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Abstract: The orbital angular momentum (OAM) modes of electromagnetic (EM) beams are
utilized for multiplexing in communication systems, where each OAMmode is encoded with data.
The OAM index, or the so-called topological charge, identifies each OAM mode. Recently, the
amplitude of OAM mode has also been used as another modulation format. Therefore, accurate
extraction of not only the OAM index but also the corresponding amplitude is required. In this
paper, a modified dynamic mode decomposition (DMD) algorithm is proposed to analyze the
OAM modes. We show that accurate topological charges and high-resolution amplitude patterns
of both single OAM mode and composite OAM modes can be obtained. This work offers an
effective approach for demultiplexing OAM-carrying beams, especially when the high-resolution
amplitude information is needed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the orbital angular momentum (OAM) in electromagnetic (EM) beams was recognized
by Allen et al. [1], it has been analyzed extensively, including its generation, transmission,
and detection [2–11]. The OAM-carrying beams have been applied in the detection of rotating
objects, atom trapping, stimulated emission depletion microscopy [12–14] and particularly,
communication systems [15]. Compared with plane waves, the OAM-carrying beams have
helical wavefronts, resulting from an additional phase term, ejlφ (l is the topological charge and φ
is the azimuthal angle) in the field equation. Unlike the spin angular momentum (SAM) that
only offers two orthogonal polarization states, the OAM can take unlimited number of values so
that it can offer infinite eigenstates. Moreover, the amplitude of each orthogonal OAM mode
can also be modulated as a carrier of information [16,17]. Nevertheless, it is worth noting that
the number of communication channels is limited by the size of the transmitter aperture, which
applies for any type of multiplexing [18]. But OAM multiplexing still has its advantages, such as
the simplicity due to the discard of signal processing process.
For OAM detection and demultiplexing, Fourier transform (FT) based mode decomposition

was first proposed and has been widely employed [19–21]. In this method, the topological
charge of EM field at one specific radial position is extracted. However, this method is limited
by the uncertainty principle [22], which means the information along the angular direction is
lost. Afterwards, empirical mode decomposition (EMD) method was proposed [23]. By using
this method, local topological charges of superposed OAM modes along the angular direction
are obtained. However, for both the FT and EMD methods, a radial position should be selected
first and the topological charge and field amplitude of each OAM mode are calculated at this
specific radial position. When the superposed OAM modes have different waists, which is the
usual case, their amplitudes at one radial position will be misleading. Therefore, it is necessary
to develop an analysis tool to obtain the topological charges as well as the amplitude patterns
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along the radial direction for superposed OAM-carrying beams. In this paper, we introduce the
dynamic mode decomposition (DMD) to address this challenge. The DMD was first proposed in
hydrodynamics to compute the oscillation frequency and decay/growth rate of a spatial-temporal
signal [24]. Since then, it has been applied in many fields, such as discovering governing equation
in nonlinear system, global power system, chaos analysis and the spread of infections [25–28].
Interestingly, there is an analogy between the time oscillation term, ejωt and the phase term of
an OAM mode, ejlφ. So, when ω can be obtained by providing the time series of data through
DMD, we should be able to obtain the OAM index l, by providing the azimuthal series of field.
In this paper, we demonstrate a modified DMD algorithm to analyze the superposed OAM-

carrying beams. By replacing the information in temporal domain with the EM fields in
angular domain, we can compute the topological charge l, instead of the angular frequency ω.
Then, the amplitude pattern of each decomposed OAM mode along the radial direction can
be constructed, which is similar to the extraction of the time dynamic modes. The radiated
EM fields from uniform circular arrays (UCAs) are analyzed. According to our searches, this
is the first effort in using the DMD approach for OAM mode analysis. Our contribution lies
in several aspects. Firstly, unlike other sort method, such as FT and EMD, our data-driven
method does not require integration calculation and iterative computation so that it can sort the
superposed OAMmodes very efficiently. Besides, our data-driven method requires less measured
or simulated data than the machine learning method, because there is no need for the training
process. Secondly, our method considers the spatial-angular correlation. It can extract both the
topological charges and corresponding amplitudes simultaneously. It helps us understand the
spatial-angular OAM-carrying beams. Finally, we prove that our approach could also be used
to sort superposed OAM-carrying beams with partial angular receiving aperture. Hence, the
proposed method could be a better tool for analyzing OAM modes.

2. Theoretical principle

The electric field of an OAM-carrying beam can be expressed by

E(r, φ) =
n∑

i=1
Ai(r)ejliφ (1)

where r is the radial position, φ is the azimuthal position, li is the topological charge, and Ai(r) is
the amplitude which is solely dependent on r.
The conventional DMD method deals with a spatial-temporal correlated signal. Here, the

temporal domain (ejωt) is transformed into the angular domain (ejliφ). And we consider the
amplitude term, Ai(r) as the spatial domain. Therefore, the OAM-carrying beams become
spatial-angular correlated signals. To be specific, the electric field of an OAM-carrying beam
forms an input signal and is arranged in the form of an azimuthal snapshot sequence:

Ψ = [ψ(r, φ0),ψ(r, φ1) · · · · · ·ψ(r, φn−1)]
> (2)

Ψ′

= [ψ(r, φ1),ψ(r, φ2) · · · · · ·ψ(r, φn)]
> (3)

Here, ψ(r, φi) are column vectors and each column element corresponds to the data at a specific
r position. The snapshots with phase interval ∆φ are assumed to be related by a mapping matrix
F, i.e. ψ(r, φi+1) = Fψ(r, φi). Rewriting it in matrix form, we have

Ψ
′
= AΨ (4)

The output of DMD is the leading eigenvalues and eigenvectors of matrix A, which determines
the dynamic behavior of the system. We employ the singular value decomposition (SVD)-based
approach to implement DMD.
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Firstly, the SVD of Ψ is written as
Ψ = UΣV∗ (5)

where ∗ means the conjugate transpose. Substituting Eq. (5) into Eq. (4), one can obtain

A = Ψ′VΣ−1U∗ (6)

To project Ψ′ onto proper orthogonal decomposition (POD) modes for efficient computation, we
do a similarity transform by using matrix U:

˜A = U∗AU (7)

Combining Eq. (4) and Eq. (7), we have

˜Ψ
′
= ˜A˜Ψ (8)

where ˜Ψ = U∗Ψ. ˜Ψ is the low-dimensional representation of the linear system on the POD basis
and ˜A captures the modes (the dynamic OAM system) in this low-dimensional system. The
eigenvalue equation for this system can be written as the matrix multiplication

˜AW = WΛ (9)

where W is a square matrix of order m. The columns of W are the eigenvectors and Λ is a
diagonal matrix containing the corresponding eigenvalues λk, k = 1, 2 · · ·m.
Then, the dynamic modes in the original OAM system is written as

S = Ψ′VΣ−1W (10)

Finally, the input signal at a snapshot, i.e. the electric field of the beam at an azimuthal position,
is decomposed as

ψ(r, φi) =

m∑
k=1

skeωkφibk =

m∑
k=1

skeω
r
kφiejωi

kφibk (11)

where sk is the kth column of the matrix S, ωk = ω
r
k + jωi

k = ln(λk)/∆φ, and bk is the amplitude
weight of the kth eigenmode. The physical meaning of Eq. (11) is straightforward. The
OAM-carrying beam is decomposed into m modes. eωkφi relates to the phase term ejlφ . So, the
mode with non-zero real part of ωk corresponds to an evanescent wave that can be abandoned.
Only the modes with only imaginary part of ωk are the OAM modes with topological charges
equal to ωi

k. skbk is the corresponding amplitude distribution along the radial direction.

3. Simulation results

We first analyze a Laguerre-Gaussian beam described by Eq. (1). For the LGl0 mode, near its
beam waist, its amplitude can be expressed as

A(r) = rle−r2/w2
(12)

where w is beam waist. We choose l = 3 and the real part of its electric field is plotted in Fig. 1(a).
To apply the modified DMD, the field is discretized along the azimuthal and radial directions into
200 × 200 pixels. Only one eigenmode with zero ωr

k is found. Figure 1(b) shows the extracted
mode amplitude together with the analytical amplitude along the radial direction. They show a
good agreement. Because this beam is generated by the analytical formula, it has high purity
without noise. The real part of ωk should be exactly zero. In Fig. 1(c), we examine the real
part of eωkφi along the azimuthal direction. We can see that this mode is undamped, just as the
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Fig. 1. (a) The real part of the electric field of the LG3,0 beam described by Eq. (1). (b)
The comparison between the analytical and extracted amplitudes of the LG3,0 beam through
the modified DMD. (c) The comparison between the real-space distribution of the analytical
and extracted electric fields along the azimuthal direction. (d) The calculated topological
charge by FT.

LG3,0 mode, which implies a zero ωr
k. In addition, the topological charge of each OAM mode

represents the oscillation frequency in angular domain. For the LG3,0 mode, there are three
complete periods in the range of 2π along the azimuthal direction, so the extracted ωi

k is equal to
3 exactly. For comparison, the topological charge calculated based on FT is plotted in Fig. 1(d).
The correct result is obtained, but clearly, the information along the azimuthal direction is lost.

For mixed Laguerre-Gaussian beams (l1 = 1, l2 = 2, l3 = 3), Fig. 2(a) shows the composite
electric-field distribution, calculated by Eq. (1). Through the modified DMD, three OAM
modes are extracted and presented in Fig. 2(b), and they are consistent with the analytical field
distribution. Meanwhile, the angular patterns that include the information of topological charge
of each OAM beam are also drawn in Fig. 2(c). It is found that the extracted topological charge
of each OAM mode also agrees well with the generated raw Laguerre-Gaussian beams. Besides,
the result calculated by FT is also shown in Fig. 2(d). The radial position for the extraction is
at 1 m, where the intensities of the three OAM modes are equal. We can see that the FT can
accurately extract the OAM-mode orders and weights. However, it is hard to apply the FT in
analyzing the radial distributions of the modes, while the modified DMD can extract the exact
amplitude distributions of different OAM modes in high resolution (Fig. 2(b)).

The fractional electromagnetic vortex (FEV) breaks the orthogonality of the OAM modes, so
it is difficult to accurately measure the fractional topological charges by using FT-based methods.
Interestingly, the DMD extracts the characteristic modes from the data directly without providing
the basis for mapping. Therefore, our proposed modified DMD can be perfectly applied in the
analysis of OAM modes with fractional topological charges. To demonstrate its validity, we
consider mixed Laguerre-Gaussian beams with l1 = 1.5, l2 = 2.5, l3 = 3.5. Figure 3(a) shows
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Fig. 2. (a) The real part of the electric field of the mixed Laguerre-Gaussian beams with
l1 = 1, l2 = 2, l3 = 3 described by Eq. (1). (b) The comparison between the analytical and
extracted amplitudes of the mixed beams through the modified DMD. (c) The comparison
between the real-space distribution of the analytical and extracted electric fields along the
azimuthal direction. (d) The calculated topological charge by FT.

the composite electric-field distribution, obtained from Eq. (1). Through the modified DMD,
three OAM modes are extracted. As shown in Fig. 3(b), their radial distributions agree well
with the analytical results. Meanwhile, the angular patterns that include the information of
topological charge of each OAM beam are shown in Fig. 3(c), which are also consistent with
the raw Laguerre-Gaussian beams. The result calculated by FT is also presented in Fig. 3(d).
The interval of the topological charges for the basis in the FT is 0.1. The radial position for
the extraction is at 1 m. Clearly, due to the orthogonality of the projecting modes are broken,
although OAM modes with l1 = 1.5, l2 = 2.5, l3 = 3.5 appear with the same intensity, fake OAM
modes also show up. Therefore, while FT limits its application in analyzing the modes with
orthogonality, the proposed modified DMD method can be used for the analysis of OAM beams
with both fractional and integer topological charges.

To further validate the practical significance of the modified DMDmethod, two cases where the
OAM-carrying beams are generated by uniform circular arrays (UCAs) are considered [29,30].

A UCA has its array elements uniformly distributed along the circumference of a circle. It was
firstly utilized to generate OAM-carrying beams in low-frequency radio regime [29], and then it
was employed widely in the microwave band [30]. The configurations of two UCAs are shown in
Fig. 4. In Fig. 4(a), N electrical dipole antennas are located equidistantly around the perimeter of
a circle and the phase difference between adjacent antennas is ∆φ = 2πl/N, where l refers to the
topological charge of designed OAM mode. The system with two UCAs in Fig. 4(b) generates
superposed vortex beams. Each UCA radiates an OAM-carrying beam of order l.
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Fig. 3. (a) The real part of the electric field of the mixed Laguerre-Gaussian beams with
l1 = 1.5, l2 = 2.5, l3 = 3.5 described by Eq. (1). (b) The comparison between the analytical
and extracted amplitudes of the mixed beams through the modified DMD. (c) The comparison
between the real-space distribution of the analytical and extracted electric fields along the
azimuthal direction. (d) The calculated topological charge by FT.

Fig. 4. Configurations of the UCAs for OAM generation. (a) UCA for single OAM-carrying
beam generation. N electrically short dipoles that are equidistantly spaced along the perimeter
of a circle. In this case, UCA has 16 electrical dipoles and the phase difference between
adjacent antennas is π/4. (b) Two UCAs for two mixed OAM-carrying beams generation. In
this case, the inner and outer UCA both have 16 electrical dipoles and the phase differences
between adjacent antennas are π/8 and 3π/8 respectively.
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Firstly, we use the UCA in Fig. 4(a) with l = 2. Here, the radius of the UCA, R = 60 mm,
N = 16, and ∆φ = 2πl/N = π/4. Full-wave simulation is done in CST Microwave Studio.
Figures 5(a) and 5(b) show the simulated amplitude and phase distributions of Ez on a transverse
plane 3R away from the UCA. The observation window is 8R × 8R. The OAM mode with
l = 2 is observed. The spatial resolution depends on the sampling resolution (in this case, 1000
points are collected in x and y direction respectively so the resolution is 0.48 mm in cartesian
coordinates). To fulfill the form of an azimuthal snapshot sequence (see Eq. (2) and Eq. (3)),
the cartesian coordinates are converted to polar coordinates. Figure 5(c) shows the extracted
mode amplitude. Clearly, we find two dips along the radial direction. The one at the origin
corresponds to the singularity point of an OAM mode as in Fig. 5(a). The other dip corresponds
to the sidelobe in the radiation pattern, which is consistent with the small amplitude around the
blue annular area in Fig. 5(a). Meanwhile, the angular distribution of the extracted real-space
electric field is drawn in Fig. 5(d), which implies a topological charge of 2. It should be noted
that the proposed method deals with the acquired field information, which can be considered as
the co-polarized field component. The co-polarized field component can be linearly polarized or
circularly polarized, depending on the system. That is to say, the polarization should be known in
prior and the proposed algorithm itself is unable to distinguish the polarization states.

Fig. 5. Analysis of the single OAM-carrying beam. The simulated (a) amplitude and (b)
phase of the OAM beam at a transverse plane 3R above the UCA. The extracted (c) mode
amplitude along the radial direction and (d) real-space distribution of the electric field along
the angular direction. Parameters are: simulation frequency f = 10 GHz, N = 16 and l = 2.

Then, the mixed OAM-carrying beams are generated by the UCAs shown in Fig. 4(b). The
UCA on each circle has N = 16 electrically short dipoles. The inner UCA has a phase
step of ∆φ1 = 2πl1/N = π/8, l1 = 1 and the radius R1 = 15 mm. As for the outer UCA,
∆φ2 = 2πl2/N = 3π/8, l2 = 3, and radius R2 = 60 mm. The observation window is 2R2 × 2R2,
lying on the transverse plane R2 away from the UCAs. Figure 6(a) shows the simulated amplitude
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distribution, and Fig. 6(b) shows the phase pattern. The field data within a circular area with
the radius of 50 mm is used as the input signal. Figure 6(c) shows the radial distribution of
the decomposed mode amplitudes. By keeping only the inner or the outer UCA, we obtain the
amplitude distribution of the simulated l = 1 or l = 3 mode and compare it with the result in
Fig. 6(c). They show a good agreement with each other. Meanwhile, the topological charge of
each OAM mode is accurately extracted, i.e. 1 and 3, which can also be read from the results in
Fig. 6(d).

Fig. 6. Analysis of the mixed OAM-carrying beams. The simulated (a) amplitude and (b)
phase of the OAM beams at a transverse plane 3R2 above the UCAs. The extracted (c) mode
amplitudes along the radial direction and (d) real-space distributions of the electric field
along the angular direction. Parameters are: simulation frequency f = 10 GHz. For the
inner UCA, N = 16, and l1 = 1; for the outer UCA, N = 16, and l2 = 3.

In addition, because of the divergence of OAM beams, it is difficult to receive the whole beam
aperture after long distance transmission. Our algorithm can be adapted to sort superposed
OAM-carrying beams with partial angular receiving aperture. To demonstrate the partial angular
aperture receiving scheme, the fields within an angular aperture from 0 to π in Figs. 6(a) and
6(b) are used as the input of our modified DMD. Figure 7(a) shows the radial distribution of the
decomposed mode amplitudes. It is found that the amplitudes extracted from the partial angular
aperture show the consistency with the results extracted from the whole beam (see Figs. 6(c) and
6(d)). Meanwhile, the topological charges are verfied to be 1 and 3 from the field distribution
along the partial angular coordinate in Fig. 7(b).
It can be seen that this method can be conveniently employed in radio regime, since both

the intensity and phase distributions of radio waves are easily accessible. However, it is
rather challenging to apply the method in optical regime because the phase information is
hardly obtainable. Additionally, in the real experiments, OAM-carrying beams are distorted
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Fig. 7. Analysis of the mixed OAM-carrying beams with partial angular receiving aperture
(0-π). The extracted (a) mode amplitudes along the radial direction and (b) real-space
distributions of the electric field along the angular direction.

at propagation. Several advanced methods, such as the FT-based method [31] and scattering-
matrix-assisted retrieval method [32] have been developed to extract the OAM modes in noisy
environment. For the modified DMD method, the distortion in the input signal which depends
on the amplitude and phase distributions of the electric field will perturb the mapping matrix,
in both the partial and whole angular receiving cases. The matrix perturbation theory could be
adopted in the modified DMD to denoise signals in the further.

4. Conclusion

In summary, we demonstrated a modified DMD approach to extract and sort the OAM modes of
EM vortex beams. The modified DMD method deals with the input EM field as a spatial-angular
correlated signal and decomposes it into eigenstates with different topological charges. Therefore,
each eigenstate corresponds to an OAM mode and its amplitude along the radial direction can be
obtained. We demonstrated the validity of the proposed approach in analyzing superposed OAM
modes with not only whole receiving aperture, but also partial receiving aperture. Compared
with the FT and EMD method, the modified DMD method can extract the topological charges
and the amplitudes with high resolution simultaneously. It provides a practical and powerful
analysis tool for the OAM demultiplexing in communication systems, especially for amplitude
modulation systems.
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