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Searching for dark photon dark matter
in LIGO O1 data
Huai-Ke Guo1, Keith Riles 2, Feng-Wei Yang 3,4* & Yue Zhao4

Dark matter exists in our Universe, but its nature remains mysterious. The remarkable

sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able

to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of

its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to

an observable signal. In a study that bridges gravitational wave science and particle physics,

we perform a direct dark matter search using data from LIGO’s first (O1) data run, as

opposed to an indirect search for dark matter via its production of gravitational waves. We

demonstrate an achieved sensitivity on squared coupling as �4 ´ 10�45, in a Uð1ÞB dark

photon dark matter mass band around mA � 4 ´ 10�13 eV. Substantially improved search

sensitivity is expected during the coming years of continued data taking by LIGO and other

gravitational wave detectors in a growing global network.
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A lthough there is little doubt that dark matter (DM) exists
in our Universe, its nature remains mysterious, including
its component mass(es). It may be an ultralight elemen-

tary particle, such as fuzzy DM with mass �10�22 eV1–4, or it
may arise from stellar-mass objects, such as primordial black
holes5.

One promising DM candidate in the ultralight mass regime
is the dark photon (DP), which is the gauge boson of a Uð1Þ
gauge group. The DP can acquire its mass through the Higgs or
Stueckelberg mechanism. As ultralight DM, the DP must be
produced non-thermally, e.g., production from the misalignment
mechanism6–8, parametric resonance production or tachyonic
instability of a scalar field9–12, or from the decay of a cosmic
string network13.

It was recently proposed in refs. 14,15 that a gravitational wave
(GW) detector may be sensitive to dark photon dark matter
(DPDM). The Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) consists of two 4-km dual-recycled Michelson
Fabry–Perot interferometers in Livingston Louisiana (L1) and
Hanford, Washington (H1). From the first two observing runs
(coincident with the Virgo detector for several weeks of the
O2 run), detections of ten binary black hole mergers and one binary
neutron star merger have been reported16. These measurements
require a differential strain measurement sensitivity better
than 10�21 for broadband transients with central frequencies of
O(100 Hz), based on detecting minute changes in distance between
the mirror pairs forming the Fabry–Perot interferometer arms.

Relevant to this search, the mirror separations can also change in
response to a gradient in a DPDM field due to non-zero photon
velocity. More explicitly, we consider a DP with mass mA between
10�13 � 10�11 eV. The DPDM is an oscillating background field,
for which the rest-frame oscillation frequency satisfies:
f 0 � mA

10�12 ev

� �
(241 Hz). We assume the DP is the gauge boson of

the gauged Uð1ÞB group so that any object, including a LIGO
mirror, that carries baryon number will feel its oscillatory force,
similar to that experienced by a macroscopic, electrically charged
object in an oscillating electric field.

Using LIGO to look for DPDM bridges GW science and par-
ticle physics. In this paper, we present a Uð1ÞB DPDM search
using data from Advanced LIGO’s first observing run, O1. We
confirm that the data from LIGO’s first observation run yields
results already more sensitive than limits from prior experiments
in a narrow DPDM mass range. The sensitivity will be improved
significantly with more LIGO data, as well as with the growth of
the global network of GW detectors. Meanwhile, the same search
strategy can be directly applied to search for many other ultralight
DM scenarios, with excellent sensitivities achievable.

Results
Estimating DPDM-induced effects. Through virialization,
DPDM particles in our galaxy have a typical velocity around
v0 � 10�3 of the speed of light, and thus they are highly non-
relativistic. The total energy of a DM particle is then the sum of
its mass energy and kinetic energy, i.e., mAð1þ v20=2Þ. Here and
in the following, we use natural units, i.e., c ¼ _ ¼ 1. Therefore,
the oscillation frequency of the DP field is approximately a
constant, ω ’ mA, with Oð10�6Þ deviations.

Therefore, within a small period of time and spatial separation,
the DP field can be treated approximately as a plane wave, i.e.,

Aμ ’ Aμ;0 cos½mAt � k � x þ θ�: ð1Þ
Here Aμ;0 is the amplitude of the DP field and θ is a random
phase. The DP field strength can be simply written as
Fμν ¼ ∂μAν � ∂νAμ. We choose the Lorenz gauge, ∂μAμ ¼ 0, in
what follows. In the non-relativistic limit, the dark electric field is

much stronger than the dark magnetic field, and At is negligible
relative to A. The magnitude of the DP field can be determined by
the DM energy density, i.e., jA0j ’

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=mA.

In Eq. (1), we neglect the kinetic energy contribution to the
oscillation frequency. We also set the polarization and propagation
vectors, i.e., A0 and k, to be constant vectors. This approximation is
valid only when the observation is taken within the coherence
region, i.e., tobs < tcoh ’ 4π

mAv
2
vir
and lobs < lcoh ’ 2π

mAvvir
. For example,

if the DP field oscillates at 100Hz, the coherence time is only 104 s,
much shorter than the total observation time. In order to model the
DPDM field for a time much longer than the coherence time, we
simulate the DPDM field by linearly adding up many plane waves
propagating in randomly sampled directions. More details are given
in the “Methods” section below.

From the DPDM background field Aðt; xiÞ, one can derive the
acceleration induced by the DPDM on each test object, labeled by
index i. This can be written as:

aiðt; xiÞ ’ ϵe
qD;i
Mi

∂tAðt; xiÞ: ð2Þ

Here we use the approximation E ’ ∂tAðt; xiÞ for the dark electric
field. qD;i=Mi is the charge–mass ratio of the test object in LIGO.
Treating a DP as the gauge boson of Uð1ÞB, and given that the
LIGO mirrors (test masses) are primarily silica, qD;i=Mi ¼ 1=GeV.
We note that results from ref. 17 impose very strong constraints on
the gauged Uð1ÞB scenario, due to gauge anomaly. However, the
results derived in these papers rely on an assumption of how to
embed the model into a complete theory at high energy in order to
cancel Uð1ÞB anomalies. Extending the electroweak symmetry
breaking sector or other anomaly cancellation mechanism can avoid
such severe constraints. If one takes the model independent
constraint on an anomalous gauge symmetry, new particles need to
be added at energy scale Oð4πmA

ϵe Þ, which gives OðTeVÞ for the
parameter space we are interested in. Since the required new
particles carry only electroweak charges, they are safe from various
collider searches. We label the DP–baryon coupling as ϵe where e is
the Uð1ÞEM coupling constant. We emphasize that we choose DP to
be a Uð1ÞB gauge boson as a benchmark model. The same analysis
strategy presented in this study can be directly applied to many
other scenarios, such as a Uð1ÞB�L gauge boson or scalar field,
which couples through Yukawa interactions. More details on
various models, as well as subtleties when observation time is longer
than coherence time, will be described in the future work.

Signal-to-noise ratio (SNR) estimation. We approximate the
DPDM field as a plane wave within a coherence region. For a DP
field oscillating at frequency Oð100ÞHz, the coherence length is
Oð109 mÞ, much larger than the separation between the two
LIGO GW detectors at Hanford and Livingston. Thus these two
GW detectors experience a nearly identical DPDM field, inducing
strongly correlated responses. Exploiting the correlation drama-
tically reduces the background in the analysis.

The DPDM signal is exceedingly narrowband, making Fourier
analysis natural. We first compute discrete Fourier transforms
(DFT) from the time-domain data. The total observation time is
broken into smaller, contiguous segments, each of duration TDFT,
with a total observing time Tobs ¼ NDFTTDFT. Denote the value of
the complex DFT coefficient for two interferometers 1 and 2,
DFT i, and frequency bin j to be z1ð2Þ;ij. The one-sided power
spectral densities (PSDs) for two interferometers are related to the
raw powers as PSD1ð2Þ;ij ¼ 2P1ð2Þ;ij=TDFT. P1ð2Þ;ij are taken to be

the expectation values for jz1ð2Þ;ijj2, as estimated from neighbor-
ing, non-signal frequency bins, assuming locally flat noise (using
a 50-bin running median estimate).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0255-0

2 COMMUNICATIONS PHYSICS |           (2019) 2:155 | https://doi.org/10.1038/s42005-019-0255-0 | www.nature.com/commsphys

www.nature.com/commsphys


To an excellent approximation, the noise in the two LIGO
interferometers is statistically independent, with the exception of
particular very narrow bands with electronic line disturbances18,
which are excluded from the analysis. Detailed descriptions of
broadband LIGO noise contributions may be found in ref. 19,
including discussion of potential environmental contaminations
that could be correlated between the two LIGO detectors, but
none of which would mimic a DPDM signal. The normalized
signal strength using cross-correlation of all simultaneous DFTs
in the observation time can be written as

Sj ¼
1

NDFT

XNDFT

i¼1

z1;ijz
�
2;ij

P1;ijP2;ij
: ð3Þ

In the absence of a signal, the expectation value is zero and the
variance of the real and imaginary parts is

σ2j ¼
1

NDFT

1
2P1;jP2;j

* +
NDFT

; ð4Þ

where hiNDFT
denotes an average over the NDFT DFTs, which may

have slowly varying non-stationarity. SNR can be defined by

SNRj �
Sj
σ j
: ð5Þ

Taking into the account the small separation between the
interferometers relative to the DP coherence length and their
relative orientation (approximate 90-deg rotation of one inter-
ferometer’s arms projected onto the other interferometer’s plane),
we expect the SNRj for a strong DPDM field to be primarily real
and negative.

Efficiency factor. In order to use the observed real(SNR) values to
set limits on DPDM coupling as a function of frequency, one
must correct for the signal power lost from binning. The sug-
gested nominal binning proposed in ref. 15 is Δf =f ¼ 10�6,
based on a Maxwell velocity distribution. The bin size in fre-
quency space is set by TDFT, i.e., Δf ¼ 1=TDFT, which is optimal
at only f opt ’ 106=TDFT. For a frequency higher than f opt, the
relative frequency binning is finer, implying loss of signal power in
single-bin measurements. At frequencies lower than f opt, the rela-
tive frequency binning is coarser, implying full capture of the
signal power but at the cost of unnecessarily increased noise. We
note that it is possible the DM velocity distribution deviates from
Maxwell distribution by an Oð1Þ factor, e.g., refs. 20,21. However, the
impact is small, as the single-bin search used here depends on the
integrated power within a frequency bin and not so much on
its shape.

In Fig. 1, we show the DPDM signal power spectrum as a
function of frequency, where f 0 ¼ mA=2π. We choose to
normalize the x-axis by the intrinsic signal width, determined
by the typical kinetic energy of DM particles. In this calculation,
we include the Earth rotation effect. Without it, the signal PSD is
proportional to vf ðvÞ where f ðvÞ is the Maxwell distribution. The
Earth’s rotation broadens our signal by Δf � 2f E. Different
choices of f 0 result in slightly different deformations after
including the rotation, but the changes are negligible in the
frequency regime of interest. An analytical understanding of the
PSD will be presented in the future work.

The power spectrum from numerical simulation is used to
determine empirically the fractions of power falling into a single
fixed Δf =f bin, where bin boundaries are systematically varied
over the allowed range. Figure 2 shows the resulting efficiencies
(power fractions) for TDFT set to be 1800 s. The red dotted curve
shows the best case, for which the bin boundary is optimal. The

blue dashed curve shows the worst case, which necessarily
approaches 50% for coarse binning (low frequency), while the
green solid curve shows the average maximum efficiency over all
bin boundary choices. A fit to the green solid curve is used for
deriving upper limits on DPDM coupling.

Data selection and analysis. The strain data used in this analysis
were downloaded from the Gravitational Wave Open Science
Center (GWOSC) web site22 and transformed to create 1786
1800-s coincident DFTs from the L1 and H1 interferometers. The
GWOSC data sets exclude short periods during which overall
data quality is poor. The choice of coherence time in this first
DPDM search is somewhat arbitrary but allowed convenient
comparison of spectral line artifacts observed with those reported
from 1800-s DFTs in LIGO continuous GW searches, for which

Fig. 1 An example of dark photon dark matter signal power spectrum and
corresponding detector sensitivity. The dark photon dark matter (DPDM)
signal power spectrum is shown in terms of characteristic strains hc (red),
with Uð1ÞB coupling parameter ϵ2 ¼ 10�41, DPDM oscillation frequency
f0 ¼ 500 Hz, and typical velocity of DPDM v0 ¼ 10�3 of the speed of light.
The Advanced LIGO design sensitivity in a small frequency window is
approximately flat, which is shown as the black dashed line.

Fig. 2 Signal power single-bin detection efficiency as a function of
relative frequency resolution for a fixed coherence time of 1800 s. The
upper (red) curve is for an optimal bin boundary choice (a priori unknown)
for a given signal. The lower (blue) curve shows the worst-case efficiency
for the least optimal boundary choice. The middle (green) curve shows an
average over randomly chosen boundary choices.
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1800 s is a common DFT duration chosen. A shorter coherence
time would be more optimal at frequencies above �500 Hz for
this single-bin detection analysis. In principle, a longer time
would be more optimal for lower frequencies, but in practice,
sporadic interruptions of interferometer operations during data
taking lead to significant livetime loss for DFTs requiring very
long contiguous periods of coincident Hanford–Livingston
operations.

The search for detections and the setting of upper limits in the
absence of detection is based on “loud” values of the detection
statistic (Eq. (5)). Specifically, we look for large negative real
values of the SNR. Since we search over �4 million DFT bins in
the band 10–2000 Hz, we must correct for a large statistical trial
factor in assessing what SNR value is deemed “significant.” We
choose a nominal signal candidate selection of SNR <�5:8,
corresponding to a �1% false alarm probability, assuming
Gaussian noise. In practice, the noise in some frequency bands
is not truly Gaussian, leading to excess counts at large SNR. To
assess the severity of this effect, we also define and examine
control bands (“frequency lags”) in which a DFT frequency bin in
one interferometer is compared to a set of offset bins from the
other interferometer such that a true DPDM signal would not
contribute to a non-zero cross-correlation but for which single-
interferometer artifacts or broadband correlated artifacts lead to
non-zero correlation. This frequency lag method is analogous to
the time lag method used in transient GW analysis. Specifically,
we choose 10 lags of (�50, �40, ..., �10, þ10, ..., þ50) frequency
bin offsets to assess the non-Gaussian background from these
instrumental artifacts. To avoid contamination of both signal
and control bands from known artifacts, we exclude from the
analysis any band within �0:056 Hz of a narrow disturbance
listed in ref. 18, where the extra veto margin is to reduce
susceptibility to spectral leakage from strong lines. We also
exclude the band 331.3–331.9 Hz, for which extremely loud
narrow calibration excitations in the two interferometers lead to
significant overlapping spectral leakage and hence non-random
correlation.

Figure 3 shows the distributions of the real and imaginary parts
of the SNR (Eq. (5)) for both the signal bins (“zero lag”) in
magenta and the lagged bins in black. The distributions follow
quite closely the ideal Gaussian curve shown, except for a slight
excess visible in the tails beyond jSNRj > 5 (note there are �10
times as many lagged bins as signal bins in the graphs). The only
signal bins with jSNRj > 5:8 arise from known continuous wave
“hardware injections” used in detector response validation, for

which the complex SNR can have an arbitrary phase in the cross-
correlation that depends on the simulated source frequency and
direction. An investigation was carried out of all other SNR
outliers (10) with real or imaginary values having magnitudes >5.
In all but three cases, lagged bins in neighboring bins within
0.2 Hz of the signal bin showed elevated noise, defined by an SNR
magnitude >4, suggesting non-Gaussian contamination. The
Gaussian noise expectation for this range [5.0–5.8] of subthres-
hold outlier magnitude (real or imaginary) is 4.1 events,
consistent with observation in clean bands.

Since no significant candidates were found, upper limits were
set. In future searches, should significant candidates appear, it will
be critical to assess their consistency with instrumental artifacts.
A simple approach is to increase the number of control bins
examined per candidate to assess better potential non-Gaussian
single-interferometer contamination and broadband correlated
artifacts. A greater concern would be a highly narrowband
correlated disturbance, such as from identical electronic instru-
ments at each observatory creating a sharp spectral line through
electrical current draws in power supplies affecting interferometer
controls. Detailed investigation using auxiliary instrumental and
environmental channels would be warranted, to exclude such
interference.

New constraints from LIGO O1 data. Our main results are
presented in Fig. 4. We show the derived 95% confidence level
upper limits on the parameter ϵ2 for DP–baryon coupling, as a
function of DPDM oscillating frequency. The broad red band
shows the range of upper limits obtained with 1=1800 Hz binning,
using the measured real part of the SNR detection statistic defined
below and the Feldman–Cousins (FC) formalism23 and after
applying an efficiency correction discussed below. The yellow
curve shows the expected upper limit for an average measured real
(SNR)= 0, applying the same FC formalism and efficiency cor-
rection. The dark blue curve shows a more optimal upper limit
expected when the DFT binning adjusts with frequency to
maintain Δf =f ¼ 10�6 for the same 893-h observation time, for
the same efficiency correction, and for an averaged detector sen-
sitivity equal to that in the analysis. The yellow and dark
blue curves agree well with each other at around 500Hz, where
1=1800 Hz is the optimal choice of the bin size. The mean achieved
upper limit is generally worse than the optimal sensitivity, because
with fixed bin size at 1=1800 Hz, excess noise is included at low
frequency and some signal power is lost at high frequency. The
dashed curve shows upper limits derived from the Eöt-Wash group
based on Equivalence Principle tests using a torsion balance24,25.

Fig. 3 Distributions of the real and imaginary parts of the signal-to-noise ratio. The signal-to-noise ratio (SNR) for the signal bins (“zero lag”) are labeled
in magenta and the lagged (control) bins in black, along with the ideal Gaussian expectation in green.
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Given the LIGO O1 data, under the assumption that DP con-
stitutes all DM, we have already improved upon existing limits in a
mass window around mA � 4 ´ 10�13 eV.

Future searches in more sensitive data will probe deeper into
an unexplored ϵ2–mA parameter space. Assuming no discovery
and a negligible true GW stochastic background, the magenta
curve shows the “optimal” upper limit expected for a 2-year,
100%-livetime run at Advanced LIGO design sensitivity
(“O4-O5”). This limit looks smoother, as it uses a design
sensitivity curve that shows only fundamental noise sources,
while the blue curve includes additional, non-fundamental noise
artifacts that have not yet been mitigated in LIGO detector
commissioning, such as power mains contamination at 60 Hz and
harmonics and environmental vibrations. The simulations
discussed below uncovered an error of a factor of 4 in the
ϵ2–mA sensitivity plot in ref. 15. This error has been corrected in
the current study. As GW detectors become more sensitive in the
future, one expects a stochastic GW background from compact
binary coalescence mergers to emerge eventually, with an
integrated broadband stochastic signal perhaps detectable as
early as the O4-O5 run26. Nonetheless, the stochastic GW strain
power from mergers in a single DPDM search bin will remain
negligible for years to come.

The inclusion of a global network of detectors, such as Virgo,
KAGRA, and LIGO-India, improves the DPDM search sensitiv-
ity, in principle. The degree of improvement depends, however,
upon the relative alignments among these detectors as well as
their sensitivities. The Virgo detector is currently less sensitive
than the two LIGO detectors. In addition, its orientation is not
well aligned with those of the LIGO detectors. Future third-
generation detectors, such as Einstein Telescope and Cosmic
Explorer, will have much lower noise, permitting still more
sensitive DPDM searches.

Discussion
In this paper, we present a direct DM search using GW detector
strain data. We choose the Uð1ÞB DP as our benchmark
scenario; our early results already improve upon prior searches in
a narrow DP mass range, and future searches will probe deeper in
DPDM coupling strength and wider in mass range. This first
analysis uses a non-templated, single-Fourier-bin cross-
correlation detection statistic. Refinements to be examined for
analysis of future data sets include multiple DFT coherence times,
tuned according to search band, templated filtering over multiple
Fourier bins, and exploitation of extremely narrow features
expected in the DPDM spectrum, resolvable by GW detectors for
loud enough SNR.

With more data to be collected by LIGO and other GW
detectors in the coming years, as well as with improved search
strategies, we expect DPDM searches to probe steadily deeper
in DPDM parameter space. The same strategy can be imple-
mented directly in searches for many other ultralight DM sce-
narios. The use of data from a GW detector demonstrates the
versatility of these remarkable instruments for directly probing
exotic physics.

Methods
Simulating the DPDM background. The DPDM background is a superposition of
many DP wave functions, similar to the axion DM background as studied in ref. 27.
In the galaxy frame, each DP has a random polarization direction isotropically
distributed. The magnitude of A is taken to be a fixed number for each DP particle
with normalization discussed below. As for the polarization vector, the velocity
direction also follows an isotropic distribution. The magnitude of the velocity is
obtained from the Maxwell distribution

f ðvÞ � v2e�v2=v20 ; ð6Þ

where v0 is taken to be 0:77 ´ 10�3c28. In the non-relativistic limit, the polarization
vector and the velocity vector are independent of each other.

For the i-th DP particle, the wave function can be written as

Aiðt; xÞ � Ai;0 sinðωit � ki � x þ ϕiÞ; ð7Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þm2

A

q
� 2πf i and ki ¼ mAvi . The DPDM background can be

generated by superposing many, N , of these wave functions

Atotalðt; xÞ ¼
XN
i¼1

Ai;0 sinðωit � ki � x þ ϕiÞ: ð8Þ

Here the phase of the wave function for each particle, ϕi, is randomly chosen from
a uniform distribution from 0 to 2π.

To simulate DPDM background, we consider N ¼ 103 DPDM particles. We
note that having N ¼ 103 suffices to reveal essential features of the DPDM
background, such as coherence length and coherence time. Further, this simulation
provides a signal PSD, which agrees well with analytic results (N ! 1 limit). Thus
we believe that the result from this simulation is reliable.

Finally, the normalization of Ai;0 is determined by the local DM energy density.
In the non-relativistic limit, the energy density of DM can be calculated as

1
V

1
T

Z
V
d3x

Z T

0
dt m2

AA
2
total ¼ ρDM ’ 0:4 GeV=cm3: ð9Þ

In order to average out the fluctuations in numerical simulation, the temporal and
spatial integrals are taken to be much longer than the coherence time and length,
i.e., T 	 Tcoh and V 	 l3coh. Since the DPDM is obtained from a superposition of
N DP particles in an uncorrelated manner, the total amplitude increases as

ffiffiffiffi
N

p
.

For a fixed DM energy density ρDM, one expects jAi;0j ’
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=ðmA

ffiffiffiffi
N

p Þ,
consistent with our numerical results.

Interface to LIGO simulations. We use the LIGO Scientific Collaboration Algo-
rithm Library Suite (LALSuite)29 for mimicking of GW detector response of
DPDM and for superposing random Gaussian noise. This suite of programs has
been developed over two decades for simulating GW signals, detector response, and
for carrying out GW analysis, including source parameter estimation.

Below, we give a brief overview of the relevant LALSuite GW response model
and explain what is modified to simulate DPDM-induced effects. When the GW
wavelength is much longer than the detector’s characteristic size, i.e., λ 	 L, one
can use the equation of the geodesic deviation in the proper detector frame to

Fig. 4 Derived 95% confidence level upper limits on the coupling
parameter ϵ2 for dark photon-baryon coupling. The broad red band shows
the actual upper limits with 1=1800Hz binning. The yellow curve shows the
expected upper limit for an average measured real (SNR)= 0. The dark
blue curve shows the “optimal” upper limit expected when the discrete
Fourier transform (DFT) binning adjusts with frequency to maintain Δf=f ¼
10�6 for the same 893-h observation time. The magenta curve shows the
“optimal” upper limit expected for a 2-year, 100%-livetime run at Advanced
LIGO design sensitivity (“O4-O5"). The dashed curve shows upper limits
derived from the Eöt-Wash group24,25. This is a fifth-force experiment,
whose constraint does not rely on dark photon (DP) being dark matter
(DM). The large spikes of red and blue curves, overlaid on top of each
other, are induced by known sources of noise, such as vibrations of mirror
suspension fibers.
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calculate the GW-induced effect,

€ξ
i ¼ 1

2
€h
TT
ij ξj; ð10Þ

where ξ is the coordinate of a test object in the proper detector frame. At leading
order, the relative change of the arm length is

R � ΔLx � ΔLy
L

¼ hþFþ þ h ´ F ´ ; ð11Þ

where Fþ and F ´ are antenna pattern functions, which can be written as

Fþ ¼
X
i;j

DijðeþÞij ¼
1
2

ðeþÞxx � ðeþÞyy
h i

;

F ´ ¼
X
i;j

Dijðe ´ Þij ¼
1
2

ðe´ Þxx � ðe´ Þyy
h i

;

ð12Þ

with polarization tensors

ðeþÞij ¼ ðX 
 X � Y
 YÞij;
ðe ´ Þij ¼ ðX 
 Yþ Y
 XÞij;

ð13Þ

and detector tensors

Dij ¼
1
2
ðnx 
 nx � ny 
 nyÞij; ð14Þ

where vectors X and Y are the axes of the wave frame, and nx and ny are unit
vectors along the x and y arms of LIGO, respectively.

In order to concretely estimate LIGO’s sensitivity to a DPDM signal, we
calculate the DPDM-induced relative change of the arm length as a function of
time, i.e., RðtÞ. Then we inject this as the signal into LALSuite. The background is
further added as a Gaussian white noise. As a benchmark, the DP oscillation
frequency is set to be 100=

ffiffiffi
2

p
Hz and ϵ2 to be 5 ´ 10�44. For the simulation, we

take TDFT ¼ 1800 s, Tobs ¼ 200 h, and
ffiffiffiffiffiffiffiffiffi
PSD

p ¼ 10�23=
ffiffiffiffiffiffi
Hz

p
. The signal appears as

a negative real number, i.e., SNR’ �8. The sensitivity to ϵ2 scales as

ϵ02

ϵ2
¼ SNR0

SNR
Tcoh

T 0
coh

ffiffiffiffiffiffiffiffiffiffiffi
NDFT

N 0
DFT

s
: ð15Þ

With this scaling, our simulations are consistent with upper limits shown in Fig. 4
based on the search of O1 data.

Data availability
The upper limits in Fig. 4 can be found at https://doi.org/10.5281/zenodo.3525343 and
the LIGO O1 data that support the findings of this study are available from the GWOSC
website https://www.gw-openscience.org22.

Code availability
The source code for the analysis is available from the corresponding author upon request.
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