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Abstract
We develop a framework of generalized multi-
nomial models, which includes both the popular
Plackett–Luce model and Bradley–Terry model
as special cases. From a theoretical perspective,
we prove that the maximum likelihood estima-
tor (MLE) under generalized multinomial models
corresponds to the stationary distribution of an in-
homogeneous Markov chain uniquely. Based on
this property, we propose an iterative algorithm
that is easy to implement and interpret, and is
guaranteed to converge. Numerical experiments
on synthetic data and real data demonstrate the
advantages of our Markov chain based algorithm
over existing ones. Our algorithm converges to
the MLE with fewer iterations and at a faster con-
vergence rate. The new algorithm is readily appli-
cable to problems such as page ranking or sports
ranking data.

1. Introduction
Aggregating pairwise comparison data, ranking data, rat-
ing data and discrete choice data is an important prob-
lem in many fields, including sports ranking (Elo, 1978;
Deng et al., 2014), marketing research (McFadden, 1974;
Kamishima, 2003; Kamishima & Akaho, 2006), election
(Murphy & Martin, 2003; Moors & Vermunt, 2007), clas-
sification (Hastie & Tibshirani, 1998) and so on. Various
models have been proposed to carry out such tasks, for
example, the multinomial model for discrete choices, the
Plackett–Luce model for rankings (Luce, 1959; Plackett,
1975) and the Bradley–Terry model for pairwise compar-
isons (Bradley & Terry, 1952; Huang et al., 2006).

Our work unifies all the aforementioned models in the frame-
work of generalized multinomial models owning to their

1Department of Statistics and Actuarial Science, University of
Hong Kong, Hong Kong SAR, China. Correspondence to: Jiaqi
Gu <u3005743@hku.hk>, Guosheng Yin <gyin@hku.hk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

shared structures in the log-likelihood function. We theoret-
ically show that the maximum likelihood estimator (MLE)
under generalized multinomial models corresponds to the
probability vector of the stationary distribution of an in-
homogeneous Markov chain whose transition matrix is a
function of the MLE itself. Motivated by Maystre & Gross-
glauser (2015), we develop a consistent, computationally
efficient and easy-to-implement Markov chain based algo-
rithm for MLE calculation. Our algorithm uniquely con-
verges to the MLE under generalized multinomial models
with fewer iterations than existing methods. Extensive ex-
periments on synthetic data and real data reveal that our algo-
rithm outperforms existing ones, such as the minorization–
maximization (MM) algorithm (Hunter, 2004; Hunter &
Lange, 2004) and the Bayesian weaver algorithm (Dong &
Yin, 2018), in terms of the level of robustness, computa-
tional efficiency as well as statistical properties.

The rest of this paper is organized as follows. In Section 2,
the framework of generalized multinomial models is estab-
lished and existing methods for inference are reviewed. The
details of our Markov chain based algorithm are provided in
Section 3. Experiments on synthetic data and real data are
conducted in Section 4 to compare our algorithm with exist-
ing ones in terms of computational efficiency and statistical
properties. Section 5 concludes with discussions.

2. Generalized Multinomial Models
2.1. Framework

Consider d basic cells c1, . . . , cd, where ci is assigned with
cell probability pi (

∑d
i=1 pi = 1). Suppose the counts of d

basic cells are a1, . . . , ad respectively, then the likelihood
function is

L(p) =
d∏
i=1

paii , (1)

where p = (p1, . . . , pd)
T . Model (1) is known as the com-

plete multinomial model. The completeness of model (1)
originates from two conditions:

1. Union of disjoint candidate sets for each multinomial
choice is fixed as C = {c1, . . . , cd}.
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2. Candidate sets for each multinomial choice all consist
of only one basic cell, i.e., candidate sets take the
shared form of {ci}.

In other words, candidate sets for all multinomial choices
are fixed as {c1}, . . . , {cd}. Relaxing either of the above
conditions would lead to an incomplete multinomial model,
under which all multinomial choices share a common prob-
ability measure. With examples presented by candidate sets,
we introduce three types of incomplete multinomial models
in which one or both conditions are relaxed:

A. Candidate sets all consist of only one basic cell but the
union of them is not C : {c2}, {c4}, . . . , {c2×bd/2c}.

B. Union of candidate sets is C but candidate sets all con-
sist of more than one basic cell: {c1, c2}, {c3, . . . , cd}.

C. Candidate sets all consist of more than one basic cell
and the union of them is not C : {c1, c2}, {c3, c4} with
d > 4.

Generalized multinomial models described below unify both
the complete and incomplete multinomial models (type A
to C). For each multinomial choice with candidate sets
S1, . . . , Sl where Sk1 ∩ Sk2 = ∅ for all k1 6= k2, the proba-
bility of selecting candidate set Sk is

P (Sk|S1, . . . , Sl) =

∑
ci∈Sk

pi∑l
k=1

∑
ci∈Sk

pi
. (2)

Suppose for the j-th observation (j = 1, . . . , n), the can-
didate sets are Sj1 , . . ., Sjlj , the union of candidate sets

is Cj = ∪ljk=1S
j
k and the selected candidate set is Aj ∈

{Sj1, . . . , S
j
lj
}, then the likelihood function under a general-

ized multinomial model is

L(p) =
n∏
j=1

P (Aj |Sj1, . . . , S
j
lj
)

=

n∏
j=1

∑
ci∈Aj pi∑lj

k=1

∑
ci∈Sj

k
pi

=

n∏
j=1

∑
ci∈Aj pi∑
ci∈Cj pi

, (3)

and the corresponding log-likelihood function is

`(p) =
n∑
j=1

{
log
( ∑
ci∈Aj

pi
)
− log

( ∑
ci∈Cj

pi
)}
. (4)

Any model with a log-likelihood function similar to (4) can
be classified as a generalized multinomial model. Various

generalized multinomial models have been proposed in the
literature. One typical case is the Plackett–Luce model for
ranking data (Luce, 1959; Plackett, 1975) which assumes
that the ranking of cells is generated by sequentially select-
ing the most preferred cell each time from the remaining
ones. Thus, a full ranking of d cells can be decomposed into
d− 1 sequential multinomial selections. Given m rankings
π1, . . . , πm (each πk here represents a vector of ranks of the
cells), the log-likelihood function is

`(p) =
m∑
k=1

d−1∑
i=1

{
log
(
pπ−1

k (i)

)
− log

( d∑
l=i

pπ−1
k (l)

)}
,

(5)
where π−1k (i) is the index of the cell with rank i in πk.
Other examples include the Bradley–Terry model for pair-
wise comparison data (Bradley & Terry, 1952; Huang et al.,
2006), certain contingency table models (Chen & Fienberg,
1976) and the general counting experiment on random parti-
tions.

2.2. Existing Methods

The main difficulty to obtain the MLE under generalized
multinomial models is to optimize `(p) in (4) subject to
the constraint

∑d
i=1 pi = 1, as `(p) is not concave due

to terms − log
(∑

ci∈Cj pi
)

(j = 1, . . . , n). As a result,
the MLE equations are analytically and computationally
intractable, and thus traditional optimization methods, such
as the Newton–Raphson algorithm, cannot guarantee the
convergence to the global maximum.

One popular approach to conquering such difficulty uses the
MM algorithm (Hunter, 2004; Hunter & Lange, 2004) by
constructing a concave surrogate function Q(p;p(t)) based
on the t-th update p(t), where Q(p;p(t)) ≤ `(p) holds for
all p. The optimization of `(p) is implemented by continu-
ously updating the surrogate function. The MM algorithm
is the standard method to obtain the MLE under general-
ized multinomial models, although it bears low convergence
speed. Another class of methods are fixed point algorithms
on the basis of MLE equations, such as the Ford algorithm
for pairwise comparisons (Ford, 1957) and the Bayesian
weaver algorithm for incomplete multinomial data (Dong
& Yin, 2018). Although these algorithms are easy to im-
plement with per-iteration computational cost O(nd), their
applications are restricted. The Ford algorithm can only
be implemented to pairwise comparison data, the weaver
algorithm fails to cope with type B and type C incomplete
multinomial models, and the Bayesian weaver algorithm
needs a large number of iterations to converge.

Apart from frequentist approaches as mentioned above,
Bayesian inference methods have also been developed, see
Guiver & Snelson (2009); Caron & Doucet (2012); Caron
& Teh (2012) for details. Motivated by the work in Maystre
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& Grossglauser (2015), we establish a simple algorithm to
obtain the MLE that maximizes the unified log-likelihood
function in (4). Although the per-iteration computational
cost of our algorithm is O(nd2), it is still computationally
efficient due to its requirement of much fewer iterations to
reach convergence.

3. Markov Chain Based Algorithm
To introduce our Markov chain based algorithm for gen-
eralized multinomial models, we first define two sets of
indexes for each basic cell. Let Wi = {j : ci ∈ Aj} and
Li = {j : ci ∈ (Cj\Aj)} be the indexes of observations
where ci belongs to the selected candidate set and one of the
unselected candidate sets, respectively. If we interpret each
multinomial choice as a competition among several teams
of basic cells, Aj is the team winning the j-th competition,
and Wi and Li correspond to the indexes of competitions
where basic cell ci is one of the winners or losers.

For the j-th observation (j = 1, . . . , n), we define q+j =∑
ci∈Aj pi and q∗j =

∑
ci∈Cj pi to be the sums of cell prob-

abilities in the selected candidate set and the union of can-
didate sets, respectively. As a result, the log-likelihood
function (4) can be rewritten as

`(p) =
n∑
j=1

{
log(q+j )− log(q∗j )

}
.

The MLE equations

∂`(p)
∂pi

= 0 i = 1, . . . , d, (6)

are equivalent to

∑
j∈Wi

(
1

q+j
− 1

q∗j

)
=
∑
j∈Li

1

q∗j
i = 1, . . . , d. (7)

Multiplying both sides of (7) with pi leads to

∑
i′ 6=i

pi′

( ∑
j∈Wi∩Li′

pi

q+j q
∗
j

)
=
∑
i′ 6=i

pi

( ∑
j∈Li∩Wi′

pi′

q+j q
∗
j

)
.

(8)

Assuming a transition matrix Σ parametrized by p as

Σ(p) = [σii′(p)]d×d,

where σii′(p) ∝
∑

j∈Li∩Wi′

pi′

q+j q
∗
j

(i 6= i′),

the fact that MLE p̂ is a solution of equation (8) implies
that p̂ corresponds to the stationary distribution of a discrete
state Markov chain with transition matrix Σ(p̂). This leads

Algorithm 1 Markov chain based algorithm

Input: Observations
{
(Aj , Cj) : j = 1, . . . , n

}
and

calculate {Wi, Li} for each ci.
Initialize p = (1/d, . . . , 1/d)T .
Initialize Σ(p) = 0d×d.
repeat

for i ∈ {1, . . . , d} do
for i′ ∈ {1, . . . , d}\{i} do

Compute

σii′(p)←
∑

j∈Li∩Wi′

pi′

q+j q
∗
j

end for
end for
Compute σii(p) (i = 1, . . . , d) and then normalize
Σ(p) so that ∀i,

∑d
i′=1 σii′(p) = 1.

p← T (p) under the transition matrix Σ(p).
until convergence.

to Algorithm 1 and the guideline on its implementation is
provided in the Supplementary Material.

The transition matrix Σ(p) has an intuitive interpretation.
Specifically, σii′(p) is the probability of transferring from
state i to i′ under a Markov chain with the following transi-
tion steps:

(i) The state remains unchanged as i with probability
σii(p); otherwise, proceed to step (ii).

(ii) Select one index j from Li with probability
(1/q∗j )

/
(
∑
j∈Li

1/q∗j ).

(iii) Select one cell ci′ from Aj with probability pi′/q+j .

Theorem 1 Define T (p) as the probability vector of the
stationary distribution of a discrete state Markov chain with
transition matrix Σ(p). The MLE p̂ is the unique solution
to equation

T (p) = p

if the Markov chain with transition matrix Σ(p) is ergodic.

Theorem 2 For all p ∈ {p ≥ 0 :
∑d
i=1 pi = 1}, define

T k+1(p) = T ◦ T k(p).

Under regularized conditions (given in the Supplementary
Material),

lim
k→∞

T k(p) = p̂.

Theorems 1 and 2 guarantee that Algorithm 1 converges to
the MLE p̂ regardless of the starting point. Proofs of both
theorems are given in the Supplementary Material.
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To make statistical inference under generalized multinomial
models, we need to derive the observed information matrix,

Iobs
d×d = −∇2`(p), (9)

where the (i, i′)-th element is

Iobs
ii′ = − ∂

2`(p)
∂pi∂pi′

=
∑

j∈Wi∩Wi′

(
1

q+j

)2

−
∑

j∈(Wi∪Li)∩(Wi′∪Li′ )

(
1

q∗j

)2

.

4. Experiments
We conduct experiments on synthetic data: (a) to examine
the statistical properties of Algorithm 1; (b) to compare the
computational efficiency of our method with existing ones;
and (c) to explore the factors that influence the computa-
tional efficiency of our method. We also apply our algorithm
to real data to investigate its practical performance.

To evaluate the statistical properties of p̂, we consider two
criteria: the Kullback–Leibler divergence of p̂ with respect
to the true p for consistency and the Mahalanobis-distance
between p̂ and p for asymptotic normality:

KL-divergence: KL =

d∑
i=1

p̂i log

(
p̂i
pi

)
Mahalanobis-distance: D2 = (p̂− p)T Iobs(p̂− p)

To measure the computational efficiency of the algorithms,
we consider the number of iterations to converge, the run-
ning time and the convergence rate.

4.1. Statistical Properties

We carry out experiments with d = 8 basic cells, 4 cases of
experimental setups, and 1,000 samples per case. The setup
of each case is described as follows:

I: 280 × 2k multinomial choices with candidate sets
{c1}, . . . , {c8}.

II: 5 × 2k multinomial choices with candidate sets (1)
{c1}, {c2}, {c3}; (2) {c1}, {c2}, {c4}; . . .; (56) {c6},
{c7}, {c8}.

III: 8 × 2k multinomial choices with candidate sets
(1) {c1, c2, c3, c4}, {c5, c6, c7, c8}; (2) {c1, c2, c3, c5},
{c4, c6, c7, c8}; . . .; (35) {c1, c6, c7, c8}, {c2, c3, c4,
c5}.

IV: 1 × 2k multinomial choices with candidate sets (1)
{c1, c2, c3}, {c4, c5, c6}; (2) {c1, c2, c3}, {c4, c5, c7};
. . .; (280) {c3, c4, c5}, {c6, c7, c8}.

Case I corresponds to the complete multinomial model,
while cases II to IV represent three different types of in-
complete multinomial models discussed in Section 2.1. The
sample size is set as n = 280 × 2k, where k takes values
from 0 to 9 to allow n to increase.

Figure 1. The log KL–divergence averaged over 1000 replications
as the sample size increases

Figure 1 shows that the log KL-divergence of p̂ with re-
spect to the true p decreases as the sample size increases
in all cases, indicating that the estimator obtained by our
algorithm is consistent.

Figure 2. Probability–Probability plots of the Mahalanobis-
distance and χ2

(7) distribution as the sample size increases
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Figure 2 shows that the distribution of the Mahalanobis-
distance is close to χ2

(7) as the sample size increases, indi-
cating that our estimator is asymptotically normal.

4.2. Computational Efficiency

We compare the computational efficiency of our algorithm
with the MM algorithm and Bayesian weaver algorithm, and
investigate the factors that may influence Algorithm 1 in
terms of computational efficiency.

4.2.1. MOTIVATION: NASCAR DATA

We first study the performance of these algorithms on the
NASCAR data (Hunter, 2004). This dataset contains the
full rankings of drivers in 36 NASCAR racing rounds in
2002, where 43 out of a total of 87 drivers competed in each
round. Table 1 presents the number of iterations needed
and the running time for different algorithms when fitting
the Plackett–Luce model to the NASCAR data under the
convergence condition ‖p(t) − p(t−1)‖ ≤ 10−6.

Table 1. Comparison of three algorithms (MM, Bayesian weaver,
and Markov chain based algorithms) with the NASCAR data

COMPUTATIONAL BAYESIAN MARKOV
EFFICIENCY MM WEAVER CHAIN
NO. OF ITERATIONS 14 2166 7
RUNNING TIME (S) 0.01 5.08 0.07

Clearly, the number of iterations needed for our Markov
chain based algorithm is the smallest among the three algo-
rithms, and its running time ranks the second. The smallest
number of iterations needed by our algorithm originates
from the fact that its convergence rate is the fastest, as dis-
played in Figure 3.

4.2.2. FACTORS INFLUENCING THE CONVERGENCE
RATE

Empirical performance has demonstrated that our algorithm
is computationally efficient, for which the underlying mech-
anisms still need investigation. The factors that may influ-
ence the computational efficiency of our algorithm involve
the type and level of incompleteness in observed generalized
multinomial data, the sample size, the total number of basic
cells (d) and the number of different types of components
in the log-likelihood function (4). We conduct experiments
on synthetic data to examine which factors contribute to the
fast convergence of our algorithm compared with others.

4.2.3. TYPE AND LEVEL OF INCOMPLETENESS

As discussed in Section 2.1, there are two types of incom-
pleteness in the generalized multinomial data:

Figure 3. Path of the log-SSE over iterations for three algorithms
when fitting the Plackett–Luce model to the NASCAR data (the
sum of squared errors: SSE= ‖p(t) − p̂‖)

1. Union of disjoint candidate sets is C ⊂ C (small union
incompleteness);

2. All the candidate sets consist of more than one basic
cell (composite cell incompleteness).

These two types of incompleteness correspond to relaxation
of the two conditions in Section 2.1 where the completeness
of model (1) originates.

To study the influence of small union incompleteness in data
on the computational efficiency of our algorithm, we imple-
ment experiments with d = 8 basic cells. The average size
of the union of candidate sets C varies from 2 to 8 with step
length 0.06 to create samples with severe incompleteness to
full completeness. The level of small union incompleteness
is represented by the ratio |C|/d. The smaller the ratio, the
stronger the incompleteness. For each level, 100 samples of
size 280 are simulated. The average number of iterations
needed for different algorithms to converge under different
levels of small union incompleteness is exhibited in Figure
4. It shows that the lower the ratio |C|/d, the larger number
of iterations other algorithms need to converge, while the
number of iterations for our algorithm to converge is stable
as the ratio |C|/d changes. Even in the most severe situation
where |C|/d is far smaller than 1, the number of iterations
is less than 10. Thus, our algorithm can resist the negative
impact of small union incompleteness in data.

To understand whether composite cell incompleteness in
data affect our algorithm in computational efficiency, we
include d = 128 basic cells in experiments and randomly
divide them into several candidate sets so that each candi-
date set for multinomial choices consists of 2k basic cells
(k = 1, . . . , 6). For each k, 100 samples of size 1000 are
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Figure 4. Number of iterations as |C|/d increases

created. In each sample, different multinomial choices are
conducted on different divisions of basic cells while the
numbers of basic cells in candidate sets are the same. It
is natural that the number of basic cells in candidate sets
(2k) represents the level of composite cell incompleteness.
The larger the value of 2k, the more severe the incomplete-
ness. The average number of iterations needed for different
algorithms to converge under different levels of composite
cell incompleteness is demonstrated in Figure 5. Although
the number of iterations needed for the three algorithms
increases as the number of basic cells in candidate sets
increases, the advantage of our method over others is mag-
nificent when 2k is large. However, the advantage is not as
notable in the situation where |C|/d is far smaller than 1.

Figure 5. Number of iterations as the number of basic cells in
candidate sets increases

The above experiments reveal that our algorithm requires
fewer iterations than the MM algorithm and Bayesian
weaver algorithm when there are incomplete multinomial
observations in the data. The more severe the incomplete-
ness, the more advantage our algorithm possesses in terms
of computational efficiency. The advantage is mainly due
to small union incompleteness, which has a strong negative
impact on other algorithms but little on ours.

4.2.4. SAMPLE SIZE

We consider cases II and III in Section 4.1 with k =
0, 1, . . . , 4 (sample size n = 280 × 2k). For each com-
bination of the case and k, 100 samples are generated and
three algorithms are applied.

Figure 6. Number of iterations as the sample size increases

Figure 6 illustrates that the computational efficiency of the
three algorithms does not change much as the sample size
increases, although the variation in the number of iterations
decreases. The relative efficiency of Algorithm 1 over others
is more obvious in case II compared with case III.



Fast Algorithm for Generalized Multinomial Models with Ranking Data

4.2.5. THE NUMBER OF BASIC CELLS

To examine the relationship between the computational ef-
ficiency and the number of items, the sample size and the
type and level of incompleteness in data are kept unchanged
as the number of basic cells varies. We execute experi-
ments with a fixed sample size 1000 and two types of in-
completeness in Section 4.2.3. The level of small union
incompleteness is fixed as |C|/d = 1/8, and for composite
cell incompleteness, the number of basic cells in candidate
sets is fixed as 8. The number of basic cells d varies from
16 to 128 with step length 8. For each combination of d
and a type of incompleteness, 100 samples are created to
compare the performance of our algorithm with the MM
and Bayesian weaver algorithms.

Table 2. Average number of iterations needed by the three algo-
rithms as the number of basic cells d increases

SMALL UNION COMPOSITE CELL
INCOMPLETENESS INCOMPLETENESS

BAYESIAN MARKOV BAYESIAN MARKOV
d MM WEAVER CHAIN MM WEAVER CHAIN

16 18.0 39.7 6.3 436.0 438.3 275.6
24 11.9 27.6 6.0 404.6 407.5 316.0
32 9.8 23.9 6.0 400.4 403.7 337.9
40 8.5 21.8 6.0 383.7 386.9 338.0
48 8.1 20.8 6.0 392.1 395.5 354.5
56 7.4 20.0 6.0 378.9 382.3 348.0
64 7.1 19.5 6.0 371.4 374.8 345.0
72 7.0 19.1 6.0 367.3 370.6 344.2
80 6.7 18.6 6.0 376.8 380.0 356.1
88 6.3 18.4 6.0 366.8 369.9 348.2
96 6.3 18.4 6.0 354.4 357.5 337.9

104 6.1 18.1 6.0 359.2 362.2 343.8
112 6.0 17.9 6.0 357.4 360.5 343.2
120 6.0 17.9 6.0 357.6 360.6 344.4
128 6.0 17.6 6.0 354.4 357.3 342.1

Table 2 shows that when the ratio |C|/d or the number of
basic cells in candidate sets is fixed, the advantage of our
algorithm over others diminishes as d increases. Yet, our
method still performs the best.

4.2.6. NUMBER OF DIFFERENT COMPONENTS IN
LIKELIHOOD FUNCTION

To study how our algorithm behaves when there are a vary-
ing number of different components in the likelihood func-
tion, we consider case II in Section 4.1 and split it into three
subcases as follows:

IIA: 5 multinomial choices with candidate sets (1) {c1},
{c2}, {c3}; (2) {c1}, {c2}, {c4}; . . .; (56) {c6}, {c7},
{c8}.

IIB: Randomly select 28 combinations of candidate sets

in subcase IIA, and make 10 multinomial choices for
each.

IIC: Randomly select 14 combinations of candidate sets
in subcase IIA, and make 20 multinomial choices for
each.

Subcase IIA is equivalent to case II in Section 4.1. The num-
bers of different components in the likelihood function are
64, 36 and 22 for these subcases, respectively. Sample size
of these three subcases are fixed at 280. The performance
of three algorithms in these three subcases is presented in
Figure 7.

Figure 7. Number of iterations as the number of different compo-
nents in the likelihood function increases

It can be seen that as the number of different components in
the likelihood function decreases, the number of iterations of
the MM and Bayesian weaver algorithm increases, but that
of our method is more stable. In other words, our algorithm
is robust against data sparsity.

4.3. Experiments on Real Datasets

To compare the empirical performance and scalability of
Algorithm 1 with existing methods, we apply them to the
well-known sushi datasets (Kamishima, 2003) and a Hong
Kong Jockey Club (HKJC) horse racing dataset.

4.3.1. SUSHI DATASETS

The sushi datasets record responses in a questionnaire survey
of preferences on sushi. There are two datasets in total. The
first one contains 4926 full rankings of 10 specific types of
sushi, and the second one records 5000 partial rankings of
100 types of sushi, where only the relative ordering of top
10 preferred is given in each partial ranking.

For each dataset, we apply our method and other algorithms
(MM and Bayesian Weaver) to model the data in two ways:
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fitting the Plackett–Luce model (PL) with rankings directly,
or transforming rankings into pairwise comparisons to fit
the Bradley–Terry model (BT). The number of iterations
needed for convergence is presented in Table 3.

Table 3. The number of iterations of three algorithms to converge
on the sushi datasets in different scenarios

SUSHI BAYESIAN MARKOV
DATASET MODEL MM WEAVER CHAIN

FULL RANKING PL 9 22 6
PARTIAL RANKING PL 4 16 4
FULL RANKING BT 35 84 5
PARTIAL RANKING BT 40 78 4

Table 3 reveals that our Markov chain based algorithm is
computationally more efficient than the other two algo-
rithms, especially when fitting the Bradley–Terry model
with pairwise comparisons. This result matches with our
conclusion in Section 4.2.3 that the smaller the ratio |C|/d,
the larger the number of iterations needed for other algo-
rithms, while our Markov chain based algorithm is stable
on it.

We take the third scenario (full ranking with BT) in Table 3
to illustrate the convergence rate of the three algorithms. The
result in Figure 8 is consistent with that in Figure 3, i.e., the
Markov chain based algorithm has the fastest convergence
rate.

Figure 8. Path of the log-SSE over iterations for three algorithms
in the third scenario of Table 3 (full ranking of sushi data with BT)

4.3.2. HKJC HORSE RACING DATASET

The HKJC horse racing dataset records full rankings of 1498
horse races in the Hong Kong Jockey Club throughout the
2008/09 and 2009/10 seasons. During these two seasons,
1677 horses and 92 jockeys participated at least one race. We
apply our method and the MM algorithm to fit the Plackett-

Luce model in three ways:

• HORSE ONLY: The probability that horse i wins is
proportional to pi (d = 1677).

• JOCKEY ONLY: The probability that jockey j wins is
proportional to pj (d = 92).

• HORSE + JOCKEY: The probability that the pair of
horse i and jockey j wins is proportional to pi + pj
(d = 1769).

Note that small union incompleteness exists in all of three
scenarios while composite cell incompleteness exists only
in the third one. The number of iterations needed for con-
vergence of different methods is exhibited in Table 4.

Table 4. The number of iterations of two algorithms to converge
on HKJC horse racing dataset in different scenarios

SCENARIO MM MARKOV CHAIN

HORSE ONLY 178 12
JOCKEY ONLY 36 9
HORSE + JOCKEY 176 77

Table 4 tells that even when the total number of d is large,
our Markov chain based algorithm still converges to the
MLE with fewer iterations needed than the MM algorithm.
This result is consistent with conclusions in Section 4.2.3
which demonstrates the scalability of our method to a large
number of basic cells d.

The MLEs corresponding to the real datasets (NASCAR,
sushi and HKJC horse racing) are provided in the Supple-
mentary Material.

5. Conclusion
We develop an MLE algorithm for generalized multino-
mial models which solves the MLE equations by iteratively
computing the stationary distribution of an inhomogeneous
Markov chain. Our algorithm can be applied to many ex-
isting models with similar likelihood function forms, such
as the Bradley–Terry model and the Plackett–Luce model.
Experiments reveal that our algorithm converges to the MLE
with fewer iterations than existing methods, especially when
the average size of the union of candidate sets is significantly
smaller than the total number of basic cells or the data are
sparse. In real data analysis, our algorithm shows robustness
in computational efficiency with respect to different types of
data and different models, and it yields a faster convergence
rate than existing methods.
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