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In this paper we explore the transport properties of three-component Fermi gases confined to one spatial
dimension, interacting via a three-body interaction, in the high temperature limit. At the classical level, the
three-body interaction is scale invariant in one dimension. However, upon quantization, an anomaly appears
which breaks the scale invariance. This is very similar to the physics of two-component fermions in two
spatial dimensions, where the two-body interaction is also anomalous. Previous studies have already hinted
that the physics of these two systems are intimately related. Here we expand upon those studies by examining
the thermodynamic properties of this anomalous one-dimensional system in the high temperature limit. We
show there is an exact mapping between the traditional two-body anomalous interaction in two dimensions, to
that of three-body interaction in one dimension. This result is valid in the high temperature limit, where the
thermodynamics can be understood in terms of few-body correlations.
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I. INTRODUCTION

Symmetry is an important tool in understanding any phys-
ical system. For this reason, it is not surprising that when a
classical symmetry is unexpectedly broken upon quantization,
a phenomenon known as a quantum anomaly, it can create
quite a stir among physicists [1]. In cold atom experiments,
one such anomaly to be predicted and observed was the scale
anomaly in two-dimensional Fermi gases [2–4].

The two-dimensional Fermi gas with short-ranged two-
body interactions (henceforth simply called the anomalous
two-dimensional Fermi gas) is classically scale invariant [5].
If this symmetry were present under quantization, it would
drastically reduce the complexity of the energetics and dy-
namics [5–9]. However, this is not truly the case here upon
quantization, as a new energy scale will enter the problem.
For the case of attractive interactions, this new energy scale
is simply the two-body bound state [2,10]. The presence of
this new energy scale explicitly breaks the scale symmetry
of the classical model. In this case, the breaking of scale
invariance is logarithmically weak, and there have been nu-
merous theoretical and experimental studies examining to
what extent scale symmetry and the quantum anomaly are
present in the physics of two dimensional quantum gases
[2–4,6–8,11,12].

Recently, a number of additional anomalous systems have
been identified: bosons with three-body interactions in one
spatial dimension [13], three-component fermions with three-
body interactions in one spatial dimension [14,15], and the
one-dimensional quantum gas with a derivative coupling [16].
These systems, which we will simply call anomalous one-
dimensional quantum gases, are classically scale invariant, but
upon quantization, a bound state appears. For the case of a

one-dimensional quantum gas with three-body interactions,
previous studies have shown that the coupling constant varies
logarithmically with the bound state energy—just as the two-
dimensional quantum anomaly. This result has been recently
used to study a number of thermodynamic and dynamic prop-
erties of these one-dimensional anomalous quantum gases
[13,14,17–20]. One particular facet of these systems was
noted in Ref. [14], namely the logarithmic breaking of scale
invariance led to a mapping between the physics of two-
dimensional fermions and that of these anomalous three-
component fermions in one dimension, which we call the
anomaly correspondence. In particular it was shown that the
third virial coefficient δb3 for the anomalous one-dimensional
Fermi gas is directly related to its two-dimensional counter-
part.

Our goal is to explicitly test this analogy by computing
the thermodynamic and transport properties of these three-
component fermions in the large temperature limit. First, it is
necessary to check whether the thermodynamics of the system
obey the anomaly correspondence. To check this we focus
on the virial coefficients and Tan’s contact [21], which have
been shown to be related to the two-dimensional anomalous
Fermi gas [14]. Once the thermodynamic properties have been
examined, we proceed to calculate the bulk viscosity.

Fundamentally speaking, scale-invariant systems in the
normal phase have a vanishing bulk viscosity [22,23]. For
this reason the bulk viscosity is an important quantity in
understanding the breaking of scale invariance, whether it be
explicit or anomalous. Although one is often concerned with
the static bulk viscosity, it is useful to consider the spectral
function of the bulk viscosity, ζ (ω). This quantity has been
calculated in the high temperature limit for fermions with two-
body interactions in a variety of spatial dimensions [24–28].
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In order to calculate the thermodynamic properties of
the one-dimensional anomalous Fermi gas, we perform the
virial expansion to third order in the fugacity z, following
the arguments presented in Ref. [26]. We explicitly calculate
the virial coefficients, Tan’s contact, and bulk viscosity for
the one-dimensional anomalous fermions, and show that they
are indeed proportional to their two-dimensional counterparts.
This allows us to explicitly verify this mapping between
anomalous systems, which was previously based on scaling
arguments [14], and to construct a dictionary for the anomaly
correspondence.

The remainder of the article is organized as follows: In
Sec. II we review the few-body physics of both the two-
dimensional and one-dimensional anomalous fermions. We
then apply this approach to calculate the shift in the third virial
coefficient and Tan’s contact in Sec. III. In Sec. IV we then
compute the bulk viscosity. We then conclude in Sec. V.

II. REVIEW OF THE FEW-BODY PHYSICS

We begin by reviewing the few-body physics of the three-
component anomalous fermions, and how it relates to the
standard anomalous paradigm in two spatial dimensions. The
Hamiltonian for the anomalous three-component fermions is

H =
3∑

σ=1

∑
k

k2

2
ψ†

σ (k)ψσ (k)

+ g

L2

∑
ki,li

ψ
†
1 (k1)ψ†

2 (k2)ψ†
3 (k3)ψ3(l3)ψ2(l2)ψ1(l1),

δk1+k2+k3,l1+l2+l3 , (1)

where we have set h̄ and m to be unity. The operator ψσ (k)
is the field operator that annihilates a fermion with spin, σ =
1, 2, 3, and momenta k, while L is the length of the system,
and the sum is over all six momenta.

Naively one would expect that g is dimensionless, however,
this model is ultraviolet (UV) divergent, and depends on a
short distance cutoff �. The act of removing this length
scale from the problem, will produce the quantum anomaly.
To understand this UV divergence, consider the three-body
scattering amplitude in the presence of the vacuum T3(Q, Q0),
where the scattering amplitude is a function of the center-of-
mass momentum Q and energy Q0. In this case the three-body
scattering amplitude can be found as the summation of the
diagrams shown in Fig. 1. The result is

T −1
3 (Q, Q0) = 1

g
− 2√

3

∫ ∞

−∞

d p

2π

×
∫ ∞

−∞

dq

2π

1

Q0 − Q2/6 − p2 − q2 + iδ
. (2)

FIG. 1. Feynman diagrams that lead to the three-body scattering
amplitude T3(Q, Q0). Each line corresponds to a free fermionic
propagator, while each vertex is a three-body interaction g.

In order to obtain Eq. (2), we have performed the following
coordinate transformation to the following coordinates:

k1 = Q

3
− p + q√

3
k2 = Q

3
+ p + q√

3
k3 = Q

3
− 2q√

3
.

(3)

This transformation has a nontrivial Jacobian, which gives
the factor of 2/

√
3.

As one can see T3(Q, Q0) = T3(0, Q0 − Q2/6), which is
required by Galilean invariance. Therefore, we define the
parameter ε = Q0 − Q2/6, the energy of the relative motion
of the three particles, and T3(Q, Q0) will only be a function
of ε. Upon performing the integration over the intermediate
momenta, one obtains

T −1
3 (ε + iδ) = 1

g
+ ln

(
�2

−ε−iδ

)
2π

√
3

. (4)

One can remove the UV dependence we renormalize g via
the the Landau pole, E = −EB, defined as the pole of the
three-body scattering amplitude at zero center-of-mass mo-
mentum. This identification leads to the following expression
for the coupling constant:

g = − 2π
√

3

ln
(

�2

EB

) . (5)

Equation (5) states the coupling constant is no longer a
constant but a function of the new energy scale, the Landau
pole, −EB. For attractive interactions, the Landau pole is at
low energies, and corresponds to the bound state energy, while
for repulsive interactions, the Landau pole is at high energies,
and as a result, has no physical significance.

It is important to note that in order to obtain this Hamilto-
nian physically, it is necessary to set the two-body interaction
to be zero. If the two-body interaction is vanishingly small yet
attractive, the resulting three-body potential is also attractive.
In this case there can be nonuniversal bound states that can
arise, and this effective description breaks down [19]. In
this work we work with the universal aspects of the given
effective field theory, and neglect the contributions from any
nonuniversal bound state.

Using Eq. (5), we can eliminate the UV divergence, and
express the T matrix in terms of physical quantities:

T3(ε + iδ) = 2π
√

3

ln
( EB

−ε−iδ

) . (6)

This should be compared to the two-body scattering ampli-
tude:

T2(ε + iδ) = 4π

ln
( EB

−ε−iδ

) , (7)

and the two-body coupling constant:

g2D = − 4π

ln
(

�2

EB

) . (8)

Assuming that the scattering properties of the two models
can be matched, one can easily see

g =
√

3

2
g2D. (9)
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In the following sections, we will exploit this fact to show
that the connection between these two anomalous systems
runs deeper, leading to a mapping between thermodynamic
quantities in the high temperature limit.

III. CALCULATION OF THE PRESSURE
AND TAN’S CONTACT

In order to study the thermodynamic and transport proper-
ties of this anomalous system, we employ the virial expansion.
For full details we refer the reader to Ref. [26]. The main idea
is to split the partition function into N-body sectors:

Z =
∞∑

N=0

zN TrN [e−βH ], (10)

where z = eβμ is the fugacity, β = 1/T , μ is the chemical
potential, and TrN denotes the trace over the N-body sector of
the Hilbert space.

In the high temperature limit, z � 1. This allows one to
expand the partition function in terms of the fugacity, and to
consider only a small number of few-body contributions to the
partition function. For our purposes, we will work up to O(z3),
or equivalently to N = 3, as this is the first nontrivial order
where interaction effects appear.

To evaluate the N-body partition function we need the
matrix elements of the evolution operator e−βH . In general this
is an impossible task. However, at the few-body level, we can
obtain an analytic result by employing the following identity:

e−βH =
∫ ∞

−∞

dE

π
e−βE Im

[
1

E − H − iδ

]
. (11)

At first and second order in the fugacity, the Hamiltonian is
simply the noninteracting Hamiltonian H0. At O(z3) we will
need to include the effect of interactions. The exact propagator
at the three-body level can be evaluated [26], and is related to
the three-body scattering amplitude defined in Eq. (6):

e−βH =
∫ ∞

−∞

dE

π
e−βE Im

[
1

E − H0 − iδ

+ 1

E − H0 − iδ
T3

1

E − H0 − iδ

]
, (12)

where T3 is the scattering amplitude operator which has matrix
elements that only depend on the center-of-mass energy and
momentum: T3(E − Q2/6 − iδ).

The partition function, and subsequently the pressure, is
evaluated by tracing Eqs. (11) and (12) over all three particle
states; see Appendix A for explicit expressions. From there,
one can use the relationship between the partition function and
the pressure:

βPL = ln(Z ), (13)

to obtain the following expression for the pressure:

P = 3T

λT

[
z − 1

2
√

2
z2 + z3

3
√

3

+ z3

6π

∫ ∞

−∞
dε e−βεIm

[
T3(ε − iδ)

−ε + iδ

]]
. (14)

The first three terms of Eq. (14) are the noninteracting
contributions to the pressure, while the last term is due to the
three-body interactions.

We now define the virial coefficients bn via

P = νT

λd
T

∑
n

znbn. (15)

Here ν is the spin degeneracy, which is 3 for the one-
dimensional case and 2 for the two-dimensional case, and d
is the dimension. With Eq. (15), we can identify the last term
as the shift in the virial coefficient:

δb3 = 1

6π

∫ ∞

−∞
dε e−βεIm

[
T3(ε − iδ)

−ε + iδ

]
. (16)

With our explicit expression for T3(ε − iδ), one can show
that the imaginary part of T3(ε − iδ) has the form,

Im[T3(ε − iδ)] = 2π
√

3EBπδ(ε + EB)

+ 2π2
√

3

ln2
(EB

ε

) + π2
θ (ε), (17)

which leads to the following expression for the virial coeffi-
cient:

δb3 = 1√
3

[
eβEB −

∫ ∞

0

dε

π

e−βε

ε

π

ln2
(EB

ε

) + π2

]
. (18)

Both Eqs. (17) and (18) refer to the case of attractive
interactions, where the Landau pole EB coincides with the
three-body bound state. In the case of repulsive interactions,
one can neglect the contribution to Im[T3(ε − iδ)] from the
Landau pole.

Equation (18) is no more than the famed Beth-Uhlenbeck
formula [29]. Moreover, comparing to the two-dimensional
case [10], we can identify the following relation:

δb3 = 1√
3
δb2, (19)

where δb2 is the shift in the second virial coefficient for the
anomalous two-dimensional Fermi gas. This relationship was
obtained previously in Ref. [14]

The presence of EB in the pressure will lead to a nonzero
contact. The contact can be defined using the following rela-
tions [14]:

PL = 2〈H〉 + 2C3,

C3 = LEB
∂P

∂EB

= g2

2π
√

3

∫
dx〈ψ†

1 (x)ψ†
2 (x)ψ†

3 (x)ψ3(x)ψ2(x)ψ1(x)〉.

(20)

From Eqs. (15) and (20), we can write down the definition
of the contact as

C̃3 = C3

L
= 3T

λT
z3EB

∂δb3

∂EB
, (21)

and similarly for two dimensions:

C̃2 = C2

L
= 2T

λ2
T

z2EB
∂δb2

∂EB
. (22)
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FIG. 2. The bulk viscosity as a function of the Landau pole energy EB. ζ̃ = ζ (ω)(4z3/(2π
√

3)2)−1λT /
√

3. (a) For repulsive three-body
interactions. (b) For attractive three-body interactions, where we include the presence of the bound state energy. The plots are identical for
frequencies greater than βEB. The structure in (b) is identical to the two-dimensional bulk viscosity evaluated in Ref. [26].

Using the relationship between the virial coefficients,
Eq. (19), one can then show

C̃3 =
√

3

2
zλT C̃2, (23)

where C̃2 = C2/L2 is the two-dimensional contact density.
The first factor comes from the fact that the spatial dimensions
are different, and as a result, the dimensions of the contact will
be different. The second factor is due to the relation between
the coupling constants, Eq. (9).

We can explicitly check Eq. (23) by evaluating the contact
from Eq. (14):

C̃3 = C3

L
= z3

λ3
T

∫ ∞

−∞

dx

π
e−xIm[T3(x − iδ, βEB)]

= z3

λ3
T

2π
√

3

[
βEBeβEB

+
∫ ∞

0
dxe−x 1

ln2(βEB/x) + π2

]
. (24)

This result is consistent with a perturbative calculation
performed in Ref. [20] which evaluated the contact for the
ground state at zero temperature. Equation (24) ought to
be compared to the contact density of the anomalous two-
dimensional Fermi gas:

C̃2 = C2

L2
= z2

λ2
T

4π

[
βEBeβEB

+
∫ ∞

0
dxe−x 1

ln2(βEB/x) + π2

]
. (25)

Upon comparison one obtains Eq. (23), the relationship
between the contact densities.

IV. THE BULK VISCOSITY SPECTRAL FUNCTION

With the contact identified, we now turn to the bulk viscos-
ity. The bulk viscosity can be defined as

ζ (ω) = Im[χ (ω)]

ω
,

χ (ω) = i

ZL

∫ ∞

0
dtei(ω+iδ)t Tr[e−β(H−μN )[�(t ),�(0)]],

(26)

where �(t ) is the spatially integrated stress-energy tensor. It is
important to note that in one-dimensional systems, the stress-
energy tensor will satisfy

� = PL = 2〈H〉 + 2C3. (27)

Substituting Eq. (27) into Eq. (26), and noting that the
thermal average of the commutator between H and C3 is
defined to be zero when the system is in equilibrium, one
obtains

χ (ω) = 4
i

ZL

∫ ∞

0
dtei(ω+iδ)t Tr[e−β(H−μN )[C3(t ),C3(0)]].

(28)

Since the contact is a three-body operator, the first non-
vanishing term of χ (ω) will be of order O(z3). We can then
perform the trace over the three-body sector of the Hilbert
space, and obtain an expression using Eqs. (12) and (20).
For explicit details on how to evaluate the trace, we refer the
reader to Appendix B, here we quote the final expression:

χ (ω) = −4z3

(
1

2π
√

3

)2 √
3

λT

∫ ∞

−∞

dε

π

∫ ∞

−∞

dε′

π

e−βε − e−βε′

ε − ε′ + ω + iδ
,

Im[T3(ε − iδ)]Im[T3(ε′ − iδ)]. (29)

Substituting this into Eq. (26), we obtain the bulk viscosity:

ζ (ω) = 4z3

(
1

2π
√

3

)2 √
3

λT

1 − e−βω

ω

×
∫ ∞

−∞

dε

π
e−βεIm[T3(ε − iδ)]Im[T3(ε + ω − iδ)].

(30)

The bulk viscosity for various frequencies as a function
of βEB is shown in Fig. 2, for both repulsive Fig. 2(a), and
attractive Fig. 2(b) three-body interactions.

From Eq. (30), one can show that the bulk viscosity is
an even function of frequency, ζ (ω) = ζ (−ω), and has the
following large frequency limit:

ζ (ω → ∞) = 4π

ln2
(

ω
EB

)
ω

C̃3. (31)
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TABLE I. The anomaly correspondence. Here we show the rela-
tion between various thermodynamic quantities for the anomalous
one-dimensional Fermi gas and the anomalous two-dimensional
Fermi gas. Here we note g is the contact interaction, δb is the virial
coefficient, C is Tan’s contact, and ζ (ω) is the bulk viscosity.

g3/g2

√
3/2

δb3/δb2 1/
√

3
C̃3/C̃2

√
3/2 zλT

ζ (ω)/ζ2(ω) 4
√

3/2 zλT

One can also integrate Eq. (30) to obtain the following sum
rule: ∫ ∞

−∞

dω

π
ζ (ω) = − 4

2π
√

3
EB

∂

∂EB
C̃3. (32)

Again as a comparison we note the bulk viscosity for 2D
systems [26] is given by

ζ2(ω) = z2

(
1

4π

)2 2

λ2
T

1 − e−βω

ω

×
∫ ∞

−∞

dε

π
e−βεIm[T2(ε − iδ)]Im[T2(ε + ω − iδ)],

(33)

or, equivalently,

ζ (ω) = 4

√
3

2
zλT ζ2(ω). (34)

V. CONCLUSIONS

In this article we have explicitly confirmed that the ther-
modynamic properties of the anomalous one-dimensional
Fermi gas is directly related to that of the anomalous two-
dimensional Fermi gas. Thermodynamic properties like the
virial coefficient, Tan’s contact, and bulk viscosity, can all
be related to one another, thanks to the mapping between
the anomalous two-body physics in two dimensions and its
three-body counterpart in one dimension. The mapping is
summarized in Table I.

This anomaly correspondence is an excellent tool in under-
standing the physics of anomalous systems at high tempera-
tures, because the dominant contribution to the physics comes
from the few-body sector. However, this mapping can not fully
reproduce the entirety of the physics in both systems. The
presence of an extra dimension will allow for the possibility
of new phenomena which may have no counterpart for one-
dimensional systems. For example, a one-dimensional system
will not have a shear viscosity, but a two-dimensional system
will.

Equivalences between quantum gases in different dimen-
sions, and with different interactions have been previously
discussed in the literature [30–32]. The emphasis of this work,
and the emphasis of Refs. [14] and [15], is in the structural
similarities between the anomalous one- and two-dimensional
systems that occur due to their identical few-body structures.

In the future we will explore this anomaly correspondence
to see whether this mapping will be exact when many-body

effects are important. To do this, it is necessary to examine
the many-body properties of the anomalous one-dimensional
Fermi gas, which is the subject of an upcoming work.
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APPENDIX A: EXPLICIT FORMS FOR THE PARTITION
FUNCTION

In this Appendix we write down the explicit form of the
partition function. We first note that the partition function can
be written as

Z = zZ1 + z2

(
Z2

1

2
+ δZ2

)

+ z3

(
Z3

1

3!
+ Z1δZ2 + δZ3 + Z3|int

)
. (A1)

The various contributions to the partition function are given
by

Z1 =
∑

k

e−βk2/2,

δZ2 = −1

2

∑
k

e−βk2
,

δZ3 = 1

3

∑
k

e−3βk2/2,

Z3|int = 1

L2

∑
Q

∑
p,q

2√
3

e−β
Q2

6

∫ ∞

−∞

dε

π
,

[
e−βεIm

[
T3(ε − iδ)

(ε − p2 − q2)2

]]
. (A2)

APPENDIX B: CALCULATION OF THE RETARDED
CONTACT-CONTACT CORRELATOR

In this section we write down an explicit form for the trace
of the following quantity:

A = Tr3[e−βH [C3(t ),C3(0)]]. (B1)

This quantity is related to the retarded contact-contact
correlator by

χ (ω) = 4
iz3

L

∫ ∞

0
dtei(ω+iδ)t A. (B2)

It is important to note that A can be rewritten as

A = Tr3[e(−β+it )C3(0)e−iHtC3(0)

− e(−β−it )HC3(0)eiHtC3(0)]. (B3)

It is still possible to use the identities in Eqs. (11) and (12)
to express the evolution operators in terms of the propagator.
One can then show that the trace of the contact-contact
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commutator is given by

A =
(

g2

2π
√

3L4

)2 ∑
Q

∑
p,q,p′,q′

∑
k,l,k′,l ′

∫ ∞

−∞

dε

π

∫ ∞

−∞

dε′

π
,

e−β
Q2

6 ei(ε−ε′ )t (e−βε − e−βε′
)

(
2√
3

)4

,

(
Im

[
T3(ε − iδ)

(ε − p2 − q2 − iδ)(ε − p′2 − q′2 − iδ)

]
,

Im

[
T3(ε′ − iδ)

(ε − k2 − l2 − iδ)(ε − k′2 − l ′2 − iδ)

])
. (B4)

Noting that

g

L2

2√
3

∑
p,q

1

ε − p2 − q2 − iδ
≈ 1, (B5)

when � → ∞. One obtains the final result,

A =
(

1

2π
√

3

)2 ∑
Q

e−β
Q2

6

∫ ∞

−∞

dε

π

∫ ∞

−∞

dε′

π
ei(ε−ε′ )t ,

(e−βε − e−βε′
)Im[T3(ε − iδ)]Im[T3(ε′ − iδ)]. (B6)

Substituting Eq. (B6) into Eq. (B2) and performing the
integrations over the center-of-mass momentum and time, one
obtains Eq. (29).
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