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Local and global patterns in quasiparticle interference: A reduced response function approach
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A physical system exposes to us in a real space, while its description often refers to its reciprocal momentum
space. A connection between them can be established by exploring patterns of quasiparticles interference (QPI),
which is experimentally accessible by Fourier transformation of the scanning tunneling spectroscopy. We here
investigate how local and global features of QPI patterns are related to the geometry and topology of electronic
structure in the considered physical system. A reduced response function (RRF) approach is developed that can
analyze QPI patterns with clear physical pictures. The generalized joint density of states, which is the imaginary
part of RRF, is justified for studying QPI. Moreover, we reveal that global patterns of QPI may be indicators of
topological numbers for gapless systems, and we demonstrate the robustness of such indicators against distractive
local features of QPI for topological materials with complicated band structures.
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I. INTRODUCTION

Interference of quasiparticles in the presence of impurities
leads to a modulation of the local density of states (LDOS).
The LDOS is accessible experimentally with scanning tunnel-
ing spectroscopy (STS) [1–3], and the pattern of modulation is
further extracted by its Fourier transformation. There are local
and global patterns of QPI that depend on the band structure
of the underlying physical system. Concisely, local patterns
of QPI depend on the geometry of the dispersion [4] and
are further modified (suppressed or enhanced) by the internal
structure of quasiparticles [5,6]. Global patterns of QPI, how-
ever, depend on the topology of band structure, e.g., a global
structure of spin-momentum locking [7]. Consequently, we
can use QPI to infer the geometry and topology of the band
structure, rendering QPI and FT-STS as facilities bridging
the r-space observations with the k-space description of the
underlying system.

There have been intensive studies of QPI for quan-
tum materials [8], including metals [1,3], superconductors
[4–6,9–12], graphene [13–17], surface states of topological
insulators [18–22], Weyl semimetals [23–26], and nonsym-
morphic materials [27–29]. The connection between QPI and
k-space spectral information is established through the joint
density of states (JDOS) and its generalization (GJDOS) that
takes internal structures of quasiparticles into consideration.
The JDOS approach has been proposed at an earlier stage
to explain hot spots in patterns of QPI for d-wave supercon-
ductor [4,5,9,30], and it recently has been applied for gap-
less topological systems in terms of spin-selective scattering

*hanqiang@ruc.edu.cn
†zwang@hku.hk

probability (SSP) [20,24]. A more rigorous treatment, how-
ever, should refer to Fourier transform of LDOS (FT-LDOS).
References [22,31] point out that GJDOS may give some false
features, and is not appliable in general. Nevertheless, as a
convenient tool GJDOS allows us to intuitively analyze and
understand QPI patterns from band structures directly. It is
desirable for a clarification of the applicability of GJDOS.
Moreover, a systematic treatment that can relate local and
global patterns of QPI to the geometry and topology of the
band structure is still awaited.

In this paper, we adopt a reduced response function (RRF)
approach for analyzing QPI patterns under different scat-
tering and probing channels. The RRF includes GJDOS as
its imaginary component, and is a faithful encoding of the
QPI information. We will prove that GJDOS shares the same
singularities with FT-LDOS, with few exceptions that can
be excluded at first hand. Moreover, we reveal the existence
of higher-degree singularities, which can give rise to more
significant features (hot spots) in QPI. With the justified
GJDOS, we derive its analytical expression that clearly shows
how its singularities and coherent factors jointly determine the
QPI patterns. Based on this expression, we propose indicators
of topological numbers in ideal topological systems. We then
testify and demonstrate the robustness of such indicators of
topological numbers against distracting local features in QPI
arising from complicated geometry of the band structure, by
exploring the QPI patterns in several representative topolog-
ical materials, including topological insulators Bi2Te3 and
BiTeI, as well as the graphene family.

The paper is organized as follows. We first propose the
reduced response function and derive its singular behavior in
Sec. II. Then, we give an analytical expression for GJDOS
and apply it for analyzing global patterns in Sec. III. We then
numerally study QPI for topological materials in Sec. IV,

2469-9950/2019/100(20)/205112(10) 205112-1 ©2019 American Physical Society

https://orcid.org/0000-0001-7359-3343
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.205112&domain=pdf&date_stamp=2019-11-08
https://doi.org/10.1103/PhysRevB.100.205112


DAN-BO ZHANG, QIANG HAN, AND Z. D. WANG PHYSICAL REVIEW B 100, 205112 (2019)

including surface states of topological insulators and the
graphene family.

II. REDUCED RESPONSE FUNCTION FOR
QUASIPARTICLE INTERFERENCE

A. The reduced response function

For simplicity without loss of generality, we restrict
our discussions of physical systems described by two-
band Hamiltonians H(k) = E0(k) + d(k) · σ. Here σ =
(σx, σy, σz ) denotes a vector of Pauli matrix for a spin (or
a pseudospin), which can represent systems with two inter-
nal degrees of freedom, including spin-half, sublattice, or
particle-hole. Impurity is described as V (r) = ∑

β V β (r)σβ ,
where β = 0, x, y, z stands for scattering channels. In the
presence of an impurity, interference between scattered-in and
-out quasiparticles leads to a perturbation to the local density
of states. The spin-resolved local density of states is related to
the Green function,

nα (r, ω) = − 1

π
Im {Tr[σαG(r, r, ω)]}, (1)

with α = 0, x, y, z representing probe channels [7], which
can be measured by the well-developed spin-resolved STS
[32–34]. The Green function in k-space can be written as

G(k′, k, ω) = G0(k, ω)δkk′ + G0(k′, ω)Tk′k(ω)G0(k, ω),
(2)

where G0(k, ω) = [ω − H(k) + i0+]−1 is the unperturbed
Green function with positive infinitesimal 0+. The T matrix
in the above equation takes the form

Tk′k(ω) =
∑

β

V β

k′kσβ +
∑
pβ

V β

k′pσβG0(p, ω)Tpk(ω),

where V β

k′k is the Fourier transform of the scattering potential
in the channel σβ . For weak impurities the Born approx-
imation is applicable, and the T matrix can be simplified
as Tk′k(ω) = ∑

β V β

k′kσβ [4]. The scattering potential may be
independent of k′ and k, e.g., for a impurity with a delta
potential δ(r). Or it may depend on the relative momentum
k′ − k [4]. We mention that in general it depends on both k′
and k, e.g., for spin-orbit scattering Vk′k = V0[1 + ic(k′ × k) ·
σ] [19,22].

The perturbed local density of states for probe channel σα

and scattering channel σβ turns to be

δnαβ (r, ω)

= − 1

π
Im

{
Tr

[∑
k′k

σαG0(k′, ω)V β

k′,kσβG0(k, ω)

]}
. (3)

QPI patterns can be captured by a Fourier transformation
of the perturbed local density of states,

δnαβ (p, ω) ≡
∑

r

e−ip·rδnαβ (r, ω)

= − 1

2π i
[�αβ (p, ω) − �∗

αβ (−p, ω)], (4)

where the response function reads

�αβ (p, ω) =
∑

k

V β

k+p,kTr[σαG0(k + p, ω)σβG0(k, ω)].

(5)
In the presence of centrosymmetry, �αβ (p, ω) =
�αβ (−p, ω), Eq. (4) reduces to δnαβ (p, ω) =
− 1

π
Im [�αβ (p, ω)]. We consider the centrosymmetry in

this paper since it is applicable for many QPI, while
the case �αβ (p, ω) �= �αβ (−p, ω) is left for further
investigation.

To establish a connection between FT-LDOS and
GJDOS, we first decompose the response function
�αβ (p, ω). Note H (k)|ψ±

k 〉 = E±
k |ψ±

k 〉, with eigenstates
ψ±

k (r) ∼ uk,±exp(ik · r) and eigenvalues E±
k = E0 ± dk.

Here we write d(k) = dkd̂k with dk = |d(k)|. Then �αβ can
be explicitly written as

�αβ (p, ω) =
∑
kss′

PαβF ss′
αβ (k + p, k, ω)

(ωk+p − s′dk+p + i0+)(ωk − sdk + i0+)
,

(6)

where

PαβF ss′
αβ = Tr

[
V β

k+p,k(u†
k+p,s′σαuk,s)(u†

k,sσβuk+p,s′ )
]
. (7)

Here we have briefly written ωk = ω − E0(k). F ss′
αβ is the

spin-coherent factor and we set as a real function (see Sec. II B
for more details), and the complex component has been
put in Pαβ , which is momentum independent if we assume
V β

k+p,k = eiφβ |V β

k+p,k|, e.g., the phase shift in the scattering is
independent of p. The dominator in �αβ (p, ω) contributes to
singularities and the numerator accounts for further enhance-
ments or depressions, and a combination of both can explain
hot-spot features in QPI. Introducing

As(k, ω) ≡ − 1

π
Im

[
1

ωk − sdk + i0+

]
= δ(ωk − sdk ),

Bs(k, ω) ≡ − 1

π
Re

[
1

ωk − sdk + i0+

]
,

we can write FT-LDOS (omitting a factor of − 1
π

),

δnαβ (p, ω)

= Re [Pαβ ]
∑
kss′

F ss′
αβ [As(k + p, ω)Bs′ (k, ω) + A ↔ B]

+Im [Pαβ]
∑
kss′

F ss′
αβ [As(k + p, ω)As′ (k, ω) + A ↔ B].

(8)

Since an autocorrelation of AA-type dominates typically
a BB-type one in the second line of Eq. (8), we chose
only the AA term which corresponds to the joint den-
sity of states. As for an approximate yet faithful encod-
ing of δnαβ (p, ω), we propose a so-called reduced response
function Rαβ (p, ω)

Rαβ (p, ω) = Sαβ (p, ω) + iJαβ (p, ω), (9)
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where

Sαβ (p, ω) =
∑
kss′

F ss′
αβ [As(k + p, ω)Bs′ (k, ω) + A ↔ B],

Jαβ (p, ω) =
∑
kss′

F ss′
αβ [As(k + p, ω)As′ (k, ω)]. (10)

Note that S and J are related by the Hilbert transformation (or
the Kramers-Kronig relation). The generalized joint density
of states (GJDOS) J incorporates spin-coherent factor into
JDOS, and has been applied to analyze QPI for gapless
topological systems in terms of spin-selective scattering prob-
ability [20,23]. The reduced response function contributes to
FT-LDOS δnαβ (p, ω) by a projection onto the direction Pαβ in
the complex plane, namely,

δnαβ (p, ω) 	 1
2 (P∗

αβRαβ (p, ω) + H.c.). (11)

B. Spin-coherent factor

Now we derive the expression of PαβF ss′
αβ and reveal the

meaning of the spin-coherent factor F ss′
αβ . We exploit a repre-

sentation of density matrix ρk,s ≡ uk,su
+
k,s = 1

2 (1 + sd̂k · σ).
Since Tr[abc] = Tr[bca], we have

PαβF ss′
αβ (k + p, k, ω)

= V β

k+p,kTr[σαρk+p,s′σβρk,s]

= 1

4
V β

k+p,k

∑
jl

Tr
[
σασβ + σ jσασlσβ d̂ j

k d̂ l
k+p

]
.

Recall that j, l = x, y, z while α, β = 0, x, y, z. Some interest-
ing results can be immediately derived for the summation term
denoted as t ss′

αβ (k + p, k). For α and β, there are three different
cases:

(1) α = β. Then t ss′
αα = 2(1 + ss′d̂k+p · R̂αd̂k ). Here R̂α is

a mirror reflection with the α = x, y, z axis and R0 means no
operation.

(2) α = 0, β �= 0. Then t ss′
0β=2iss′Lβ , where (Lx, Ly, Lz ) =

d̂k+p × d̂k. By symmetry we have t ss′
β0 = t ss′

0β .

(3) α �= 0, β �= 0, α. Then t ss′
αβ = 2ss′(d̂α

k d̂β

k+p + d̂β

k d̂α
k+p).

Here the second case is remarkable. A factor of i appears
here. If V β

k+p,k is a real number, then we have P0β = i, meaning
that the GJDOS should account for quasiparticle interference
and thus is expected to give sharp QPI features. However,
those features may be depressed, for instance, in backscat-
tering processes, where t ss′

0β (−k, k) = 0. Nevertheless, GJ-
DOS can be used to explain QPI from scattering between
quasiparticles locating at cusps of constant contour of energy
(CCE) for time-reversal breaking systems, such as d-wave
superconductors [4,5].

C. Singular behaviors of the reduced response function

The reduced response function can be written as two parts.
The first part corresponds to terms of AB + iAA type and
the second part corresponds to BA + iAA type, as written in
Eq. (9) and Eq. (10). In the following we give a derivation of
the first part and the case of the second part can be obtained
similarly. Our result shows that both the real and imaginary
parts share the same singularities. To focus on the singular

FIG. 1. Behavior of Ėkω (t0 )+p. The dashed red arrows stand for
a small departure of scattered-in quasiparticle from kω(t0) but with
the same p. The left figure shows the general case, while the right
demonstrates the case of backscattering.

behavior, we omit the factor F ss′
αβ temporarily. The first part of

RRF is∑
ss′

rss′
AB(p, ω)

=
∑
kss′

[As(k + p, ω)Bs′ (k, ω) + As(k + p, ω)As′ (k, ω)].

Using 1/(x + 0+) = P(1/x) − iπδ(x), the first part of RRF
can be rewritten as∑

ss′
rss′

AB(p, ω) =
∑
ss′

∫
1

ω − Es′
k+p + i0+ δ

(
ω − Es

k

)
dkxdky

=
∑
ss′

∫
Es

k=ω

1

ω − Es′
k+p + i0+

1∣∣∇kEs
k

∣∣dl. (12)

The second part
∑

ss′ rss′
BA(p, ω) is obtained by a replacement

k + p ↔ k. The integral is along CCEs of Es
k = ω. We may

parametrize the nth CCE as kn,s
ω (t ) = [ f n,s

ω (t ), gn,s
ω (t )] with t ∈

[0, 2π ). For brevity we would omit the index n. After a tedious
derivation we can show that the integral is singular for p under
a given energy ω only if there exists t0 that

ω − Es′
ks

ω (t0 )+p = 0,
(13)

Ė s′
ks

ω (t0 )+p =
dEs′

ks
ω (t )+p

dt

∣∣∣∣∣
t=t0

= 0.

The first condition promises that the scattered quasiparticle
is on the CCE, and the second one points out that p should
be specified. An illustration can be seen in Fig. 1 to show that
backscattering meets the above conditions. Moreover, Eq. (13)
servers as a mathematical foundation for exploring singular
behavior analytically.

To study the singular behavior, we evaluate rss′
AB(p + δ, ω)

with |δ| ∼ 0. An expression can be found as

rss′
AB(p + δ, ω) ∼ − 1

|vs
k0 ||vs′

k0+p|
1∣∣δ · �ss′

k0+p,k0

∣∣1/2

×
{

sgn
(
nk0+p · �ss′

k0+p,k0

)
, δ · �ss′

k0+p,k0
> 0

i, δ · �ss′
k0+p,k0

< 0
,

(14)
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FIG. 2. CCE that changes sign of the curvature for a toy model.
p1,2,3 are singularities of Rαβ (p, ω) because they connect points with
their group velocities (anti)parallel. According to Eq. (15), only the
joint curvature of p3 is zero which leads to the fact that the order of
p3 is higher than those of p1,2.

where we have defined the joint curvature,

�ss′
k′,k = κs′

k′ns′
k′ − κs

kns
k. (15)

Here κs
k is the curvature of the CCE ω = Es

k at k, ns
k = vs

k/|vs
k|

the direction vector of the group velocity, k0 the real solution
of Eq. (13). We remark a similar expression can be found for
rss′

AB(p + δ, ω) by an exchange of k0 + p ↔ k0.
The expression of singular behavior of Eq. (14) in terms

of the joint curvature provides a clear geometrical tool for
analysis: (1) The real and imaginary parts of R(p, ω) share the
same singularities and diverge complementarily in a inverse-
square-root manner, unless the joint curvature is zero. (2) If
the joint curvature of certain singularity is zero, then the
exponent of the power-law divergence is −2/3 and can be
even higher. In Fig. 2, we illustrate singularities with nonzero
and zero joint curvatures, and they gives divergence of − 1

2 and
at least − 2

3 , separately.

D. Stability of singularities for finite lifetime quasiparticles

We consider the stability/robustness of singularities of
R when quasiparticles have finite lifetime. We argue that
singularities are not stable for S when a length of CCE
is approximate flat. We simply take 0+ → η, where η is a
positive finite number accounting for the finite lifetime for
quasiparticles.

A finite lifetime of quasiparticle will smooth singulari-
ties. Note that B(k, ω) and A(k, ω) exhibit distinct behavior
around ω = Ek [see Fig. 3(a)]. Remarkably, B(k, ω) is zero
at ω = Ek and changes sign at two sides. The real part of
RRF, S , is an autocorrelation of A(k, ω) and A(k, ω), has
a large weighting at |ω − Ek| < η. For a large-momentum
backscattering in Fig. 3(b), scattered-out quasiparticle always
has energy ω > Ek, and thus gives a positive contribution
to S . However, when scattering occurs on an approximated
flat CCE (compared to |p|) [see Fig. 3(c)], then scattered-out
quasiparticle of both ω > Ek and ω < Ek contribute to S , and

FIG. 3. Stability of singularities for the real part of the reduced
response function S . (a) Amplitude of A(k, ω) and B(k, ω) with
varying ω under positive finite η that models a finite lifetime of quasi-
particle. (b) Stable singularity. Contributions to S are all positive
(dashed red arrows) under fixed p (solid green arrow). (c) Unstable
singularity. Positive (thick dashed red arrow) and negative (thin
dashed red arrow) contributions to S under fixed p. (d) Stable
singularity for near-nesting scattering. (e) Unstable singularity for
near-nesting scattering.

those contributions cancel out. The case for near-nesting can
be analyzed similarly. In contrast, the joint density of states
J is an autocorrlation of two A(k, ω), which receive always
positive contributions around and mainly from ω = Ek. Thus,
when QPI pattern should be given by S , J would give false
features for scattering on an approximately flat band. For
instance, a hot spot at p = 0 always presents in J but is
absent in S for η �= 0. This can clarify a discrepancy between
FT-LDOS and GJDOS for explaining QPI [31].

III. GLOBAL PATTERNS IN QPI FOR IDEAL
TOPOLOGICAL SYSTEMS

In the above section, we have revealed that S and J
share same singularities ideally. While in a real application
(where quasiparticles have finite lifetime), singularities of S
disappear for approximately flat CCE, but are remained in
J , leading to a discrepancy. However, those discrepancies
correspond to rather specified QPI patterns, such as hot spot
or an asterisklike pattern around p = 0 [21]. Thus, we can
take them as exceptions at first hand when using J . After

205112-4



LOCAL AND GLOBAL PATTERNS IN QUASIPARTICLE … PHYSICAL REVIEW B 100, 205112 (2019)

having justified the applicable of J , we will derive a simple
expression of J that can be used directly for analyzing QPI
pattern in a geometrical fashion. We then use this expression
to analyze global patterns in QPI for ideal topological Dirac
points with varied topological numbers.

A. Analytical expressions of GJDOS

Due to the properties of δ function, J ss′
αβ (p, ω) can be

analytically evaluated:

Jαβ (p, ω) =
∫

F ss′
αβ (k + p, k)

δ(ω − E ′)δ(ω − E )∣∣ ∂ (Es′
k+p,Es

k )

∂ (kx,ky )

∣∣ dEdE ′

=
∑
k0ss′

F ss′
αβ (k + p, k)

∣∣∣∣∣∂ (Es′
k+p, Es

k )

∂ (kx, ky)

∣∣∣∣∣
−1

k=k0

=
∑
k0ss′

F ss′
αβ (k0 + p, k0)∣∣vs′

k0+p × vs
k0

∣∣ , (16)

where the sum is taken over all k0’s in the real solution set of
the following two equations,

Es′
k0+p = ω, (17)

Es
k0

= ω. (18)

The singularity is obtained by setting the dominator

vs′
k0+p × vs

k0
= 0, (19)

which could be seen as a generalization of Van Hove singu-
larity with regards to joint density of states. The condition Eq.
(19) is reached when vs

k0
= 0 or vs′

k0+p = 0, or vs
k0

‖ vs′
k0+p.

The latter, for example, explains backscattering in metals
where quasiparticle of k is scattered to −k. The condition
of singularity also could be viewed as an envelope curve for
one-parameter p curve family Es′

k+p = ω and Es
k = ω. This

allows us to directly draw QPI pattern based on contours of
constant energy. It should be pointed out that the condition
Eq. (19) can be related to the stationary phase approximation
[35], which has been applied in the study of QPI for surface
state of Bi2Te3.

The expression of Eq. (16), combined with geometrical
representation of F ss′

αβ as discussed in Sec. II B, allows an
analysis of QPI pattern from the band structure directly. In
the following, we will first give examples for simple models
of gapless topological systems.

B. Global patterns in QPI

For a simple circlelike CCE, singularities come from
backscattering from k0 to −k0. The topology of Dirac points
manifests in their structures of spin-momentum binding, and
will have effects on QPI patterns through the factor F ss′

αβ that
may suppress the singularities. For illustration, we choose the
Hamiltonian,

Hk = kn(cos nθ σ1 + sin nθ σ2), (20)

where n is an arbitrary integer, as a model for a Dirac
point with topological charge/number Q = n [36,37]. Those

FIG. 4. Illustration of how spin direction (dashed red arrows) and
group velocity (solid blue arrows) along the CCE jointly determine
QPI pattern. For backscattering group velocities are reversed and
the denominator becomes divergent. However, spin directions are
reversed for Q = 1 but are the same for Q = 2. Thus, the divergence
is kept only for Q = 2.

systems have circlelike CCEs. Quasiparticle with eigenenergy
±|k|n has the wavefunction uk,±exp(ik · r), where uk,± =
(1,±e−inθ )T . We chose positive ω, and indexes s and s′ in
the RRF framework are omitted.

We first consider the charge scattering and charge probe
channel (α = β = 0) for systems with different topological
numbers Q. In Fig. 4 we demonstrate how to use GJDOS
of Eq. (16) to analyze QPI patterns. A distinct behavior can
be identified between Q = 1 and Q = 2 that origins from
their distinct structures of spin-momentum locking: QPI pat-
terns are suppressed for Q = 1 while restored for Q = 2 for
backscattering.

We now consider α = β channel. Note that Fαα = 2(1 +
d̂k+p · R̂αd̂k ). As the spin lies on the x-y plane, Rz will not
change d̂k. Interestingly, Fzz is the same as that of F00. Thus,
although charge probe channel cannot detect magnetic impu-
rity σz (the well-known prohibition of backscattering for Dirac
fermion), a spin σz resolved probe can [7]. However, Rx/y will
change the sign of d̂y/x

k . As a result, for channel α = β = x/y
suppressions of singularities will become direct dependent.
In Fig. 5 we show the case α = β = x for both Q = 1 and
Q = 2, and QPI patterns have two and four separated hot arcs,
separately. One can derive that the number of hot arcs turns to
be 2n if the topological number Q = n, making it a global QPI
pattern that can reveal topological number of the underlying
system.

Following the above examples we can exploit global QPI
patterns from different combinations of scattering and probe
channels as indicators for topological numbers of the underly-
ing systems. We give some topological-number indicators as
following:

(1) Odd-even indicator. For scattering channel α = 0
and probe channel β = 0, the spin-coherent factor reads
as F00 ∼ [1 + cos n(θ−k0 − θk0 )]. As θ−k0 − θk0 = π , then
J00 ∼ limθ→π

F00
sin θ

∼ 0 is zero only for odd n. This can be
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FIG. 5. Illustration of effective direction-selective prohibition of
backscattering. The combination of scattering scattering channel α =
x and probe channel β = x effectively rotates the spin of quasiparti-
cle around x axis by π , leading to a twist of spin interference, and
backscattering is prohibited along specified directions. For Q = 1
and Q = 2 QPI patterns have two and four hot arcs (brown color),
respectively.

understood from the picture of spin-momentum locking, spins
would be antiparallel/parallel for Dirac point with odd/even
topological number at a pair (−k0, k0). Thus, circlelike QPI
patterns remain/disappear for even/odd topological numbers.

(2) Integer indicator. For scattering channel α = x and
probe channel β = x, the spin-coherent factor reads as Fxx ∼
[1 + cos n(2θk0 + π )]. There is a 2n-fold periodicity with
angle θ . Consequently, there are 2|n| disconnected hot arcs
in the QPI pattern. For α = β = y, the conclusion holds while
hot arcs rotate π

2n compared to the case α = β = x.
(3) Positive-negative indicator. Counting hot arcs alone

cannot tell whether topological charge is positive or negative,
thus we need an additional indicator. This can be achieved by
rotating the scattering channel and probe channel a little, e.g.,
rotating clockwise, and observing how QPI pattern would ro-
tate. If it rotates clockwise (anti-clockwise), then topological
charge is positive (negative).

Further, we can explore quasiparticle interference of two
different Dirac points. For instance, intervalley scattering
in graphene where two valleys have opposite topological
numbers [38]. Consider two Dirac points with topological
charge Q1 = n and Q2 = m, following the analysis of Fαβ ,
we find that the odd-even indicator(α = β = 0) would tell
odd or even for n − m, and integers indicator would give
n + m disconnected hot arcs. Those results provide further
clues to identify topological charges of different Dirac points,
which would be demonstrated on QPI patterns of the graphene
family.

To reveal these global and local QPI patterns, magnetic
impurity with specified magnetization direction as well as
spin-resolved STS techniques are required [32–34]. The basic

idea is to coat the STS tip with magnetic material so that there
is a spin-spin interaction between the tip and the sample. The
in-plane or out-of-plane sensitivity (or both) of the tip depends
on how the tip is coated by what kind of magnetic material.
For instance, the GdFe-coated tip is out-of-plane sensitive
while the Fe-coated W tip is in-plane sensitive. Interested
readers can refer to Ref. [32].

IV. APPLICATIONS TO TOPOLOGICAL MATTERS

We now employ the reduced response function approach
to address topological materials [36,39,40]. We chose three
representative examples, including surface states of topolog-
ical insulators Bi2Te3 [41,42] and BiTeI [21,43], as well as
the graphene family [44]. For those real materials there may
be deviations of both dispersion and spin-momentum lock-
ing from ideal topological Dirac points described by Hn(k)
[Eq. (20)]. Thus, they provide playgrounds for studying both
local and global patterns of quasiparticle interference.

A. Surface states of topological insulator: Bi2Te3

In the surface state of Bi2Te3, wrapping terms appear [41].
At the low-energy limit, the CCE can be approximated as
a circle, while at larger energy it becomes nonconvex. Such
distinct geometries of CCEs will lead to different patterns in
quasiparticles interference at different energies [18,19]. On
one hand, we expect remarkable new features in QPI; on the
other hand, we can testify whether indicators of topological
number are robust under complex CCEs when the energy
increases.

To study the effect risen up by the complicated geometry
of CCE at large energy, we consider the surface state of
topological insulator Bi2Te3 which can be modeled as [19,41]

HT I (k) = v(kxσy − kyσx ) + λk3 cos 3θkσz, (21)

where θk = arctan ky/kx. The system HT I (k) has time-
reversal symmetry and belongs to AII class. It owns a Z2-
type topological number of Q = 1 [36]. Dispersions of two
branches s = ±1 are opposite and we take only the positive
one (s = 1) for consideration in RRF. At a low energy, the
CCE is circlelike, and QPI patterns under different combi-
nations of scattering and probe channels are consistent with
those of ideal Dirac point with Q = 1 (see Fig. 6 for details).

For a sufficient large energy, the wrapping term becomes
important and CCE turns to be nonconvex and exhibit six
cusps. A scattering between a pair of cusps can satisfy the
condition of singularity Eq. (19) but is not backscattering-
type. Remarkably, p1 and p4 correspond to zero joint cur-
vature. Moreover, p3 is a backscattering scattering between
near-nesting arcs of CCE. Those vectors (p1, p3, p4) thus have
higher degrees of singularity than 1

2 , evidenced by hotter spots
than p4 in joint density of states J (p, ω) (see Fig. 7). QPI
under different combinations of scattering and probe channels
exhibits more complex patterns as a consequence of both
topological and geometrical aspects of the band structure.
Numeral evaluation of S00(p, ω) shows hot spots locating at
p1, p4 that are absent for small energy when CCE is convex.
Due to the spin-coherent factor, spot is darker for p4 than that
of p1. Those results fit very well with the FT-STS experiment
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FIG. 6. QPI patterns for surface state of 3D topological insulator
Bi2Te3 for circlelike contour of constant of energy at low energy
ω = 0.25. Backscattering is prohibited for charge impurity and
charge probe, as evidenced S00, while is restored for σz impurity
and σz-resolved probe. The QPI pattern shows two bright arcs for σx

impurity and σx-resolved probe. Those QPI patterns under different
channels reveal a topological number Q = 1.

[20,45]. We also present J00(p, ω) as a comparison. It can be
seen that J00(p, ω) has some sharp features around the center.
These features come from joint densities of states with the
same arc of the CCE, and are not stable singularities. Thus, a
direct application of JDOS should take those as false features,
when QPI should be given by the real part of the RRF.

We then investigate QPI in the other situations, e.g.,
Sxx(p, ω) and Szz(p, ω). Compared with QPI at low energy,
we can see that while local features are different, the global
patterns persist. For Szz(p, ω), the bright closed curve results
from backscattering. For Sxx(p, ω), QPI pattern is cut into two
parts in the middle, showing a twofold pattern. Remarkably,
p4 is enhanced while p1 is suppressed, due to the effective R̂x

reflection of the spin of scattered-in quasiparticle. These dis-
tortions of local features plus persistences of global patterns
suggest the robustness of indicators for topological numbers.

FIG. 7. QPI patterns for nonconvex contour of constant energy
for surface state of 3D topological insulator Bi2Te3. CCE at ω = 1 is
given in the right-bottom [parameters in Eq. (21) are v = 1 and λ =
2]. Joint density of states J evidences high degrees of singularities
with hotter spots, e.g., p1, p4 due to zero joint curvatures, and p3

due to near-nesting. QPI patterns are given by Sαα for α = 0, x, z
scattering and probe channels. As a comparison with S00, J00 gives
extra false features around the center.

FIG. 8. Quasiparticle interference for the surface state of BiTeI.
In the middle is an inset of contours of constant energy at ω = −0.01,
which has two concentric CCEs. QPI for different combinations
of scattering and probing channels are given by S00,Szz,Szx,Sxx ,
respectively. Inter-CCE (intra-CCE) scattering are favored (prohib-
ited) in S00, while Intra-CCE (inter-CCE) scattering are favored
(prohibited) in Szz. A global pattern of twofold symmetry appear
in both Szx and Sxx . The four hot arcs in Sxx can be explained
by direction selective spin-coherent factor due to an effective spin
reflection around the x direction R̂x .

B. Surface state of polar semiconductor: BiTeI

We continue to study another topological state: surface
state of polar semiconductor BiTeI [21,22,43]. There are two
concentric CCEs, due to a contribution from the bulk state.
Those two CCEs correspond to two branches of s = 1,−1,
and thus are opposite in spin-momentum locking along the
CCE (see Fig. 8). Scattering between two concentric CCEs
cannot be ignored. Moreover, the outer CCE has a larger
distortion from the circle. Such a system thus exhibits un-
conventional properties of the band structure that can lead to
novel patterns of quasiparticle interference.

Following Ref. [21], the surface state can be modeled as

H0(kx, ky) =
(

E0 + k2

2m
E (k)

)
I + V (k)(kxσy − kyσx )

+ �(k)
(
3k2

x − k2
y

)
kyσz, (22)

where I is the identity matrix, and k =
√

k2
x + k2

y . The last

term of Eq. (22) respects the C3v symmetry of BiTeI [43,46].
Functions are E (k) = 1 + α4k2 + α6k4, V (k) = v(1 +
β3k2 + β5k4) and �(k) = λ(1 + γ5k2). Parameters as set
as m = 0.0168 eV−1 Å

−2
, α4 = −2.03 Å

−2
, α6 = 87.5 Å

−4
,

v = 3.13 eVÅ
−1

, β3 = −2.01 Å
−2

, β5 = 323 Å
−4

, λ =
−41.7 eVÅ

−3
, γ5 = 2.43 Å

−2
, and E0 = −0.352 eV.
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In the treatment of RRF, we should take all inter- and
intra-CCEs scattering by a summation over s = ±1 and s′ =
±1 in Eq. (12). Numeral simulations are given in Fig. 8 for
S00,Szz,Szx,Sxx. As we can see in S00, intra-CCE backscat-
tering is prohibited for both the inner and the outer CCEs, due
to a reversal of spin directions. However, inter-CCE scattering
is allowed and a bright hexagon appears. QPI patterns in
the case of Szz is reversed: bright hexagon appears only for
intra-CCE scattering. The most interesting case is spin σx scat-
tering and σx probing channels: there are four disconnected
bright arcs that respect a twofold symmetry. The outer arcs
come from intra-CCE scattering: since R̂x reflection will not
change spin in x direction, quasiparticle interference for p3

is still suppressed due to an approximately reversal of spins.
However, hot arcs arises for wave vector p2, as R̂x(↑) =↓, thus
the spin-coherent factor now becomes nonzero. The inner arcs
result from inter-CCE scattering: quasiparticle interference of
wave vector p1 is enhanced while p3 is suppressed. The outer
and inter hot arcs locate at horizon and vertical directions,
respectively. Thus, they still respect the twofold symmetry.
We also show Szx that also respect the twofold symmetry.
We remark that the twofold symmetry can be considered
as global patterns for indicting topological numbers Q = 1,
instead of merely counting the number of disconnected hot
arcs.

C. The graphene family

Graphene and its relatives of N-layer graphene host two
topological Dirac points with opposite topological numbers
[37]. Moreover, the topological number can vary with the
layer. For example, there are two gapless points with Q =
±2 for AB stacked bilayer graphene and Q = ±3 for ABC
stacked trilayer graphene. Those make the graphene family
an ideal platform for studying global patterns of quasiparticle
interferences.

We consider N-layer graphene with ABC stacking. For the
ith layer two sublattices are denoted as ai and bi, then there are
isolated atoms a1 and bN that are not directly coupled to other
layers. Taking a1 and bN as a pseudospin, we have an effective
Hamiltonian HG,N (k) = [Re f (k)]Nσx + [Im f (k)]Nσy to
model ABC stacking N-layer graphene [37]. Here
f (k) = 1 + eik·G1 + eik·G2 with G1, G2 being primitive
vectors for graphene. Topological Dirac points locate at
K and K′ with topological charges Q = ±N respectively.
At the low-energy limit HG,N (k) can be approximated
by H±N (k) with f (k) ∼ kN . It should be noted that the
pseudospin here corresponds to sublattice, and the physical
meaning of scattering and probing channel should be adjusted
accordingly. For pointlike impurity locating at site a/b
the scattering channel is τa/b = 1

2 (σ0 ± σz ) (here we have
abbreviated a/b for a1/bN ). Similarly, LDOS is measured at
site a/b and probing channel is τa/b. The reduced response
functions R00(p, ω) and Rzz(p, ω) can be obtained as follows,
R00(p, ω) = 1

2 [Raa(p, ω) + Rbb(p, ω) + Rab(p, ω) +
Rba(p, ω) + ],Rzz(p, ω) = 1

2 [Raa(p, ω) + Rbb(p, ω) −
Rab(p, ω) − Rba(p, ω)], where Rμν (μ = a, b and
ν = a, b) correspond to probe channel τμ and scattering
channel τν .

FIG. 9. QPI pattern for graphene family evaluated by S00(p, ω)
and Szz(p, ω), as shown in (a) and (b), respectively. Here we chose
ω = 0.3, 0.15, 0.1 for N = 1, 2, 3, respectively. Intervalley scatter-
ing leads to remarkable 2N hot arcs for N = 1, 2, 3. CCEs and the
joint density of states are shown in (c) for N = 1.

As two valleys K and K′ have the opposite topological
charges, it is expected to see distinct QPI patterns between
the center of p-space due to intravalley scattering and those
due to intervalley scattering away from the center, such as
around ±2K, ±2K′ and ±2(K − K′). We numeral evaluate
S00(p, ω) and Szz(p, ω) for ABC stacked N-layer graphene
for N = 1, 2, 3 respectively, as seen in Fig. 9. For both chan-
nels, distinct 2N pieces of disconnected hot arcs appear for
intravalley scattering and are rotated relatively. Those distinct
features of QPI both for intervalley scattering indicate oppo-
site topological charges for Dirac point located at the valleys.
The simulations fit well with the FT-STS experiments [15,38]
for monolayer graphene, while better resolution is required
for bilayer graphene. For intravalley scattering, a bright circle
appears for channels α = β = z and is absent α = β = 0 for
monolayer graphene. The persistent presence of bright circle
around the center for bilayer and trilayer graphene may result
from high density of states from dispersions of kN (N > 1).
We mention that joint density of states give false hot spots at
p = 0,±2K,±2K, and ±2(K − K′).

V. CONCLUSIONS

We have developed a reduced response function approach
for analyzing and simulating quasiparticle interference under
different scattering and probing channels. The applicability of
the generalized joint density of state has been clarified. We
have analytically shown how singularities and spin-coherent
factor jointly determine QPI patterns. Remarkably, those
local features and global patterns in QPI can be used to
infer geometry details of dispersions and topology of band
structures for the underlying system. We have also proposed
indicators of topological numbers from global patterns of QPI
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for topological Dirac points. We have numerally simulated
QPI of different topological materials, whose complicated
geometrical features yet robust global patterns are evidenced
and can be nicely captured in the RRF framework.

We remark that advances in spin-resolved STS technique
[32–34] may experimentally visualize novel QPI patterns
explored in this paper. Further investigations along this line in-
clude finding QPI that should be explained by the generalized
joint density states, and an extension of the reduced response

function approach for systems beyond two-band Hamiltonian
description.
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