

53 interaction) and biotic (i.e. tree-species-specific characteristics) drivers of slope parameter 

54 variation. Our results show that the inclusion of Ψleaf did not improve model performance and 

55 that the models that represent the response of gs to vapor pressure deficit performed better than 

56 corresponding models that respond to relative humidity. Within each gs model, we found large 

57 variation in the slope parameter, and this variation was attributable to the biotic driver, rather 

58 than abiotic drivers. We further investigated potential relationships between the slope parameter 

59 and the six available plant traits mentioned above, and found that only one trait, LMA, had a 

60 significant correlation with the slope parameter (R2=0.66, n=15), highlighting a potential path 

61 towards improved model parameterization. This study advances understanding of gs dynamics 

62 over seasonal drought, and identifies a practical, trait-based approach to improve modeling of 

63 carbon and water exchange in tropical forests.
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64 Introduction

65 Stomata regulate the exchange of carbon and water between plants and the atmosphere 

66 (Cowan & Farquhar, 1977; Lawson & Vialet-Chabrand, 2018; Sperry et al., 2017). At large 

67 scales, control of stomatal aperture regulates regional and global biogeochemical cycles of 

68 carbon, water and energy, and influences the climate through vegetation-mediated climate 

69 feedbacks (Bonan, 2008; Pielke et al., 1998; Zeng et al., 2017). Therefore, the representation of 

70 stomatal conductance (gs) is a fundamental component of Terrestrial Biosphere Models (TBMs), 

71 and is essential to formulate correctly because it also captures the impacts of ongoing global 

72 change on the climate system.  

73 Four previously developed and widely used leaf-level models of gs have been adopted by 

74 current TBMs. These include the phenomenological Ball-Berry (BB; Ball, Woodrow, & Berry, 

75 1987), Ball-Berry-Katul (BBK; Katul, Manzoni, Palmroth, & Oren, 2010), and Ball-Berry-

76 Leuning (BBL; Leuning, 1995) models, and the optimality-based unified stomatal optimization 

77 model (USO; Medlyn et al., 2011). The phenomenological models are based on empirical 

78 observations of stomatal behavior in response to environmental stimuli, whereas the optimality 

79 model is based on the principle that stomata act to maximize carbon gain while minimizing water 

80 loss (Cowan & Farquhar, 1977).  Among these models, the BB and BBK formulations use 

81 relative humidity (RH) while the BBL and USO formulations represent gs responses to vapor 

82 pressure deficit (D). Although D-type models more closely reflect stomatal mechanics and are 

83 directly proportional to water loss (e.g. Aphalo & Jarvis, 1991; Eamus, Taylor, Macinnis-NG, 

84 Shanahan, & de Silva, 2008), both RH-type and D-type gs models are still widely used in TBMs 

85 (e.g. Franks et al., 2018; Knauer et al., 2017; Rogers et al., 2017). Moreover, the performance of 

86 RH-type and D-type models has rarely been evaluated in natural forests across diverse species 
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87 with in-situ gas exchange measurements, particularly in tropical forest biomes where changes in 

88 RH and D are typically tightly coupled. Despite these fundamental differences, 

89 phenomenological and optimality-based gs models are structurally similar (Medlyn et al., 2011) 

90 and they generate comparable gs predictions under many biotic and abiotic conditions (Sperry et 

91 al., 2017). Common to all these models is a representation of gs that varies approximately 

92 linearly with net CO2 assimilation rate (A) for a given set of environmental conditions 

93 (temperature, humidity and leaf-surface CO2 concentration). Therefore, the slope parameter of 

94 this coupled gs-A relationship, which is an indicator of intrinsic plant water use efficiency 

95 (referring to the amount of water release through stomata for given A and environmental 

96 conditions as shown in Fig. 1), is fundamental to all these models. 

97 Although it has been shown that the value of the slope parameter can have a large impact 

98 on simulated carbon and water fluxes (Bauerle, Daniels, & Barnard, 2014; Franks et al., 2018; 

99 Jefferson, Maxwell, & Constantine, 2017), our understanding of the variability in the slope 

100 parameter is far from complete. Particularly, it is unclear what drives variation in the slope 

101 parameter, which has been shown to change with both biotic (i.e. tree-species identification and 

102 associated leaf characteristics) and abiotic factors (i.e. growth environment, and seasonal and 

103 inter-annual environmental variability such as drought and warming) (e.g. Heroult, Lin, Bourne, 

104 Medlyn, & Ellsworth, 2013; Lin et al., 2015; Medlyn et al., 2011; Pantin, Simonneau, & Muller, 

105 2012; Wolz, Wertin, Abordo, Wang, & Leakey, 2017). This lack of a clear understanding of the 

106 impact of biotic and abiotic controls on the slope parameter has contributed to the current 

107 controversy on the choice of the most appropriate and parsimonious formulation of gs models to 

108 implement in TBMs. For example, recent experimental and seasonal drought-based studies have 

109 shown that the abiotic control of the slope parameter can be as important as the biotic control, 
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110 especially under soil moisture stress (e.g. Drake et al., 2017; Heroult, Lin, Bourne, Medlyn, & 

111 Ellsworth, 2013; Zhou, Medlyn, Sabaté, Sperlich, & Prentice, 2014). This can arise either from 

112 the shorter timescale (e.g. diurnal) coordinated variation between leaf water potential and D 

113 (Anderegg et al., 2017), from the increasing soil moisture stress that can induce the associated 

114 change in plant water potential which down-regulates gs and thus the slope parameters (e.g. 

115 Drake et al., 2017; Heroult, Lin, Bourne, Medlyn, & Ellsworth, 2013; Zhou, Medlyn, Sabaté, 

116 Sperlich, & Prentice, 2014), or there is coordinated acclimation of the slope parameter with 

117 seasonal variation in soil moisture and plant water potential (e.g. Koepke & Kolb, 2012; Xu & 

118 Baldocchi, 2003). Regardless of the reasons, the inclusion of a plant or leaf water potential 

119 variable with the original gs formulations has recently been increasingly advocated as a way to 

120 improve prediction of gs (Anderegg et al., 2017; Drake et al., 2017;  Zhou, Medlyn, Sabaté, 

121 Sperlich, & Prentice, 2014). Despite the recommendation of these previous studies, it remains 

122 unclear whether these results are representative of wider natural plant communities, and 

123 importantly, systems such as the tropics where tall canopy evergreen trees have evolved root 

124 systems to adapt to seasonal variability in soil moisture content (Giardina et al., 2018; Meinzer et 

125 al., 1999).  

126 Although large variability in the slope parameter has been previously observed within 

127 and across biomes (Dietze et al., 2014; Lin et al., 2015), many TBMs use just two slope 

128 parameters to differentiate between vegetation with the C3 and C4 photosynthetic pathways (e.g. 

129 Kowalczyk et al., 2006; Oleson et al., 2013; Sitch et al., 2003). Other TBMs incorporate 

130 additional slope values for different plant functional types (PFTs), for example needleleaf 

131 evergreen trees, broadleaf deciduous trees and C3 crops (Baldocchi & Mayers, 1998; Oleson et 

132 al., 2010), or by using different slope parameters for temperate and tropical plants (Medvigy, 
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133 Wofsy, Munger, Hollinger, & Moorcroft, 2009). While past efforts to define the values of 

134 stomatal slope across different PFTs were limited by data, recent syntheses and analyses have 

135 provided improved understanding of global-scale variation in the slope parameter, enabling the 

136 data-driven parameterization of stomata control in up to ten different global PFTs (Lin et al., 

137 2015; Miner, Bauerle, & Baldocchi, 2017). 

138 Tropical forests account for around one-third of annual terrestrial photosynthesis (Beer et 

139 al., 2010), and, through stomatal control of transpiration, mediate tropical convection and the 

140 timing of dry-to-wet season transitions—a potentially important climate feedback (Wright et al., 

141 2017). However, for such a globally important and hyperdiverse biome, typically only one value 

142 for the slope parameter is assigned in current TBMs (Lin et al., 2015; Miner, Bauerle, & 

143 Baldocchi, 2017; Rogers et al., 2017). One approach to improve the representation of stomatal 

144 response in TBMs is to establish empirical relationships between the slope parameter and other 

145 plant traits (e.g. Lin et al., 2015). Not only do such relationships provide an empirical way to link 

146 plant traits to the variability in the slope parameter within vegetation communities (Xu, Medvigy, 

147 Powers, Becknell, & Guan, 2016), but they might also elucidate the biological mechanisms 

148 underlying such variability (Lin et al., 2015). However, whether the previously observed global-

149 scale relationships between the slope parameter and key plant traits as shown in Lin et al. (2015) 

150 also holds within forest communities, i.e. across tropical tree-species and forest sites, remains 

151 uncertain. 

152 The goal of this study was to identify the best potential model representation, and explore 

153 the underlying ecological understanding, of the response of gs to seasonal drought in tropical 

154 forests. Specifically, we examined the impact of stomatal model choice (i.e. BB, BBK, BBL or 

155 USO), inclusion of leaf water potential (Ψleaf), as well as abiotic and biotic drivers of variation in 
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156 the slope parameter on the ability to predict gs dynamics in the tropics. We collected a unique 

157 field dataset consisting of fifteen evergreen tree-species in two forests over the course of the 

158 2016 dry season, which due to a strong 2015-2016 El Niño event (Liu et al., 2017) was drier than 

159 the historical mean. Since both growth environment and leaf phenology might affect stomatal 

160 response to diurnal and seasonal environmental variability, here we aim to first standardize these 

161 effects by focusing solely on canopy-top, sunlit leaves at their fully mature status. By controlling 

162 the leaf age variation in this way together with environmental variability captured by the gs 

163 models, the primary abiotic drivers of the slope parameter that we considered included forest 

164 sites and the month of measurement (which represented seasonal variability in soil moisture 

165 content and atmospheric humidity). The biotic factors included tree-species specific response and 

166 their associated plant traits, which are either mechanistically or phenomenologically linked to 

167 photosynthesis or transpiration (e.g. Xu, Medvigy, Powers, Becknell, & Guan, 2016; Wright et 

168 al., 2004). The six plant traits we considered include wood density, leaf-mass-per-area (LMA), 

169 leaf carboxylation capacity (Vc,max25), leaf water content, the degree of isohydry (Martinez-

170 Vilalta, Povatos, Aguadé, Retana, & Mencuccini, 2014), and predawn Ψleaf. We asked four 

171 questions: (i) Does the inclusion of Ψleaf as an additional predictor variable improve the 

172 simulation of gs of tropical trees? (ii) Which model formulation best captures observed gs? (iii) 

173 How do abiotic and biotic drivers of variation in the slope parameter influence the ability to 

174 predict gs? (iv) Are there any key relationships with plant traits, particularly those widely 

175 observed or easily measured, that could be used to constrain variation in the slope parameter 

176 within models? Through answering these questions, we aim to improve understanding of gs 

177 dynamics in tropical forests, and potentially provide a practical approach to advance TBM 
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178 representation of gs, thereby enabling a more accurate representation of carbon and water 

179 dynamics in tropical ecosystems.

180

181 Materials and methods

182 Sites and materials

183 This study was conducted at two lowland tropical moist forest sites separated by 80 km 

184 on opposite sides of the Isthmus of Panama. At each site, the Smithsonian Tropical Research 

185 Institute maintains a canopy-access crane that enables access to the forest canopy. These sites 

186 include a seasonally dry forest in the Parque Natural Metropolitano (PNM; 8°59'41.55'' N, 

187 79°32'35.22'' W) near Panama City and a wet evergreen forest in the San Lorenzo Protected Area 

188 (SLZ; 9°16’51.71” N, 79°58’28.27” W), Colon Province. Historic (1998-2015) mean annual air 

189 temperature is 26.3 °C and 25.8 °C, and mean annual precipitation is 1826 mm and 3286 mm for 

190 PNM and SLZ, respectively, with ~90% of the rainfall in the May-December wet season (Fig. 2). 

191 For more details on these sites see Wright et al. (2003).

192 Fifteen evergreen canopy tree-species with no within species replication (n=7 for PNM 

193 and n=8 for SLZ; Table 1) were selected for intensive field measurements of leaf gas exchange 

194 and plant traits. These tree species were within the canopy crane access footprint and were 

195 selected to capture the diversity of tree species and plant trait space present at each site. In order 

196 to minimize the effects of leaf phenology and canopy environments on variation in field-

197 measured stomatal conductance, we restricted measurements to current-season, fully-expanded, 

198 upper canopy sunlit foliage. We conducted four campaigns in 2016 at monthly intervals from 

199 mid-February until mid-May, covering the middle of dry-season to the beginning of wet-season 

200 (Figs. 2 and S2). We spent two days at each location each month and conducted diurnal 
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201 measurements of leaf gas exchange and leaf water potential (Ψleaf), measured photosynthetic CO2 

202 response curves and collected additional leaf traits. The May campaign had a reduced scope and 

203 only focused on measurements of diurnal leaf gas exchange and Ψleaf. 

204

205 Measurements of leaf gas exchange and traits

206 We used six portable gas exchange systems (LI-6400XT, LI-COR Inc., Lincoln, NE, 

207 USA) equipped with a 2x3 cm2 leaf chamber and red-blue light source. These gas exchange 

208 systems were zeroed with a common nitrogen standard prior to each campaign. Diurnal leaf gas 

209 exchange measurements were made in-situ using cranes to access the canopy throughout the day. 

210 Each tree-species was measured five to seven times per day, and at each time point two leaves 

211 were measured and then harvested for subsequent trait measurements. Measurements of diurnal 

212 gas exchange, including A, gs, leaf surface CO2 concentration (Ca), intercellular CO2 

213 concentration (Ci), relative humidity (RH), leaf-to-air vapor pressure deficit (D) and leaf 

214 temperature, followed the method of Bernacchi et al. (2006), and were used to evaluate leaf level 

215 gs models (see below). Prior to the gas exchange measurements, the temperature of each 

216 measured leaf was recorded, and chamber conditions were matched to the ambient environment. 

217 For each measurement round (time point), the sample chamber temperature (Tblock) was set to the 

218 ambient air temperature. For each tree, the sample chamber light was set to the 

219 photosynthetically active radiation (PAR) incident on the leaf. This was adjusted throughout 

220 each measurement time point to account for changing light conditions due to intermittent cloud 

221 cover and leaf aspect. For each tree-species, chamber CO2 concentration was set to ambient CO2 

222 concentration plus the differential expected due to CO2 assimilation. The relative humidity of the 

223 air entering the leaf chamber was not reduced so as to keep it close to ambient conditions. A high 
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224 flow rate (500 μmol s-1) was used to minimize the time taken for A and gs to stabilize. After 

225 clamping in the chamber, rates were monitored using the instrument’s graphical interface and 

226 statistical output, and data logged after A and gs reached stability. To ensure we were capturing 

227 gas exchange rates representative of ambient conditions data were logged within a maximum of 

228 90 seconds after clamping the leaf in the measurement chamber. 

229 Over the course of the season we made c. 46 measurements per tree-species for a total 

230 694 individual measurements. Prior to data analysis we filtered our initial dataset of survey 

231 measurements by removing spurious data (e.g. negative values) and data where we believed 

232 values were not reliable due to a mismatch between sample and reference IRGAs, or where 

233 measured values indicated an artifact (e.g. dew on the leaves early in the morning, or poor 

234 contact with the leaf thermocouple) or poor replication of ambient conditions. These data were 

235 identified by flagging data where the Ci:Ca ratio was <0.2 or >0.9, or where RH was <35% 

236 or >90%. Following examination of these flagged data records 83% of the total dataset remained 

237 and was used for subsequent analysis. 

238 Measurement of the response of A to Ci, commonly known as A-Ci curves, was conducted 

239 on detached branch sections. All branches were sampled before dawn using the canopy crane. 

240 We took steps to protect the samples from xylem embolism, and where possible branches were 

241 cut underwater by bending the branch into a bucket filled with water. In all cases >1m of branch 

242 was removed within 15 minutes of the initial cut by recutting the branch section underwater in a 

243 large container. Samples were stored in individual buckets and kept in deep shade until used for 

244 measurements. Measurement of A-Ci curves closely followed the approach recently described by 

245 Rogers, Serbin, Ely, Sloan, & Wullschleger (2017). Apparent maximum photosynthetic capacity 

246 standardized to a reference temperature of 25°C (Vc,max25) was estimated using the kinetic 
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247 constants and temperature response functions presented by Bernacchi et al. (2013) as described 

248 by Rogers, Serbin, Ely, Sloan, & Wullschleger (2017). A total of 120 estimates of Vc,max25 were 

249 used in this study (c. 8 per tree-species), with tree-species-specific mean and standard deviation 

250 summarized in Table 1. 

251 Following in-situ gas exchange measurement, the leaves were immediately harvested for 

252 Ψleaf and trait measurement. Leaves were sealed in humidified plastic bags and stored in the dark 

253 on ice for a maximum of two hours before further processing. Ψleaf was measured using a 

254 Scholander-type pressure chamber (PMS, Albany, OR, USA) as described previously 

255 (McDowell, Brooks, Fitzgerald, & Bond, 2003). We also tested the robustness of our 

256 methodology used to measure Ψleaf through an experimental test by examining the impact of the 

257 time duration of wait time prior to measurement on the Ψleaf observed, and the results showed 

258 that within the 2-hours, leaf storage in the dark on ice had little impact on the estimated Ψleaf. 

259 These experimental results were summarized in Methods S1 and Fig. S3. We then sampled a 

260 known leaf area using cork borers and weighed leaf fresh mass with a precision balance (Fisher 

261 Science Education, Model SLF303, Hanover Park, IL). Once weighed, the samples were dried to 

262 constant mass at 70°C. We then determined dry mass to calculate LMA (g m-2) and leaf water 

263 content (LWC; as a percentage of fresh mass, %). We also collected leaf samples (2-3 replicates 

264 per tree-species per campaign) before dawn to measure pre-dawn Ψleaf. Based on the predawn 

265 and diurnal measurements of Ψleaf, we derived a tree-species-specific plant hydrological trait, 

266 degree of isohydry, which is defined by the slope of pre-dawn and mid-day Ψleaf, following the 

267 approach as Martinez-Vilalta, Povatos, Aguadé, Retana, & Mencuccini (2014). In addition, we 

268 used the existing data on stem wood density for our target tree-species collected from the same 
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269 forests (Wright et al., 2010). Canopy height and diameter at breast height (DBH) for the target 

270 tree-species referred to Dickman et al. (2019).  

271 Independent of the diurnal measurement campaigns, for the same tree-species at each site, 

272 we also measured stem hydraulic conductivity as a function of stem water potential (i.e. 

273 hydraulic vulnerability curves) in terminal branches of canopy trees. Following the approach 

274 described by Wolfe, Sperry, & Kursar (2016), we measured hydraulic conductivity on 20–52 

275 stem segments per tree-species (mean stem diameter = 5.9 mm) that had been air dried to reach 

276 varying stem water potential. For each tree-species, stem hydraulic conductivity was plotted as a 

277 function of stem water potential and a Weibull function was fit through the 90th percentile to 

278 obtain the vulnerability curve parameters (summarized in Table 1).

279 We recognize that there are alternative approaches to deriving fitted parameters and 

280 additional value in many of the traits we have collected. Therefore, all the data associated with 

281 this study including raw gas exchange data, fitted photosynthetic parameters and leaf trait are 

282 publicly available at the NGEE-Tropics dataset archive (Ely et al., 2018a,b; Rogers et al., 

283 2018a,b; Wolfe et al., 2018), the TRY database (Kattge et al., 2011) and the database 

284 (www.BETYd.org) associated with the PEcAn project (LeBauer et al., 2018).

285

286 Stomatal conductance models

287 We utilized the four common models to describe the coupled gs-A relationship to 

288 environmental variables, including BB, BBK, BBL and USO (as described in the introduction). 

289 The BB model (Ball, Woodrow, & Berry, 1987) is formulated as follows:
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290 gs  g0  m  A  RH
Ca

                                                                     (1)

291 where RH is the leaf-surface relative humidity, Ca is the leaf-surface CO2 concentration (μmol 

292 mol-1), A is the net photosynthesis rate (μmol CO2 m-2 s-1), m is the slope parameter (unitless), 

293 and g0 (mol m-2 s-1) is the intercept of the regression, representing baseline gs. 

294             The BBK model (Katul, Manzoni, Palmroth, & Oren, 2010) as equation 2 is an extended 

295 version of the BB model that also accounts for the CO2 compensation point (Γ*) of assimilation 

296 in the absence of dark respiration. 

297   gs  g0  m1  A  RH
(Ca  *)

                                                                  (2)

298 where m1 is the slope parameter, and Γ* is a function of leaf temperature using the same formula 

299 as Leuning (1995), shown in Table S1. 

300 The BBL model (Leuning, 1995) is an alternative way to relate gs to the environment 

301 incorporating an empirical dependence on leaf-to-air vapor pressure deficit (D, KPa) as follows: 

302 gs  g0  a1  A
(Ca  *) (1 D / D0 )

                                             (3)

303 where a1 is the slope parameter and D0 is a fitted parameter. A practical issue with equation 3 is 

304 that the parameters a1 and D0 are highly correlated (Medlyn, Robinson, Clement, & McMutrie, 

305 2005) and thus not statistically valid to interpret values of a1 across different tree-species when 

306 D0 is fitted simultaneously. To avoid this issue, we employed a two-stage fitting procedure where 

307 we initially fitted BBL for the full dataset to derive D0 (=0.61), and then assigned the same D0 

308 throughout all tree-species when estimating tree-species-specific a1. 
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309 The USO model as follows is an optimality model developed by Medlyn et al. (2011) ), 

310 with the slope parameter of g1.

311 gs  g0 1.6  (1 g1

D
) A

Ca

                                                        (4)

312 Of particular note, in the original derivation of the gs models shown above, the intercept 

313 term g0 ensures correct gs response when A approaches zero. The term g0 is often thought to 

314 represent the cuticular gs, or the conductance with closed stomata. Similar to Lin et al. (2015), 

315 we did not fit g0. First, fitted values of g0 and the slope parameter tend to be correlated, meaning 

316 that the estimated slope parameters can be ill-posed and differences in the slope parameters 

317 among datasets cannot be clearly interpreted. Second, measuring cuticular conductance instead 

318 of fitting the parameter is likely a better means to capture g0. Since we did not measure cuticular 

319 conductance, in our data analysis, we assume g0=0 for all tree-species. 

320 To evaluate whether inclusion of Ψleaf as an additional model variable improves 

321 predictions of the four gs models (Eqns. 1-4), we adapted the equation below from Anderegg et 

322 al. (2017):

323                                       fleaf  e
( leaf

c
)b

                                                             (5)

324 where b and c are two tree-species-specific parameters, which describe the Weibull form of the 

325 xylem conductivity functions, and hydraulic conductivity = kmax× fleaf , where kmax describes the 

326 maximum rate of hydraulic conductance in the absence of water stress, i.e. Ψleaf =0 MPa (Sperry 

327 et al., 2017). 
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328 Taking BBL as an example, the model that incorporates Ψleaf is shown below:

329                                       gs  g0  a1  A
(Ca  *) (1 D / D0 )

 fleaf

   
                                    (6)

330

331 Modeling experiments, model fit and drivers of the slope parameter variation

332 We first evaluated model choice and whether inclusion of Ψleaf would improve 

333 predictions of the four gs models through the following three tests: (i) we calculated the model 

334 residuals (that we defined as the modeled gs minus observed gs) for the modeling scenarios 

335 without Ψleaf and quantified the extent to which these model residuals can be explained by 

336 measured Ψleaf; (ii) we performed model optimization for each of the four gs models with 

337 (including three parameters: the slope parameter, b and c) and without (that has just one 

338 parameter: the slope parameter) Ψleaf, and evaluated the model selection with the coefficient of 

339 determination (R2), the root-mean-squared error (RMSE) of the model and the Akaike 

340 information criterion (AIC). AIC allows for the determination of relative statistical model 

341 robustness and parsimony by estimating the degree to which the inclusion of additional 

342 parameters between models improves model fit versus the loss of statistical power; and (iii) 

343 performed a second model optimization at the tree-species level, but instead of using the 

344 optimized Weibull parameters (b and c; Eqn. 5) for describing the xylem conductivity function 

345 as in the second test, we used the tree-species-specific Weibull parameters derived from 

346 laboratory-measured stem hydraulic vulnerability curves (Table 1). The model selection was then 

347 evaluated through corresponding R2, RMSE, and AIC.

348 In addition to the tests including Ψleaf, we also evaluated the models in their original 

349 forms (Eqns. 1-4). For each gs model we examined how the abiotic (i.e. site: PNM and SLZ; 
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350 month-of-measurement: February, March, April and May) and biotic (i.e. tree-species, n=15) 

351 factors separately and jointly influence the estimation of the slope parameter used to predict gs. 

352 We started with the scenario that only accounts for the fixed effect, i.e. assuming a common 

353 slope parameter for the full dataset. We then performed the analysis iteratively by adding one 

354 level of the random effects (i.e. allowing for variation in the slope parameter associated with 

355 different abiotic and/or biotic factors) in each analytical scenario, following the order of random 

356 effects induced by month, site-month interaction, tree-species and tree-species-month interaction, 

357 respectively, until the full random effects were represented in the final analysis. Three metrics 

358 (R2, RMSE and AIC) were also calculated to compare different analytical scenarios.

359 Additionally, we bootstrapped the full dataset 1000 times for cross-model performance 

360 comparisons. For each bootstrap, we randomly selected 70% of the data to fit parameters and 

361 used the remaining 30% for validation. For the validation results (quantified using both the R2 

362 and RMSE statistics calculated for each iteration), statistical differences between model pairs 

363 were identified with t-tests.

364 Last, we derived tree-species-specific slope parameters for each of the four gs models in 

365 their original forms using the ordinary least squared nonlinear model fit. We assessed these slope 

366 parameter correlations with all six available plant traits, which have previously been linked with 

367 either plant photosynthesis or transpiration. These six plant traits included wood density, LMA, 

368 Vc,max25 , LWC, degree of isohydry and pre-dawn Ψleaf.    

369

370 Results

371 gs model performance with and without Ψleaf as an additional model variable

Page 16 of 50Global Change Biology



372 Regardless of the gs model chosen, our results showed that adding Ψleaf as an additional 

373 model predictor variable did not appreciably improve model predictions of gs across all three of 

374 our tests of inclusion, i.e. (i) examining the relationships between the model residuals of gs 

375 resulting from predictions of gs by the original model formulations (Eqns. 1-4) and from model 

376 formulations that included representation of field measured Ψleaf (Fig. S4), (ii) adding in a single 

377 pair of statistically optimized additional parameters (i.e. Weibull parameters b and c; Eqn. 5) to 

378 describe xylem conductivity response to Ψleaf (Fig. 3), and (iii) adding in tree-species-specific 

379 Weibull parameters derived from laboratory-measured stem hydraulic vulnerability curves 

380 (Table 1) to describe xylem conductivity response to Ψleaf (Figs. 4 and S5). As shown in Fig. S4, 

381 we found that the model residuals showed no or very weak relationships (R2=0.00-0.04) with 

382 Ψleaf across all the four gs models analyzed here. This thus provides direct evidence that 

383 accounting for the variability in Ψleaf did not appreciably improve model predictions of gs for 

384 these tropical trees.

385 When using the optimized tree-species-specific Weibull parameters (Fig. 3), we found 

386 the optimization results for the model formulations that include Ψleaf have very similar predictive 

387 power (in terms of R2 and RMSE) compared with the corresponding cases without Ψleaf, while 

388 AIC values indicated that the inclusion of Ψleaf did not significantly improve model fit and 

389 instead reduced model parsimony. This is especially apparent for the scenario of “tree-species-

390 month interaction” (Fig. 3c). For each of the four gs models the AIC value when including Ψleaf is 

391 far higher than the corresponding case without Ψleaf, and is also even higher than the scenario of 

392 “all” (Fig. 3c; which assumes a common slope parameter for the full dataset), indicating that the 

393 models with Ψleaf were over parameterized. 
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394 When using the derived tree-species-specific Weibull parameters (as in Table 1) rather 

395 than optimized parameters, we found that the performance of gs models coupled with Ψleaf was 

396 markedly lower than the corresponding cases without Ψleaf (Figs. 4 and S5, and Table S2). 

397 Particularly, at the tree-species level, regardless of the gs model chosen, the former cases (with 

398 Ψleaf) only have the predictive power of R2=0.17-0.19 across all 15 tree-species (Fig. 4b,d,f and 

399 h), while the later cases (without Ψleaf) have much better model performance (R2=0.64-0.74; Fig. 

400 4a,c,e and g).

401

402 RH-type vs. VPD-type gs models 

403 We now focused on the original gs models, without further consideration of the addition 

404 of a leaf water potential formulation (i.e. eqn. 5). When using a common, model specific, slope 

405 parameter for the full dataset, the gs models captured 56% (BB), 55% (BBK), 64% (BBL) and 65% 

406 (USO) of the variability in field-measured gs (Fig. 3). Notably, the two D-type models (BBL and 

407 USO), which represent the gs response to vapor pressure deficit, outperformed the other two RH-

408 type models (BB and BBK), which represent the gs response to relative humidity. Our 

409 bootstrapping analysis and associated t-tests also suggested the D-type models had significantly 

410 higher model performance compared to the RH-type models (Fig. S6 and Table S3), with the 

411 relative rank among these four models as follows: USO>BBL>>BB>BBK.

412

413 Abiotic vs. biotic control on the stomatal slope parameter

414 We examined the relative impacts of biotic (i.e. tree-species) and abiotic (i.e. month, site-

415 month interaction) drivers of variation of the slope parameters used in the four gs models on the 

416 ability to predict gs. For all four models, we observed that accounting for tree-species-specific 
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417 and tree-species-month-specific variation in the slope parameter provided the most significant 

418 improvement in the prediction of field-observed gs, with a >10% increase in R2 and ~20% 

419 decrease in RMSE% (Fig. 3), relative to a common, model specific, slope parameter for the full 

420 dataset. In contrast, accounting for month-specific variation in the slope parameter did not 

421 improve gs prediction (Fig. 3). In addition, our results showed that accounting for site-month-

422 specific variation in the slope parameter improved gs prediction only for the two RH-type models 

423 but not for the two D-type models. In addition, our results also showed that the two RH-type 

424 models had similar model performance, but consistently yielded lower R2 and higher RMSE than 

425 the two D-type models (Fig. 3).            

426                         

427 Large inter-tree-specific variation in slope parameters and their relationships with plant traits

428 Given the role of tree-species in driving stomatal slope variation (Fig. 3), we further 

429 explored the potential for important relationships between stomatal slope and tree-species-

430 specific plant traits. To do this we first examined inter-tree-specific variation in the slope 

431 parameters and then assessed their correlations with six field-collected plant traits. We found 

432 large inter-tree-specific variation in the slope parameters (Figs. 5, and S7-S9; Table 2), with 

433 around 2-3 fold variation depending on the model choice. Such high inter-tree-specific variation 

434 in the slope parameter was also found within each of the two tropical forests, with seven-tree-

435 species average slope parameters and standard deviations of 7.38±1.12 (BB), 6.34±0.95 (BBK), 

436 12.65±2.18 (BBL), and 2.68±0.59 (USO) for PNM, and eight-tree-species average slope 

437 parameters and standard deviations of 6.64±1.55 (BB), 5.78±1.35 (BBK), 10.72±2.40 (BBL), 

438 and 2.17±0.70 (USO) for SLZ. Similarly, we also observed relatively high inter-tree-specific 

439 variation in our plant traits (see Table 1 and Fig. 5), including wood density ranging from 0.34 g 
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440 m-3 to 0.75 g m-3, LMA (84-154 g m-2), Vc,max25 (18-85 µmol m-2 s-1), LWC (46-65%), degree of 

441 isohydry (-0.21 to 1.96; unitless) and pre-dawn Ψleaf (-1.9 to -0.8 MPa). Exploring the 

442 relationship between derived tree-species-specific slope parameters and plant traits (Figs. 5 and 

443 S7-S9) yielded only one significant correlation, LMA (R2=0.66-0.67), consistent among all four 

444 gs models. The other five traits we examined, i.e. a wood trait (wood density), a leaf 

445 photosynthetic trait (Vc,max25), and three hydraulic traits (LWC, degree of isohydry and pre-dawn 

446 Ψleaf), showed no significant relationships with the slope parameters. 

447

448 Discussion

449 Understanding abiotic and biotic controls of gs and exploring accurate representation of 

450 gs in TBMs has been a core focus in ecology of climate regulation and plant physiology ecology. 

451 Here, we used data from two contrasting tropical forests that spanned a large range of 

452 environmental conditions associated with diurnal and seasonal variation. We demonstrated that 

453 in tropical forests, including Ψleaf in model formulations did not improve predictions of gs, and 

454 the models that represent gs response to vapor pressure deficit (i.e. D-type models, BBL and USO) 

455 performed better than the models based on relative humidity (i.e. RH-type models, BB and BBK). 

456 Additionally, we demonstrated that accounting for the variation in the slope parameters across 

457 tree-species significantly improved model estimates of gs, while accounting for the variation in 

458 the slope parameters induced by abiotic factors (i.e. month and site-month interaction) did not 

459 appreciably improve model performance. Finally, we explored potential relationships between 

460 the slope parameters and six plant traits that correlate with photosynthesis or transpiration, and 
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461 identified only one leaf trait, LMA, that had a significant correlation with the slope parameter 

462 derived from each of the four gs model formulations. 

463

464 Modeling gs with or without Ψleaf

465 Several recent studies have suggested that Ψleaf should be incorporated into models of gs 

466 (e.g. Anderegg et al., 2017; Drake et al., 2017; Sperry et al., 2017; Venturas, et al., 2018; Zhou, 

467 Medlyn, Sabaté, Sperlich, & Prentice, 2014). However, in our study the data do not support this 

468 argument, at least for the tropical evergreen canopy trees analyzed here (Figs. 3, 4 and S5). This 

469 result, while in contrast with previous work, is not unexpected. For example, in a recent 

470 synthesis study, Anderegg et al. (2017) used a dataset of 24 woody plant species spanning global 

471 forest biomes to examine the effect of Ψleaf on model prediction of gs. Their results showed that 

472 for the majority of tree species analyzed, inclusion of Ψleaf did not significantly improve 

473 prediction of gs, which is consistent with what we found here. Meanwhile, they did find that for 

474 four tree-species gs prediction was significantly improved with Ψleaf (i.e. delta-AIC>3 with 

475 increase in R2 by 10% or more). We note that those four tree-species were derived from studies 

476 that examined drought impacts on a water-limited glasshouse plant (Arango-Velez, Zwiazek, 

477 Thomas, & Tyree, 2011), saplings (Wolfe, Sperry, & Kursar, 2016), and two woody plants 

478 (including an evergreen tree in an Australian tropical dry forest, and a juniper tree in northern 

479 Arizona pinyon-juniper woodland) without explicitly accounting for the interactive effect of both 

480 leaf phenology and seasonal variability in soil moisture content (Choat, Ball, Luly, Donnelly, & 

481 Holtum, 2006; Koepke & Kolb, 2012).

482 Since our analysis focused on evergreen tropical canopy trees that experience seasonal 

483 variability in soil moisture content (Fig. 2), we hypothesize that there are two major reasons for 
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484 the discrepancy between previous results and those of this study. First, including Ψleaf in gs 

485 formulations might be more important for water-limited plants (Arango-Velez, Zwiazek, Thomas, 

486 & Tyree, 2011; Venturas et al., 2018; Zhou, Medlyn, Sabaté, Sperlich, & Prentice, 2014), e.g. 

487 saplings or glasshouse plants, but might not improve model predictions for mature trees. This is 

488 especially relevant for evergreen tropical trees that can maintain green leaves year-round, and 

489 have deep and extensive root systems that enable access to moist soil during seasonal droughts 

490 (Giardina et al., 2018; Guan et al., 2015; Meinzer et al., 1999; Nepstad et al., 1994). Therefore, 

491 conclusions drawn from glasshouse plants or saplings should be used with caution when 

492 considering natural forest ecosystems, particularly tropical forests. Second, the slope parameters 

493 in the original gs models (i.e. Eqns. 1-4) likely vary with leaf age (e.g. Albert et al., 2018), which 

494 covaries with Ψleaf (and many other traits) over the season in seasonal forests (e.g. Koepke & 

495 Kolb, 2012; Xu & Baldocchi, 2003), but not in evergreen forests where mixed leaf ages are often 

496 found year round (e.g. Lopes et al. 2016; Wu et al., 2016). Thus, including Ψleaf can improve 

497 predictions of gs seasonality over leaves of different ages, but may not be a significant factor 

498 when controlling for leaf age as this study. This hypothesis is consistent with several studies (e.g. 

499 Albert et al., 2018; Jordan, Brown, & Thomas, 1975; Pantin, Simonneau, & Muller, 2012; 

500 Rogers et al., 2012) that show a strong age-dependence of leaf gs under controlled environmental 

501 conditions. However, additional field and manipulation studies are needed to fully elucidate the 

502 mechanisms and scales at which leaf properties, such as Ψleaf, may regulate gs in addition to other, 

503 potentially correlated leaf properties.

504 There was still a weak but significant relationship between Ψleaf and the gs residuals in 

505 three of the four gs models in their original forms (Fig. S4). Higher residuals at lower Ψleaf 

506 indicate that the models tended to overestimate gs at low Ψleaf and suggest that there is indeed 
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507 room to improve the models by incorporating Ψleaf. However, the proposed model improvements 

508 with Ψleaf (i.e. Anderegg et al., 2017) that we tested failed to improve model performance (Figs. 3, 

509 4, S5, Table S2). We identified three potential reasons. First, it is likely true that Ψleaf can help 

510 regulate gs variation, particularly when leaf or soil water potential is below certain thresholds (e.g. 

511 under severe droughts or when Ψleaf is close to leaf turgor loss point; Brodribb & Holbrook, 2003; 

512 Rodriguez-Dominguez et al., 2016; Venturas et al., 2018), but not within the range of variability 

513 we witnessed. As such, Ψleaf does not play a large role in regulating the range of observed gs 

514 values in this study (Figs. 3 and S4). Second, the additional parameters (i.e. Weibull parameters 

515 of b and c as shown in Eqn. 5) required to fit the model come with their own uncertainties, since 

516 they are based on the laboratory-measured hydraulic conductivity responses (e.g. Wolfe, Sperry, 

517 & Kursar, 2016). Such uncertainty can propagate into the fitting scheme leading to a lower 

518 model performance as observed in Figs. 4 and S5. Lastly, the water potential in the leaves can be 

519 more negative than the water potential in the stem xylem, and this should be taken into account 

520 when using Ψleaf to parameterize stem vulnerability curves within gs models. For example, as in 

521 Fig. S5, the stem hydraulic vulnerability curves suggest that most of trees we studied would 

522 close their stomata (i.e. fleaf  = 0) when Ψleaf is lower than -2MPa, while field observations 

523 showed that the stomata were still open and that leaves were photosynthesizing, even when Ψleaf 

524 <-2MPa. The difference in water potential between leaf and stem is quite difficult to quantify in 

525 nature, as it varies largely with tree-species, growth environment and plant traits (Christoffersen 

526 et al., 2016; Nolf et al., 2015). For example, in tropical plants, water storage and plant 

527 atmospheric water absorption have been shown to be effective in buffering diurnal fluctuation of 

528 xylem water potential (Bartlett, Detto, & Pacala, 2018; Binks et al., 2019; Meinzer, James, 

529 Goldstein, & Woodruff, 2003). Thus, including Ψleaf in the gs models should be done by 
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530 considering a more comprehensive quantification of the entire soil-plant-atmosphere continuum 

531 (e.g. Giardina et al., 2018).

532 Regardless of the above-mentioned limitations, plant hydraulics models (e.g. Sperry et al., 

533 2017; Wolf, Anderegg, & Pacala, 2016) that rely on stem xylem conductivity response functions 

534 (as Eqn. 5) can still provide a useful framework for theoretical simulation or deduction of plant 

535 optimal response to soil and atmospheric water stress. However, the uncertainty associated with 

536 the Weibull parameters (based on direct measurements of hydraulic conductivity), the fact that 

537 the optimal theory of stomata control might operate at a longer timescale (e.g. Buckley, Sack, & 

538 Farquhar, 2017; Lin et al., 2018), rather than at the instantaneous timescale as explored here, as 

539 well as that the exact biological mechanisms that contribute to the hydraulic cost (e.g. damage, 

540 repair or loss of opportunity) underlying the optimality theory have not yet been identified or 

541 readily measured, further suggests that more research is needed to determine the most 

542 appropriate means of incorporating such optimal plant hydraulics theory into process-based gs 

543 models that are integrated into TBMs.

544

545 Stomatal model choice: D-type vs. RH-type gs models

546 Although D-type models have been increasingly advocated by plant physiologists (e.g. 

547 Medlyn et al., 2011; Rogers et al., 2017), both D-type vs. RH-type models are still widely used in 

548 many TBMs (e.g. Franks et al., 2018; Knauer et al., 2017). Meanwhile, in-situ gas exchange 

549 measurements from mature tall trees to examine the difference across these two model types are 

550 rare. Furthermore, in moist tropical forests, seasonal variation in air temperature is small (e.g. 

551 Fig. S2b), and consequently D and RH are typically more correlated than in other biomes; 

552 therefore, we expected only minor differences in performance between D- and RH-type models 
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553 in the tropics. To evaluate the correlation between RH- and D-type models, we made 

554 measurements over full diurnal cycles and a dry season in a particularly dry El Niño year (Fig. 2), 

555 which captured a wide range of natural variability in RH and D experienced in these forests. The 

556 two D-type models significantly outperformed the two RH-type models both across and within 

557 our dataset (n=15 tree-species; Fig. 3 and Table 2), suggesting that D-type models should be 

558 used for modeling carbon and water fluxes in tropical forest ecosystems, and potentially, also in 

559 many other ecosystems, particularly those where D and RH are not tightly correlated, e.g. 

560 savanna. The cross-model comparisons between BB (which accounts for the RH effect) and BBK 

561 (which accounts for RH and includes CO2 compensation point, Γ*), shows that including Γ* did 

562 not improve model performance (Fig. 3). Therefore, the improved performance of BBL (which 

563 accounts for D and Γ* effects) relative to BB was primarily because BBL captures gs response to 

564 D, consistent with the concept that stomata respond directly to D rather than to RH (Aphalo & 

565 Jarvis, 1991; Eamus, Taylor, Macinnis-NG, Shanahan, & de Silva, 2008). 

566 Our results also show that the two D-type models generated comparable model 

567 performance for our dataset, with USO yielding a small but significantly better model 

568 performance than BBL (Figs. 3 and S6, and Table S3). This finding is consistent with several 

569 recent studies both relying on empirical observations (e.g. Medlyn et al., 2011) and mathematical 

570 simulations of optimal stomatal behavior (e.g. Wolf, Anderegg, & Pacala, 2016) for a range of 

571 environmental conditions (e.g. Ca within the range of 375-425 ppm). However, as Wolf, 

572 Anderegg, & Pacala (2016) point out, due to the fundamental difference in the forms of D 

573 response in BBL (~D-1) and USO (~D-1/2), the predictions of BBL and USO models will differ 

574 when Ca exceeds 425 ppm, which is expected to occur in the next 1-2 decades. Therefore, we 
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575 advocate that USO should be favored for modeling gs response to D, particularly in TBMs that 

576 aim to capture the impact of global change on the climate system. 

577

578 Variation in the slope parameter, sources of variability, and its impact on gs modeling

579 We observed large variation in the slope parameter across the sampled 15 tree-species. 

580 Such biotic slope parameter variation (e.g. g1 used in USO varied from 1.14 to 3.58) is present at 

581 both sites (Fig. 5 and Table 2), and corresponds roughly to the range assigned to six of ten global 

582 PFTs in a recent synthesis using the USO approach (Lin et al., 2015). In particular, our observed 

583 g1 range encompasses the g1 value of 1.84 for a tropical tree in Caxiuana National Forest Reserve 

584 in the eastern Amazon (Lin et al., 2015), overlaps extensively with the g1 (3.00 to 3.79) for three 

585 tropical tree-species in Australia (Lin et al., 2015), and is within the range of g1 (0.9 to 6.2) for 

586 21 tree-species surveyed in central tropical Africa (Hasper et al., 2017), including canopy and 

587 understory trees. Such agreement with previous findings suggests that our results could be 

588 broadly applicable to other forests in the tropics. Additionally, we observed that our g1 range is 

589 largely lower than an average g1 of 4.23 across a set of tree species sampled in a tropical forest in 

590 French Guiana. This might be attributable to the inconsistent approach used for g1 estimate, e.g. 

591 only one g1 value was estimated for the whole dataset due to insufficient replication (Lin et al., 

592 2015). In the analysis presented by Lin et al. (2015) they estimated a g1 of 3.77 for a generic 

593 tropical rainforest PFT, which is higher than our observed g1 range (1.14 to 3.58).  However, this 

594 mean g1 included the high estimate from French Guiana. When excluding the French Guiana 

595 data-point, the mean g1 estimate based on Lin et al. (2017) is 3.02, which is well within our g1 

596 range. The particularly lower g1 values (i.e. all lower than 3.77 and 13/15 tree-species lower than 

597 3.02) observed in our study could also reflect an acclimation to interannual climate variability 
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598 (e.g. Reyer et al., 2013), e.g. the drier El Niño year experienced in our study, which started at the 

599 end of 2014, peaked in late 2015, and ended in May 2016 (Liu et al., 2017). The increasing 

600 atmospheric water deficit in the drought year could push plants to evolve a more conservative 

601 strategy in order to cope with increasing hydrological stress with El Niño droughts (Cowan & 

602 Farquhar, 1977). Clearly there is a need for a deeper understanding of variation in g1 in tropical 

603 forests, of particularly value would be replicated measurements that span variation in soil fertility, 

604 climate, canopy structure, and leaf phenology and morphology. 

605 With the observed large inter-tree-specific variation in slope parameter, we further 

606 showed that accounting for such biotic variation led to improved model estimates of gs (Fig. 3). 

607 This finding is consistent with previous work, which illustrated the diversity in stomatal slope is 

608 integral to modelling plant water fluxes (Wolz, Wertin, Abordo, Wang, & Leakey, 2017). Our 

609 results did not show that accounting for the abiotic (e.g. month, site-month interaction) effects of 

610 slope parameter variation improved D-type gs modeling (Fig. 3). However, we observed that 

611 variation in the slope parameter induced by the tree-species-month interaction was the second 

612 most important factor for improving gs modeling of the full dataset. This may reflect differential 

613 drought-induced acclimation of the slope parameter across tree-species as reported previously 

614 (e.g. Heroult, Lin, Bourne, Medlyn, & Ellsworth, 2013; Zhou, Medlyn, & Prentice, 2015). 

615 Furthermore, we controlled for leaf age in our experimental design but it is clear that accounting 

616 for potential phenological variation in the slope parameter at the longer timescale will be critical 

617 to more accurately represent the seasonal variation in canopy fluxes and the modeling of gs under 

618 natural conditions (Albert et al., 2018) and warrants further exploration. 

619 We did not find that month-associated (i.e. month-specific and site-month-specific) slope 

620 parameter variation was important for gs modeling, particularly for D-type models. This suggests 
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621 that D-type gs models are able to accurately represent gs response to seasonal environmental 

622 variability. Further extension of our leaf-level findings to interpret ecosystem-scale transpiration 

623 seasonality would require the understanding of leaf phenology and forest composition, in 

624 particular how the slope parameter varies with different phenophases, including leaf age (as 

625 discussed above) and leaf habits (evergreen vs. deciduous trees; Bohlman, 2010), as well as the 

626 seasonal and interannual variation in these phenophases (e.g. Lopes et al., 2016; Wu et al., 2018; 

627 Detteo, Wright, Calderón, & Muller-Landau, 2018). 

628

629 Plant trait relationships with the inter-tree-specific slope parameter

630 Our results show that LMA was highly correlated with the inter-tree-specific slope 

631 parameter for all four gs models (Figs. 5 and S7-S9). The five other traits we investigated showed 

632 weak or no correlation with the slope parameter. Wood density has recently been shown to have 

633 a significant relationship with the slope parameter at the global scale (Lin et al., 2015), but was 

634 not significantly correlated with the slope parameter in this study. It is possible that over a 

635 narrower geographic range with less variability in wood density (the range of wood density is 

636 0.34-0.75 in this study vs. 0.35-1.1 in Lin et al., 2015) the relationship may not hold. We 

637 hypothesized that Vc,max25 may have a negative relationship with the slope parameter because as 

638 the slope parameter decreases, water use efficiency rises and the effective Ci/Ca in a low slope 

639 parameter tree-species (with a lower gs for a given A) might require a higher Vc,max25 in order to 

640 maintain the same A compared with plant with a larger value of the slope parameter. The lack of 

641 a relationship may imply that it will be important to consider the role of mesophyll conductance, 

642 especially for model applications (Sun et al., 2014). We also anticipated that measurements of 

643 leaf hydrological traits, i.e. leaf water content, degree of isohydry and pre-dawn Ψleaf, may have 
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644 correlations with the slope parameter, given the link between these parameters and model 

645 formulations that include hydraulic limitations (e.g. Rogers et al., 2017; Tuzet, Perrier, & 

646 Luening, 2003; Williams et al., 1996). The lack of a correlation in this study suggests that Ψleaf, 

647 which changes markedly during the day, may not share a clear mechanistic link to the slope 

648 parameter, which likely acclimates to the environment over much longer timescales.  

649 The underlying reason for the observed slope parameter-LMA relationship might be that 

650 LMA is subject to hydrological constraints (Cavaleri, Oberbauer, Clark, Clark, & Ryan, 2010), 

651 and results from a long term evolutionary tradeoff between carbon gain and water loss 

652 (Terashima, Miyazawa, & Hanba, 2001). As such, thicker leaves (with higher LMA) are more 

653 resistant to water loss, resulting in a higher intrinsic water use efficiency (and a lower slope 

654 parameter; Fig. 1). Consequently, a negative slope parameter-LMA relationship was observed in 

655 this study. Likewise, higher LMA enables leaf temperature to remain nearer to the 

656 photosynthetic optimum under conditions of varying air temperature (Michaletz et al., 2015, 

657 2016), again maximizing water use efficiency and promoting a negative slope parameter-LMA 

658 relationship. Furthermore, leaves with higher LMA generally have lower mesophyll conductance 

659 (Niinemets, Díaz-Espejo, Flexas, Galmés, & Warren, 2009), which could increase 

660 photosynthesis without excessive water cost. Consequently, photosynthesis of high LMA tree-

661 species might be less sensitive to stomatal conductance, resulting in a lower slope parameter 

662 value. Although these previous studies provide some explanation of the observed slope 

663 parameter-LMA relationship, elucidation of the mechanism underlying this relationship is still 

664 required. In addition, the LMA-slope parameter relationship presented in this study is based on 

665 upper canopy leaf samples of only 15 evergreen canopy tree-species. Therefore, whether the 
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666 relationship can be extended to broader scenarios, e.g. across vertical canopy profiles, different 

667 tropical forests, variation in leaf age and soil moisture content, is pending further examination.

668 The finding that LMA correlates with the slope parameter is encouraging, as LMA is an 

669 easy-to-measure leaf trait that is widely used in the plant ecology community and well 

670 represented in plant trait databases; e.g., the TRY database has LMA entries for over 10,000 

671 species (Díaz et al., 2016). Our observation suggests that it might be possible for next generation 

672 TBMs to implement trait-based parameterization of the slope parameter following the approach 

673 used for other trait-based modeling components (e.g. photosynthesis, phenology and plant 

674 hydraulics) already explored in TBMs (e.g. Fisher et al., 2015; Franks et al., 2018; Xu, Medvigy, 

675 Powers, Becknell, & Guan, 2016) and thereby improve representation of carbon and water 

676 dynamics in tropical ecosystems. Additionally, recent work on spectroscopic remote sensing 

677 suggests that it is feasible to remotely estimate LMA at the leaf and canopy scales (Asner et al., 

678 2011; Serbin, Singh, McNeil, Kingdon, & Townsend, 2014; Singh, Serbin, McNeil, Kingdon, & 

679 Townsend, 2015), and as such, if this LMA-stomatal slope relationship holds it may be possible 

680 to derive large-scale estimates of the slope parameter across space and time using the suite of 

681 current and planned remote sensing systems (Stavros et al., 2017). 
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1004 Table 1 Species, canopy status and plant traits (mean ± standard deviation) for all tree-species 
1005 sampled at the two crane sites (the Parque Natural Metropolitano site, PNM and the San Lorenzo 
1006 site, SLZ) in Panama.  

Site Species Family Height 
(m)

DBH 
(cm)

LMA 
(g m-2)

LWC 
(%)

Vc,max25 

(μmol m-2s-

1)

Wood 
Density 
(g cm-

3)

Predawn 
ψleaf 
(MPa)

degree of 
isohydry (slope 
of predawn 
ψleaf:mid-day 
ψleaf)

Stem 
vulnerability 
curve 
parameter b

Stem 
vulnerability 
curve 
parameter c

PNM Albizia 
adinocephala

Fabaceae 29.4 29.5 89±11 48±5 53±10 N/A -1.9±0.5 1.96 1.3±0.3 2.8±1.6

PNM Pittoniotis 
trichantha

Rubiaceae 19 21.0 91±16 53± 5 31±2 0.60 -1.0±0.4 1.46 1.9±0.5 10.3±21.3

PNM Calycophyllum 
candidissimum

Rubiaceae 20.1 39.5 92±9 56±4 44±23 0.75 -1.4±0.8 1.02 1.7±15.8 15.8±824.9

PNM Castilla elastica Moraceae 23.5 38.0 102±5 58±2 46±13 0.34 -1.0±0.4 0.48 1.3±0.6 2.0±2.1

PNM Cordia alliodora Boraginaceae 22 28.3 92±11 53±4 75±6 0.46 -1. 7±0.3 0.78 3.3±1.7 6.1±13.9

PNM Ficus insipida Moraceae 31.2 95.4 119±14 65±3 78±10 0.34 -1.4±0.3 -0.21 1.0±11.6 1.2±15.9

PNM Luehea 
seemannii

Tiliaceae 26 63.2 147±11 47±2 85±8 0.57 -1.4±0.6 0.52 3.0±2.0 10.8±29.1

SLZ Carapa 
guianensis

Meliaceae 33.9 62.0 152±16 52±4 25±4 0.55 -0.8±0.2 0.19 1.3±0.5 21.4±119.9

SLZ Guatteria 
dumetorum

Annonaceae 35 59.0 84±7 55±5 35±4 0.45 -1.1±0. 6 0.04 1.3±0.6 2.1±1.4

SLZ Miconia 
borealis

Melastomatac 24.8 34.0 99±9 51±3 59±1 N/A -1.6±0.7 0.37 1.6±0.8 1.5±1.1

SLZ Tachigali 
versicolor

Fabaceae 30.4 57.4 95±10 46±4 36±4 0.58 -1.2±0.5 0.47 0.8±1.2 1.1±1.3

SLZ Terminalia 
amazonia

Combretaceae 27 52.9 131±13 52±4 47±16 0.67 -0.9±0.3 1.32 1.2±0.4 2.0±1.6

SLZ Tocoyena 
pittieri

Rubiaceae 26.6 53.3 93±10 62±3 38±6 0.64 -0.9±0.4 0.53 3.6±2.0 4.0±7.3

SLZ Virola multiflora Myristicacea 22.7 35.1 154±10 55±3 18±1 0.45 -0.9±0.5 0.19 1.4±0.4 3.9±4.4

SLZ Vochysia 
ferruginea

Vochysiaceae 29.4 58.0 114±11 61±4 51±14 0.39 -0.8±0.3 0.38 1.0±0.3 3.5±3.4
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1009 Table 2 Tree-species-specific model optimization results for all four gs models (i.e. BB, BBK, 
1010 BBL and USO) using the ordinary least squares nonlinear model fit. The model results shown 
1011 below including the two statistic metrics for model performance (R2 and RMSE) and the best 
1012 fitted stomatal slope (mean ± standard deviation). 

BB BBK BBL USOSite Species Name # of 
observations slope (m) R2 RMSE slope (m1) R2 RMSE slope (a1) R2 RMSE slope (g1) R2 RMSE

PNM A.adinocephala 36 7.92±0.09 0.42 0.07 6.82±0.08 0.39 0.07 12.91±0.10 0.60 0.06 2.78±0.03 0.60 0.06
PNM P.trichantha 35 8.58±0.10 0.53 0.06 7.38±0.09 0.52 0.07 14.33±0.17 0.57 0.06 3.14±0.04 0.60 0.06
PNM C.candidissimum 35 7.00±0.15 0.12 0.06 6.00±0.14 0.11 0.06 12.58±0.20 0.37 0.05 2.61±0.06 0.30 0.05
PNM C.elastica 23 7.20±0.16 0.57 0.06 6.19±0.14 0.56 0.06 12.63±0.24 0.76 0.05 2.72±0.07 0.73 0.05
PNM C.alliodora 35 8.85±0.21 0.30 0.07 7.55±0.19 0.28 0.07 16.08±0.24 0.53 0.05 3.58±0.07 0.50 0.05
PNM F.insipida 35 6.13±0.08 0.60 0.06 5.31±0.07 0.59 0.06 9.88±0.12 0.70 0.05 1.95±0.03 0.68 0.06
PNM L.seemannii 32 5.98±0.04 0.74 0.04 5.12±0.03 0.74 0.04 10.17±0.07 0.66 0.05 1.96±0.02 0.77 0.04
SLZ C.guianensis 41 5.01±0.06 0.56 0.03 4.38±0.06 0.55 0.03 8.18±0.10 0.65 0.03 1.44±0.03 0.63 0.03
SLZ G.dumetorum 44 7.90±0.06 0.34 0.05 6.88±0.05 0.32 0.06 13.00±0.09 0.50 0.05 2.80±0.02 0.48 0.05
SLZ M.borealis 41 6.79±0.06 0.47 0.06 5.91±0.05 0.47 0.06 11.20±0.10 0.55 0.06 2.28±0.03 0.53 0.06
SLZ T.versicolor 45 8.30±0.08 0.44 0.06 7.25±0.07 0.43 0.06 13.03±0.12 0.53 0.05 2.85±0.03 0.51 0.06
SLZ T.amazonia 45 4.43±0.03 0.73 0.02 3.86±0.03 0.72 0.02 7.31±0.04 0.77 0.02 1.14±0.01 0.76 0.02
SLZ T.pittieri 44 7.19±0.08 0.56 0.06 6.26±0.07 0.55 0.06 11.92±0.14 0.60 0.06 2.48±0.04 0.62 0.05
SLZ V.multiflora 43 5.23±0.07 0.52 0.04 4.55±0.06 0.51 0.04 8.32±0.11 0.62 0.03 1.53±0.03 0.59 0.03
SLZ V.ferruginea 46 8.26±0.05 0.56 0.07 7.18±0.04 0.55 0.07 12.80±0.08 0.62 0.06 2.83±0.02 0.62 0.06

1013 The four gs models are Ball-Berry (BB), Ball-Berry-Katul (BBK), Ball-Berry-Leuning (BBL), 
1014 and Unified Stomatal Optimization (USO), and the two crane sites in Panama include the Parque 
1015 Natural Metropolitano site, PNM and the San Lorenzo site, SLZ.  
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1017 Figure captions

1018 Figure 1. The slope parameter of the USO model (Medlyn et al., 2011) is an indicator of 
1019 intrinsic water use efficiency. The regression slope between stomatal conductance (gs) and the 
1020 USO model index ( ) shown below is almost linearly proportional to the stomatal 1.6  A

Ca  D
1021 slope of the USO model (see Fig. S1). For a given CO2 assimilation rate (A), atmospheric CO2 
1022 concentration (Ca), and leaf-to-air vapor pressure deficit (D) a higher regression slope (and thus 
1023 stomatal slope) means that plants maintain a higher gs to keep the same photosynthetic rate. As 
1024 such, the stomatal slope parameter is an indicator of intrinsic plant water use efficiency, and a 
1025 greater stomatal slope equates to a lower intrinsic water use efficiency. The background 
1026 scatterplots include diurnal gas exchange measurements for two example tree-species 
1027 (V.ferruginea, blue and T.amazonia, red) at the San Lorenzo site in Panama (see Table 1 for 
1028 more details), and the regression coefficients and model performance were summarized in Table 
1029 2.
1030
1031 Figure 2. Four field campaigns were conducted in each of the two Panamanian crane sites in 
1032 2016. These are (a) the Parque Natural Metropolitano crane site (PNM) and (b) the San Lorenzo 
1033 crane site (SLZ). Campaigns included diurnal measurements of gas exchange, leaf water 
1034 potential and leaf traits. The rainfall data for historic (1998-2015; black broken line) and 2016 
1035 (red line) trends were obtained from biogeodb.stri.si.edu/physical_monitoring; the shading 
1036 indicates one standard deviation (std) of the historic mean. The soil moisture index (blue line) 
1037 measures the relative soil water content, where 1 = fully saturated soil. The soil moisture index 
1038 was calculated using a daily integrated value, and was obtained by averaging soil moisture 
1039 values across three different soil depths (at 10, 40, and 100 cm) and time (at 5 minutes interval 
1040 across the day), divided by the maximum value in the record.
1041
1042 Figure 3. Model performance comparisons across different gs models and with/without including 
1043 leaf water potential (ψleaf). Statistics for the four gs models (color symbols) that exclude (solid 
1044 lines) or include (dash lines) ψleaf as an additional model predictor variable, including (a) the 
1045 coefficient of determination (R2), (b) root-mean-square-error (RMSE) between modeled and 
1046 observed gs, and (c) Akaike Information Criterion (AIC), for the entire dataset (n=574 
1047 observations from 15 tree tree-species). The x-axis represents different scenarios for model 
1048 treatments of the whole dataset, by separating them according to different combinations among 
1049 month, site and tree-species. The results shown here are based on the statistically optimized 
1050 nonlinear model fitting. AIC is a statistic metric that allows inference on the relative quality of 
1051 statistical models, and the models with relatively lower AIC values are generally chosen over 
1052 another. The four gs models are Ball-Berry (BB), Ball-Berry-Katul (BBK), Ball-Berry-Leuning 
1053 (BBL), and Unified Stomatal Optimization (USO).

1054 Figure 4. Model performance comparisons across gs models with and without tree-species-
1055 specific Weibull parameters. The tree-species-specific Weibull parameters were derived from 
1056 laboratory-measured stem hydraulic vulnerability response curves (parameters are shown in 
1057 Table 1) and field measurements of leaf water potential (ψleaf). The left hand panels (a,c,e,g) 
1058 show the results from the four models in their original forms (see Eqns. 1-4), and the right panels 
1059 (b,d,f,h) show those same models with formulations that include ψleaf and derived Weibull 
1060 parameters. The four gs models are Ball-Berry (BB), Ball-Berry-Katul (BBK), Ball-Berry-
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1061 Leuning (BBL), and Unified Stomatal Optimization (USO). The model results shown here are 
1062 based on the entire dataset (n=574 observations from 15 tree-species); tree-species-specific 
1063 model evaluation is reported in Fig. S5 and Table S2. R2 for coefficient of determination, RMSE 
1064 for root-mean-square-error, and p for significance level of modeled vs. observed gs correlations. 
1065 Black lines indicate the 1:1 relationships.

1066 Figure 5. Correlations between the tree-species-specific slope parameter (g1; using the USO 
1067 model; Medlyn et al., 2011) and associated plant traits, including (a) wood density, (b) leaf mass 
1068 per area, (c) Vc,max25, (d) leaf water content, (e) degree of isohydry (approximated by the slope 
1069 between predawn and mid-day leaf water potential; Martinez-Vilalta, Povatos, Aguadé, Retana, 
1070 & Mencuccini, 2014), and (f) predawn leaf water potential (ψleaf). Points show tree-species 
1071 means from the PNM (dry) site (n=7 tree-species, circles), and the SLZ site (n=8 tree-species, 
1072 triangles). R2 for coefficient of determination, and p for significance level of slope parameter-
1073 trait correlation. Fitted lines (ordinary least square regression, OLS) were only shown for 
1074 significant relationships. Similar results were found for the Ball-Berry model (Fig. S7), the Ball-
1075 Berry-Katul model (Fig. S8), and the Ball-Berry-Leuning model (Fig. S9).      
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