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The deconfined quantum critical point (DQCP) was originally proposed as a continuous transition between
two spontaneous symmetry breaking phases in 2D spin-1/2 systems. While great efforts have been spent on
the DQCP for 2D systems, both theoretically and numerically, ambiguities among the nature of the transition
are still not completely clarified. Here we shift the focus to a recently proposed 1D incarnation of DQCP in a
spin-1/2 chain. By solving it with the variational matrix product state in the thermodynamic limit, a continuous
transition between a valence-bond solid phase and a ferromagnetic phase is discovered. The scaling dimensions
of various operators are calculated and compared with those from field theoretical description. At the critical
point, two emergent O(2) symmetries are revealed, and the associated conserved current operators with exact
integer scaling dimensions are determined with scrutiny. Our findings provide the low-dimensional analog of
DQCP where unbiased numerical results are in perfect agreement with the controlled field theoretical predictions
and have extended the realm of the unconventional phase transition as well as its identification with the advanced

numerical methodology.
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I. INTRODUCTION

The deconfined quantum critical point (DQCP) [1-3] was
originally proposed as a continuous quantum phase transition
between two spontaneous symmetry breaking (SSB) phases,
such as the Néel antiferromagnetic (AFM) phase and the
valance bond solid (VBS) phase in (2+1)D quantum mag-
nets. In the conventional Landau-Ginzburg-Wilson (LGW)
paradigm, such a scenario cannot occur without fine tuning.
Since the AFM and the VBS ordering transitions are indepen-
dent as they break very different symmetries, the transitions
would generally happen at two separate points, leaving an
intermediate disordered or coexistent phase. However, vari-
ous theoretical and numerical studies [4-28] show that there
could be a continuous (or weakly first order) direct transition
between the two phases. The occurrence of DQCP without
fine tuning is consistent with the constraint imposed by the
Lieb-Schultz-Mattis (LSM) theorem [29] and its generaliza-
tions [30-39]. The (generalized) LSM theorem asserts that a
translationally invariant spin system with spin-1/2 (projective
representation of on-site symmetry) per unit cell cannot admit
a featureless (fully-gapped and nondegenerated) symmetric
ground state, which rules out the conventional phase transition
between an SSB phase and a featureless symmetric phase
in such systems, paving way for the DQCP, although the
LSM theorem does not rule out other possibilities like a
co-existence phase, a first-order transition, or a topological
ordered spin liquid. Recent theoretical developments [40—45]
further relate the DQCP in LSM systems to the boundary of
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symmetry protected topological states in one higher dimen-
sion, where the LSM theorem is manifested as the symme-
try anomaly in the field theory description when the lattice
symmetry is encoded as part of the internal symmetry. The
anomaly matching requires that the symmetric state of such
quantum systems must either be critical (as the DQCP) or
possess topological order.

In this work we explore a (14-1)D analog of DQCP in a
quantum spin chain. We pick up the model proposed by Jiang
and Motrunich [46], which is a spin chain with spin-1/2 per
site, described by the following Hamiltonian

H= Z (_JXSfS;CH - JzSiZSiZH)

+ (KeS; ST + KoS;S7 ) 1)

The model respects the lattice translation symmetry and the
on-site Z3 x Z5 spin flip symmetry, where Z5 (Z5) corre-
sponds to the twofold spin rotation around the x axis (z axis),
which are subgroups of the full SO(3) spin rotation symmetry.
The spin on each site forms a projective representation of
735 x 75, hence the LSM theorem is in operation to forbid the
gapped symmetric ground state for any choice of the model
parameters. For the sake of simplicity, we fix the second
neighbor antiferromagnetic interaction K, = K, = 1/2 and
the nearest neighbor ferromagnetic interaction J, = 1, there-
fore, the only driving parameter is the nearest neighbor ferro-
magnetic J,. In Ref. [46], it is argued that there is a continuous
quantum phase transition between a VBS phase (J, ~ 1) and
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FIG. 1. Schematic phase diagram for the model in Eq. (1). When
J. < J. the system is inside a VBS phase with translational symmetry
breaking and when J, > J, the system is inside a FM phase with Z3
on-site symmetry breaking. At J., an incarnation of DQCP emerges.
In the VBS phase there exists an exactly solvable point at J, = 1,
where the ground state is a product state of dimerized neighbor spins
(orange point).

a spin-z ordered ferromagnetic (z-FM) phase (J; > 1), where
the VBS breaks the translational symmetry and z-FM breaks
the Z; on-site symmetry. The transition is analogous to the 2D
DQCEP in the sense that it is also a direct continuous transition
between two different SSB phases is the LSM system [46]. If
the transition preserves the full symmetry, it must be quantum
critical by the LSM theorem. This 1D example provides us
opportunities to uncover common features of DQCP, such as
the emergent symmetries and the associated conserved current
fluctuations, that are shared between different dimensions.

We also note that the model proposed in Ref. [46] is
not the only example of 1D analog of DQCP. Emergent
continuous symmetry in quantum spin chain systems have
already been discussed in Ref. [47] and revisited numerically
and analytically in Refs. [48,49], and in Refs. [50,51], a 1D
extended Hubbard model was studied with quantum Monte
Carlo and a direct continuous transition between a charge
density wave (CDW) phase and a bond order wave (BOW)
phase is found. The CDW and BOW phases, respectively,
break the bond-centered and site-centered reflection symme-
tries. The lattice symmetries together with the charge U(1)
symmetry (at a fractional filling) also lead to a generalized
LSM constraint [40] that ensures the transition to be critical.
So the CDW-BOW transition also qualifies as a 1D analog
of DQCP. However, as will be explained later in the text, the
CDW and BOW transition in Refs. [50,51] is not discussed
in the language of DQCP and the unique features such as
emergent continuous symmetry and conserved current at the
critical point were not investigated.

Here we employed variational matrix product states to
solve the spin model in Eq. (1) at the thermodynamic limit.
The ground state phase diagram is determined unambigu-
ously. As depicted in Fig. 1, there exists a direct continuous
transition between the VBS and the z-FM phases. The critical
point locates at J. = 1.4645 for our choice of parameters J, =
2K, = 2K, = 1. Since the critical point is described by a Lut-
tinger liquid with continuously tunable Luttinger parameters
(realized by tuning J,, K, K;), the critical exponents are not
universal. However, all critical exponents are controlled by a
single Luttinger parameter, which posts nontrivial consistency
relations among the exponents. We calculated the scaling
dimensions of various operators at this critical point. We can
verify that they all point to a consistent result of the Luttinger
parameter, in agreement with the field theory expectation.

Furthermore, we found two emergent continuous O(2)
symmetries at the critical point. They separately correspond
to the rotation between VBS and z-FM fluctuations and the
rotation between x-FM and y-AFM fluctuations. The evidence
is twofolded: (i) The scaling dimensions for the critical fluc-
tuations related by the emergent symmetry are identical, and
(ii) the associated emergent conserved currents dictated by the
Noether theorem are observed with their scaling dimensions
precisely pinned at integer value. The emergent continuous
symmetry is a robust feature of the DQCP [4,20,23,24,52].
For the 2D case, there is accumulating evidence that the
emergent symmetry can manifest itself even if the transition
is weakly first order [26,27,52,53]. It is further proposed
that the associated emergent conserved current fluctuations
could serve as a hallmark of the DQCP in candidate materials
[54]. To test these ideas in 1D, we identify the microscopic
representations of current operators and measure their scaling
dimensions in numerics. We found that the current operators
have exact scaling dimensions A = 1, indicating the conser-
vation of these currents, which provides compelling evidence
for the emergent O(2) x O(2) symmetry at our critical point.

The rest of this paper is organized as follows. In Sec. II,
the field theoretical description of the 1D DQCP is pre-
sented, with the scaling behavior of relevant fields (the order
parameter, conserved current operator) discussed in details.
Different from Ref. [46], we adopt a formulation of nonlinear
o model (NLSM) with a Wess-Zumino-Witten (WZW) term.
The numerical method to study the ground state and critical
properties is introduced in Sec. III. In Sec. IV we show the
critical properties at the DQCP by systematic finite length
scaling analysis with the critical exponents determined at high
precision. Then in Sec. V, we study the emergent O(2) x O(2)
symmetry and the associated conserved currents correlation at
the DQCP. Finally a summary is given in Sec. V1.

II. FIELD THEORETICAL DESCRIPTION

Many field theory descriptions [1-3,44,55-66] have been
proposed for the 2D DQCP which are believed to be equiva-
lent (or dual) to each other at low energy, including the non-
linear o model (NLSM) [57], the noncompact CP' (NCCP')
theory [2,3], and various versions of the quantum electrody-
namics (QED) or quantum chromodynamics (QCD) theories
[44,64—67]. In parallel to the situation of 2D DQCEP, there are
also low-dimensional correspondences of all these descrip-
tions for 1D DQCP. Much of them have been discussed in
Ref. [46] in great detail. However, here we point out a field
theory description in terms of an anisotropic O(4) NLSM
in (1+1)D with a WZW term at level kK = 1, which has
not been much analyzed in Ref. [46]. This description (and
its fermionic spinon construction) provides us a particularly
convenient approach to identify the emergent symmetry and
conserved currents at the 1D DQCP. The Lagrangian in the
Euclidean space time reads

1 ik
Lln) = 5-(@,m)" + I eabedyy 5 nydinedung
K

22
+ M(n3 — n3) + A (n] — nj)
ol +ny =g —m) 4 @
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where n = (ny, ny, n3, ny) is a four-component real unit vector
defined at each space-time position x* = (t,x) [68]. The
components of this O(4) vector n parametrize the four leading
ordering tendencies (x-FM, y-AFM, z-FM, VBS) in the spin
model. They can be represented by the microscopic spin
operators as

xFM: ny ~ S5,
y-AFM: ny ~ (=)'S?,
z-FM: n3 ~ S5,
VBS: ng ~ (=)'S; - Sit1. 3)

None of them gets ordered at the DQCP, but they exhibit
strong critical fluctuations at low energy. In Eq. (2), the first
term (d,n)* = (3.n)> + (d,n)> describes the kinetic energy
of their critical fluctuation. The WZW term at level k = 1
introduces a symmetry anomaly which is crucial to capture the
obstruction to featureless symmetric state in the LSM setting.
Finally, the anisotropy terms A, A’, and w are introduced
to break the O(4) symmetry to the microscopic Z3 x Z3
symmetry of the lattice spin model.

To describe the z-FM-VBS DQCP, one focuses on the
parameter regime where pu > 0 is positive and A, A’ are per-
turbative. In particular, A will be the tuning parameter that
drives the z-FM-VBS transition. The reasons are as follows.
First of all, a positive u term favors the ordering of ns, ny4
(z-FM and VBS) over ny, n (x-FM and y-AFM), which places
the system adjacent to the z-FM and VBS ordered phases.
However with the p term only, neither the z-FM nor the
VBS long-range order can develop, because the field theory
still admits an O(2)y symmetry that rotates (n3,n4) as an
O(2) vector, which is a continuous symmetry that cannot be
spontaneously broken in (14-1)D due to the Mermin-Wagner
theorem. The anisotropy A is introduced to explicitly break
the O(2)y symmetry, such that the (n3, n4) ordering becomes
possible. When A < 0 (or A > 0), the n3 (or n4) ordering is
favored, leading to the z-FM (or the VBS) phase. Therefore
the transition happens at the A =0 point. Finally, the 2’
anisotropy is generally allowed in the field theory to explicitly
break the O(2), symmetry that rotates (ni, n2) as an O(2)
vector, because the microscopic spin model does not respect
the O(2), symmetry indeed. However, the A’ term is irrelevant
at the DQCP when p > 0, as shown in Ref. [46] using the
Abelian bosonization technique (see also Appendix 3). In
conclusion, Eq. (2) provides a field theory description of the
z-FM-VBS DQCP when A is fine tuned to the A = O critical
point.

The Eq. (2) NLSM field theory immediately leads to a pow-
erful prediction about the emergent symmetry at the DQCP.
At the critical point, A is fine tuned to zero and A’ flows to
zero under renormalization, so the x term is the only relevant
perturbation that remains in the theory, which is symmetric
under O(2)4 x O(2)y. The symmetry groups are labeled by ¢
and 6, because we are going to parametrize the O(4) vector n
as [69]
i¢ ef ~ n3 + ing. )

e’ ~ny +iny,

Then O(2)4 [or O(2)g] corresponds to rotating or reversing
the angle ¢ (or #), under which the u term is clearly invariant.

Therefore the z-FM-VBS DQCP should process an emergent
0O(2)y x O(2)s symmetry. As a consequence, there must be
emergent conserved currents Jl‘f and Jﬁ associated to the
emergent O(2)4 x O(2)y symmetry,

(J2,70) = (i0:¢, 0¢), (JE,J7) = (130, 0:0). (5)

T2Y%Xx 'YX

In terms of spin operator, the emergent conserved currents
correspond to (see Appendix 2 for derivation)
Jo I (VS T~ T (SIS 6

The components J? and J? both correspond to the z-AFM
fluctuation and the components J? and J? can be measured
as staggered modulation of the xy dimerization S¥S, | (which
will be called the xy-VBS fluctuation). As shown in Sec. V,
these two conserved currents are indeed present at the DQCP,
in support of the emergent O(2)4 x O(2)y symmetry.

Following the approach developed in Ref. [70], the O(4)
NLSM in Eq. (2) can be Abelian bosonized to the standard
Luttinger liquid theory, which allows us to calculate the scal-
ing dimensions for all operators (see Appendix 3 for details).
The field theory calculation predicts the following scaling
behavior of the correlation functions,

X QX 1 —(_1)r
Gy(r) = (Si Si+r> ~ 128 + r2/s+g/2’
, 1 (=0’
Gy(r) = <S?Siy+r> ™ 2ere2 r2/8
) L=y
Ge(r) = (S§Siy, )~ — + = @
(=1
Gy(r) = (WiVip,) ~ - 52

(=1

2 ’

Gr(r) = (Iiliyr) ~ -
where W; = S; - ;1 is the ordinary dimer operator and I'; =
SyS,, is the xy-dimer operator. The exponents of the cor-
relation functions are all controlled by a single Luttinger
parameter g, which is also related to the critical exponent
v by

! ®)

V= —-.

2-¢
Most notably, the exponent of the z-AFM fluctuation and the
xy-VBS fluctuation are exactly pinned at the integer 2 (scaling
dimension A = 1) by the emergent O(2)4 x O(2)s symmetry.
In the following sections, we will employ the variational
matrix product state simulations to verify the field theoretical

predictions in Egs. (6)—(8) in a step-by-step manner.

III. MATRIX PRODUCT STATE AND FINITE
CORRELATION LENGTH SCALING

We employ the matrix product state (MPS) to study the
ground state properties of the model in Eq. (1). The MPS
[71-74] represents the quantum many-body state in a chain
of D x D matrices multiplied together, whose entanglement
is bounded by the bond dimension D. The MPS can provide
very efficient representations for gapped quantum many-body
states in 1D, due to the area-law scaling of entanglement.
However for gapless states at quantum critical points, the
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entanglement scales logarithmically, which generally requires
a tensor network [75,76] with a more complicated structure
but more powerful expressing capability to represent the state;
the computational cost for those tensor networks will also be
much higher.

Within the MPS representation, (non-)Abelian symmetries
have been used to enlarge the effective bond dimension D
at the cost of a great increase of the computational com-
plexity. Nevertheless, any finite bond dimension D will still
introduce a finite effective correlation length &, which in-
evitably prevents us to capture the critical exponents in the
thermodynamic limit. Another issue in the MPS simulation
is the boundary effect for a finite quantum system. Typically
the entanglement entropy in the ground state is much larger
for a periodic chain than an open one, therefore the open
boundary condition is widely used to reduce the computation
cost [77]. However this introduces strong boundary effects
which require large system sizes to obtain the accurate ground
state properties, especially for a critical one.

Well aware of the aforementioned difficulties, we take a
different strategy to simulate the DQCP with MPS in this
work. We use an infinite MPS trial wave function and apply
the finite correlation length scaling to analyze the critical
properties. In this way, the boundary effect in the finite MPS
calculation is avoided and the MPS with all D can be utilized
for evaluating the critical exponents. Moreover, we found
that correlation functions at short and long distances can be
captured by the same scaling theory and hence more accurate
critical exponents can be obtained by collapsing these corre-
lation functions.

In our calculation, we first use a variational way to optimize
the MPS. In order to study the scaling behavior near the
critical point, the ground state wave function must be carefully
optimized for a given D. Moreover the long distance correla-
tion requires higher accuracy than local physical quantities.
In order to obtain such accurate MPS, we adopt the tangent
space MPS technique [78-80], in which the MPS with given
D forms a submanifold in the full Hilbert space. We directly
calculate the energy gradient in this submanifold and optimize
it upon convergence to a sufficient small value. In order to
avoid local minimum, we take several independent runs with
random initial states to find the best wave function. The wave
function thus optimized is capable of describing not only the
local physical quantities but also the long range correlations.

Then we carry out finite length scaling analysis upon the
obtained MPS wave functions. To this end, one first needs
to identify the finite length scale associated with the finite
D MPS submanifold, and it has been suggested recently in
Refs. [81,82] that the correlation length & determined by the
MPS wave function at the critical point serves as this finite
length scale. The finite correlation length stems from the finite
entanglement properties for finite D MPS, so this approach
is also known as finite entanglement scaling [83—-86]. For a
normalized MPS wave function with a given D, the effective
correlation length & can be easily evaluated as

& = —1/log(|]), C))

where A is the second largest eigenvalue of the transfer matrix
formed by the local matrices in the MPS [74].

For an order parameter n, the finite length scaling near the
critical point reads

n.(g, &) = £ 2 fi(8E'Y), (10)

where A, is the scaling dimension of the order parameter,
8 = J, — J. is the distance to the critical point, and f; is the
scaling function. For a generic correlation function G,(r, §),
at the critical point, as a function of distance r, its finite length
scaling has the following form

1
Ga(r &) = —-f2(r/8). Y

where n, = 2A, is twice the scaling dimension of the oper-
ators involved in the correlation function and f, is another
scaling function. For short range correlation r < &, r/& is
deflectable and G,(r, §) is approximated by a function of
power-law form. For long range correlation » > &, G,(r, §)
is approximated by an exponential function. Here we show
that at all the length scales the correlation functions satisfy
the full scaling form Eq. (11). Moreover by systematically
calculating the ground state using different D MPS, hence
different &, one can perform finite correlation length scaling
analysis according to Egs. (10) and (11) to obtain the critical
exponents, as will be shown in detail in Sec. IV.

We would like to emphasize that in previous tensor net-
work studies, the finite correlation length scaling analyses
have been applied on conventional continuous phase transi-
tions [81,82], namely, the corresponding critical exponents
are well established. In this work we test the virtue of the
finite correlation length scaling in the MPS with a nontrivial
DQCP with unknown exponents, at the level of numerical
methodology for MPS and tensor network, our systematic
analyses establish a protocol for future research.

IV. CRITICAL PROPERTIES

We present numerical results in this section. Figure 2(a)
shows the derivatives of ground state energy with respect
to the control parameter J,. There is no clear discontinuity
in the first derivative, while the second derivative develops
a singularity at J. = 1.4645; the singularity decreases with
increasing D. These results indicate that the transition is
continuous with higher order.

Figure 2(b) shows both the z-FM order parameter n; =
>".(S%) and the VBS order parameter ng = y_,(—) (;) across
the transition. Both order parameters vanish continuously
at a single transition point J., demonstrating a direct and
continuous DQCP. Due to the finite value of D in the MPS
wave function, a finite correlation length and entanglement
entropy introduces a hard cutoff to the results, hence one sees
a small discontinuity ~0.02J; to the order parameters at J,.
However, such discontinuity, i.e., the finite order parameter at
the DQCEP, is an artifact of the MPS method, and later we will
show that such a finite value of order parameters goes to zero
in a power law manner with increasing D.

To further demonstrate the criticality under different bond
dimensions D, we study the correlation length &, obtained
from the MPS following Eq. (9). The results are shown in
Fig. 3(a). It is clear that £ develops a singular behavior across
J. and diverges with increasing D.
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FIG. 2. (a) The first and second derivatives of the ground state
—7 and E® = L)y with respect to J,. (b) z-FM
order parameter r;3 and VBS order ny as a function of J, calculated
from D = 600 MPS.

energy EWV =

Right at J., the entanglement entropy shows a perfect loga-
rithmic function of the correlation length & as shown in Fig. 4,
where by fitting the entanglement entropy S as a function of
the correlation length & at J., S = g—)log(é), we obtain the
central charge ¢ = 0.99 at the DQCP. This suggests the critical
theory is a ¢ = 1 conformal field theory. Furthermore at J, §
shows a power law behavior £(J,) ~ D as shown in Fig. 3(b),
which supports the theory of finite entanglement scaling [84].
The exponent ¥k = 1.18(3) is close to ﬁ = 1.344 as
suggested in Ref. [84].

With J, determined, we can carry finite length scaling anal-
ysis to extract the critical exponents at the critical point. One
can evaluate the scaling dimension A, for each of the O(4)
vector component n, (a = 1, 2, 3, 4) and the critical exponent
v independently using the scaling formula in Eq. (10). As we
sit right at the critical point J, = J,. (g = 0), we have n, ~
£~%«_ Figure 5 demonstrates the expected power law behavior
of the leading order parameters n3 (z-FM) and ny (VBS)
at the DQCP [87]. We found identical scaling dimensions
Az = A4 = 0.33, in support of the emergent O(2)y symmetry
that relates Az and A4 together. Away from the critical point,
the same result can be further confirmed by collapsing the
order parameters in the vicinity of DQCP using the full
form of Eq. (10), as shown in Fig. 6 left and right panels.
The data with different D, i.e., different &, collapse onto a
single scaling function. Such data collapses can independently
determine A3 = 0.33(2) and A4 = 0.35(3), well consistent
with those obtained in Fig. 5, and (1/v); = 0.62(3) and
(1/v)4 = 0.61(3), with the subscript 3 or 4, label the result
obtained from collapsing the order parameter n3 or ny. The
exponents are summarized in Table I (a).
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FIG. 3. (a) The correlation length & for different J, across the
critical point. A divergence at J. = 1.4645 manifests. (b) The corre-
lation length & from different D MPS wave function in log-log plot.
Only at J., the £(D) is a power-law function.

We then calculate the correlation functions in different
channels defined in Eq. (7). In general, the correlation func-
tion can be decomposed into the uniform component G’ and
the stagger component G™ as (0 and  label the momentum)

G(r)=GP0r) + (=1)'G™ ). (12)

A Abond
151 v B bond
Fitting

1.4+

1.3}

800 1600

4
FIG. 4. The entanglement entropy S as a function of correlation
length £ at the DQPC J, = J.. The entanglement entropy at odd
bond(A bond) and even bond(B bond) in the MPS are both used

for the fitting, with the fitting form § = ¢ log(§) and ¢ = 0.99 is
obtained.

400

125137-5



HUANG, LU, YOU, MENG, AND XIANG

PHYSICAL REVIEW B 100, 125137 (2019)

(@ ' '
n\
0.06 o0 —g ] ]
A\ ~— —
% A\Z\O\E\D\U\u
L 0.045E Vo A o
< JZ ~ o A\A g
—o— 1.46875 ~ e
—o— 1.4675 Sy
0.03 [—2— 146625 el ]
' v 14645 --- Fitting ¥
o (b)
0.033 b8~ 3
N - N
v \A\A\O\ o— g
VT~ O— o
L 0.025F Vs B, O— o ]
< JZ “® - \A e
—o— 1.46 A T~a
~ \A
—o—1.46125 A
0 017 _7A7 14625 A ~ 9
v 1.46375 - - - Fitting
500 1200 1900
g

FIG. 5. The log-log plot for (a) the z-FM order parameter n3 and
(b) the VBS order parameter ny4 as a function of correlation length &.
The fittings at J, give rise to the critical exponents Az and A4 (for ny
the power law fitting is done at a lightly different point J = 1.46375).

The two components typically have different power-law expo-
nents, so only one of them will dominate the scaling behavior
at large distance. By collapsing the correlation functions
G(r) calculated from MPSs of different bond dimensions D
onto a single curve following Eq. (11), as shown in Fig. 7,
the anomalous exponent 1 can be extracted. Then we can
determine the scaling dimension of the low-energy fluctuation
that contributes to the leading component of a correlation
function. The anomalous dimension 1 obtained from different
correlation functions Gy, Gy, G;, Gy are listed in Table I
(b), from which the Luttinger parameter g can be calculated
according to Eq. (8). The Luttinger parameters evaluated from

: : :
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FIG. 6. Data collapse of the z-FM order n; and the VBS order
ny with correlation length &, according to Eq. (10). § = J, — J. is the
driving parameter with respect to the critical point. Critical exponents
A and v can be obtained from the collapse.

TABLE I. Critical exponents measured using different methods
from different channels. The Luttinger parameters g calculated from
all exponents consistently point to g = 1.38(1).

Method Channel Exponents
(a) data collapse by Eq. (10) around J,. A g
n3 0.33(2) 1.32(8)
ng 0.353) 1.4(1)
/v g
ns 0.62(3) 1.38(3)
n 0.61(3) 1.39(3)
(b) data collapse by Eq. (11) around J. n g
G®  1453) 1.38(3)
G;’” 1.46(3) 1.37(3)
G 0.68(3) 1.36(6)
Gy 0.70(2) 1.40(4)
(c) fitting by Eq. (11) at J. G™  2.10(4) 1.46(9)
G;O) 2.11(4) 1.44(8)
(d) combined methods G™ 2026
G 2.00(5)

all different channels are indeed consistent with each other.
Moreover, since G and G are related by the emergent

0(2), symmetry, and G and G are related by the emer-
gent O(2), symmetry, the n exponents of those symmetry
related channels must be identical. Our numerical result of
the 1 exponents in Table I (b) clearly supports the emergent
0(2)y x O(2)p symmetry.

Having studied the leading component, we proceed with
the subleading component of the correlation function. We
need to first extract the subleading component from our data,
as it is always overwhelmed by the leading component. We
focus on the correlation function collected at the critical
point and use the fact that at short distance (r <« &) the
finite entanglement effect is very small, such that the leading
component follows the power-law behavior nicely. Let us take
G, for example, whose leading component is the uniform
component. We first fit the correlation function G,(r) with a
power-law function C/r" to determine the coefficient C, using
the previously obtained exponent n. We then subtract the lead-
ing contribution from the full correlation function as §G,(r) =
G,(r) — C/r". To further remove the residue uniform compo-
nent in §G, (), we consider an even-odd subtraction following
G)(C”) = 6G,(2r — 1) — §G,(2r) to fully expose the staggered
component G™. We then perform a power-law fitting of G
to determine its exponent. A similar method can be applied
to G, as well, just to note that its leading component is
staggered (instead of uniform), so the fitting function should
be adjusted accordingly. In Figs. 8(a) and 8(b), we show that
G and G\ are perfectly fitted by power-law functions.
The obtained subleading exponents are listed in Table I (c).
They are almost identical due to the emergent O(2)4 sym-
metry. The Luttinger parameters determined from them are
also consistent with our previous results. This completes
the consistency check that different critical exponents are
indeed controlled by a single Luttinger parameter as predicted
in Eq. (7).
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FIG. 7. (a)—(d) The correlation functions defined in Eq. (7) calculated from MPSs of various D at the critical point. (e)—(h) Data collapse
of the correlations functions with different correlation lengths &£. With this approach, data beyond the correlation length can also be utilized. In

each channel, the exponent 1 can be extracted based on Eq. (10).

V. EMERGENT SYMMETRY AND CONSERVED CURRENT

We have measured the subleading exponents of G, and G,.
What about the subleading exponent of G,? It turns out that
the stagger component (z-AFM) is subleading in G,, which
corresponds to the Noether current associated to the emergent
0(2) x O(2) symmetry. If the continuous symmetry indeed
emerges at low energy, the conservation law will require the
scaling dimension of z-AFM fluctuation to be pinned at A = 1
(in 1D the charge density must scale inversely with the length
in order for the total charge to be conserved), such that the

N
Q)R
10*¢ :
SRR ]
10°K(b) :
10' 10
v

FIG. 8. (a) The subleading component of the correlation func-
tion G, corresponds to G™. (b) The subleading component of the
correlation function G, corresponds to G'¥. Their exponents 1 can
be extracted by power-law fitting. ’

subleading exponent of G, must take n = 2A = 2 exactly.
By measuring this exponent, we can numerically determine
to which degree the emergent symmetry holds.

To be more systematic, we can study all components of the
conserved currents, as defined in Eq. (5), which are dictated
by the emergent O(2), x O(2)¢ symmetry. We first look at
the current J¢ (J%), which can be probed by the correlation
function Gr(r), according to Eq. (5) The correlation function
should decay in power law with an exact exponent 2. This
is in perfectly agreement with the data presented in Figs. 9(a)
and 9(b), where Gr (r) determined from different D MPSs pre-
cisely collapse onto each other with an exponent 2.00(5). Then
we turn to the conserved current J¢(J?), which corresponds
to the stagger component of G,. To extract the stagger com-
ponent, we first demonstrate the Fourier transform of G,(r)
in Fig. 9(c). We observe that besides the main peak around

107 D —
i —o—250 - 400] & 107
o 10765 {0300 ——500] D
= : 6001 &
ot %104
(a) = 10-6
0 1500 3000 0.0 2.5 5.0
r r/&
0.21p¢ 01165 107 — Fitting
Lona 4% R s
foR ) 107
10' 10°

FIG. 9. The correlation function of the conserved currents.
(a) and (b) The correlation function of the emergent conserved
current J¢ or J? before and after rescaling with correlation length &.
(c) The Fourier components of the correlation function G,(r). (d) The
log-log plot of the subleading component G{™.
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momentum O (or 27), there is also a small peak representing
the subleading component at momentum 7. Using the same
method of measuring the subleading scaling in the correlation
function in Sec. IV, we can extract G and perform the
power-law fitting in Fig. 9(d). The optimal fitting parameter
gives an exponent 2.02(6). As summarized in Table I (d), both
the exponents of xy-VBS and z-AFM are very close to the
exact exponent 2, indicating the conservation of the emer-
gent currents for both O(2) symmetries. Our results strongly
support the emergent O(2)4 x O(2)y symmetry predicted by
the anisotropic O(4) NLSM field theory and also show the
exponents evaluated in the finite length scaling are reliable.

VI. SUMMARY

In this work, we develop an anisotropic O(4) NLSM field
theory for a 1D incarnation of deconfined quantum critical
point between two Z, breaking phases (which may be called
an Ising-DQCP). The theory provides the scaling laws of
various correlation functions at the Ising-DQCP and they are
all governed by a single Luttinger parameter. Moreover, we
confirm the emergent continuous symmetries O(2)y x O(2)y
by measuring the associated conserved currents. The emergent
conserved current fluctuation can be considered as a hallmark
of the DQCP, which is not expected for a conventional Ising
transition.

We systematically employed the variational MPS method
to study the proposed properties of this Ising-DQCP. The
phase transition and the critical point is determined from the
singular behavior of the ground state energy, order parameter,
and correlation length. By means of finite length scaling we
obtain the critical exponents independently. The exponents
such obtained are consistent with each other and the Luttinger
liquid theory. Furthermore we confirm the emergent symme-
try using the conserved current and find the scaling dimension
for the conserved current is consistent with the NLSM field
theory. At the numerical level, this work can be viewed as the
first test of the finite length scaling in the MPS representation
upon a nontrivial DQCP with unknown exponents. In this
regard, our systematic analysis sets a protocol for future
research in more exotic systems with MPS and tensor network
methods.

Our work provides a solid example of low-dimensional
analog of DQCP where unbiased numerical results are in
perfect agreement with the controlled field theory predictions
and has extended the realm of the DQCP as well as its
discovery with advanced numerical methodology one step
further. It is worth mentioning that Eq. (1) is not the only
example of 1D analog of DQCP. Already in quantum spin
chain systems [47-49] emergent continuous symmetry has
been addressed analytically and numerically. A 1D extended
Hubbard model [50,51] is studied with quantum Monte Carlo
and a direct continuous transition between a charge density
wave (CDW) phase and a bond order wave (BOW) phase is
found. The CDW and BOW phases, respectively, break the
bond-centered and site-centered reflection symmetries. The
lattice symmetries together with the charge U(1) symmetry
also lead to a generalized LSM constraint [40] that ensures
the transition is critical. So the CDW-BOW transition also
qualifies as a 1D analog of DQCP. At the time of Refs. [50,51],

it was not realized that there exists an emergent O(2)
symmetry at the critical point, rotating the CDW and BOW or-
der parameters. The emergent conserved current corresponds
to the charge density fluctuation. This implies that there are
many low-dimensional systems acquiring phase transitions
beyond LGW paradigms and our study here could motivate
further research of the emergent conserved current in such
systems.

Note added: We would like to draw the reader’s attention to
a related parallel work by Brenden Roberts, Shenghan Jiang,
and Olexei Motrunich [88].
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APPENDIX: FERMIONIC SPINON THEORY
1. Fractionalization Scheme

We propose a fermionic spinon theory for the O(4) nonlin-
ear o model (NLSM) that describes the z-FM—-VBS transition.
The fermionic spinon theory allows us to make direct connec-
tions between the microscopic lattice spin operators and the
field theory operators, which enable us to identify the spin
operator representation of the emergent conserved currents at
the critical point.

The fermionic spinon theory starts with introducing the
fermionic spinon f; = (fiy, fi; )T on each site i, where f;; and
fiy are complex fermion operators. The spin operator on each
site is fractionalized as follows,

S;r — (_)ifiTo_xfi’ Siy — fiTO’yﬁ‘, Sf — (_)ifiTo'zfr

(AD)

The stagger factor (—)' makes the spins alternate between
the sublattices. They are assigned in such a way that all the
relevant spin orders x-FM, y-AFM, and z-FM are unified as
a single O(3) vector, which is the AFM order in terms of the
fermionic spinons. Let us place the fermionic spinons in the
Dirac band structure described by the following mean-field
Hamiltonian,

I, s
Ho=—3 Z if fi1 + He. (A2)
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Note that this fermion mode Eq. (A2) can not be derived
from the original lattice spin model by plugging in Eq. (Al).
Equation (A2) should rather be considered as a parton con-
struction for the O(4) NLSM, which only describes the vicin-
ity of the critical point. We can further establish the following
operator correspondence,

W =8 Si1 ~ —(f] fi1 + He)/2,
(A3)

i = SIS}y + SIS5 ~ (o firn + Hee) /2,

where W; is the diagonal dimer operator and I; is the off-
diagonal dimer operator. One may wonder that the dimmer
operators should contain four fermions according to Eq. (A1),
but the fact is that under RG flow, the four-fermion operators
will generate the above two-fermion operators, which con-
stitute the most relevant component of the dimer operators.
The identification will be justified by the symmetry analysis
later. The physical picture is that the dimer is a bond ordering
that modulates the bond energy. In the spinon Hamiltonian
Eq. (A2), the only way to modulate the bond energy is to
change the hopping strength, so the hopping term should be
identified as the dimer operator. The difference between the
diagonal and off-diagonal dimer is that the former one (¥;)
does not break the spin reflections g, and g, and is therefore
the ordinary hopping, while the latter (I';) also is odd under g,
and even under g, like $*S¥ ~ S%, and should be represented
as o* spin-dependent hopping.

We take a two-site unit cell and label the sublattices by A
and B, respectively. The Hamiltonian can be diagonalized in
momentum space, introducing the basis in momentum space,

fi = [ﬁﬂ ® [H = (frar feay, fesrs fiy)T, (A4)

and rewrite the mean-field Hamiltonian Eq. (A2) in the mo-
mentum space as

Hy =" fl(sink)o'" fi. (A5)
k

where 0% = 0% ® o” denotes the tensor product of Pauli

matrices. The first Pauli matrix acts on the sublattice space and
the second Pauli matrix acts on the spin space. As one unit cell
contains two sites, the momentum takes values in the Brillouin
zone [—m /2, w /2). The low-energy fermions are around the
k = 0 point. Expanding the Hamiltonian around the momen-
tum k = 0 point, we introduce the fermionic spinon field
f ~ fir—o- The mean field Hamiltonian in the long wavelength
limit can be written as

Hy = f dxfi(—id,0'0)f, (A6)
where f = (far, fay» f8+» fy)T is a four-component complex
fermion field describing the low-energy spinon. The real space
operators can be transformed to the momentum space as

S = Zs,e—iQ", W, = Z We % T, = Z e ¢,

(A7)

Their representations in terms of the fermionic spinon field
are concluded in Table II.

TABLEII. Spin and dimer operators in terms of fermionic spinon
field bilinears.

0=0 0=n
S)é f#o_Slf fTo,Olf
S)Q f?o,02f fTG.BZf
S:Q f%o.33f fTa.OSf
"IJQ f%O_IOf fTO,ZOf
ro fla®f —floVf

By definition, the orders x-FM (S3), y-AFM (Sy), z-FM
(8§), and VBS (W) form an O(4) vector. So the O(4) vector
n = (ny, ny, n3, ny) couples to the fermionic spinon by

nlS’O‘ + }’ZQS% + n3S(Z) + W,

= 1m0 + no® + n30> + nyo ) f. (A8)

The relation between the spinon mean-field theory and the
O(4) NLSM is now clarified by the fermion o model (FSM),
which extends the spinon field Hamiltonian in Eq. (A6) to
include the interaction with the O(4) vector field

HmM=/ﬁwﬂ—wwm+ma“+MU”+an+nmmV:

(A9)

If we integrate out the fermions in Eq. (A9), we arrive at the
effective theory for the O(4) vector field n described by the
following action,

1 ik .
SnLsMm = /dzxi(au”)z + #Eub(dnaarnbaxncaundv

(A10)

which is the nonlinear o model (NLSM) with WZW term at
level k =1 and « is a nonuniversal constant describing the
stiffness of the O(4) vector field generated by the dynamics
of the fermionic spinon. The Dirac fermion in Eq. (A9)
provides a physical mechanism to generate the WZW term
in Eq. (A10).

However, the FSM in Eq. (A9) has a larger Hilbert space
than the NLSM in Eq. (A10). For example, the spectrum of
FSM contains fermionic excitations that are not present in the
spectrum of NLSM, so the two theories are not equivalent. In
fact, at low energy, the FSM flows to a U(2); ~ O(4); CFT,
while the NLSM flows to a SU(2); CFT. However, the two
theories are related to each other. In each chiral sector, we
have the following CFT decomposition:

U2); =~ 0(4); = SU2), & SUQ2),, (Al11)

meaning that the U(2); or the O(4); CFT, which describes
two copies of free complex fermions or four copies of free
Majorana fermions, can be decomposed into the direct sum
of two interacting SU(2); CFTs. The two SU(2) groups can
be separately interpreted as the spin SU(2) and the gauge
SU(2). The gauge SU(2) structure arises from fractionalizing
the spin operator into fermionic spinons, as the following
gauge transformation on the spinon field does not have any
physical consequence (Hy and all the spin/dimer operators
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remain invariant),

[fq - U [fq (A12)
fi fi

for any SU(2) matrix U; on every site i. In the spinon lan-
guage, the gauge SU(2) generator on site i is given by

q;, = (Reﬁ.Tia»"ﬁ, Im fTio” f;, f;fi — 1), (A13)
where Re and Im act on a generic operator O asRe O = (O +
0N/2 and Im O = (O — O7)/(2i). In terms of the spinon
field at low energy, one can write down the gauge charge J
and current J,

Jo = Re fTic”f, Im fTic® f, f'a® ),
Ji = Re fTic?f,Im fTic?f, fTa'0f). (A14)

To restrict the FSM to the NLSM, we must impose the gauge
constraint ¢; = 0 on every lattice site i to project the FSM
Hilbert space to the gauge neutral sector. At low energy, the
gauge constraint can be effectively implemented by applying
a large energy penalty U >> 1 to suppress the SU(2) gauge
charge and current fluctuations,

U
Hipg = Z/dx(fo To+J1-J1) = dexJL Jr. (ALS)

where J; = (Jo—J1)/2 and Jg = (Jo +J1)/2 are intro-
duced to denote the left- and right-moving gauge SU(2)
currents in the CFT. Hj, is a backscattering term of the gauge
currents, which gaps out the gauge SU(2); CFT below the
energy scale of U, leaving the spin SU(2); CFT at low energy.
The mechanism will be analyzed in detail later. Our proposal
is that the following interacting fermion spinon field theory
provides a dual description of the O(4) NLSM with k =1
WZW term,

Hy = Ho+ Hu = [ daf'(i0.0")f +UJL - Jr (A16)

The fermionic description will enable us to derive the emer-
gent conserved current and to develop a more tractable
bosonization theory.

2. Symmetry Analysis

The fermionic spinon model facilitates us to match the
symmetry between operators in microscopic model and field
theory. Here the symmetries in consideration include the lat-
tice translation symmetry T, the Z3 x Z5 spin flip symmetries
gx and g, the time-reversal symmetry 7, and the site-centered
spacial-reflection symmetry P. These symmetries are defined
by their action on the lattice spin operator S; as summarized
in Table III (a), with two additional rules that the time reversal
also changes the sign of imaginary unit 7 : i — —i (denoted
by the complex conjugation operator K) and the spacial
reflection also flips the direction of space P :x — —x. In
the following, we will establish the rest of Table III for the
symmetry transformations of different fields and operators
step by step.

According to the fractionalization scheme in Eq. (Al),
one can infer the symmetry transformations of the spinons,
as enumerated in Table III (b). Take the translation symme-
try T, : S; = Si4 for example. Plugging in Eq. (Al), the

TABLE III. Symmetry transformations of fields and operators.

Field T, 8 8 T P
@ S S S =S s s
S A e e
S; S5y —S5 S; —S5 S3,
(b) fi 07 fir1 o' fi oifi K (=)t
f O.]Zf O_()lf O‘mf ’CO.SOfT 0'30f
(© n np n —n —m ny
n —ny —ny —ny —ny ny
ns ns —n3 ns —n3 ns
ny —HNy ny ny ny —HNy
(d) ¢ —¢ —¢ p+n $+m ¢
6 —6 -0+ 6 -0+ —0
e J¢ —J¢ —J¢ J? —J¢ J?
J —J¢ —J¢ T e —J¢
VA —J g0 J —J
Jé) _Jé? _J(J Jé) _JQ JG
® s -8 =S s —S3 $;
', —I'; —I, I, Iy Ty
© W % Y oY Ky Vi
Yr o Yg o Y o“Yr K'J’Z 173

transformation rule requires the following to hold,
To: fofi » =fa0 i f0Vfi = fla0 fia,
flotfi > —fl 0% fisr, (A17)
where the o and o* terms acquire the (—) signs due to the
stagger factor (—)' in the fractionalization scheme. To produce
these signs, we must perform ¢ rotation to the spinon as
we translate it, thus Ty : f; — o7 fi+1. As we switch to the
momentum space, the sublattice freedom is absorbed to the
spinon field f. The translation exchanges the sublattice, which
is implemented by o! in the sublattice space, so T, : f —
o2 f for the spinon field. Following the similar approach, the
transformation of the spinon field under the other symmetries
can be verified. It is worth mentioning that under 7 and P,
the spinon transforms with the additional stagger sign (—).
This is actually a gauge choice to ensure that the mean-field
Hamiltonian Hy remains invariant. Because the spinon is not a
gauge neutral object, symmetries are allow to fractionalize on
the spinon. The nontrivial symmetry fractionalization patterns
are as follows,

Tigx = &I, Tg.=—-gT., T.T=-TL,

LP = —PT., 88 = —8&:8x (A18)
Applying the symmetry transformation of the spinon field f,
we can further determine that of the O(4) vector field n, by
requiring Hpsym to be invariant. The results are summarized

in Table III (c). We gave two examples to demonstrate the
calculation method:

na ~ fra20f I fla2eP0612f = _fio0f ~ _p,

n2 ~ f'lLO_?)Zf I) fO_?JO’CO_?)Z’CO_?)Of‘f — _f'['(0_30(0_32)*o_30)'|‘f
= —fTa®f ~ —n,.

(A19)
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Now we turn to the continuous symmetry in the model.
The FSM Eq. (A9) and the NLSM Eq. (A10) both preserve the
O(4) symmetry that rotates the O(4) vector n. But they are not
the final theory that describes the z-FM-VBS transition. To
describe the transition, we need to add anisotropy term M(n% +
n3 — n3 — n?) to the theory, which breaks the O(4) group to its
O(2)4 x O(2)y subgroup. The meaning of the O(2)4 x O(2)y
symmetry is clear if we define

& ~ ny +iny, €9 ~ ny + ing. (A20)

Then O(2), is the orthogonal transformation of (n, ny) that
contains a U(1), subgroup of the ¢ rotation. Similarly O(2),
is the orthogonal transformation of (n3, ny4) that contains a
U(1)y subgroup of the 6 rotation. In terms of the infinitesimal
transformation, we have

Uy ¢ — ¢ +do, [Zﬂ - [d{b _j”’] m,
f= (1 - %0°3d¢>f;

. ns 1 —do ns
U(l)y : 0 — 6 +db, [n4]—> [d@ | MW]

- (1 n %013516)]”. (A21)
The transformation for the spinon field f can be verified as
follows [take U(1)y transform for instance]

¢! =ny+ing ~ fi(oB +i6?)f
o ﬂ(l - %ondﬁ)(a” + 102°)<1 + %o”d@)f
= T((6P +i6%°) = (6 —i6¥)dO + - - ) f

~ (n3 + ing) — (ng — in3)do = 949, (A22)

As argued in the main text, the emergent symmetry at
the critical point is U(1)y x U(1)g. We will provide more
detailed evidence for the emergent symmetry, but let us
accept this fact for now and apply the Noether theorem to
calculate the corresponding emergent conserved current. For
the purpose of identifying the conserved current operator, we
can ignore the interaction of the spinon for a moment, because
the conserved current operator does not receive renormaliza-
tion from interaction as long as symmetry is preserved. Thus
we start with the spinon field Hamiltonian in Eq. (A6) and
rewrite it in the Lagrangian form

LIf] = fT([i8p0® —id;0'0)f.

Then according to the Noether theorem, the conserved cur-
rents associated with the emergent U(1), x U(1)y symmetry
are given by

(A23)

7o — 8L df g 0L df
8@ f)det T 80, f)do’
where df /d¢ and df /d6 are the rate of change of the field

f under symmetry transformation. Based on the infinitesimal
symmetry transformation in Eq. (A21), we identify

af i df i
A P R R (A25)
g~ 2 6~ 2

(A24)

f

From the Lagrangian L[f] of the spinon field in Eq. (A23),
we can evaluate its variations with respect to 9, f,

8L 8L
= 0",
8(00f) 8(31f)
Plugging Eqs. (A25) and (A26) into the conserved current
formula Eq. (A24), we found

=0l =1flec%f, gt =0 =-1flcBf.

= fT(—ic'%). (A26)

(A27)

Now we look up the operator correspondence table in Table I,
and we can identify the emergent conserved currents with
microscopic spin/dimer operators

I =0~ 8 =) (S,

JE =00 ~Tx =) (-)S'S,. (A28)
This is a key result of our derivation.

The operator correspondence can be further validated by
matching the symmetry properties on both sides. According
to Eq. (A20), one can verify that the angles ¢ and 6 must
transform under discrete symmetries as in Table III (d) in
order to be consistent with the symmetry property of the O(4)
vector n. For example,

¢ = niting B (—m)H(=D)(—m)= — (my+Hing)=d @™,

i LT . . _i
=y +ing S ny+i(—ny) =n3 —ing = e . (A29)
Based on the symmetry properties, the conserved currents can
be expressed in terms of various different kinds of fields,

03
IS ~ up~niduny — myduny ~ fTa P f,

J% ~ 8,0 ~ n3dung — nadunz ~ o f. (A30)

Here 9y = 9, = 19, denotes the temporal derivative (with re-
spect to either the real time ¢ or the imaginary time t) and
d; = 0, denotes the spatial derivative. Using the symmetry
properties of either ¢,6 or n or f fields, we can derive
how JZ’ and Jﬁ transforms under all the discrete symmetries.
The results are listed in Table III (e). One should note that
under time reversal 7, the real time changes sign 7 : t — —t,
while the imaginary time does not 7 : T — 7. Nevertheless
dp = d, = id,; changes sign consistently (since T :i — —i).
Similarly under reflection P, the space coordinate should
change sign P : x — —x, as aresult P : 9, — —0;. Here we
show some examples to illustrate the calculation method

JE~ 009 B (—00)(¢ + 1) = —dop ~ I,

J§ ~ nydony — npdom % (=n1)(—=080)(—n2)
— (=m2)(=d0)(—n1) = —(mdonz — madomy) ~ —J .

Jg ~ fla%f N fo3 Ko Ko T
=—f10* Py e™)f=—fTa®f ~—J§.  (A31)

All three different ways of calculation show the same result
that 7 : ng — —Jg . Similar calculations can be performed

for other components of the conserved current. In this way,
Table III (e) can be derived.
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As we have determined the symmetry properties of the
conserved currents, the last step is to find microscopic lattice
operators that also have identical symmetry properties. We
found that the z-AFM operator S% = Y_,(—)'S? and the off-
diagonal dimer operator I'; = Y_.(—)"(SFSY, | + S8}, ) are
such operators that matches the symmetry properties. Their
symmetry transformations can be derived from the symmetry
definition in Table III (a). For example,

Si =D (S = 2 )Siy,
= i(—)”siz = l—Z(—)"Sf ==5;
Cr =) (=) (S}, +5785)
i
x 2‘:(—)1'(5’;'51,‘_l +87.8%)

=Y (NS S+ 8L, SY)

- Z(—)i(SfS}vﬂ +87Si1) ~ —Tx. (A32)
i

Following a similar approach, the symmetry transformations
of §% and I'; can be determined as in Table III(f). Compar-
ing Tables IIl(e) and III(f), the symmetry property of S% is
identical to that of Jg’ and J¢, and the symmetry property of

T, is identical to that of J” and J¢. Therefore the operator
correspondence in Eq. (A28) can be established.

3. Abelian Bosonization

Having established the operators corresponding to the
emergent conserved currents, we switch gears to calculate the
scaling dimension of various other operators at the critical
point. We will use Abelian bosonization techniques to analyze
the critical point. As proposed in the main text, the critical
point can be described by O(4) NLSM with k = 1 WZW term
deformed by the anisotropy p (with u > 0).

1 ik
Ln] = ﬂ(a,tn)z + 53¢ R
2

+u(n% +n§ —n% —n4)

+Am —np) + N (nf —n3) + - (A33)
The A and )\’ terms are also allowed by the microscopic
symmetry. A is the driving parameter of the z-FM—VBS tran-
sition and 1’ is an irrelevant perturbation at the critical point.
Therefore both A and A’ are effectively zero at the critical
point.

It is not obvious how to treat Eq. (A33) using the stan-
dard bosonization technique. So we first turn to an equiv-
alent fermionic spinon description and then bosonize the
fermionic theory. Following the discussion of the fractional-
ization scheme, the NLSM without anisotropy is dual to an
interacting fermionic spinon chain given by Eq. (A16). We can
rewrite the Hamiltonian in terms of the left- and right-moving

TABLE IV. Spin and dimer operators in terms of fermionic
spinon field bilinears.

0=0 O=m
Sy VoMY + Yoty To v+ Yo Uk
S YoM 4+ Vo Yk Vo Yk + Yo VL
So Viot g + Yoty Vo L + Yo Y
Yo —Yi L+ Yivr —iy Yr + iV

Ty —iy o YR +ivioTYL VoL — Yhotg

fermion modes ¥, = (Yry, ¥ry)T and Yg = (Ygry, Yry)T,
Hy = f dx(Yfiduyr — Ygideyr) +UJr - Jr, (A34)
where Yy, and v are related to the original spinon field f by
vo|_ L1 =1 fa
YR N R ivis
The transformation is found by diagonalizing the free spinon

Hamiltonian Hy in Eq. (A6). The SU(2) gauge currents J; and
Jr are simply given by

Ji = (Reyio yu, Im Yl i yr, v v ),

(A35)

Jr = (Reyfic”ye, Imyrlic " Ye, Ygr).  (A36)
Therefore the Hamiltonian can be expanded into
Hy = / dx(Yidr — V0. V)
Us re v N Ty H
+ 7((‘%10 V1) (YRiocyg) + Hee.)
+Us¥ Y3 ve, (A37)

where Uy and U; are expected to be the same as Uy =
Us = U. Using the basis transformation Eq. (A35), we can
change all the symmetry transforms to the ¥ fermion basis,
as listed in Table III(g). We can further translate the operator
correspondence in Table II to Table I'V. In particular, the O(4)
vector n = (ny, ny, ns, ng) couples to the fermionic spinon as

nlS’O‘ + I’le}‘; + n3S(z) + W,

= 1//2(1116‘ 4+ nyo” + n3o® —ing)yYr + Hee.  (A38)

Now we can bosonize the fermionic spinon Hamilto-
nian Hy in Eq. (A37) by defining the boson field ¢ =
(ort, oLy » PRy, PRY)T Via

KC((T

Var

where «, is the Klein factor that ensures the anticommutation
of the fermion operators. The density fluctuations are given by

ei¥uo ,

Voo = (¢ =L,Rio=1,]) (A39)

1 +1 a=L

T _ _\a o 5
waowao' - 27_[( ) 3x(pag, Where( ) - {_1 o :R
(A40)
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With this setup, we can show that

E%E((wfiay¢ﬁ)T(¢§i6y¢m)—%ILc)

= _%(81(—<ﬂm—<ﬂu+‘ﬂm+<ﬂxu +Hec)
= —uy cos (IJ p),
Usr| YLy e
Us
= —m(axwm + 0x@ry )(0x@rt + 0xPR))
0 0 1 1
u3 0O 0 1 1
1 1 0 O

where ] =(1,1,—1,—1) and uy =Uy/n* u3s = Us/m.
Given that the interaction U is introduced to penalize the
gauge current fluctuation, it is expected that Uy = U3 = U >
0 and hence uy = Uy /2 > 0, u3 = Us/m > 0. Then Hy can
be bosonized to a Luttinger liquid (LL) theory described by
the following Lagrangian density

1
Llgl = - (0:TKdyg + 09TV k) — s cos ().

(A42)
where the K and V matrices are given by
1
1
K= 1 ,
L —1
r1 —u3z —u3
_ 1 —Uus —Uus
V= —Uus —us 1 (A43)
L—Uu3 —Uus3 1

In the case of u3 > 0, the scaling dimension A of Cos(loT @) is
given by

1—21/!3

AOZZ <
1+2M3

2, (A44)

indicating that the cos(loT @) is relevant. uy — +00 under
renormalization group (RG) flow given by the following flow
equation

4= 4, i_
ui - (2 AO)”:E, AO —_— ”:t- (A45)

de de
At the new RG fixed point, the scaling dimension Ay = 0,
from which we can infer us = 1/2, and hence the V matrix
becomes

1 —12 -12
~ 1 -1 -2
V=112 —12 1 - (A48
—12 -1)2 1

One can check that [JK~'ly = 0, which indicates €5 ¢ is
a bosonic operator. So as uy flows to infinity, the field ¢
will be pinned by the cosine term to [J¢ = 0 mod 27. Any

operator O; = e'"? which does not commute with cos(loT ©)
(i.e., ITK~'ly # 0) will be gapped out. Using this criterion,
it is easy to check that all fermions are gapped out. The
remaining gapless operators correspond to the O(4) vector n.
To see this, we can first bosonize the n as follows

i : + - 1 a7 aT
¢ = ny+iny ~ Y k) + VY, = g(éll' Y +e?),

i : 1 T aT
6‘10 =n3 +ll’l4 ~ wLTTwRT _ 1/’1:’¢WL¢ — E(ellstﬂ _ €1l4 go)’

(A47)
with the charge vectors [} » 3 4 given by
-1 0 -1 0
0 1 0 1
(llvl27l39l4) = 0 -1 1 0 (A48)
1 0 0 -1

It is easy to verify that [TK~'ly = 0, so the n field remains
gapless at the RG fixed point. As l, = I} + lp and Iy = I3 + I,
we can establish the following equivalence relations ey ~
29 ~ ¢ and €5 ¢ ~ ¢4 ¢ ~ ¢ So at the RG fixed point,
there are only two independent bosonic modes ¢ and 6. The
effective K matrix for these two modes can be obtained from
the projection Ke_1 = PTK~'P with P = (I}, I3). The result is

0 1
Keff= |:1 0:|

This exactly describes a bosonic CFT with central charge
¢ = 1, corresponding to the spin SU(2); CFT. The spin SU(2)
structure is not obvious in the Abelian bosonization theory.
But the fact the O(4) vector n has the scaling dimension

(A49)

2u3 1
An = = 5

1+2u3—,/1—4u%

matches the property of the spin SU(2); CFT.

Having established the Luttinger liquid description of the
isotropic limit of the O(4) NLSM, we can deform the theory
by the anisotropy

(A50)

u(n% + n% — n% - ni)

=20 Wiy — Ui V)W Yk — Vi W)
Z—é%®%y%Wumwm—@wﬂ (A51)

and investigate the scaling dimension of different operators.
The anisotropy u further dresses the V matrix in Eq. (A46) to

1 u 1 u
! RO
1 _Llaiw 1w
v=| |, L, AT TR sy
—?—z —?4—5 1
—5+5 —3-5 1

where u = 8u/m > 0 (as p > 0 is expected to favor the z-
FM and VBS ordering). A generic vortex operator takes the
form of

0, =¢"°, (A53)
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labeled by a charge vector / whose components are integers. Given the V matrix, the scaling dimension A; of O; can be calculated
as

1 —1 u —u
_ 1 T —1 1 —u u
N u —u 1 -1

—u u -1 1

A, l. (A54)

With this, we can evaluate the scaling dimension of all operators. We first study vertex operators,

WZH#M Oc1,0,0,1)
{nlzsé}N Y ¥rr | On-110) :A—l l+u 1
ny =Sy Ypr VLl Ow,1,-1,0 2Vl-u g
Y Vit Oa.0.0.-1)
Vi VRt O-1.0.1.0)
{n3:S(Z)'}N ‘/filei _ 0(0371,0,1) :}A—l 1—u _§
ng =W, lﬁw/fm 0(1,0’,170) 2V 1+u 4’
‘ﬁulﬁu O0.1,0.-1)
:
ViV O(-1,1,0,0)
s , O - 1 1
{ ,;} _ w?leT _ a0l _l, ¢ (A55)
So Vra VR, Ow,0,-1,1) JI—uz g 4
Vg, YRy O©.0.1.-1)

Here we have introduced another Luttinger parameter g = 2,/(1 — u)/(1 + u) in replacement of u. We then investigate current
operators,

. . . . 1 !
S~ Wi WL — W WLy + Vi VR — Y YRy = Eax(‘/’m — Ly — ¢rt T 9Ry) = Ef)x(l;;(/)) = A =1,

1
—a(Le)=>A=1,  (A56)

. 1
Lp ~ WZMPLT =Y Vi, — W;M/fm + 1/f;£¢WR¢ = Eax(‘/’m — QL+ Qrt — Pry) = 7

+ + + t 1 1
Wo ~ =Yl Vs — Ul Yy + Y Vre + Uk, YRy = —Zax(ﬁom + oL, + orr +9r)) = —Eax(lgw),

where [, = (1, —-1,1, -7, iy = (1, -1, -1, D7, lp = (1,1, 1, 1)T. Since lszK’llo = l3T4K’llo,the I, ¢ and [J,¢ fluctuations
remain gapless. The scaling dimension of d,(I[,¢) and 9,(/],¢) are both A =1, as they correspond to conserved currents. On
the other hand, [JK 'y # 0 indicates that /¢ is gapped and therefore the operator 9, (/) does not have a scaling dimension.
Finally, we can calculate the scaling dimension of the perturbation n? — n3 and n3 — n3,

1 14+u
iy —ny = =29 Y Vi ¥R, + He. = ——5 cos (ILe) = A=2 > 2,
5 2 § § 1 T 1—u
ny —ng = =29, Y YryYg, +He = ——5 cos (Le) = A =2 T < 2. (A57)

(

With u > 0 (and hence u > 0), A(ng — ”421) is relevant and fluctuation and suppress the (ny, ny) fluctuation, making X

A'(n} —n3) is irrelevant. A quick argument is that at the
O(4) isotropic point (A =X’ = u = 0) the field theory is
equivalent to the SU(2); conformal field theory (CFT), where
A and A’ terms are both in the symmetric tensor represen-
tation of the O(4) group which are marginal, because the
SU(2); CFT is described by the Hamiltonian H = J7 + J&
in terms of the SU(2); x SU(2)g current operators. The sym-
metric tensor transforms as the (1., 1) representation under
SU(2). x SU(2)g, corresponding to the Jf]}; (a,b=1,2,3)
operators, which share the same scaling dimension as ‘H and
are therefore marginal (in fact marginally relevant). Away
from this limit, the & > 0 anisotropy will enhance the (n3, n4)

relevant and A’ irrelevant. Therefore A is identified as the
driving parameter of the DQCP. As the driving parameter A
couples to n% — nﬁ, so A must scale with the correlation length

€ as

1

o g WED S p VR 20 (ASS)
Therefore the critical exponent v is given by
1 1
v = =3 (A59)
1—u —
2(1 =/ 15) 8
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The scaling dimensions in Eqgs. (A55) and (A56) can be inter-
preted as the correlation function. Suppose A is a spin/dimer
operator (A = S*, 87, 8%, W, I'), its correlation function is
generally given by

cl =)
P28 2814,

Ga(r) = (AiAiyr) ~

(A60)

where c; , are constants (which will be omitted in the follow-
ing) and A[A] denotes the scaling dimension of the operator A.
Using this formula, the results in Eqgs. (A55) and (A56) imply

the following correlation functions

1 (=)
Gi(r) = (SiS%,) ~ 72/g T p2stel2’
- 1 (=)'
Gy(}’) = (S}"S?Jrr) ~ r2/e+g/2 r2/e’
(=)
G.(r) = (S;Si1,) ~ —5 +
_ (=)'
Gy(r) = (ViViy,) ~ e/2
(=)

Gr(r) = (iliyr) ~ (A61)
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