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Abstract 

Research on the U.S. urban system has shown that metropolitan regions with more local and 

non-local network ties outperform cities where economic agents are isolated. Yet, little attention 

is given to the character of the local knowledge base and how that influences network structure. 

We show that co-inventor networks differ between cities that produce specialized and diversified 

knowledge. Models of tie-formation show inventors in specialized cities value spatial proximity 

less and cognitive proximity more than inventors in diversified cities as they partner with non-

local inventors. These findings suggest that the influence of social networks on knowledge 

production is conditioned by the architecture of the local knowledge base. 

 

 

Keywords: collaboration, knowledge production, patent, co-inventor, network, specialization 
 
JEL: O33, R11, R12, R15, D85 
 

 

 

 

 



1. Introduction 

Knowledge production is increasingly imagined as an interactive task through which economic 

agents recombine existing ideas in novel ways (Arthur, 1999; Kauffman, 1993; Wuchty et al., 

2007). Thus, the pace of invention relies upon access to multiple subsets of knowledge along 

with the capacity to translate those knowledge stocks into new technologies (Cohen & Levinthal, 

1990). For economic geographers, these constraints on invention have historically focused 

attention on industrial districts or clusters within which actors generate economies from the 

reduced cost of interaction and from spillovers that are bounded by co-location (Jacobs, 1969; 

Marshall, 1920). Jaffe et al. (1993) and Audretsch and Feldman (1996) provide supporting 

empirical results. For economic sociologists, competitive advantage is “located” in the structure 

of social connections that economic agents cultivate (Powell, 1990; Uzzi, 1996). In this sense, 

social proximity is seen as independent of spatial proximity and perhaps more important in 

regulating the fortunes of firms and the flows of knowledge between them (see also Agrawal et 

al., 2006; Breschi & Lissoni, 2009) 

 Investigation of the geography of knowledge production problematizes the relationship 

between spatial, social and other forms of proximity, illustrating the conditions under which 

proximity is advantageous, but also when it becomes a liability (Boschma, 2005; Grabher, 1993). 

A good deal of this work contests the separation of spatial and social proximity, seeking to 

understand how co-location affects the structure of social ties (Broekel & Boschma, 2012; 

Gertler, 2003; Healy & Morgan, 2012). At the same time, the primacy of the local in the 

formation of social networks is questioned by Bathelt et al. (2004) and Amin and Cohendet 

(2004) who suggest that spatial embeddedness is less and less important to the inter-

organizational linkages that enhance firm and regional performance. 



In recent work on geographical variations in knowledge production, Fleming et al. (2007) 

and Lobo and Strumsky (2008) explore how the social networks that link inventors influence the 

pace of invention, independent of place-specific characteristics including agglomeration. 

Whittington et al. (2009) push this analysis further, examining the interaction between social and 

spatial relationships that influence innovation in knowledge-intensive industries. In this respect 

they add empirical detail to the earlier claims of Gordon and McCann (2000). Breschi and Lenzi 

(2016) update this work. Allied research by Cantner and Graf (2004) investigate some of these 

same themes while developing the connection between the technological specialization of 

regions and the structure of cooperation networks. 

 These ideas are extended in this paper that explores how co-inventor networks influence 

knowledge production in U.S. cities after controlling for a number of location-based covariates. 

We provide broad evidence that social networks and localized processes of agglomeration are 

positively related to knowledge production within cities, confirming earlier findings. At the scale 

of individual metropolitan areas, the advantages of spatial proximity and social proximity are 

shown to be substitutes for one another. We add value to existing research by illustrating how the 

structure of networks linking co-inventors within and between U.S. metropolitan areas depend on 

the nature of knowledge produced in different places (see also Cantner et al., 2010). Our results 

show that specialized cities, identified by high levels of cognitive proximity, develop 

significantly denser and more robust co-inventor networks than those found in diversified cities, 

and that such connectedness enhances knowledge production. In core models, explicit controls 

are employed to dampen the spatial dependence in U.S. metropolitan patent counts, extending 

previous work in this field. Finally, we report that the pipelines connecting inventors between 

cities vary with the level of metropolitan technological specialization: on average inventors in 



specialized cities are less impacted by geographical distance and more impacted by cognitive 

distance in their search for knowledge production partners in other urban areas. 

 The paper is organized in four following sections. Section 2 provides a brief review of the 

literature that motivates our research. In Section 3 we explore the operationalization of the core 

theoretical concepts and we discuss the sources of the data employed in our empirical analysis. 

The results from that analysis occupy Section 4 of the paper, and we offer a number of 

concluding remarks in Section 5. 

 

2. Literature Review 

Across the market economy, the heterogeneity of firm characteristics suggests a multiplicity of 

competitive strategies. Since the pioneering work of Penrose (1959) and Cyert and March (1963) 

this heterogeneity is thought to express the firm-specific assets that undergird resource-based 

visions of firm performance developed by Wernerfelt (1984) and Barney (1991). Kogut and 

Zander (1992) were among the first to emphasize the critical role of knowledge within this 

framework. What is clear from related empirical work is that firms search for efficiency and for 

knowledge in many different ways (Baily et al., 1992; Baldwin & Rafiquzzaman, 1995; 

Saxenian, 1994). Within economic geography, a standard distinction is made between those 

competitive advantages that are generated internally within the firm and those that emerge 

through co-location with other firms. 

 For the firms that agglomerate in space the collective resources that sustain the industrial 

district have long been envisioned, after Marshall (1920), as lower-cost access to specialized 

suppliers and buyers, to the associated pools of labor that clusters exploit and nurture, through to 

spillovers of knowledge. A somewhat different vision is offered by Jacobs (1969) who does not 



contest the efficiency of Marshall’s (1920) districts, but who rather imagines the long-run 

prospects of firms to rest more squarely on the diversity that cities provide. A modern update is 

advanced by Duranton and Puga (2001). Glaeser et al. (1992) present empirical evidence of more 

rapid industrial growth within diversified local economies, while Henderson (2003) and Baldwin 

et al. (2010) provide firm-level evidence of higher levels of productivity in specialized urban 

economies. More recent work suggests that even within industrial districts the characteristics and 

behaviors of firms remain highly variable and that not all firms generate efficiencies in the same 

way (Neffke et al., 2011; Potter & Watts, 2011; Rigby & Brown, 2015).  

 For economic sociologists, these differences are explained by the structure of social 

networks that link firms and other economic agents (Burt, 2000; Powell, 1990). Social networks 

are broadly seen as an organizational form that enhances the sharing of knowledge and other 

resources in technologically complex industries where novel ideas are widely distributed and the 

rapidity of innovation generates considerable uncertainty (Hagedoorn, 1993; Powell et al., 1996). 

Though networks are commonly viewed as raising efficiency, precisely how firms are embedded 

within networks is critical to their performance (Granovetter, 1973; Uzzi, 1997). There is 

increasing evidence that networks with weak ties promote exploration and technological 

discovery, while networks with strong ties promote exploitation (Burt, 1992; Rowley et al., 

2000; Walker et al., 1997). At the same time, the negative implications of over-embeddedness in 

networks are well known (Grabher, 1993). 

 Linking the concept of the industrial cluster with the relational perspective of social 

network analysis has generated a good deal of research that seeks to unpack the nature of 

collaboration and the mechanisms that guide the production and the flow of knowledge (see 

Gordon and McCann, 2000; Brenner et al., 2013). Boschma (2005) argues that understanding the 



interaction of different forms of proximity is critical to these efforts. Taking up this challenge, a 

series of empirical papers illustrate how the structure of social networks vary over space 

(Cantner and Graf, 2004; Cantner et al., 2010; Sorenson, 2005), how social proximity is shaped 

by other forms of distance (Bathelt et al., 2004; Knoben & Oerlemans, 2012; Malmberg & 

Maskell, 2006) and how networks evolve over space and time (Balland, 2012; Capello and 

Lenzi, 2013; Ter Wal, 2013). Cantner and Graf (2011) provide a useful overview. 

 While much of the work just mentioned takes the form of case studies, there is also a 

growing literature that explores the contribution of social networks to sustaining the 

agglomeration of knowledge production across systems of cities and regions. Singh (2005) 

shows that co-invention networks play a central role in the diffusion of ideas and knowledge 

amongst inventors. Several descriptive measures have been developed to characterize the 

structural aspects of regional co-inventor networks and used to explain the observed spatial 

variance in knowledge production. Bettencourt et al. (2007) find a significant positive 

relationship between the number of ties, the clustering coefficient, the size of the largest 

component among U.S. metropolitan co-inventor networks and the rate of patenting. Fleming et 

al. (2007) find that the size of the largest component (LC) of metropolitan inventor networks and 

the inverse path length between inventors is positively related to subsequent patenting in urban 

areas. Lobo & Strumsky (2008) report that inventor density (inventors per square mile), network 

aggregation and the ratio of non-local inventors in the metropolitan co-inventor network have a 

positive and significant relationship with the rate of metropolitan patenting. Unlike Fleming et al. 

(2007), they find a significant negative relationship between size of the LC and patenting. 

Strumsky and Thill (2013) examine the relationship between a series of metropolitan co-inventor 

network statistics and four metropolitan economic performance indicators (wage, income, jobs 



and GDP). Their results show that the relationships between these network statistics and 

metropolitan performance indicators are inconsistent, indicating that the nature of the 

relationship between network connectivity, knowledge production and regional economic 

performance is sensitive to the precise measures employed. Breschi & Lenzi (2016) explicitly 

attempt to measure the structure of internal and external co-inventor networks using the average 

inverse geodesic distance between any pair of linked inventors within an urban area. They find 

no significant relationship between greater internal or external social proximity and the rate of 

patent production. However, they find a positive and significant effect of the interaction between 

internal social proximity and clique density on the rate of patenting. Moreover, they report a 

positive and significant relationship between the interaction of internal and external social 

proximity and patent production. 

 While this research illustrates clearly how social network characteristics influence the 

pace of knowledge production within cities, it does not consider whether the architecture of 

regional knowledge stocks might shape the structure of social networks. The stocks of 

knowledge that accumulate in particular places may be characterized by their age and size, by 

their diversity across scientific, technological or industrial fields (Asheim et al., 2007; Kogler et 

al., 2013) and by their complexity (Balland & Rigby, 2017; Fleming & Sorenson, 2001). Is this 

variation correlated with the structure of innovation networks? Amin and Cohendet (2004), 

Moodysson (2008) and Trippl et al. (2009) make clear that the processes of innovation, the 

actors involved and the relationships between them vary significantly across different knowledge 

bases. Cantner et al. (2010) also suggest that more specialized regional knowledge bases are 

associated with larger and denser co-inventor networks. The empirical work that follows extends 



discussion of the linkages between the character of regional knowledge cores and the structure of 

local and non-local knowledge networks. 

     

3. Data & Methods 

The aim of this paper is to explain variations in knowledge production across U.S. metropolitan 

areas between 1975 and 2005, and to explore the roles of the structure of knowledge and social 

networks in such explanation. We measure knowledge production using patent data derived from 

the United States Patent and Trademark Office (USPTO). Our dependent variable is the annual 

number of patents produced within each U.S. metropolitan area. Note that we add a second 

dependent variable, patents per worker, as a robustness check in some of our output. Many 

patents are generated by more than one inventor. When these teams of inventors are located in 

the same metropolitan area, the individual patent is fully assigned to that location. In the case of 

patents produced by inventors located in different metropolitan areas, individual patents are 

fractionally split across those areas with shares determined by the geographical distribution of 

co-inventors. Patents developed solely by foreign inventors are excluded from our data. 

Fractional counts of patents imply that the dependent variable is not a “count variable”. Our 

fractional counts focus on the application year of patents as is customary in the literature. While 

patents provide a useful indicator of innovation, it should be clear that they are not a perfect 

measure (see Griliches, 1990). 

 Two independent variables play a central role in our analysis of metropolitan knowledge 

production. The first of these is a measure of urban co-inventor networks and the second is a 

measure of the specialization of a city’s knowledge core. We measure two social networks of co-

inventors for each metropolitan area in each year, the first highlighting intra-city collaboration 



and the second built from inter-city linkages. Data gathered for additional covariates are 

identified next. 

 The USPTO lists the names of all inventors on patents. These inventors form the nodes of 

potential collaboration networks that vary year-by-year according to whether inventors have 

jointly applied for a patent in a given time-period. When two or more inventors are listed on the 

same patent then a link is established between the inventor-nodes. The addresses (city and 

county) are listed for all inventors on patents. We use the inventor county to assign individual 

patents (either fully or fractionally) to their corresponding CBSA1. The largest 366 CBSAs form 

the metropolitan statistical areas (MSAs) upon which our analysis is focused. When co-inventors 

on a patent are located in the same metropolitan area then we have an intra-city network link. 

When inventors on a patent are located in different metropolitan areas then we have an inter-city 

network link. Patents with more than two co-inventors can simultaneously represent intra- and 

inter-city network linkages. Both kinds of networks are examined below. 

 The number of nodes in our networks is given by the number of distinct inventors that we 

can link to patents. Unfortunately, the USPTO does not uniquely identify individual inventors. 

Thus, it is impossible to tell from USPTO records whether an inventor on patent i, in application 

year t, named John Smith is the same inventor as John Smith listed on patent j from the same 

application year t. To resolve such ambiguities, we utilize disambiguated inventor IDs made 

available by Lai et al. (2012) and link these to the inventors on all patents. Fleming et al. (2007) 

and Lobo and Strumsky (2008) proceed in the same way, identifying inventor networks over 

space and time using disambiguated inventor records. 

 However, comparing different metropolitan co-inventor networks is troublesome for two 

reasons. First, these networks tend to be disconnected. This means that within each urban area 

 
1 We use the December 2009 classification of CBSAs by the U.S. Bureau of the Census. 



not every inventor is connected (directly or indirectly) to others through a co-inventor patent 

linkage. A lot of network-level measures, and especially centrality based measures, behave 

poorly and produce spurious results for disconnected networks (De Nooy et al., 2011). This 

feature makes most network measures unfit to use as covariates in a model to explain regional 

variations in knowledge production. Second, size and density are found to interact strongly with 

network measures. Networks with different sizes and/or densities can have significantly different 

probability distributions for the same network measure. Therefore, determining whether the 

observed value of the network measure is a direct result of structural network characteristics is 

difficult (Anderson et al., 1999). As a consequence, scholars interested in regional co-inventor 

networks have often limited their analyses to the largest component of networks, or used 

elementary descriptive statistics to characterize the co-inventor network. In both cases, the 

effects of co-inventor network structures on regional knowledge production are likely biased. 

     Fortunately, the k-core network measure developed by Seidman (1983) allows 

comparison of networks of different size and density and it is also applicable to disconnected 

networks (Butts et al., 2012). The k-core measure is a nodal degree based approach to identify 

cohesive subgroups. A k-core is a subgraph in which each node is connected to a minimum k 

other nodes in the subgraph (Seidman, 1983). Thus, k-core subgraphs contain nodes that have a 

specified number of ties to other nodes in the subgraph. Formally, a subgraph is a k-core when 

ds(i) ≥ k for all ni ∈ Ns, where ds(i) denotes the number of connections (degree) of every node ni 

in the subset of vertices Ns, and k represents the order of the core. Matula and Beck (1983) 

developed an algorithm to decompose a full network into different k-cores. This algorithm 

identifies which nodes belong to 0-core but not to the 1-core or higher. These nodes are assigned 

to core number 0 and removed from the network for further consideration. Next, the algorithm 



identifies which nodes belong to 1-core but not to the 2-core or higher, etc. The algorithm stops 

when it is not able to identify nodes with links greater than the maximum k-core value. Networks 

with a larger number of k-cores tend to have greater variability in the connectedness of nodes 

than networks with a smaller number of k-cores, ceteris paribus. We use the number of k-cores to 

characterize the structure of inter- and intra-city co-inventor networks. We hypothesize that 

increasing the number of k-cores in inter- and intra-city co-inventor networks will result in 

greater metropolitan patent production. 

In essence, the k-core measure captures the robustness of communities in a network 

under degeneracy. In networks that are more robust the connectivity amongst nodes is denser. In 

the context of our paper, this means that cities with a greater number of k-cores contain inventors 

that are more densely connected with one another. For example, consider the network in Figure 

1. This network has ten inventors, nine that collaborate. The number printed in the nodes 

corresponds to the k-core the node belongs to. In this graph there are four different k-cores. The 

most robust community is the k-core with the greatest k value, the 3-core in this case. The 

inventors in this community each collaborate with at least three inventors that also collaborate 

with a minimum of three inventors. Caution is needed here, because the bipartite nature of our 

data (inventors on patents) can easily inflate this number. A patent with 16 co-inventors 

generates a k-core of 15. Similarly, an annual network in which two inventors collaborate on 22 

patents produces a k-core of order 22, because each inventor has 22 linkages to a different 

inventor also with 22 linkages. Thus, using the size of the largest k-core is not so much a 

measure of the structure of the co-inventor network, as it is a measure of (repeated) collaboration 

amongst a selective subset of co-inventors (see Strumsky and Thill, 2013). Our preferred 

network measure counts the number of k-cores that occur in the city-level co-inventor network. 



This measure captures the structure of the entire co-inventor network found either within a city 

(internal network) or between cities (external network). 

 

Figure 1: An example of K-cores 

 

 

 

  

  



There is a long history within economic geography that suggests the character of a city’s 

knowledge base, one measure of industrial structure, might influence the pace of invention 

(Marshall, 1920; Jacobs, 1969). In particular, we are interested in whether metropolitan areas 

with more specialized or more diverse knowledge stocks generate more patents. Across much of 

the literature, the standard measure of specialization (or diversity) is the Herfindahl-Hirschman 

index (Hirschman, 1964). While this index is widely used, it has one major failing, namely its 

inability to control for varying “distances” between the economic categories across which 

specialization is measured. Here, we calculate the specialization (or diversity) of the knowledge 

base of cities by examining the distribution of patents across the 438 primary technological 

classes of the USPTO. For each pair of these classes we measure the technological distance or 

the cognitive proximity between them using patent co-classification data. We then compute the 

average relatedness or the average cognitive proximity between all pairs of patents that are 

generated within a city. This measure of average relatedness is bounded by the interval 0 – 1. 

Higher values of average relatedness indicate greater specialization. 

 The details of these calculations are outlined below. Co-class information on individual 

patents is employed to measure the technological proximity of technology classes, following the 

earlier work of Jaffe (1986), Engelsman & van Raan (1994), Kogler et al. (2013) and Nesta & 

Saviotti (2005). To measure the proximity, or knowledge relatedness, between patent technology 

classes in a single year we employ the following method. Let P indicate the total number of 

patent applications in the chosen year. Then, let 𝐹𝑖𝑝 = 1 if patent record p lists the classification 

code i, otherwise 𝐹𝑖𝑝 = 0.  Note that i represents one of the 438 primary technology classes into 

which the new knowledge contained in patents is classified. In a given year, the total number of 

patents that list technology class i is given by 𝑁𝑖 = ∑ 𝐹𝑖𝑝𝑝 . In similar fashion, the number of 



individual patents that list the pair of co-classes i and j is identified by the count 𝑁𝑖𝑗 = ∑ 𝐹𝑖𝑝𝐹𝑗𝑝𝑝 . 

Repeating this co-class count for all pairs of 438 patent classes yields the (438x438) symmetric 

technology class co-occurrence matrix C the elements of which are the co-class counts 𝑁𝑖𝑗. The 

co-class counts measure the technological proximity of all patent class pairs, but they are also 

influenced by the number of patents found within each individual patent class 𝑁𝑖. Thus, we 

standardize the elements of the co-occurrence matrix by the square root of the product of the 

number of patents in the row and column classes of each element, or 

 
𝑆𝑖𝑗 =

𝑁𝑖𝑗

√𝑁𝑖 ∗ 𝑁𝑗

⁄
 

(1) 

where 𝑆𝑖𝑗 is an element of the standardized co-occurrence matrix (S) that indicates the 

technological proximity, or knowledge relatedness, between all pairs of patent classes in a given 

year. The elements on the principal diagonal of S are set to 1. We prefer this simple form of 

standardization for the reasons outlined by Joo and Kim (2010). 

 The average relatedness value of patents for a metropolitan area m in year t is calculated 

as: 

 
𝐴𝑅𝑚,𝑡 =

∑ ∑ 𝑆𝑖𝑗
𝑡

𝑗𝑖 ∗ 𝐷𝑖𝑗
𝑚,𝑡 + ∑ 𝑆𝑖𝑖

𝑡 ∗ 2𝐷𝑖𝑖
𝑚,𝑡

𝑖

𝑁𝑚,𝑡 ∗ (𝑁𝑚,𝑡 − 1)
          𝑓𝑜𝑟 𝑖 ≠ 𝑗 

(2) 

where 𝑆𝑖𝑗
𝑡  represents the technological relatedness between patents in technology classes i and j, 

𝑁𝑚,𝑡 is a count of the total number of patents in region m in year t, and where 𝐷𝑖𝑗
𝑚,𝑡

 counts the 

number of pairs of patents that can be located in technology classes i and j in region m in year t. 

To clarify the meaning of 𝐷𝑖𝑗
𝑚,𝑡

, imagine a region with three patents, one in technology class 1 

and two in technology class 2. Then, the pair counts 𝐷𝑖𝑗
𝑚,𝑡

 represent elements in the (438x438) 

symmetric matrix  



 

𝑫𝑡,𝑟 = [

0 2 … 0
2
⋮

1
⋮

…
0
⋮

0 0 … 0

] (3) 

with three patents, there are 3x2 = 6 unique distance measures to calculate, the distance between 

the patent in class 1 and each of the patents in class 2, the distances from both patents in class 2 

to the patent in class 1 and the distance between the two patents in class 2. Note that the latter 

distance is counted twice. These routines are repeated for each of the 35 years in our analysis. 

Descriptive statistics for the average relatedness variable are provided in Table 1. 

 Cities and regions that build knowledge stocks around particular industries and 

technologies will likely record different numbers of patents over time as some sectors of the 

economy heat up and others cool down. Patents generated in very dynamic technology classes 

likely build incrementally on recent patents in the same sector. One way of controlling for the 

distribution of urban knowledge stocks across more or less dynamic classes is to capture the 

average age of citations on the patents generated each year. Cities active in newer technologies 

will likely have citations that are more recent than cities where invention is in older technologies. 

As patents are indexed by USPTO numbers that track the timing of their introduction to the 

economy, we calculate the mean age of citations on patents by averaging the USPTO numbers of 

the patents that they cite. When this average number is higher it references recent patents or 

newer technologies. We anticipate that metropolitan areas that are over represented in newer 

technologies will thus cite patents that have higher USPTO numbers on average. Including this 

mean age of citations should control for the degree to which urban areas are active in more 

dynamic technological sectors. Other authors in this field have used similar approaches (Fleming 

et al. 2007; Strumsky and Thill 2013; Breschi and Lenzi 2016). 



 Cities that devote significant resources to invention are more likely to produce more 

patents than cities that don’t make such investments. Typically research and development (R&D) 

spending and venture capital funding are obvious indicators of such efforts. Unfortunately, there 

are no R&D data available at the city-level that cover the period of our investigation. However, 

we can make use of venture capital data and National Science Foundation (NSF) funding data to 

proxy for the local availability of funds for knowledge production. The venture capital data 

originate from the Thomson VentureXpert series (see Samila and Sorenson, 2011), and the NSF 

funding data can be found on the NSF website. These data can be readily aggregated to the MSA 

level for individual years2. We combine the venture capital data and the NSF awards by 

metropolitan area as an indicator of R&D spending across U.S. urban areas. We hypothesize that 

higher levels of R&D funding should be associated with a larger volume of patents. 

 The level of competition within the metropolitan region might affect inventive activity. 

There is significant disagreement as to whether local monopoly (MAR-model) or competition 

(Porter, 1990) foster inventive activity. On the one hand, the monopoly argument holds that 

firms with market power are more likely to invent because they can fully appropriate the 

economic benefits from their efforts. On the other hand, the argument for competition holds that 

a firms’ inventive activity benefits from knowledge externalities (Audretsch & Feldman, 1996). 

We control for the level of economic competition within a metropolitan area by calculating the 

ratio of the number of firms to employment. Higher levels of this ratio signify greater 

competition. Counts of the number of firms and employment at the county level may be found in 

the County Business Patterns data generated by the U.S. Bureau of the Census. County figures 

are summed across the regional units that comprise each MSA. We have no explicit hypothesis 

 
2 Data available at https://www.nsf.gov/awardsearch/download.jsp 



on how competition impacts knowledge production, reflecting ambiguity in the existing 

literature. 

Clearly larger MSAs are expected to generate more patents than smaller MSAs. 

Employment within urban areas, obtained from County Business Patterns (U.S. Census Bureau), 

is used to control for urban scale or size effects and for the higher levels of interaction that scale 

facilitates. The density of inventors (inventors/land area) is a proxy for the level of MSA 

agglomeration. We hypothesize that larger cities and cities with higher levels of inventor density 

will exhibit higher levels of patenting. Figure 2 shows the spatial distribution of the number of 

patents for the period 2006-2010 across U.S. metropolitan areas. 

Descriptive statistics for all variables are shown in Table 1 for four time periods spanning 

most of the period under investigation. Approximately 2.3 million patents were generated in the 

366 U.S. metro areas over the period 1976 to 2010. The New York MSA produced most patents 

since 1975 accounting for 166,000 of the total. In second place, San Jose inventors produced 

approximately 153,000 patents over the study period. In third place, Los Angeles inventors 

generated approximately 117,000 patents. San Francisco, Chicago and Boston occupy the next 

three ranks in terms of urban knowledge production since 1975. Hinesville-Fort Stewart, GA 

produced the fewest patents (15) of any metropolitan area over the period examined. 

 Note that the relatively large values for the average age of citations in Table 1 reflects the 

fact that we calculate the mean citation age of patents within an urban area by examining the 

USPTO numbers on all patents that are cited by inventors in a particular city and year. Utility 

patent issue numbers start at 3858241 in 1975. Thus, for 1980, the average age of citations 

(3732129) corresponds to an average date of issue of 1973 (an average age of 7 years). The 

average relatedness value (index of knowledge specialization) across U.S. metropolitan areas 



was 0.026 in 1980, increasing to 0.043 in 2010. Knowledge production is becoming more 

specialized at the urban level across the United States. This means that the average 

“technological distance” between all pairs of patents generated within a metropolitan area is 

declining over time. Relatively high values of the average relatedness variable, approaching the 

maximum value of 1, are usually associated with small cities that produce only a few patents 

concentrated in one or two classes. 

 Total R&D data are listed in millions of dollars in Table 1. In any specific year these 

figures exhibit considerable left hand (negative) skew as only a small number of cities capture 

the largest volumes of venture capital. NSF funding tends to be much less volatile than venture 

capital investments and more broadly distributed. The mean values reported for R&D are inflated 

by the extreme values in the venture capital series. Note also that the venture capital investments 

are extremely volatile year-to-year. The maximum value reported in 1990 was approximately 

one-tenth the maximum in 1991, reflecting the sharp business cycle downturn of that year. Yet, 

only 10 years later in 2000, venture capital investment across the U.S. expanded to more than 

$100 billion, just as the dot.com bubble collapsed. 

 Table 2 illustrates correlation coefficients between the variables, prior to taking 

logarithms. While the Pearson correlation coefficients are reasonably large in a few cases, the 

coefficients in models with/without core variables are relatively stable. The reader is reminded 

that multicollinearity does not bias estimators, it merely makes then inefficient (Goldberger, 

1991). Inefficiency does not appear to be a problem in the results presented below. 

 



 

Table 1: Descriptive Statistics 
 

Variables 1980 1990 

 Mean S.D. Min Max Mean S.D. Min Max 

Patents   97.84 303.59 0 3780.14 135.71 373.77 0 4030.8 

Employment  258919 643811 4214 8250921 319663.9 770983 8758 9344755 

Inventor density 0.02 0.05 0 0.59 0.03 0.06 0 0.64 

Ave. relatedness 0.02 0.03 0 0.21 0.03 0.05 0 0.82 

Citation age patent 3732129 449067 0 4215443 4253089 340550 0 4685821 

Total R&D 27.41 265.24 0 3700.56 15.83 75 0 828.06 

Firms per Emp. 0.04 0.01 0.01 0.06 0.04 0.01 0.02 0.08 

Internal k-cores 2.98 2.43 0 26 4.09 2.89 0 19 

External k-cores 1.96 1.63 0 10 3.07 2.44 0 13 

         

Variables 2000 2010 

 Mean S.D. Min Max Mean S.D. Min Max 

Patents 270.14 803.13 1.5 8478.3 236.79 749.48 0 8373.63 

Employment  383428 870740 14277 10099328 407475 925715 22830 11255588 

Inventor density 0.06 0.14 0 1.48 0.06 0.15 0 1.72 

Ave. relatedness 0.03 0.03 0 0.51 0.04 0.07 0 0.71 

Citation age patent 5257239 168177 4720271 5720329 5607179 455949 4077948 6782696 

Total R&D 232.22 1562.67 0 21006.58 32.18 167.47 0 1781.93 

Firms per Emp. 0.04 0.02 0 0.32 0.04 0.01 0.01 0.08 

Internal k-cores 6.27 5.37 0 32 6.1 5.63 0 34 

External k-cores 5.95 5.42 0 37 6.01 5.91 0 44 
Notes: The variables in Table 1 are not logged. 



 

Table 2: Correlation Among Variables 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Patents (1) 1         

Employment (2) 0.78 1        

Inventor density (3) 0.77 0.44 1       

Average relatedness (4) 0 -0.05 0.01 1      

Citation age patents (5) 0.17 0.12 0.22 0.11 1     

Research & Dvlpmnt (6) 0.6 0.45 0.53 -0.01 0.07 1    

Firms per employment (7) -0.03 -0.03 -0.03 0.01 0.01 -0.02 1   

Internal K-cores (8) 0.75 0.63 0.65 0.1 0.39 0.37 -0.05 1  

External K-cores (9) 0.72 0.57 0.71 0.08 0.45 0.4 -0.04 0.9 1 

Notes: The correlations are based on the raw values of variables, not logged values. 

 

  



Figure 2: The spatial distribution of the number of patents for the period 2006-2010 across 

U.S. metropolitan areas 

 

 

  



4. Results 

We anticipate that knowledge production in U.S. cities might be influenced by inventive activity 

taking place in other parts of the U.S. urban system. Indeed, statistical tests revealed significant 

positive spatial autocorrelation in MSA patent output. The geography of U.S. cities was 

represented in these tests with an inverse distance matrix generated for all city-city pairs. In the 

regression models presented in Tables 3 and 4, a spatial lag term controls for spatial 

autocorrelation using the spdep and splm packages in R. Estimation makes use of fixed effect 

panel models covering 35 years and 366 metro regions. These models control for unobserved 

variables that are fixed at the MSA level. We control for time-specific shocks by adding time 

fixed-effects to our model, and as a crude control for concerns with endogeneity all independent 

variables are lagged by one-period. We control for heteroscedasticity using White’s robust 

standard errors.  

 Table 3 presents the first results exploring whether cities that are specialized or 

diversified in terms of knowledge production produce more patents. Model 1 in Table 3 is 

offered as a baseline, ignoring concerns with spatial autocorrelation and not including co-

inventor networks. The independent variables included in model 1 function largely as 

hypothesized. We control for the influence of MSA size with the employment variable. Not 

surprisingly, larger urban areas with higher levels of employment on average generate 

significantly more patents than smaller urban centers. Our simple measure of the strength of 

agglomeration within urban areas is inventor density. Increases in density raise the number of 

patents produced, as hypothesized. The age of technology has no significant influence on 

knowledge production in model 1. In line with most studies of knowledge production, as R&D 

investments in a city increase, inventive output also increases. Most importantly, perhaps, the 



average relatedness variable is significant and has a positive sign suggesting that more 

specialized cities tend to produce more patents. Our measure of competition, the number of firms 

in an MSA per worker, is insignificant in model 13. It is important to note that the more 

traditional measures of urban agglomeration, employment and inventor density, have coefficients 

that are considerably larger than the social network measures. Given the log-log form of the 

model these may be interpreted as elasticities. 

Adding spatial autocorrelation in model 2 revealed that both spatial lag and error terms in 

the autocorrelation model were significant. Lagrangian multiplier tests suggested the lag form of 

autocorrelation was stronger and so spatial lags were added to all models. A comparison of 

models 1 and 2 indicates that many of the independent variables have similar coefficients after 

the introduction of the spatial lag term. There are two exceptions. First, the citation age of 

patents, a measure of the age of technology becomes significant after the introduction of the 

spatial lag term. Second, the influence of R&D spending becomes insignificant in models 

including controls for spatial autocorrelation. This is not that surprising, as Samila and Sorenson 

(2011) report quite mixed results for the influence of venture capital funding on measures of 

metropolitan economic performance. We do not report the coefficient of determination as it is 

inflated by the spatial lag term. 

Models 3-5 introduce network measures to our analysis of urban knowledge production. 

Like Strumsky and Thill (2013), we capture the structure of internal and external city networks 

using k-core counts, though we exploit the k-core measure a little differently as indicated above. 

In line with existing studies (Fleming et al. (2007), Lobo and Strumsky (2008) and Breschi and 

Lenzi (2016)), model 3 shows that the structure of co-inventor networks, those that are internal 

 
3 Model 1 has fewer observations than our other models, because it is the only model that is fitted with OLS. This 

technique doesn’t deal well with unbalanced panel data, hence incomplete cases are dropped. 



to the city and those that link collaborators within a city to inventors elsewhere (“external 

networks”), have a positive and significant influence on patent production within the city. 

Indeed, denser webs of collaboration amongst inventors (either internal or external) foster the 

production of patents. These network effects are initially treated as independent of our measure 

of urban agglomeration that is captured by inventor density. Note that the internal network 

measure has a stronger influence on knowledge production than the external network measure. It 

seems reasonable to anticipate some interaction between the measures of agglomeration and co-

inventor networks (see Whittington et al., 2009). This concern is the focus of models 4-6. Thus 

in model 4, we interact inventor density (our measure of urban agglomeration) with the number 

of internal co-inventor k-cores in the city to examine whether or not internal collaboration 

networks are a complement or a substitute for agglomeration. The negative coefficient on the 

internal interaction variable in model 4 indicates a substitution effect and suggests that cities with 

large urban agglomerations gain less from local networks than cities where such agglomeration 

is rather poorly developed. Model 5 supports a similar story of substitution between the forces of 

agglomeration within cities and external collaboration networks. These results are somewhat 

surprising. Our intuition led us to suspect that at the city-level, agglomeration and networks 

would act as complements, combining to raise the overall volume of knowledge production, 

especially in the case of external knowledge networks. Perhaps the spatial lag term dampens the 

influence of the external network measure. 

Model 6 explores the interaction between internal and external knowledge networks at 

the city-level. The negative coefficient for the interaction variable indicates that the number of 

internal and external k-cores act as substitutes. This doesn’t make sense intuitively on the city-

level, where we might expect that external collaborations (pipelines) feed the internal inventor   



 

Table 3: Determinants of the Pace of Patenting in U.S. Metropolitan Areas 
  

Dependent variable:  

   ln patents 
(1) (2) (3) (4) (5) (6) 

Spatial Autocorr.  0.545*** 0.520*** 0.596*** 0.568*** 0.527*** 
  (0.042) (0.043) (0.039) (0.041) (0.043) 

Employment   1.223*** 1.075*** 0.848*** 0.804*** 0.915*** 0.837*** 
 (0.028) (0.149) (0.136) (0.134) (0.141) (0.136) 

Inventor density  3.037*** 3.325*** 2.169*** 6.101*** 6.088*** 3.112*** 
 (0.100) (0.541) (0.503) (1.077) (1.051) (0.695) 

Ave. relatedness  1.688*** 2.701*** 2.017*** 1.995*** 2.316*** 2.020*** 
 (0.099) (0.532) (0.484) (0.476) (0.502) (0.481) 

Citation age patent  0.001 0.053*** 0.042*** 0.042*** 0.051*** 0.041*** 
 (0.003) (0.015) (0.013) (0.013) (0.014) (0.013) 

Research & Development   0.015*** 0.009 0.002 -0.001 -0.003 0.004 
 (0.005) (0.026) (0.024) (0.023) (0.025) (0.024) 

Firms per Emp.  0.061 -0.118 0.005 -0.067 -0.133 -0.009 
 (0.219) (1.210) (1.087) (1.070) (1.134) (1.082) 

Internal K-cores    0.486*** 0.568***  0.502*** 
   (0.071) (0.060)  (0.071) 

External K-cores    0.127**  0.344*** 0.148** 
   (0.062)  (0.056) (0.062) 

Interaction internal    -0.135***   
    (0.034)   

Interaction external     -0.104***  
     (0.028)  

Interaction int. * ext.      -0.001* 

      (0.0004) 

N 12,444 12,810 12,810 12,810 12,810 12,810 

CBSA 366 366 366 366 366 366 

Notes:  *p < .1    **p < .05     ***p < .01  

The independent variables are log transformed with the exception of the citation age of patents. Excluding the 

spatial lag, the independent variables are lagged one period. Year fixed effects included but not shown. The 

model is a fixed effects panel with robust standard errors. The terms in parentheses at the top of the table 

represent different models discussed in the text. 

  
 

  



pool (local buzz) with non-local knowledge thus boosting overall knowledge production (after 

Bathelt et al., 2004). Perhaps it is the case that inventors can only collaborate with a finite 

number of partners. Hence, collaborating with co-inventors located in other metropolitan areas 

limits the opportunities to collaborate within the city and vice versa (see Esposito and Rigby, 

2018). Note that these findings are inconsistent with the results of Breschi & Lenzi (2016) who 

report a positive interaction between internal and external network effects on urban invention4. 

 We now shift to examine the influence of co-inventor networks on knowledge production 

in metropolitan areas that are relatively specialized or relatively diverse in terms of the range of 

technologies that they contain. Figures 3 and 4 illustrate how co-inventor networks vary across 

metropolitan knowledge cores. Table 4 summarizes this variation, reporting descriptive statistics 

on k-core values for specialized and diversified urban areas. Overall, specialized cities tend to 

have much more well-developed internal and external co-inventor networks than diversified 

metropolitan areas and this finding holds for cities of different size. For example, Figure 3 

clearly shows differences in the internal collaboration network structure of the medium-sized 

cities Boise and Pittsburgh in 2005. On average, inventors in Boise, a specialized city, are much 

more connected to other local inventors than inventors in a more diversified city such as 

Pittsburgh. In larger cities we see the same pattern, with a much more well-developed internal 

network in San Jose, a specialized metropolitan area, than in Chicago which is technologically 

more diversified. Figure 4 illustrates these same differences for external co-invention networks 

in the smaller and larger MSAs of Poughkeepsie and Cleveland and again in San Jose and 

Chicago. 

 
4 Note that limiting our analysis to census years, for which we have educational data, and including the share of 

MSA population with a bachelor’s degree as a measure of human capital, analysis produces broadly similar results 

to those reported in Table 1 and yields a positive coefficient on the human capital variable. 

 



Figure 3: Internal (within-city) Co-Inventor Networks in Specialized and Diversified Urban 

Areas 
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Figure 4: External (between-city) Co-Inventor Networks in Specialized and Diversified 

Urban Areas 
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Table 4 summarizes data on the characteristics of urban co-inventor networks in 

specialized and diversified cities across the four years that span the period of analysis. The table 

highlights descriptive statistics on the number of internal and external k-cores and reports the 

maximum k-core values. The statistics are shown for cities in the top and bottom quartiles of the 

distribution of average relatedness (technological specialization) values. Cities in the lower 

quartile have more diversified knowledge cores. Cities in the upper quartile have specialized 

knowledge cores. The lower quartile contains a few less observations than the upper quartile 

because of metropolitan areas with zero patents (no average relatedness scores). The allocation 

of cities to the quartiles is done year-by-year. Observations increase over time as invention 

spreads across more U.S. cities. In general, the mean (and maximum) number of k-cores, internal 

and external, is greater in cities with specialized technological cores than in cities with more 

diversified knowledge bases. 

Figures 3 and 4, along with Table 4, suggest differences in the structure of co-inventor 

networks between specialized and diversified urban areas. To examine whether the structure of 

co-inventor networks operate differently in cities with specialized knowledge cores and those 

that are more diversified, we run the same regressions as in Table 3 across the two groups of 

cities. The results are presented in Table 5. 

  



 

 

Table 4: Co-inventor Network Statistics for Cities with Specialized and Diversified 

Knowledge Stocks 

 
   Internal Network k-cores External Network k-cores 

 

 Mean S.D. Max # Obs. Mean S.D. Max # Obs. 

1980         

Specialized 4.262 1.547 9 42 2.690 1.199 6 42 

Diversified 4.115 2.123 11 26 2.692 1.761 6 26 

1990         

Specialized 5.697 2.744 15 33 4.152 1.873 9 33 

Diversified 4.929 2.761 13 28 4.071 2.581 12 28 

2000         

Specialized 9.588 5.231 25 51 8.890 5.591 25 51 

Diversified 7.417 5.369 28 36 7.083 4.735 22 36 

2010         

Specialized 6.554 5.696 33 92 6.011 5.841 43 92 

Diversified 2.065 1.212 8 92 2.152 1.617 12 92 

 

  

  



 The regression models that underpin the results in Table 5 are panel models estimated 

with ordinary least squares techniques. In all models, year fixed effects are included but not 

reported in the results. We are unable to control explicitly for spatial autocorrelation in the 

models of Table 5 because of the unbalanced nature of our panel data following its separation 

into specialized and diversified city-time components. As a proxy for spatial autocorrelation we 

add another variable to the models that represents a spatial lag term, measuring the inverse 

distance weighted value of patents generated in all cities save for the focal MSA. This spatial lag 

term is positive and significant and appears to operate much like the lag term in the models with 

spatial autocorrelation in Table 3. Note that we estimate four models in Table 5. Models 7 and 8 

have the log of patents in the city as the dependent variable, following Table 3, while models 9 

and 10 have the log of patents per worker as the dependent variable. We show models 9 and 10 

just to indicate that the results are qualitatively the same with a slightly different specification of 

the dependent variable. We do not discuss models 9 and 10 further. 

Model 7 in Table 5 reports the coefficients for our standard model of knowledge 

production for the set of cities that are diversified.  The volume of employment has a positive 

and significant impact on knowledge production in cities with diversified knowledge cores. 

However, the remaining independent variables in model 7 are insignificant, including traditional 

measures of agglomeration (inventor density) and the k-core measures of internal and external 

social networks. As we switch to technologically specialized cities in model 8, all independent 

variables have a positive and significant impact on knowledge production except R&D and the 

number of firms per employee. Most importantly, the number of k-cores for internal and external 

co-inventor networks exerts a significant positive influence on knowledge production for 

specialized cities, unlike the finding for diversified cities. 



 

Table 5: Knowledge Production in Specialized and Diversified Cities 

 

Dependent variables:  

  ln patents 

 

  ln patents per worker 

(7) 

Diversified 

Cities 

 

  

(8) 

Specialized 

Cities 

 

  

 

 

(9) 

Diversified  

Cities 

 

 

(10) 

Specialized 

Cities 

Spatial Lag 0.408*** 0.682*** 0.034*** 0.058** 

 (0.116) (0.282) (0.009) (0.025) 

Employment   1.039*** 0.887*** 0.057*** 0.043*** 

 (0.205) (0.153) (0.018) (0.013) 

Inventor density  0.957 3.712*** 0.017 0.289*** 
 (0.669) (1.120) (0.061) (0.099) 

Ave. relatedness  -0.521 1.314*** -0.048 0.109*** 
 (0.917) (0.287) (0.082) (0.023) 

Citation age patents  7.87E-08 3.98E-07*** 7.30E-09 3.33E-08*** 
 (4.99E-08) (8.96E-08) (4.56E-09) (7.73E-09) 

R&D 0.004 -0.001 0.000 -0.000 
 (0.004) (0.002) (0.000) (0.000) 

Firms per Emp.  5.487 2.022 0.408 0.151 
 (4.682) (1.764) (0.414) (0.159) 

Internal K-cores 0.043 0.257*** 0.003 0.0212*** 
 (0.054) (0.054) (0.005) (0.004) 

External K-cores -0.027 0.074* -0.003 0.006* 
 (0.049) (0.041) (0.004) (0.003) 

N 1,081 1,619 1,081 1,619 

Notes   *p < .1    **p < .05     ***p < .01   

The independent variables are log transformed with the exception of the citation age of patents. Excluding the 

spatial lag, the independent variables are lagged one period. Year fixed effects are included but not shown. 

Standard errors are robust. The terms in parentheses at the top of the table represent models discussed in the text. 

    

 

 

 



The results in Table 5 confirm that the nature and importance of co-inventor 

collaboration networks vary with the technological profiles of urban areas. We suspect that in 

diversified knowledge cities the breadth of the cognitive overlap between groups of inventors is 

not sufficiently high for dense networks of collaborating agents to form. In contrast, specialized 

cities channel knowledge development along relatively narrow trajectories that engender greater 

cognitive overlap and more readily hasten a shared division of labor in the knowledge production 

process. In turn, the efficiency of greater specialization and interaction sustain higher levels of 

knowledge output in cities with higher levels of cognitive proximity among inventors. Though 

our data support this notion, clearly more work is required to bolster this claim. 

 Finally, we examine whether inventors in specialized cities develop external (between 

city) collaborations in ways that differ from inventors located in diversified cities. Again we use 

the relatedness of a city’s knowledge stock to classify metropolitan areas as specialized (average 

relatedness between a city’s patents is in the upper quartile) or diversified (average relatedness 

between a city’s patents is in the lower quartile). We then explore the factors that encourage 

collaboration between pairs of cities, or more accurately between inventors located in different 

pairs of cities. In our regression framework, the dependent variable takes the value 1 (0) when 

inventors in one city do (do not) collaborate with inventors in a second city. Our model of 

collaboration rests on a simple gravity framework where we anticipate that the probability of an 

external collaboration between a pair of cities is a positive function of the number of inventors in 

each city and a negative function of the geographical distance between them. We add to this 

simple specification a variable that captures the cognitive proximity between each pair of cities, 

measured as the average relatedness between all patents produced in the two cities in a given 



year. We hypothesize that as the cognitive proximity between cities increases, so inventors in 

those cities are more likely to collaborate. 

To ensure that we don’t count city-city pairings twice our observation set is cut in half. A 

dummy variable is added to the right-hand side of the regression model, taking the value 0 (1) 

when the observation refers to a collaboration originating in a diversified (specialized) city. We 

interact all independent variables with this city dummy to test whether the influence of those 

variables differs between diversified and specialized cities. With a binary dependent variable, we 

estimate these effects with a logit model fitted using maximum likelihood techniques. 

 Table 6 reports the results. The coefficients in the logit model are to be read as the log 

odds of the probability of collaboration between a pair of cities. When focusing on diversified 

cities (the specialization dummy takes the value zero), the probability of inter-city collaboration 

increases as the number of inventors in a pair of cities increases and as the distance separating 

them falls. These results are just as we might expect. In addition, as the technological profiles of 

the cities become more similar, as their cognitive proximity increases, then collaboration 

between a pair of inventors located in each of the two cities is more likely. As the index of city 

specialization turns to 1, we see that specialized cities in general engage in significantly less 

collaboration than their diversified partners, at least in terms of city-to-city linkages. The 

interactions in the model reveal that as the size of cities increases, the effect on the probability of 

external inventor collaboration is significantly lower in specialized cities than in diversified 

cities. This might be read as suggesting that size alone is a less important factor for collaboration 

in specialized as compared to diversified cities. The positive coefficient on the interaction of 

geographic distance and specialization indicates that inventors in specialized cities are less  

 



Table 6: Metropolitan Collaboration in Diversified and Specialized Cities 

 

Dependent variable: Collaboration (0/1) 

        
  

Dummy: Specialization - .37088***     

 (.01532)      

# Inventor city i    .95554***     
 (.00470)     

# Inventor city j  .96550***     
 (.00514)     

Geographical distance  - 1.01131***     
 (.00951)     

Cognitive proximity  38.69149***     
 (1.22060)      

Interact. dummy * # inventors city i  - .05488***     
 (.00611)     

Interact. dummy * # inventors city j  - .04969***     
 (.00584)      

Interact. dummy * geographical distance  .17159***     
 (.01547)      

Interact. dummy * cognitive proximity 17.85297***     
 (1.60817)       

N 1202648  

Prob.  > Chi2 0.0000  

Pseudo R-Squared 0.4527  

Notes:  *p < .1    **p < .05     ***p < .01 

All independent variables are logged. 

Year fixed effects included but not shown. 

 

 

 

 

 

 



impacted than inventors in diversified cities by increases in the distance separating them from 

potential collaborators. Finally, the positive coefficient on the interaction between cognitive 

proximity and specialized cities shows that technological relatedness is more important to 

inventors in specialized cities when forming their external collaborations than it is for inventors 

in diversified metropolitan areas. These findings are robust when running a linear probability 

model and when explicitly estimating the number of between city collaborations in a negative 

binomial specification. 

Overall, these results establish that the forces influencing between-city tie-formation are 

significantly different for inventors in specialized urban areas and those in diversified urban 

areas. Tie formation across all cities is a positive function of the size of potential interacting 

partner cities, a positive function of the similarity of the knowledge base across cities and a 

negative function of the geographical distance between them. However, inventors in specialized 

cities are more selective than inventors in diversified cities when it comes to choosing their 

partners. They are more likely to engage with co-inventors in other cities when those partners 

exhibit greater technological similarity and they are less dissuaded by the friction of distance 

when doing so. The size of interacting partner cities is significantly less important for inventors 

in specialized cities than inventors in diversified cities. 

 

5. Conclusion 

Knowledge production is concentrated in cities where the density of economic agents is 

relatively high. That density encourages interaction and fuels processes of agglomeration that 

reinforce urban advantage, at least for some economic agents. Where clusters of firms and other 

economic actors combine to form social networks the pace of invention is also accelerated. In 

general, internal city networks exert a stronger influence on the pace of urban invention than 



external networks that link co-inventors across cities. Both internal and external co-inventor 

networks act as substitutes for agglomeration or the positive influence of inventor density on the 

pace of knowledge production. Internal and external networks also substitute for one another. 

 We show that the influence of social networks on urban invention is strongly conditioned 

by the architecture of knowledge found within cities. We capture that architecture with a simple 

measure of metropolitan knowledge cohesion that captures the average relatedness, or the 

technological proximity, between the patents produced in a city. Within specialized cities 

average relatedness or technological proximity is higher than in diversified cities. Metropolitan 

areas with specialized knowledge cores tend to be associated with more robust or denser social 

networks of co-inventors that add significantly and positively to the pace of invention. This is 

true for both internal social networks and external social networks. Metropolitan areas with 

diversified knowledge cores have social networks that are much less well-developed than 

specialized cities and which have no significant impact on the rate of invention. 

Finally, we report that the social ties linking co-inventors across cities are shaped by the 

technological characteristics of the cities in which inventors reside. Inventors in metropolitan 

areas that have specialized knowledge cores are significantly less constrained by geographical 

proximity and significantly more constrained by cognitive proximity in their search for 

collaborators than are inventors located in urban areas with diversified knowledge cores. The 

pipelines that connect diversified cities appear shorter and less focused in terms of technology. 

As we shift to consider the policy impacts of our results, like Lobo and Srumsky (2008), 

we find that traditional measures of agglomeration such as inventor density have a more 

significant influence on the pace of invention than the organization of social networks. In short, 

cities might do better to rely on the broadly defined economies associated with size and density 



rather than worrying about the structure of partnerships between inventors, either close or far. 

This is not so say that networks are unimportant, for we might presume that the benefits derived 

from agglomeration are, at least in part, built from interactions of various sorts. It does suggest, 

however, that much more work is required to specify the nature of networks and types of 

interactions found in cities, and to unpack the characteristics of these structures that are most 

important for the economic processes under investigation. 

 While these broad claims speak to cities as a whole, it should be clear from the findings 

above that cities with specialized and diversified knowledge cores pose rather different sets of 

policy concerns. Metropolitan areas that have diversified knowledge cores, with patents that are 

widely distributed across technology fields, exhibit variable levels of inventive productivity that 

are unrelated to the structure of their social networks, as measured by the number of k-cores, and 

unrelated to inventor density. Indeed, the primary driver of invention in diversified urban areas is 

city size. While the size of the city has long been employed as a proxy for urbanization 

economies, it is a proxy that offers few insights into the processes that may be at work. For 

Jacobs (1969), size was explicitly linked to diversity and to the possibilities of novel 

recombination. Given the nature of the relatedness measure that we employ above, those 

possibilities would seem to hinge around the concept of unrelated variety and the potential for 

breakthrough invention. We know little at this time about how to foster such forms of creativity. 

In urban areas with specialized knowledge cores and well-established social networks, 

the relationship between agglomeration and social networks remains unclear. Like Whittington et 

al. (2009), we find that inventor density interacts negatively with our social network measure, 

indicating that agglomeration and social networks are substitutes rather than complements in the 

process of invention. Cities, then, have some flexibility in creating the conditions under which 



the production of ideas might be enhanced. Unlike Breschi and Lenzi (2016), we find that 

internal and external city co-inventor networks do not interact positively. Thus, while urban 

knowledge production benefits from more robust internal and external inventor networks, once 

those networks are operational, further development of one of these networks does not translate 

into additional gains from the other. This finding runs counter to the claims that non-local 

linkages necessarily enhance the benefits of local networks. One possible explanation for this is 

that local and non-local interactions might have different characteristics that are not 

complementary. For instance, Van der Wouden (2018) reports that patents generated by local 

collaboration tend to be more complex than patents produced by non-local collaboration. Much 

more work is clearly required to understand the heterogeneity in patterns of urban invention and 

interaction, and how the factors that shape the geography of knowledge creation evolve over 

time. 
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