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ABSTRACT In this paper, we utilize the deep learning approach for the subwavelength imaging in far-field,
which is realized by the near-field resonant metalens at microwave frequencies. The resonating metalens
consisting of split-ring resonators (SRRs) are equipped with the strong magnetic coupling ability and can
convert evanescent waves into propagating waves using the localized resonant modes. The propagating
waves in the far-field are utilized as the input of a trained deep convolutional neural network (CNN) to
realize the imaging. The training data for establishing the deep CNN are obtained by the EM simulation
tool. Besides, the white Gaussian noise is added into the training data to simulate the interference in the
real application scenario. The proposed CNN composes of three pairs of convolutional and activation layers
with one additional fully connected layer to realize the recognition, i.e., the imaging process. The feasibility
of utilizing the trained deep CNN for imaging is validated by numerical benchmarks. Distinguished from
the subwavelength imaging methods, the spatial response and Green’s function need not be measured and
evaluated in the proposed method.

INDEX TERMS Convolutional neural network, resonant metalens, machine learning, subwavelength
imaging.

I. INTRODUCTION
The evanescent wave carries the high spatial frequency
components containing the subwavelength information.
But it exponentially decays with the distance. A large
amount of research about the evanescent waves have
been proposed [1]–[3]. Among them, the imaging of sub-
wavelength information is of great importance. However,
the conventional imaging systems may have difficulties
in the evanescent-wave resolution due to the diffraction
limit [4]–[6]. To confront this problem, various near-field
approaches have been presented to enhance the evanes-
cent wave to realize the subwavelength imaging, such
as stimulated emission depletion microscopy [7], [8],
stochastic optical reconstruction microscopy [9], [10],
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microspheres technique [11], [12], super-oscillatory lens
optical microscopy [13], [14], perfect lenses [15], opti-
cal hyper lenses [16], etc. In these near-field imaging
approaches, the evanescent wave is strengthened in the near
field [17], [18]. However, the evanescent wave still decreases
rapidly in space, which limits this kind of subwavelength
imaging only in the near field. To realize the subwavelength
imaging in the far field, an effective approach is presented
in [19], which is realized by using a split-ring resonator (SRR)
structure to convert the evanescent wave into the propagating
wave. More research on SRR structure has been presented
in [20], where the resonant metalens are equipped with tiny
switches. Although the far-field imaging was realized in [20]
by switching on and off the switch, the process could be
time-consuming and has to be separately exerted on each
switching-on SRR. Besides, complicated control system on
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its switch might be required, which would further limit the
application of the SRR structure in [20] in real scenario.
Some other resonant structures, such as surface plasmons
and metallic cylinders arrays, are also proposed in [21], [22].
However, the Green’s function is required to connect the
target and receiver to realize the target reconstruction in
the far field, i.e., the far-field subwavelength image, in the
microwave frequency regime. The obtaining of Green’s func-
tion tremendously increases the complexity of the imaging
process: (1) the Green’s function is sensitive to the environ-
ment so varies largely with the environmental changes; (2) the
Green’s function is specific to each case [23], [24]. We may
not have its convenient closed form under may practical
situations.

The machine learning (ML) techniques have been intro-
duced to advance conventional EM researches [25]–[29].
Among them, the convolutional neural networks (CNNs)
[30], [31] as one of the most significant approaches in the
deep learning technology are widely applied in imaging pro-
cess [32], [33]. Similar to the conventional artificial neural
networks (ANNs), CNNs are structured by interrelated layers.
Each layer consists of basic neurons that can realize the self-
optimization by learning. Like conventional neural networks,
CNN also aims at training parameters in different layers
and minimizing the loss function of the last layer. However,
different from the conventional ANNs, CNN depends on the
convolutional approach to realize the nonlinear operation and
the parameter sharing to greatly reduce its parameter count.
Hence, CNNs have the potential to greatly compress the
big data training process and handle extreme complicated
nonlinear problems. This paper presents a far-field subwave-
length imaging approach that combines the near-field reso-
nant metalens with the deep CNN to realize the imaging in
the microwave frequency regime. The resonating metalens
consist of the SRR structure to convert the evanescent wave
into propagating wave. The propagating wave in the far field
is then utilized as the input of a trained deep CNN to realize
the imaging process. The advantages of the proposed method
are concluded as follows: (1) Anti-interference: the method is
of strong anti-interference and its accuracy is extremely high,
even though large interference is added; (2) Simplicity: the
Green’s function is not required and a narrow frequency band
is enough; (3) Effectiveness: it requires only one-time far-
field simulation/measurement; (4) Flexibility: the method has
the potential of being used for detection and electromagnetic
monitoring.

II. IMAGING METHODOLOGY
A. RESONANT METALENS
The objective resonant metalens consists of 3×5 SRR units,
as sketched in Fig. 1(a). The 3.7 GHz SRR (0.1λ) is designed
on a Rogers RO 4350, with a relative permittivity 3.66, a loss
tangent 0.004 and a thickness 0.8 mm, as shown in Fig. 1(b).
The resonant frequency of the SRR is controlled by its effec-
tive electrical length [19]. A subwavelength loop source is
located at the center of SRR on back of the substrate, as shown

FIGURE 1. The top view of (a) resonant metalens, (b) SRR unit, (c) loop
source with SRR, and (d) loop source away from SRR. (� metal in front
and � metal in bottom).

FIGURE 2. The simulated reflection coefficients of only a loop source and
a loop source with SRR.

in Fig. 1(c). The SRR that is sensitive to the normal magnetic
field helps to realize a strong magnetic coupling between
the SRR and loop source [19]. In other words, when a loop
source is located within the coupling scope of the SRR unit,
it produces a localized resonance mode at around 3.7 GHz to
realize the evanescent-propagating conversion for transmit-
ting the subwavelength information to the far field. In this
paper, the far-field realized gains (G) are used for imaging
process. In contrast, if no loop source is put under the resonant
metalens, no radiation will be received in the far field. The
reflection coefficients of only a loop source (in Fig. 1(b)),
a loop source with an SRR (in Fig. 1(c)) and a loop source
away from SRR (in Fig. 1(d)) are simulated in Fig. 2. It can be
seen that the loop source case and loop source away fromSRR
case both preform near-0-dB reflection coefficients, which
fails to generate effective propagating waves in the far-field.
In contrast, the loop source with metalens produces a local-
ized mode resonance at around 3.7 GHz, which is helpful for
the subwavelength imaging. In this case, the resolution of the
proposed imaging method depends on the size of SRR unit.

B. PROPOSED CNN ARCHITECTURE
In our approach, CNNs model is utilized to convert original
propagating wave data into subwavelength imaging. Because

63802 VOLUME 7, 2019



H. M. Yao et al.: Applying Deep Learning Approach to the Far-Field Subwavelength Imaging

FIGURE 3. CNN architecture for subwavelength imaging.

the requirement of the huge number of training samples is
difficult to fulfill by real experiments, we use simulated data
to train CNNs. As the typical deep neural networks, CNNs
can make use of data in the form of spatially focused images.
CNNs can even utilize complex microwave field data with
rich information to extract features and realize recognition
and imaging [34]–[40]. In fact, though facing huge noise
and complex measured microwave field data, CNNs can still
succeed in realizing the far-field imaging [34]–[40]. Hence,
in the process of training, we convert simulated original
propagating wave gain data as inputs to our deep CNNs, and
use simulated subwavelength imaging as the output. Because
of the strong capability of CNN, our approach can con-
vert the propagating wave with much stronger interference
into subwavelength imaging. The regularization technique is
adopted to reduce the overfitting and reduce the complex of
model. Then, our CNNs model can be used to recognize our
simulated subwavelength imaging.

Typical ConvNets [30], [31] consist of four types of layers:
input layers, convolutional layers, pooling layers and fully-
connected layers. By stacking these layers together, typical
ConvNet architecture is formed. In this paper, we utilize these
layers to form our convolutional neural network model for
subwavelength imaging.

The internal architecture of the proposedConvNet is shown
in Fig. 3. The inputs are an M × 3 matrix with field infor-
mation, denoted as ‘field data’, where the three column
values are the far-field realized gains (G) in the x-y, x-z
and y-z plane, as shown in Fig. 4. For a better description,
we define the x-y plane as the horizontal plane (H-plane),
the x-z plane as the vertical plane 1 (V1-plane), and the y-z
plane as the vertical plane 2 (V2-plane). In each plane, there
areM receivers evenly located in the radiation angles (θ or φ)
within [0◦, 180◦].
The convolutional layer and activation layer unit operate

to capture features of input. We choose f filters (kernel)
with the size of K × 1 in convolutional layer. In fact, 1D
kernel has wide application in stock prediction and text
natural language processing [41], [42]. Convolutional layer
number, kernel number f , its size K , and the stride for ker-
nel are shown in TABLE I. Then, this convolutional layer

FIGURE 4. Schematic view of the subwavelength information received in
the far field.

TABLE 1. CNN architecture.

and activation layer unit feeds into a final fully-connected
layer, which predicts the subwavelength imaging in far field.
This final output is used to compute the mean-squared error
between the true label and the predicted label, referred to
as the loss.

Our method is benchmarked in Matlab 2018b with Deep
Learning Toolbox [43]. The mean-squared error loss function
is optimized by stochastic gradient descent. The learning rate,
chosen as 0.01, is the hyper-parameter in our model. We
can control training error by declining the learning rate. The
training is done by full batch. L2 regularization is applied to
prevent over-fitting and improve prediction accuracy [44].
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FIGURE 5. Schematic view of the alphabet-shaped subwavelength source
target.

C. APPLYING CNN TO FAR-FIELD IMAGING
By putting the resonant metalens on the loop sources,
the propagating wave converted from the evanescent wave
can be noted by the far-field receivers. Then, the received
propagating wave containing subwavelength information
even with interference can be dealt with the proposed CNNs,
i.e., realizing the far-field subwavelength imaging.

The design procedures of the proposed method for far-field
subwavelength imaging are formulated into the following
three steps:
Step 1: Obtaining far-field results: The resonant metalens

are installed above the target source to be imaged, so that
radiation gain G from the metalens-added target can be noted
by receivers in the far field;
Step 2:CNNmodel training: The received radiation signals

polluted by noise is used as the training data (training input)
for the proposed CNN model, while the corresponding target
source are used as training output. The added noise is to
imitate the complex environment in reality, such as fabri-
cation tolerance, the measurement tolerance, etc. [45], [46].
Moreover, compared with training data without noise, it is
very easy to add noise into the training data to dramatically
improve the noise tolerance and imaging performance of the
whole method.
Step 3: Far-field imaging: Using the trained CNN model,

the image of the target source can be recognized from the
newly received radiation signals even with large interference.

III. NUMERICAL RESULTS
A. IMAGING FOR ALPHABET-SHAPED SOURCE USING
THREE-PLANE RADIATION GAIN
In this section, the alphabet-shaped target sources from ‘A’
to ‘G’ are used, as demonstrated in Fig. 5. Following the
design methodology in Section II, the detailed processes are
presented as follows:
Step 1: Obtaining far-field results: The resonant metalens

are installed above the alphabet-shaped sources and the far-
field realized gains (G) at the H, V1 and V2 planes are
obtained using CST Microwave Studio [47]. In reality, the

FIGURE 6. Accurate ‘field data’ for subwavelength alphabet-shaped
source: (a) A; (b) B; (c) C. ‘field data’ with noise for subwavelength
alphabet-shaped source: (d) A; (e) B; (f) C.

far-field gains (G) can be obtained by receivers with the aid
of the vector network analyzer (VNA).
Step 2: CNN model training: For training, the size of each

input data is M × 3 with M = 180. Considering the inter-
ference in real application scenario, the random noise with
signal-to-noise ratio (SRN) up to 0dB is added to the received
field information (Fig. 6(a)-(c)) to form the input training data
(Fig. 6(d)-(f)), as shown in Fig. 6. Here, the data for alphabet
sources ‘D-G’ are not demonstrated to save space. Compared
Figs. (d-f) with (a-c), it can be seen that the final ‘field data’
is very different from the original ones. With this extremely
small SNR, it is difficult for conventional methods to realize
the subwavelength imaging [48]. To train the proposed deep
CNN, we utilized 7000 ‘field data’ with random noise as
the inputs and the corresponding alphabet-shaped sources are
used as the outputs.
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FIGURE 7. Performance of our proposed method for subwavelength
imaging. The green percentage is the success rate, while the red
percentage is the failure rate.

Step 3: Far-field imaging: Another 700 groups of ‘field
data’ with randomnoise (SNR = 0dB) as inputs and their cor-
responding sources as outputs are used to test the feasibility of
the proposed CNN model. As a result, the image of the target
sources can be realized despite of such large interference.

The performances of the proposed trained deep CNN are
presented in Fig. 7. It can be seen that the proposed CNNs
can realize the subwavelength imaging, i.e., recognizing the
alphabet-shaped source image under large interference, with
zero error.

Moreover, the further trails present that the proposed deep
CNNs trained on the data set with the noise in the level of
SNR = 0 dB or any SNR>0 dB can all succeed in realizing
far field imaging and provide the same accurate result with
zero error as that shown in Fig.7.

B. IMAGING FOR ALPHABET-SHAPED SOURCE USING
ONE-PLANE RADIATION GAIN
Tomake the proposed method more applicable, two improve-
ments on the ‘field data’ are made: (1) Only the far-field
realized gains (G) in the H plane instead of three planes are
used as inputs. (2) In Step 3, the newly received far-field
realized gains (G) for imaging are obtained from the radiation
angles (φ = 0◦, 6◦, . . . , 180◦). As a result, the far-field
realized gains (G) are converted to the CNN model as a M /6
vector, which is much smaller than M × 3 in Section III A.
The specific process is as follows:
Step 1: Obtaining far-field results: The resonant metalens

are installed above the alphabet-shaped sources and the far-
field realized gain (G) only in the H plane is obtained using
CST Microwave Studio.
Step 2: CNN model training: For training, the size of input

data is M × 1 (M = 180). The CNN parameters (Filter
Number, Filter Size, and Stride Size) in TABLE 1 is used
again, since the application scenario is not changed. The
random noise (SRN = 10 dB) is added to the received field
information (Fig. 8(a)-(c)) to form the input training data.
To train the proposed deep CNN, we utilized 7000 ‘field

FIGURE 8. Accurate ‘field data’ in the H plane for subwavelength
alphabet-shaped source: (a) A; (b) B; (c) C. Interpolated ‘field data’ in
the H plane with noise for subwavelength alphabet-shaped source:
(d) A; (e) B; (f) C.

data’ with random noise as the inputs and the corresponding
alphabet-shaped sources are used as the outputs.
Step 3: Far-field imaging: Another 700 groups of ‘field

data’ with random noise (SNR = 10 dB) as inputs and
their corresponding sources as outputs are used to test the
feasibility of the proposed CNN model. As stated above,
the far-field gain (G) data decrease to a M /6 vector. Hence,
the linear interpolation method is used to compensate the
received field information so that the size of each input is
still M × 1, as shown in Fig. 8(d)-(f). As a result, the image
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FIGURE 9. Performance of the proposed method for subwavelength
imaging by only using far-field realized gains (G) in the H plane. The green
percentage is the success rate, while the red percentage is the failure rate.

of the target sources can be obtained despite of the large
interference and less field data.

The performances of the proposed trained deep CNN are
presented in Fig. 9. It can be seen that the proposed CNNs
can realize the subwavelength imaging, i.e., recognizing the
alphabet-shaped source image under large interference, with
zero error.

C. IMAGING FOR ALPHABET-SHAPED SOURCE USING
ONE-PLANE RADIATION GAIN IN COMPLEX
ENVIRONMENT
In this section, the proposed method is utilized in more
challenging environment, presented in Fig. 10, where the
alphabet-shaped target sources are surrounded by concrete
walls. The detailed parameters of the used concrete walls
are as follows: the thermal conductivity is 1.7 W/K · m,
the material density is 2400 kg/m3, and the heat capacity
is 0.8 kJ/K·kg. The format of ‘field data’ and the detailed
imaging processes and in the Section III B are still used in
this section. The Fig. 10(b) shows the accurate ‘field data’ in
the H plane for subwavelength alphabet-shaped source ‘A’,
while the Fig. 10(c) presents the interpolated ‘field data’ in
the H plane with noise for subwavelength alphabet-shaped
source ‘A’. Here, the data for alphabet sources ‘B-G’ are not
demonstrated to save space.

The performances of the trained deep CNN are shown
in Fig. 11. It is evident that the proposed CNNs can realize
the subwavelength imaging, i.e., recognizing the alphabet-
shaped source image even when the sources are completely
enclosed.

D. DISCUSSION
The numerical examples above present that the trainable deep
CNN can successfully recognize the subwavelength source
under large interference. The unavoidable interference in
reality can be overcome thanks to its strong feature-extracted
ability for recognition [49]–[51]. Besides, the usage of deep
CNN also avoids the environmental sensitivity and the need
for obtaining Green’s function by conventional methods.

FIGURE 10. (a) Top view of the alphabet-shaped subwavelength source
target with the resonant metalens surrounded concrete walls.
(b) Accurate ‘field data’ in the H plane for subwavelength
alphabet-shaped source ‘A’. (c) Interpolated ‘field data’ in the H plane
with noise for subwavelength alphabet-shaped source ‘A’.

FIGURE 11. Performance of the proposed method for subwavelength
imaging by only using far-field realized gains (G) in the H plane in
complex environment. The green percentage is the success rate, while the
red percentage is the failure rate.

Thus, the proposed method has the potential to be used in
extremely harsh environment, such as the space with large
background radiation.
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Three examples above demonstrate that the proposed far-
field imaging method with near-field resonant metalens can
effectively realize imaging for the subwavelength targets
under big interference without using the Green’s function.

IV. CONCLUSION
In this paper, the near-field resonant metalens are combined
with the deep CNN to realize subwavelength imaging in the
far-field at microwave frequencies. The 3 × 5 split-ring res-
onator (SRR) units are utilized to form the resonant metalens
with strong magnetic coupling ability. The resonant metalens
convert evanescent wave in the near field into propagating
wave. The received far-field data is utilized as inputs of a
trained deep CNN to realize subwavelength imaging. The
possible strong interference in real application scenario is
considered in the training data. Numerical examples have
demonstrated the feasibility of utilizing our CNN to realize
subwavelength imaging. The spatial response and Green’s
function are not needed in the proposed method. This method
can be used for subwavelength imaging, detection, and elec-
tromagnetic monitoring in complex environments.
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