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Abstract

We propose a new class of wave-phenomena in multiphase solids (and granu-
lar media) triggered by Hydro-Poro-Mechanical coupling and cross-diffusion
feedbacks of porous materials. We define cross-diffusion as the phenomenon
when a generalized thermodynamic force induces a generalized thermody-
namic flux of another kind. Addition of cross-diffusion relaxes the adiabatic
constraints on the reaction part of the system and corrects the mathemati-
cal ill-posedness. We identify the important aspect of cross-diffusion terms
and present a linear stability analysis of the governing partial differential
equations (PDE’s). Multiple transient wave instabilities are found as solu-
tions of the coupled PDE’s. In the long-wavelength limit (long-time scale)
these waves feed into solitary waves that are standing wave patterns frozen
into the porous medium at various scales. We revisit earlier work showing
that the wavenumber of the standing wave is entirely defined by the ratio
of the mechanical over the fluid (self-diffusion) coefficients of the coupled
reaction-cross-diffusion equations. Diffusion coefficients are hence identified
as material parameters controlling the criterion for nucleation of waves and
the signature of both transient cross- and stationary self-diffusion waves. We
show examples of self- and cross-diffusion waves in nature and laboratory ex-
periments as stationary and time-lapse diffusional waves. Our approach offers
a simple mathematical framework for analysis of coupled hydro-mechanical
porous medium, providing a new fundamental perspective for analyses of
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the initiation of macroscopic instabilities and transient precursors in many
disciplines.

Keywords: reaction-diffusion systems, coupled processes, solid-fluid
interaction, pattern formation, porous media, hydro-mechanics

1. Introduction

We present a simple approach for the interpretation and analysis of spatio-
temporal patterns triggered by coupled hydro-mechanical reaction-diffusion
feedback process in porous systems that are post-yield. We formulate the
problem in a generalized far from equilibrium thermodynamic framework,
where we consider coupling of two hydro-mechanical reaction-diffusion equa-
tions. Patterns observed in analogous chemical far from equilibrium reaction-
diffusion systems are generally interpreted as dissipative or non-equilibrium
Turing patterns, standing waves, propagating wave instabilities and other
dissipative matter or energy phenomena (Vanag and Epstein, 2009).

We investigate in this paper whether the importance of cross-diffusion
processes discovered in chemistry (Vanag and Epstein, 2009) also applies to
the mathematically equivalent Hydro-Poro-Mechanical reaction-diffusion sys-
tems. Cross-diffusional waves have only recently been classified as a new class
of excitation waves (Tsyganov et al., 2007; Biktashev and Tsyganov, 2016).
We propose that in porous media cross-diffusional waves can readily be en-
countered in nature and the laboratory. They offer a simple and elegant way
forward for interpretation and analysis of hydro-mechanical coupled phenom-
ena in poro-mechanics of multiphase matter and granular media flow. In the
following we identify the important aspect of cross-diffusion terms in a gen-
eralized Hydro-Poro-Mechanical reaction-diffusion systems and summarise a
linear stability analysis of the governing partial differential equations. These
cross-diffusion terms become active after initial yield. We show here that they
play an important role in the processes leading to macroscopic localization
of plastic deformation.

Post-yield the macroscopic criterion for localization is already well-known
to be an acceleration wave phenomenon (Rudnicki and Rice, 1975; Rice,
1976). By using a post-yield overstress approach (Perzyna, 1966) we fol-
low the conceptual time-independent generalization of the acceleration wave
approach from shear localization (Rudnicki and Rice, 1975; Rice, 1976) to
volumetric internal processes in porous solids as proposed by Veveakis and



Regenauer-Lieb (2015) and extend it to the transient time-dependent wave
propagation phenomenon in porous media.

In continuum mechanics, compatibility of the deformation gradient is con-
sidered as a necessary and sufficient condition for an allowable single-valued
continuous field in a simply-connected body. Based on the Beltrami-Michell
compatibility condition and stress equilibrium condition, Rice and Cleary
(1976) arrived at a total stress diffusion equation for compressing a fully
saturated poroelastic material. Here, we decompose the total stress into a
fluid pressure and a Perzyna visco-plastic overstress of the solid skeleton and
use mixture theory to combine the two. We also ignore any elastic defor-
mation and assume elastic incompressibility of fluids and solids. In order to
propose a mathematically simple approach for localization phenomena trig-
gered by pressure waves, we simplify the Perzyna overstress approach into a
scalar 1-D representation of volumetric processes. This approach is consis-
tent with practical applications of consolidation theory, where incorporating
three-dimensional flow vectors is complicated and only applicable to a very
limited range of problems. In this sense we follow the geo-technical engi-
neering practice, where for the vast majority of consolidation problems, the
assumption that fluid flow and mechanical strains take place in one direction
only, is sufficient (Atkinson, 2014).

In this sense we identify the 1-D framework as the post-yield diffusional
overstress in a formal analogy between plastic solids and viscous fluids devel-
oped originally for rigid-plastic bodies by Hill (1954). The approach identifies
the stress tensor by the properties of a fluid field (i.e. pressure, density and
velocity) satisfying conservation equations of continuity and motion. Hence,
no additional compatibility condition is required. Hill (1954) notes that by
application of a proper yield criterion the distribution of stress in an ideal
plastic body corresponds to the counterpart of a fluid field, based on the
assumption of homo-entropic flow. Homo-entropic flow means that the en-
tropy is homogeneous in the considered continuum volume and there is no
heat transfer. The pressure is hence dependent on the density function only.
This simplification is not a necessary condition for the presented approach
as it can be easily extended to include other diffusional gradients by consid-
eration of the thermal reaction-diffusion equation. However, for clarity we
adopt in what follows Hill’s hydrodynamic analogy for a fully rigid-plastic
solid in a strict sense and use the conservation of continuity as a dynamic
compatibility condition, which is encompassed in mixture theory.

The paper is organized as follows. With a brief review of overstress formu-



lation, we first formulate time-dependent conservation laws for consolidation
processes based on thermodynamic considerations. Then we follow the clas-
sical mixture theory approach for identifying the role of cross-diffusion as a
microstructural element stemming from internal mass-transfer in the ther-
modynamic conservation laws. We subsequently introduce the momentum
balance and derive a cnoidal wave solution as the nonlinear-periodic solution
of the Korteweg-de-Vries equation. Cnoidal waves appear as a volumetric
material instability if a non-linear constitutive equation (power law) is used
for the solid matrix. We show that in the long-wavelength limit these waves
appear as solitary standing waves equivalent to the classical shear localiza-
tion instability criterion in plasticity where the wave speed of acceleration
waves is set to zero (Rudnicki and Rice, 1975; Rice, 1976). In order to derive
the transient solution we first consider the classical case of two consolidation
processes where the time scales of consolidation are far apart allowing the
two steady state solutions to be independent of each other.

Subsequently, we focus on the cross-over regime between the primary and
the secondary consolidation, where additional transient cross-diffusional wave
instabilities might arise due to the tight coupling between micro-processes in
at least two phases. These waves are of shorter wavelength than the standing
cnoidal waves and we argue that they may play an important role in the
transient processes leading to the formation of the long-wavelength material
instability. Based on mixture theory, we further consider the process of inter-
constituent mass transfer, which corresponds to the cross-diffusion terms in
the proposed conservation laws. The onset of the Hydro-Poro-Mechanical
wave instability is derived via a linear stability analysis of the governing
equations. A field example of creeping cross-diffusion waves in a partially
molten rock, laboratory examples of grain-crushing induced cross-diffusion
waves in a granular medium and a porous rock are presented as a closure of
this paper.

2. Overstress formulation

In this paper we decompose the mechanical behaviour of a solid before
and after yield into linear elasticity and visco-plastic flow, respectively. This
approach considers that only after entering the plastic state, the material
starts to manifest its viscous flow properties. The strain rate €;; is hence
decomposed into an elastic and an inelastic part:

éij = &5 + €5 (1)
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where the elastic part €; denotes the strain rate inherited from the elastic
region of the material, where no viscous properties are considered. éfjp denotes
the visco-plastic component of the strain rate, and is assumed to follow an
associative flow law: F

/)

&y = A (2)
where f denotes the yield function, \a non-negative scalar multiplier, repre-
senting the magnitude of the visco-plastic strain rate. o;; denotes the effective
stress, which is expressed as

O—Z/‘j =03 — bpf(sija (3)

where o;; denotes the total stress tensor, py the fluid pressure, b Biot’s coef-
ficient and d;; Kronecker’s delta. In the context of visco-plastic matrix, the
Biot’s coefficient can be conveniently assumed as 1.

Using Perzyna (1966)’s overstress model for visco-plasticity, we have an
explicit expression for the plastic multiplier:

)
Ts

: (4)

where 7, denotes the viscosity of the visco-plastic solid matrix, ¢ the over-
stress function dependent on the yield surface f. The symbol () denotes the
Macaulay brackets, and is defined as follows:

o(f), ite(f) =0;
0, otherwise.

(2(f) = { ()

With a Taylor expansion of the overstress function around the effective
yield limit 0%, the incremental visco-plastic strain is related to the increment
of the overstress o;; = o; — 0y in power series.

3. Thermodynamic considerations: 1-D consolidation

Since we are interested in formulating a dynamic process we need to en-
sure consistency with thermodynamic principles. For this we formulate the
time derivative conservation laws in terms of balance laws of thermodynamic
fluxes and thermodynamic forces with source terms. Thermodynamic pairs



of conjugate variables (i.e. generalized forces and fluxes) in a Hydro-Poro-
Mechanical coupled system are defined in Table 1. The conservation laws
are derived based on the thermodynamic principle that a generalized flux is
induced by the gradient of a generalized force. Dy and D), are diffusional
coefficients that correspond to the effective bulk modulus of the primary and
the secondary consolidation (Coussy, 2004), respectively. The framework in
Table 1 can readily be extended to three-dimensional representations; how-
ever in this paper we focus on the cross-scale analysis of dynamic consolida-
tion processes and elaborate in particular on how the cross-diffusional waves
are initiated under 1-D assumption.

The primary consolidation process, in the sense of classical poromechan-
ics, features the diffusion of pore fluid pressure (e.g. melt in partially molten
rock) and this process (H) can be described by Darcy’s law, which makes
the diffusion coefficient Dy dependent on the matrix permeability and melt
viscosity. The secondary consolidation is the compaction of the viscous solid
matrix after yielding and the mechanical flux (M) represents the 1-D incre-
mental change in solid-phase visco-plastic overstress p; = (p’ — py) where p’
denotes the volumetric mean effective stress p’ = p — p; and py the volumet-
ric yield stress. (-) denotes the Macaulay brackets. p and py are the total
pressure and fluid pressure, respectively. The capital D(-)/Dt denotes the
material derivative.

Table 1: Generalized Thermodynamic Fluxes and Forces in a Hydro-Poro-Mechanical
coupled system (1-D). Basic conservation laws (without cross-diffusion) are derived based
on the thermodynamic principle that a thermodynamic flux is driven by the gradient of a
thermodynamic force.

1-D Hydro-Poro-Mechanics based on thermodynamics

Thermodynamic | Thermodynamic | Conservation Law
Force (1-D) Flux (1-D) (no cross-diffusion)

H Fy =L g =—5L | B =Dup%r 1
M Fy = 2 qu = —5& LB — Dy 2 4 pM

For consolidation of the solid skeleton we refer to the work of Hill (1962)
who identified the role of acceleration waves with a wave speed that is de-
pendent on the properties governing the deformation rate and distinguished



from the elastic wave phenomenon. Rice (1976) identified the localisation
phenomenon as an acceleration wave with vanishing wave speed. The mode
of localisation is dependent on the polarization vector of the acceleration wave
of vanishing speed. In the rigid-plastic analogy the localisation problem can
hence be stated as a solution on the characteristics of the hyperbolic PDE’s.
We follow the extension from acceleration waves in shear deformation to the
acceleration waves in volumetric deformation (Veveakis and Regenauer-Lieb,
2015) to arrive at the conservation law for dissipative pressure waves.

Accordingly, the mechanical (M) conservation law in the creeping flow
regime is described as a diffusion wave equation (no inertia) travelling at a
wave velocity v = Dz /Dt (turning % into v% in Table 1 ). rf and ™
denote possible reactive source terms. In classical poromechanics, the two
diffusional time-scales of the consolidation processes are considered to be suf-
ficiently far apart. However, under many circumstances that involve viscous
deformation, such as a partially molten rock under geodynamic loading, this
is not likely to be the case.

In order to consider possible time dependent interactions between the
solid and fluid thermodynamic forces and fluxes at micro-structural scale, we
refer to the concept of cross-diffusion which in a complex system is defined
by the phenomenon that a gradient of one generalized thermodynamic force
can drive another generalized thermodynamic flux. Now, the off-diagonal
elements in the augmented diffusion matrix can be non-zero. Assuming linear
superposition of cross-diffusion terms, we rewrite the conservation laws in 1-D
as:

Dpy *py 0*ps

“Pr_p h s 4t 6
Dt B 52 th 0x? T (6a)
Dﬁs 82]55 a2pf M

— =D h . 6b
Dt M52 +h 0x? T (6b)

where h; and hy are the cross-diffusion coefficients (Vanag and Epstein,
2009), which for sufficiently large values can trigger wave instabilities from
e.g. time-dependent internal mass transfer. We will discuss in Section 6
the results of a linear stability analysis (Eq. 29). This shows that for a
system described by Eq. 6 the addition of the cross-diffusional terms can
give rise to a new style of instabilities if hy and hy, are of opposite sign
and their conjoint negative contribution to the perturbation is stronger than
the classical diffusion of mechanical and fluid pressures via poroviscoplastic
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relaxation of matrix stress and Darcy’s law, respectively.

An opposite sign of the two cross-diffusion coefficients is required for an
instability. A discussion on thermodynamic consistency and comments on the
Onsager Theorem of the cross-diffusion matrix can be found in (Biktashev
and Tsyganov, 2016). The cross-diffusion terms in Eq. 6 can be derived from
mixture theory by considering the process of inter-constituent mass transfer
at pore-scale and relaxing the adiabatic constraints on the reaction part of the
system (see Section 4). In the field example (see Fig. 5) we identify at least
three diffusional length scales: h, [; and [, corresponding to the large-scale
Hydro-Poro-Mechanical instability forming the compaction band and two
cross-diffusional length scales adjacent to the band itself, respectively. These
length-scales define the wavenumbers of the coupled Hydro-Poro-Mechanical
transient cross-diffusional waves.

4. Mass balance of a two-constituent mixture

We consider a representative elementary volume (REV) of a two-constituent
mixture, e.g. a fully saturated porous medium, as shown in Fig. 1. The vol-
ume fraction of the pore space (i.e. the fluid phase) is defined as the bulk
porosity:

REV REV
where Vggpy, Vi and V; denote the REV volume, the volume of the fluid
phase and that of the solid phase in the REV, respectively.

Mass conservation for the fluid phase and the solid phase in 1-D gives

dlpsV, dlpsViv :
[é; il 9l gxf /] Ve (8a)

O[psVs] i OlpsVsvs]
ot ox

respectively. p; and ps; denote the density of the solid skeleton and the fluid
density, while vy and v, are defined as the fluid and solid flow velocities
(in the direction of z). 3 ¢ represents the mass generation rate in the fluid
phase (e.g. mineral mass diffusing into fluid from the solid skeleton, internal
erosion of the solid into fluid) per unit volume inside the REV, and fs the
mass generation rate (i.e. the opposite of the mass removal rate) in the solid
phase per unit volume in the REV.

= & Varev, (8b)




Substituting Eq. 7 into Eq. 17 and eliminating Vzgy, we have

Ipsg] dpsdvy] __ (REV
ot + ox =& (92)

Self—dif fusion

Aps(L—¢)] | Ilps(1 — P)vs] _ :ppv
N "I
Self—dif fusion

(9b)

On the left hand side of Eq. 9a and Eq. 9b, the first terms are time deriva-
tives and the second terms denote the self-diffusion terms via the gradient
of fluid/solid velocity. The right hand side of Eq. 9 denotes the source/sink
terms (i.e. the reaction part of the system). The thermodynamic fluxes that
are triggered by cross-constituent diffusion are illustrated in Fig. 1. These
source/sink terms stem from the possibility of cross-diffusion at a local scale.

Here we specify that éﬁEV denotes the REV-scale (Fig. 1a) averaging of
mass transfer rate from the solid to the fluid phase, which equals to the mass
loss rate of the solid skeleton. Likewise, ffEV is equivalent to the REV-scale
averaging of mass loss rate in the fluid phase. Hence, the upscaling law is
summarized as

REV _ _ local’ 10a
A . (102)
éfEV _ 1 / é}ocal’ (10b>

Vrev VrREV

where fé"cal and f}oml denote the mass exchange rate in solid and in fluid
phase at the local scale (Fig. 1b), respectively, which are affected by the local
scale changes in porosity/permeability. Now we derive the mathematical
expression for £1°¢ and Sﬁfcal. Following the same procedure from Eq. 7 to
Eq. 9, we can arrive at a local scale equivalent of the conservation equations:



oo o s 1— ¢local o s 1— ¢local Vs
g 1= 0] 0l (1= 0] i
Cross—girffusion
oca o 0 (blocal o P (z)local,v
glocal _ [fat I [fax f]) (1)
——

Cross—dif fusion

where ¢'°“® denotes the local scale porosity (see Fig. 1b).

This analysis shows that the reaction term requests a cross-diffusion term
for closure. Both source and diffusion terms are coupled and cannot be chosen
independently. Without considering this term explicitly and considering the
interdependence of source and diffusion terms the equations become math-
ematically ill-posed as will be discussed later. It is furthermore important
to note that at local scale the condition f}"c“l + ff;’c‘” # 0 can apply and
thereby locally violate the overall entropy production. However, at wave
sampling REV-scale the condition éfEV + éfEV = 0 holds. This directly
leads to the definition of the cross-diffusion terms which spells out the local
scale importance of the gradient terms of fluid/solid velocity in Eq. 11.

We emphasise the importance at identifying the local scale physics for the
derivation of the cross-diffusion quantities as this is different to the effective
formulation of diffusivity where the fast local scale diffusion processes are
adiabatically eliminated (Biktashev and Tsyganov, 2016). The current ap-
proach requires looking at the actual diffusivities obtained by averaging the
underlying physical processes rather than the effective lumped diffusivities of
the conventional approaches. In other words, in our derivation of the REV
sampled by the wave, the upscaled formulation still carries the information
of the local scale processes instead of loosing it via lumping. We are now
translating the information from density distribution to pressure distribution.

Through the homo-entropic flow assumption, ps and p, corresponds by
the Equation of state to py and ps, respectively. Thereafter, Eq. 9a and
Eq. 9b are respectively translated into Eq. 6a and Eq. 6b. In the context of
pressure diffusion described by Eq. 6, we emphasise again that we explicitly
separate the cross-diffusion terms from the source/sink terms considering
the local scale processes and pass the information from local scale to REV-
scale to combine with the self-diffusion part. Hence, a new actual diffusion
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pr = ps(T,py)
ps = ps(T,Ds)

e.g. mineral
mass diffusion

Solid

¢,
eg fluid
infiltration

(a) (b)

Figure 1: Sketch of a fully saturated porous medium: a) a REV sampled by a potential
wave travelling through the medium, the density of each constituent is defined by equations
of state: py = pr(T,ps), ps = ps(T,Ps); b) at pore-scale, where inter-constituent mass
transfer occurs giving rise to possible wave instability. § ¢ denotes the rate of mass diffusing
into the fluid phase from solid matrix (by e.g. mineral melting, mineral mass dissolution,
grain crushing, internal erosion, clay dehydration), fs the rate of fluid mass into the solid
phase (by e.g. mineral precipitation, cementation, crystalization, fluid infiltration).

matrix is formed, with self-diffusion coefficients Dy, Dys (Eq. 6) being the
diagonal elements (determined by the REV-scale porosity /permeability) and
cross-diffusion coefficients hy, hy the off-diagonal elements (determined by the
local scale porosity/permeability).

5. Standing wave solution without cross-diffusion

We first consider Eq. 6 without cross-diffusion and consider simplifica-
tions to result in an equation with only two diffusion coefficients. In analogy
to the Turing instabilities in chemical systems (Vanag and Epstein, 2009)
we expect stable solutions or standing waves instabilities but no travelling
waves. The first simplification is to assume an incompressible fluid. The next
simplification is to assume quasistatic equilibrium. This is achieved by using
the hypothesis of small perturbations with infinitesimal volumetric strain,
in which case the Lagrangian and Eulerian approaches coincide to a first
order approximation (Coussy, 2004). The small perturbation assumption is
a strong simplification as it assumes that all time dependent material pa-
rameters vanish, i.e. the permeability must be constant on instability. This
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implies that we assume that everywhere in the system the mechanical ther-
modynamic force is in equilibrium with the fluid thermodynamic force and
consequently no time-dependent processes are triggered by their gradients.

5.1. Linear momentum balance

By neglecting the gravity component, linear momentum balance of a sat-
urated body implies that the gradient of the effective stress is in static equi-
librium with the gradient of the fluid pressure

o) 0
gr _ 9p; (12)
Or  Ox

Under these conditions the fluid pressure evolution collapses to a simple
Darcy equation without Lagrangian reactive chemical source term and we
obtain:

D 0
—ptf = Dy af‘j + 7/, (13a)
0 0
rl=0= —aptf =Dy afj. (13b)

Likewise, for the standing wave assumption we assume that the wave
velocity is zero and obtain the static mechanical viscoplastic overpressure
diffusion equation:

D 0?p,
—DfFM = ADpy 2 + (14a)
Dz 0*ps M

Where A is a non-dimensional parameter providing the link between the
mechanics and fluid diffusion laws. The link can be derived from mass balance
using mixture theory of the fluid-solid mixture.
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5.2. Mass conservation without internal mass transfer

Without considering any internal mass transfer, Eq. 9 reduces to

ololey =) , v,

= 0. 1
ox ox 0 (15)

Using the simplification of constant permeability (Regenauer-Lieb et al.,
2013) we have adopted Darcy’s law for the fluid diffusion (Eq. 13b) which
now applies to the fluid filter velocity is ¢(vy — vs),

KR pr
— ) = —— 2L 16
ooy —v) =~ (16)
Using following identities % = ¢, = &, (Vardoulakis and Sulem, 1995;
Coussy, 2004) the mass conservation equation can be written as,
0?p, 0?p,
"OPs_ D =& (17)

,u_f Ox? v TH g2

Recall that p; = (p' — p,) is the visco-plastic overpressure of the mixture

above the yield stress p,, €, is the visco-plastic volumetric strain rate, puy

the viscosity of the fluid and s the permeability. The volumetric strain rate

provides the link between solid and fluid diffusion. It is equivalent to the

source term in Eq. 14b and m™ = —)é,. Note that the mechanical and fluid
m

diffusivities have unusual units [P—;S] as they include the unit stress in the
denominator.

5.8. Cnoidal standing waves

For a linear source term the two diffusion equations do not feature in-
stabilities. If, however, a non-linear mechanical source is chosen instabilities
can occur. The key assumption for instabilities has been shown (Veveakis
and Regenauer-Lieb, 2015; Regenauer-Lieb et al., 2013) to be a power law
visco-plastic source term for é, defined by:

év - 6.7“ef <p?i> ) (18>
ref

where p;_, is a reference pressure for normalization. €. is here defined by
the strain rate of the master process of far field compaction. The Macaulay
bracket (-) defines zero stress before yield p, .
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The resulting coupled solid-fluid poroviscoplastic reaction-diffusion equa-
tion therefore can be described by:

9 B m
K 8 Ds _ éref <&> . (19)

1233 dx? pref

Introducing the following renormalizations:

D T
of = ]/98 , Tt = —, (20)

pref L
where L is a reference length defined by the domain where boundary condi-
tions are applied we can now identify the key dimensionless parameter for
appearance of standing wave solutions as the ratio between the two diffusiv-

ities:

-5e-(2).

where d, is known as the compaction length (McKenzie, 1985). The mechan-
ical diffusivity is Dy,

A

€rep L?
p;ﬂef
where ¢,y is the strain rate used to define p},.,. This is here chosen to be the

background loading strain rate.
With these renormalizations the dimensionless form of Eq. 19 reduces to

the long-wavelength solitary wave limit of the Korteweg de Vries equation
(Veveakis and Regenauer-Lieb, 2015) :

Dy = ; (22)

00"

Or*2

A describes the ratio of the mechanical diffusivity over the fluid diffusivity,

i.e. the loading rate (strain rate é..s) over the diffusion rate of the pore
fluid within the specimen of length L when subjected to load pj.; on the
boundary. It becomes intuitively obvious that if the mechanical load is faster
by a critical factor (~ 10) than the ability of the fluid to escape then the
solution to this equation must be an instability. In the above equation the
instabilities appear as pressure wave-singularities in the form of sharp crests.
A wave instability appears for any frequency higher than the lowest critical

— Mo*)™ =0, (23)
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Figure 2: Cnoidal waves are periodic waves featuring overpressure of the weak phase.
They are typically observed in the ocean as Tsunami events which are described by the
Korteweg deVries equation of shallow water theory. The equation is sign invariant and can
appear as a fluid channelling instability in rocks for compaction or dilation. Compaction
and dilation waves can superpose linearly and form rectangular patterns parallel to the
minimum and maximum principal stress, respectively.
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Figure 3: Two generations of decimetre scale compaction bands (backpack for scale) in silt-
and sandstones of the Miocene Whakataki formation, S of Castlepoint, North Island, New
Zealand. The porosity reduction renders the bands less susceptible to erosion causing
a marked positive relief. Cross-cutting generation of bands from top right to bottom
left postdate earlier more regularly spaced bands and are interpreted as shear-enhanced
compaction bands. The photo was supplied courtesy of Christoph Schrank.

frequency identified by a critical A..;;. Any further loading above the critical
limit creates more and more instabilities (higher frequency cnoidal waves).
An example is shown in Fig. 2.

Note that the solution can apply to positive and negative o*, hence the
standing waves are compaction or dilation bands. The distance between the
dilatational or compactive overpressure channels is related to the compaction
length d., considering that the ratio of the pressure applied on the boundary
over the corresponding strain rate corresponds to the secant viscosity of the

solid matrix n, = Pref with the spacing h/L defined in Fig. 2,

€ref

h 4 4 [k,
PR : 24
L L L\ ny (24)
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5.4. FExamples of standing cnoidal waves

The above described standing cnoidal wave equation has been proposed
as a potential solution to a wide variety of geological phenomena that ei-
ther contradict current understanding or are difficult to explain with current
theories. These can be periodic channel network formations with a charac-
teristic spacing of h as defined in Eq. 24. In nature the 1-D acceleration
pressure wave approach must be combined with the acceleration shear waves
(Veveakis and Regenauer-Lieb, 2015) leading to more complicated or tran-
sient wave patterns. A geological example of two sets of compaction bands,
pure-compaction and shear-enhanced compaction bands, is shown in Fig. 3.
Fig. 4 shows a close up view of the microstructure of a compaction band
portraying a densification around the centre of the band. While the stand-
ing cnoidal wave approach does not provide information on the width of the
compaction band it is clear from the figure that a diffusive gradient of grain
crushing defines a finite width identified by the white dashed lines in Fig. 4.
We will come back to this point in the following section when discussing the
melt bands presented in Fig. 5.

Other examples from the literature include geological observations such
as overpressurized impermeable shale (Alevizos et al., 2017); zebra striped
banding in Mississippi Valley Type deposits (Kelka et al., 2017); periodic melt
bands at right angles to the maximum principal stress in a partially molten
gneiss (Weinberg et al., 2015; Veveakis et al., 2015) and in the laboratory
a series of compaction bands in Tuffeau de Maastricht calcarenite, regularly
spaced logarithmic spirals in borehole damage zones (Hu et al., 2017; Hu and
Regenauer-Lieb, 2018) and Liiders bands due to martensitic transformations
in mild steel, etc.(Veveakis and Regenauer-Lieb, 2015)

6. Waves with cross-diffusion

Before introducing cross-diffusion we discuss the classical scenario of two
independent time scale processes for fluid and solid diffusion. The well-
known Terzaghi consolidation theory of poro-elasticity considers a simplifi-
cation that the process is entirely controlled by the timing of fluid diffusion.
If the matrix is visco-plastic instead of purely elastic, a clay matrix for in-
stance, the consolidation contains two time-dependent processes at different
time-scales. The faster process is the diffusion of pore fluid which causes
primary consolidation, while a secondary consolidation process is induced
by the viscous micro-sliding of platelets that form the solid matrix of clay.
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Figure 4: [A] X-Ray microtomograph of the density distribution around a compaction
band in a fine grained sandstone, pores are shown as dark areas, the light area in between
the dark zones corresponds to the compaction band. The tomogram is supplied courtesy
of Fusseis (U.Edinburgh), X. Xia (APS, Argonne NL), D. Warne and M. Barry (HPC,
QUT). [B] Back-scattered scanning electron microscope image (magnification factor 600)
of compaction band showing crushed grains and loss of porosity (dark area) in the centre.
P=Plagioclase, K= K-Feldspar and Q=Quartz. Approximate band boundaries are marked
with white dashed lines. Porosity reduction within the band is due to grain crushing
and mechanical pore collapse. The porosity (black pixels) outside the band shows the
background porosity. Image courtesy of C. Ballington, S. Frischkorn, CARF (QUT).
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Figure 5: Melt extraction channels in a partially molten metamorphic rock (gneiss) from
the Sikkim Higher Himalaya Migmatite gneisses with two parallel vertical melt bands
(leucosomes) forming in the hinges of two cuspate folds. The fold has been formed as a
consequence of horizontal shortening implying that the direction of the maximum principal
stress is also in the horizontal plane. The melt bands are perpendicular to the direction
of the maximum principal stress and have been interpreted as standing cnoidal wave
instabilities (Veveakis et al., 2015; Weinberg et al., 2015). We encounter three diffusional
length scales that underpin the instability. The cnoidal wave length scale h which is
controlled by the ratio of solid and fluid diffusivity A, the melt extraction length scale Iy
which is related to the cross-diffusion coefficient h; and the thickness of the melt extraction
channel I which is related to the cross-diffusion coefficient hy. Photo courtesy of Roberto
Weinberg.
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These micro-creep processes do not generally contribute to the fluid flow and
the creep response is often well separated in time.

This allows the simplifying assumption of time-scale separation of primary
(fluid controlled) consolidation and secondary (creep controlled) consolida-
tion (Coussy, 2004). The uncoupled treatment of both processes can lead to
standing wave instabilities, which normally only occur for cases of extremely
slow fluid diffusion (low permeability) such as in the cases of a tight shale
rock. This is characterised by Eq. 23 which defines a minimum critical \..;
for instability. Prior to the stationary instability the cross-diffusional gradi-
ents are not likely to play a role for a perfectly homogeneous medium due to
the stress continuity condition through the matrix.

However, upon the emergence of instabilities, the situation changes. The
compacting layers are likely to introduce strong local gradients in fluid and
overstress pressure around each compacting layer associated with local per-
meability changes, which introduces new time dependence and an interde-
pendence of fluid and solid diffusion processes around the instability. The two
time-step consolidation process can feed back on the new gradient terms and
new wave dynamics can be expected for critical cross-diffusion parameters
identified by Eq. 29.

6.1. Onset of Hydro-Poro-Mechanical wave instability

The new gradient terms can trigger wave instabilities as shown in the
following linear stability analysis. In order to illustrate the important role
of cross-diffusion in Eq. 6, we first neglect other possible source terms repre-
sented by ¥ and ™, and discuss linear stability only with the self-diffusion
and cross-diffusion terms:

s D b 9%py
8t H 1 8352
— 25
p, { ha DM] 0%p, (25)
ot Ox?

We apply a small plane wave perturbation to the system in the form of

[pf] _ [pf exp (ikx + st)

- (26)
Ps

Ds exp (ikx + st)

where k and s denote the variable wavenumber (in space) and frequency
of the perturbation, respectively. The assumption of small perturbation is a
classical one in solid mechanics, however, it is worthwhile to briefly discuss
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its role in the context of the fluid-like motions of the solid matrix and the
fluid seepage through the pore space as discussed in this paper.

In this context the small perturbation provides necessary conditions for
fluid diffusion and advection driven instabilities as a local spatial departure
from the background steady state. These small wavelength instabilities are in
turn driven by the large scale applied gradients thus providing the condition
for initiation of spatio-temporal patterns, i.e. travelling waves, for critical
parameters. They manifest themselves as local advection of the pore fluid
making room for the matrix to compact and propagate in an accordion-like
motion to leave permanent small amplitude compaction in its wake.

Substituting Eq. 26 into Eq. 25, we can then derive a characteristic equa-
tion of s:

s + (Dyk? + Dyk*)s 4+ (D Dy — hihy)k* =0 (27)

Then the determinant of Eq. 27 is obtained:
A = (Dyk* + Dyk*)? — 4Dy Dy — hihg)k? (28a)
= k*'[(Dy — Dpy)* + 4hyhy) (28b)

The condition for instability to appear is A < 0 for all k£, which hence
requires

(Dy — Dyg)? + 4hyhy < 0 (29)

Eq. 29 indicates that a necessary condition for Hydro-Poro-Mechanical
wave instability (neglecting 7/ and ™ in Eq. 6) to occur is that the cross-
diffusion coefficients h; and hy are non-zero and of opposite sign. For the
scenarios without cross-diffusion, the eigenvalues of characteristic Eq. 27 only
consist of real parts (i.e. A > 0) and hence no wave instability exists.

Now we further discuss the role of a possible source term. Following the
results in Section 5 and considering a source term 7 in the form of —\p™
as shown in the Cnoidal equation (see Eq. 23), the characteristic equation of
the coupled system becomes

(s + k*Dy)(s + k*Dys + exp[(ikx + st)(m — 1)]) — hihok* =0 (30)
If we consider a simple case of m = 1, the determinant of Eq. 30 turns to be
A = (k*Dy — k*Dyy — N\)? + 4hyhok®. (31)

Then the emergence of instability under A < 0 requires

A
(Dy — Dy — E)Q + 4hyhy < 0, (32)
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where the wavenumber of the perturbation k£ now plays a role. For a large
enough wavenumber, 1%2 vanishes and Eq. 32 reduces to Eq. 29. On the other
hand, when looking at smaller wavenumbers Eq. 32 shows that a critical
wavenumber exists below which instabilities are no longer possible. It is
worth mentioning that for a general wave instability described by Eq. 32, it
remains a necessary condition for the cross-diffusion coefficients hy; and hsy to
be non-zero and of opposite sign.

6.2. Field example of cross-diffusion instability

The length scales defined by the diffusion gradients provide additional
information on in situ material properties. We noted in Fig. 4 that there
is a gradient of grain crushing causes a densification towards the centre of
the compaction band. This gradient may be interpreted as evidence of cross
diffusion. In order to further illustrate possible cross-diffusion gradients,
we discuss a melt extraction example Fig. 5 where slower process of complex
interplay between melt viscosity and matrix viscosity reveal additional length
scales.

In order to understand the geological process leading to transient cross-
diffusion fronts it is, however, useful to first discuss the rock formation prior
to the lateral compression causing the instability. A migmatite is a mixture of
metamorphic rock (here Sikkim Higher Himalaya gneisses) and partial melt
or crystallized partial melt (here gneissic partial melts). This leads typically
to the separation of minerals assemblages with lighter and darker layers with
a layered pattern. The lighter melt products are leucosomes which consist
of granitic mineralogy with a lower melting point, while the darker layers
are amphibole and biotite rich. The partially molten rock is modelled as a
porous two-phase medium with the melt playing the role of viscous fluid and
the solid matrix assumed to be viscoplastic.

Fig. 5 shows the melt channels explained by (Weinberg et al., 2015; Ve-
veakis et al., 2015) as the filter pressing of melt out of solid matrix for a
critical A.5;. Under the standing cnoidal wave assumption the distance h
between instabilities can be used to invert for diffusive material properties
as it is a function of the viscosity of the melt, the viscosity of the matrix and
the permeability. However, on closer inspection of Fig. 5 three characteristic
length scales can be identified.

Though the transient aspects of the geological process are difficult to as-
sess and a simpler interpretation as a standing wave (Weinberg et al., 2015)
may be preferred, we interpret these length scales as evidence for incipient
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transient cross-diffusional waves. The transient nature of the process can be
inferred from Fig. 5 as the melt extraction process in the vertical channels
(lightly coloured material) apparently has stopped before extracting all avail-
able melts (now crystallized). A considerable amount of melt appears to be
still trapped between the vertical extraction channels.

In order to explain these length scales in terms of diffusional wave fronts
of Eq. 6 we consider a a symmetry condition as the basis of our coordinate
system. This symmetry condition is placed at the origin of the future melt
band instability and can be viewed as an impermeable surface. Upon incep-
tion of instability, compaction of the viscoplastic matrix starts making room
for melt flow through the porous matrix towards the origin of the coordinate
system. The onset of the instability is a step function in time and the dif-
fusive flow of melt towards the origin is characterised by the error function
solution to the diffusion flow, while the compaction of the matrix is described
by the complementary error function with an opposite flux direction. If we
now consider the origin to be in a Lagrangian reference frame moving with
the wave velocity %f we can identify three diffusive length scales associated
with the instability.

The first diffusion length scale is the distance between the melt extrac-
tion bands h which is defined by the ratio of g—”}f resulting in Eq. 21. The
characteristic time 7 is defined by the diffusion time of the macroscale insta-
bility. Following Coussy (2004) this time scale is the time scale for the slower
process, i.e. secondary consolidation, which is controlled by the background
strain rate of the deformation process in Eq. 18 and hence 7 = E.Tl . The

second diffusion length scale [; describes the diffusion front of Darc§ flow of
melt into the melt band for the finite time scale of fluid flow into the melt
band instability. If we define the diffusion length as a decay of fluid pressure
by 0.84 times its maximum value then the width is [; = 24/|hy|7. The third
diffusion length scale is the thickness of the melt band itself [ which is char-
acterized by the rapid decay of the volumetric strain rate ¢, over the time of
the instability close to the melt band. This length scale is defined by the dif-
fusion length of the overstress py via the power law relation in Eq. 18, hence
it is characterized by an opposite direction of diffusion with ly = 41/|hs|T
due to symmetry.

The length scales h and [, are clearly visible in the photograph. The diffu-
sion length [; is identified as the region close to the melt extraction channels,
where the dark and light layers are more tightly packed. The transition re-
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gion from densely spaced bands to wider bands is here interpreted to mark
the distance of the diffusive melt extraction region (the transition point is
near the tip of the finger in Fig. 5. The interpretation is based on the obser-
vation that the central area between the two melt channels shows relatively
thick leucosomes suggesting that the melt extraction instability did not have
sufficient time to reach the central area. Cross-diffusion in this outcrop refers
to the diffusion pressure in the bulk matrix due to the mechanical filter press-
ing of the lightly coloured melts into the vertical melt extraction channels.
Accordingly, the mechanical instability in the melt channel is interpreted to
have generated a transient local gradient in matrix pressure that causes a
diffusion flux around the melt channel while the fluid flux in turn leads to a
local relaxation of the mechanical overpressure.

6.3. Laboratory example of cross-diffusion

We now consider the more general case where multiple diffusional pro-
cesses are coupled. As expected from the earlier discussion this situation
can lead to the additional cross-diffusion waves with a rich solution space.
The simplicity of the approach is not lost even under consideration of higher
order terms.

For a system consisting of n-constituents, Eq. 6 can be generalized as

0 0?2
% D11 D12 . 8::;1 T
= R (33)
) 2
% Dnl Dnn 865271 T'n

Similarly, applying a small perturbation to Eq. 33, the determinant of the
resulting characterization equation defines the criterion for transient cross-
diffusional wave instabilities to nucleate.

We discuss two examples of the generalization of the approach with three
components: solid matrix, fluid and crushed grains. The first example is
shown in Fig. 6a where an oedometric compression experiment is performed
on a brittle porous medium (puffed rice packs). The drainage condition for
the consolidation process is the top of the container. Instabilities are observed
to nucleate at the bottom of the porous medium and solitary compaction
waves are observed to propagate upwards at a speed an order of magnitude
faster than the loading rate. When the wave hits the top of the sample an
acoustic emission is detected and a new wave nucleates at the bottom of the
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Figure 6: Travelling wave observed in oedometric compression tests as propagating com-
paction bands: a) in a brittle porous granular medium (Guillard et al., 2015) with contours
of recorded local velocity, photo courtesy of James Baker; b) in Castlegate Sandstone (Ols-
son, 2001) with traces of compaction fronts identified by acoustic emission.
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sample. The process continues until the sample is compacted to around 20%
of the original height.

Cross-diffusion can be used to interpret these observations considering
three phases in the system: the escaping air, the coarse solid skeleton and
the crushed powdered grains. Consequently, the solid consolidation occurs
through two independent mechanical processes. One is the granular media
flow of the solid matrix leading to a denser packing of the grains upon com-
paction, the other is a phase transition of the grains into a powder. The
interaction between the compaction of the solid matrix and the escaping air
is not likely to cause cross-diffusion because the time scales of the two diffu-
sion process are far apart. The air readily escapes compared to the frictional
rearrangement of grains under compaction. However, upon crushing of the
grains the generation of mass in the powder phase introduces a new time-
scale process that links the diffusion of the escaping air with the compaction
(/crushing as internal erosion) of the solid matrix, which corresponds to the
cross-diffusion terms in Eq. 6. Two mass/pressure diffusion fluxes of opposite
direction are introduced, leading to the cross-diffusion coefficient h; and hy
having opposite sign. If the product of h; and hs becomes large enough to
fulfil Criterion 29 cross-diffusion waves nucleate.

We may expect fluid-mechanical instabilities in a (fluid-like) granular
medium, however, whether the approach also holds for porous rocks is still
an open question. Here we refer to an experiment performed with a porous
sandstone (Castlegate Sandstone) where a singular propagating wave has
been identified without multiple nucleations (see Fig. 6b). The key observa-
tion of a travelling compaction wave speed an order of magnitude larger than
the loading velocity is reproduced, however, in this case the wave instability
propagates from both ends (with the drainage condition at the top and the
bottom) and meets approximately in the median line.

7. Discussion

The mathematical simplification of a rigid-viscoplastic porous medium
(Hill, 1954) allows merging insights from fluid mechanics with those from
classical plasticity theory. Hill (1954) points out the analogy between the
characteristics in supersonic flow of a fluid (Mach Lines) with the charac-
teristics in the hyperbolic region of a plastic solid (Slip Lines). Accordingly,
subsonic flow corresponds to the elliptic part of a plastic zone. Hill (1954)
also notes that there is a striking contrast between the respective available
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methods, which are more adaptive in fluid flow. He defers the question
whether these can be taken over and applied in the plastic field to a matter
for further study.

In this paper we have picked up these threads and investigated wave phe-
nomena that are related to the Korteweg-de Vries equation discussed here in
its solitary long-wavelength limit (Eq. 23). This equation is famous for its ap-
plication as a mathematical model of waves on shallow water surfaces result-
ing in the long wavelength limit into the propagation of solitons (Le Mehaute,
1976). Cross-diffusional waves discussed here are different to classical soli-
tons.They have been classified as a new-type of wave phenomenon (Tsyganov
et al., 2007) first encountered in Laser optics as quasi-solitons (Paschotta,
2008). They can appear in a similar singular form as a simple quasi-soliton
wave or can have complex shapes as envelope quasi-solitons or multi-envelope
quasi-solitons (Tsyganov and Biktashev, 2014).

The investigation of these waves is a promising avenue for future studies,
requiring the design of new experimental methods for quantitative assess-
ments. In this study potential field and laboratory applications have been
discussed in a qualitative manner as the experiments have not been per-
formed to test the working hypothesis of travelling wave solutions. These
experiments are part of ongoing work requiring relaxation of the mathemat-
ical idealisation of rigid-viscoplastic porous media and the assumption of
homo-entropic flow.

For laboratory verification we shall further consider the effect of inter-
nal mass transfer with elasticity, the effect of elastic stress-diffusion with
temperature-dependent material coefficients, the effect of internal chemical
processes, etc. For the fluid analogy to hold we also need to specify the effect
of finite strain. We have already pointed out that the addition of thermal
gradients implies a natural extension of the diffusion matrix by the temper-
ature reaction-diffusion equation. Thermodynamic consistency is satisfied
for waves with thermomechanical coupling which can oscillate between adi-
abatic and isothermal limits leading to a flutter like phenomenon (Benallal
and Bigoni, 2004). For thermodynamic consistency of incompressible (Malek
and Rajagopal, 2006), compressible (Heida and Malek, 2010) and finite strain
(Malek et al., 2018) Korteweg-type fluids we refer to the fluid dynamics lit-
erature. Here, we briefly discuss an extension from the perspective of Airy
stress potential to include the effect of elasticity and its interplay with in-
ternal mass transfer. Interestingly, this phenomenologically based extension
finds itself converged to the presented cross-diffusion framework.
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7.1. Internal mass transfer at local scale satisfying compatibility

The effect of mass transfer rate on the constitutive relation of a degrading
elasto-plastic material subject to mineral dissolution is discussed in (Hu and
Hueckel, 2013, 2019). In the plastic domain (Hu and Hueckel, 2013), the
yield surface is affected by the mechanical stress invariants, the deviatoric
strain hardening, as well as a time integration of mineral mass transfer. The
internal mass transfer rate is linked to newly generated crack surfaces by
micro-cracking, i.e. the irreversible deformation/strain field, via the total
specific surface area of the REV.

In this sense, internal mass transfer at local scale provides a constitutive
link between stress (i.e. a generalized force) and strain rate (i.e. a general-
ized flux). For the quasi-elastic regime (Hu and Hueckel, 2019), the effective
elastic modulus is coupled with the time integration of internal mass trans-
fer, through a chemical shrinking mechanism in analogy to heat expansion
in thermoelasticity (Nowacki, 1962). By satisfying compatibility equation,
an additional term (induced by internal mass transfer) appears in the bihar-
monic Airy stress function, leading to a Poisson’s equation for the particular
solution of the extended Airy potential:

~ t
vipw — - L9 / édr. (34)
0

1—0v2

where ®®) denotes the particular (p) solution of the extended Airy potential.
E denotes the initial elastic modulus and v the Poisson ratio. « is the
chemical deformation coefficient being affected by local specific surface area.
¢ denotes the mass loss rate from the solid skeleton, which is equivalent to
f ¢ in the current framework.

Note that V2® corresponds to the first invariant of the stress tensor, and
hence can represent the volumetric mean effective stress. V2®®) as a (p) part
of the solution, represents the effect on the volumetric mean effective stress
introduced by internal mass transfer. Taking a time derivative of Eq. 34, we
recover the source term in the (M) process, which by non-adiabatic relaxation
gives rise to the cross-diffusion term in Eq. 6b.

7.2. Other diffusional wave phenomena

The similarity of the governing PDE’s to other energetic fields where sim-
ilar wave phenomena have been observed may allow us to transfer knowledge.
The approach is in fact analogous to molecular-scale wave mechanics, which
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has gained enormous success in computational chemistry. In this theory
the time-independent stationary state limit of Schrodinger’s diffusional wave
equation yields electronic structures known as atomic orbitals. Linear super-
position of atomic orbitals can be used to derive energy eigenstates of com-
plex molecular orbitals for solid-state physics (Dronskowski and Hoffmann,
2008). At molecular-scale, the wave mechanics approach has also been ex-
tended to investigate dynamic interactions and stability limits at nano-scale
such as during nano-indentation (Li et al., 2002) and solid-liquid interactions
(Cheng et al., 2001).

Li et al. (2002) emphasizes that the yield phenomenon in crystals is
based on acceleration waves nucleated at atomistic scale equivalent to the
continuum-based condition for macroscopic shear localization phenomenon
of Liider bands in metals introduced by Hill (1962) and for shear localization
in general solids by Rice (1976). From a molecular dynamics perspective, the
yield phenomenon thus is a manifestation of satisfying the time-dependent
localization criterion for the evolution of internal processes in a continuum.

Perhaps the most well studied field of cross-diffusion waves is in chem-
istry (Vanag and Epstein, 2009). If we replace the energetics of solid/fluid
pressure by concentration of chemical species and the pressure diffusivities
with chemical diffusivities of the different species in Eq. 6 (or more generally,
Eq. 33) we obtain the equivalent cross-diffusion equations for a pure chemical
system. Also, it is found that Turing instabilities can occur in systems with
two independent diffusion coefficients (Vanag and Epstein, 2009), leading to
patterns that are stationary in time but periodic in space.

Turing instabilities are steady state spatially inhomogeneous solutions
which appear because linearly unstable eigenfunctions are growing exponen-
tially with time. This leads in the cnoidal-wave case (a Turing pattern)
discussed in Fig. 2 to infinite pressure on the singularities. The solution
hence does not satisfy criteria for well-posedness. Vardoulakis (2001) dis-
cussed reaction-diffusion equations for fault modelling, which led to a similar
ill-posed negative diffusion problem in time. The problem was stabilized
via introduction of a non-linear source term playing the role of a positive
cross-diffusion term in the mechanical conservation equation.

Such cross-diffusion systems, consisting of three or more independent dy-
namic coefficients in the underpinning cross-diffusion PDE’s, can lead to
wave instabilities. This type of transient instability, characterized by both
spatial and temporal periodicities, has the potential for allowing complex
wave interactions. Typically, the dynamic cross-diffusion coefficients need to
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be significant enough to compete with the self-diffusion process giving rise
to the nucleation of transient cross-diffusion waves.

8. Conclusions

We have introduced a new approach to Hydro-Poro-Mechanical coupled
instabilities using the simple concept of cross-diffusion. Our work revealed a
number of excitable wave phenomena in mechanics of solids that are akin to
their elastic counterpart (Cartwright et al., 1997) but do not carry inertial
effects and are entirely triggered by the coupling of the diffusion and cross-
diffusion coefficients. We have shown field and laboratory examples, where
only two self-diffusion coefficients interact constructively to cause a standing
cnoidal wave instability. The criterion for instability and the wavenumber
of the standing wave is characterised by the parameter A\, which is defined
by the ratio of mechanical and fluid diffusivity. If cross-diffusion terms are
added the propensity for instabilities is significantly enhanced and a rich class
of propagating dissipative wave phenomena in the form of travelling waves
is revealed.

The wave phenomena are predicted for a broad range of multiphysics
pattern formation in Hydro-Poro-Mechanical materials. The approach allows
a fundamental physics/chemistry-based view of the initiation of instabilities
and the transient waves around the formation of stationary waves defining
the material instabilities. Future extension of the approach will investigate
the superposition of volumetric and shear wave instabilities, allowing the
interpretation of features such as compaction bands, and fault patterns to
be modelled under a new wave mechanics perspective. We are currently
investigating these wave phenomena in controlled laboratory experiments
and attempt to use the unique relationship of spectral content of the waves
as well as observations of the amplitude and wave speed as a diagnostic tool
for data assimilation of self- and cross-diffusional material properties.

9. Acknowledgments

This work was supported by the Australian Research Council (ARC
DP170104550, DP170104557) and the strategic SPFO01 fund of UNSW, Syd-
ney.

30



References

Alevizos, S., Poulet, T., Sari, M., Lesueur, M., Regenauer-Lieb, K., Veveakis,
M., 2017. A framework for fracture network formation in overpressurised

impermeable shale: Deformability versus diagenesis. Rock Mechanics and
Rock Engineering 50 (3), 689-703.

Atkinson, J., 2014. Fundamentals of Ground Engineering. Apple Academic
Press Inc., Country Oakville, Canada.

Benallal, A., Bigoni, D., 2004. Effects of temperature and thermo-mechanical
couplings on material instabilities and strain localization of inelastic ma-
terials. Journal of the Mechanics and Physics of Solids 52 (3), 725.

Biktashev, V. N., Tsyganov, M. A., 2016. Quasisolitons in self-diffusive ex-
citable systems, or why asymmetric diffusivity obeys the second law. Sci-
entific Reports 6, 30879.

Cartwright, J. H. E., Hernandez-Garcia, E., Piro, O., Jul 1997. Burridge-
knopoff models as elastic excitable media. Phys. Rev. Lett. 79, 527-530.

Cheng, L., Fenter, P., Nagy, K. L., Schlegel, M. L., Sturchio, N. C., 2001.
Molecular-scale density oscillations in water adjacent to a mica surface.
Physical review letters 87 (15), 156103.

Coussy, O., 2004. Poromechanics. Wiley, Chichester.

Dronskowski, R., Hoffmann, R., 2008. Computational Chemistry of Solid
State Materials: A Guide for Materials Scientists, Chemists, Physicists
and others. Vol. VI. Wiley-VCCH, Weinheim.

Guillard, F., Golshan, P., Shen, L., Valdes, J. R., Einav, 1., 2015. Dynamic
patterns of compaction in brittle porous media. Nature Physics 11, 835
838.

Heida, M., Malek, J., 2010. On compressible korteweg fluid-like materials.
International Journal of Engineering Science 48 (11), 1313-1324.

Hill, R., 1954. On inoue‘s hydrodynamic analogy for the state of stress in a
plastic solid. Journal of Mechanics and Physics of Solids 2, 110-116.

31



Hill, R., 1962. Acceleration waves in solids. Journal of the Mechanics and
Physics of Solids 10 (1), 1-16.

Hu, M., Hueckel, T., 2013. Environmentally enhanced crack propagation in
a chemically degrading isotropic shale. Geotechnique 63 (4), 313-321.

Hu, M., Hueckel, T., 2019. Modeling of subcritical cracking in acidized car-
bonate rocks via coupled chemo-elasticity. Geomechanics for Energy and
the Environment.

URL https://doi.org/10.1016/j.gete.2019.01.003

Hu, M., Regenauer-Lieb, K., 2018. Entropic limit analysis applied to radial
cavity expansion problems. Frontiers in Materials 5, 47.

Hu, M., Veveakis, M., Poulet, T., Regenauer-Lieb, K., Nov 2017. The role of
temperature in shear instability and bifurcation of internally pressurized
deep boreholes. Rock Mechanics and Rock Engineering 50 (11), 3003-3017.

Kelka, U., Veveakis, M., Koehn, D., Beaudoin, N., 2017. Zebra rocks: com-
paction waves create ore deposits. Scientific Reports 7 (1), 14260.

Le Mehaute, B., 1976. An Introduction to Hydrodynamics and Water Waves.
Springer-Verlag, New York.

Li, J., Van Vliet, K. J., Zhu, T., Yip, S., Suresh, S., 2002. Atomistic mech-
anisms governing elastic limit and incipient plasticity in crystals. Nature
418 (6895), 307-310.

Malek, J., Prusa, V., Skrivan, T., Suli, E., 2018. Thermodynamics of vis-
coelastic rate-type fluids with stress diffusion. Physics of Fluids 30 (2),
023101.

Malek, J., Rajagopal, K. R., 2006. On the modeling of inhomogeneous in-
compressible fluid-like bodies. Mechanics of Materials 38 (3), 233-242.

McKenzie, D., 1985. The extraction of magma from the crust and mantle.
Earth and Planetary Science Letters 74, 81-91.

Nowacki, W., 1962. Thermoelasticity. Addison-Wesley, Reading, MA.

Olsson, W. A.; 2001. Quasistatic propagation of compaction fronts in porous
rock. Mechanics of Materials 33 (11), 659 — 668.

32



Paschotta, R., 2008. Quasi-Soliton pulses, 1st Edition. Wiley-VCH.

Perzyna, P., 1966. Fundamental problems in viscoplasticity. Adv. Appl.
Mech. 9, 243-377.

Regenauer-Lieb, K., Veveakis, M., Poulet, T., Wellmann, F., Karrech, A.,
Liu, J., Hauser, J., Schrank, C., Gaede, O., Fusseis, F., 2013. Multi-
scale coupling and multiphysics approaches in earth sciences: Applications.
Journal of Coupled Systems and Multiscale Dynamics 1 (3), 1-42.

Rice, J. R., 1976. The localization of plastic deformation. North-Holland,
Amsterdam, pp. 207-220.

Rice, J. R., Cleary, M. P., 1976. Some basic stress diffusion solutions for fluid-
saturated elastic porous media with compressible constituents. Reviews of
Geophysics and Space Physics 14 (2), 227-241.

Rudnicki, J., Rice, J., 1975. Conditions for the localization of deformation in
pressure sensitive dilatant materials. J. Mech. Phys. Solids 23, 371-394.

Tsyganov, Mikhail, A., Biktashev, V. N., Brindley, J., Holden, A. V., Gen-
rikh, R. 1., 2007. Waves in systems with cross-diffusion as a new class of
nonlinear waves. Physics-Uspekhi 50 (3), 263.

Tsyganov, M. A., Biktashev, V. N., Dec 2014. Classification of wave regimes
in excitable systems with linear cross diffusion. Phys. Rev. E 90, 062912.

Vanag, V. K., Epstein, I. R., 2009. Cross-diffusion and pattern formation in
reaction—diffusion systems. Physical Chemistry Chemical Physics 11 (6),
897-912.

Vardoulakis, I., 2001. Thermo-poro-mechanics of rapid fault shearing.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 63-74.

Vardoulakis, I., Sulem, J., 1995. Bifurcation Analysis in Geomechanics.
Blankie Acc. and Professional, Glasgow.

Veveakis, E., Regenauer-Lieb, K., 2015. Cnoidal waves in solids. Journal of
the Mechanics and Physics of Solids 78, 231-248.

33



Veveakis, E., Regenauer-Lieb, K., Weinberg, R. F., 2015. Ductile compaction
of partially molten rocks: The effect of non-linear viscous rheology on insta-
bility and segregation. Geophysical Journal International 200 (1), 519-523.

Weinberg, R., Veveakis, M., Regenauer-Lieb, K., 2015. Compaction bands
and melt segregation from migmatites. Geology 43 (6), 471-474.

34



