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Abstract 

The plastic deformation of metallic glasses (MG) is well-known to occur via shear 

transformation zones (STZs) on the scale of atomic clusters, yet fracture of MG takes place via 

shear bands of the micron scale. So far, understanding on how the operation of STZs leads to shear 

localization and fracture remains limited. In this work, tensile tests on Cu/Zr-based MG micro-

wires show that both the first-yield and fracture stress exhibit the Weibull distribution, and 

fractography reveals that shear localization in the form of intense shear bands leads to shear 

fracture. Molecular dynamics (MD) simulations show that shear bands form via the correlated 

emergence and operation of discrete STZs close to one another. To describe how the stochastic yet 

correlated occurrence of the discrete STZs leads to shear localization, a model is constructed to 
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relate the probability of the successive operation of discrete STZs, to their nucleation density. The 

model predicts that, if nucleation density of the STZs grows along the strain path, as prior shear 

events triggers the emergence of new STZs, then successive occurrence of discrete shear events 

speeds up rapidly to an asymptotic state which is exactly the condition of shear localization and 

shear banding. Furthermore, the MD results suggest an exponential growth law for the occurrence 

of the STZs along the strain path, which also gives predictions in good agreement with the 

experimental Weibull distributions of the first-yield stress of Cu/Zr-based MGs. 

Keywords: metallic glass; shear localization; stochastic deformation; shear transformation zones; 

shear bands 
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1. Introduction 

Bulk metallic glasses (BMGs) have attracted considerable attention due to their ultra-high 

strength and elastic limit (Guo et al., 2007b; Ramamurty et al., 2005; Xu et al., 2005). While the 

deformation of BMGs near or above glass transition temperature exhibits a homogenous behavior 

with significant inelasticity, their plastic deformation at low temperatures is limited and exhibits 

strong scattering (Liu et al., 2007; Lu et al., 2003; Ramamurty et al., 2005; Schuh et al., 2007; 

Sopu et al., 2017; Zhao et al., 2013). The plastic deformation of BMGs is widely believed to be 

associated with shear banding, for which a number of theories have been proposed (Fornell et al., 

2009; Greer et al., 2013; Jang et al., 2011; Sopu et al., 2017; Yoo et al., 2012). First, the 

homogenous nucleation theory stipulates the thermal activation of shear bands via shear 

transformation zones (STZs) or geometrically unfavored motifs (GUMs) homogeneously 

distributed in the prefect BMG matrix (Ding et al., 2014; Greer et al., 2013; Maaß and Löffler, 

2015; Sopu et al., 2017; Xu et al., 2018; Zhao et al., 2013). Secondly, the aged-rejuvenation-glue-

liquid (ARGL) model of heterogeneous nucleation considers that the inevitable cast imperfections 

can facilitate shear band nucleation as they act as stress concentrators (Shimizu et al., 2006; Xu et 

al., 2018; Zhao et al., 2013), which create an embryonic shear front comprising four parts, namely, 

an aged glass zone, a rejuvenation-tip zone, a glue zone and a liquid zone. In this mechanism, the 

neonatal front of the shear band propagates into the adjacent well-aged glass matrix during 

deformation. The third mechanism considers the formation of a shear band as involving a first 

stage in which a viable band is created and shears by structural rejuvenation, and a second stage 

in which synchronized sliding occurs to shear off along the rejuvenation plane (Greer et al., 2013; 

Klaumünzer et al., 2011).  
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Although a lot of understanding has already been gained on the nucleation and propagation 

of shear bands in BMGs, the conditions at which catastrophic fracture happens are much less 

understood. In general, catastrophic fracture is found to occur soon after incipient yielding at room 

temperature (Bletry et al., 2006; Liu et al., 2010; Maaß and Löffler, 2015), and it was postulated 

that dense shear bands observed at surfaces of deformed BMG samples are a result of localized 

strain softening from free volume accumulation (Argon, 1979; Zhu et al., 2017). A number of 

studies have been carried out to understand localized deformation and fracture in general (Carroll 

et al., 2012; Chung et al., 2014; Huespe et al., 2012; Sun et al., 2009). For instance, a finite 

deformation generalization of the finite thickness embedded discontinuity formulation was 

proposed for the analysis of ductile fracture, which provided a constitutive picture of local straining 

prior to fracture (Huespe et al., 2012).  For dual-phase structured steels, ductile fracture was 

modeled in the form of plastic strain localization due to the incompatible deformation between the 

dual phases (Sun et al., 2009). Localization of strain fields in metallic glasses was also investigated 

via in-situ digital image correction, which indicated that ductility was due to the intrinsic structural 

heterogeneities and the evolution of localized strain plays an important role on the formation of 

shear bands (Wu et al., 2015). However, the physical conditions that lead to such strain localization 

along with catastrophic fracture in brittle metallic glasses still remain unclear. The purpose of this 

work is therefore to gain deeper insight into the strain localization conditions in BMGs that 

undergoes plastic deformation and shear fracture by discrete shear band nucleation and 

propagation. In the following, the stochastic nature of deformation and fracture is first appreciated 

from tensile experiments on Cu/Zr-based BMG microwires and molecular dynamics (MD) 

simulations on nano-sized simulation samples. Then, we propose a stochastic model to describe 
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the condition of strain localization, and apply it to reconcile the experimental results. Appendix 1 

gives a glossary of terms used throughout the paper. 

 

2. Experimental Features of Deformation of BMG Microwires  

   The fracture of a material is conveniently revealed by tensile testing and furthermore, melt 

extraction is a process that can produce MG microwires in large quantities ready for tensile testing. 

For this reason, tensile tests were carried out on micro-wires of three types of melt-extracted Cu/Zr-

based metallic glasses (MGs), namely, Cu46.5Zr46.5Al7, Cu48Zr48Al4 and Cu47.5Zr48Al4Nb0.5 (Jiang 

et al., 2018; Shen et al., 2014a; Shen et al., 2014b). The melt-extraction technique has been greatly 

optimized over time and is capable of producing MG microwires with smooth surface and few 

casting flaws. The diameters of the micro-wires used in the subsequent tensile testing were 

measured by SEM to be respectively 46.29 ± 1.06 μm for Cu46.5Zr46.5Al7, 45.57 ± 0.54 μmfor 

Cu48Zr48Al4, and 45.86 ± 1.15 μm for Cu47.5Zr48Al4Nb0.5. The microwires were cut into different 

lengths and were glued by epoxy resin onto paper templates with diamond-shape windows of 

different sizes. After mounting each specimen-template assembly onto the air-pressure grips of the 

micro-tensile tester (INSTRON 5848), the two sides of the paper template were cut open to free 

out the glued metallic glass microwire (Chen and Ngan, 2012). As such, the gage lengths of the 

samples were 12mm, 30mm or 60mm. Before the tests, the samples were checked again with 

optical microscopy, and any ones with large visible surface flaws or bending segments were 

certified then discarded. The tensile tests were carried out at room temperature of ~20 °C, at a 

constant load rate of ~500MPa/s until the microwire fractured. Tests in which the wires fractured 

outside the gage length, i.e. inside or near the glued parts in the grips, were neglected. In order to 

investigate the scattering nature of the deformation, the test was repeated over 20 times for 
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specimens of the same BMG and gage length. After tensile testing, all fractured segments were 

collected and cleaned with ethyl alcohol, for subsequent examination in a Hitachi S-4800FEG 

SEM. As mentioned above, samples with visible artificial surface flaws, non-sufficient uniform 

diameter, or misalignment on the template, were discarded, since such subtle imperfections in the 

test geometry may dramatically influence the deformation response of metallic glass specimens 

(Wu et al., 2008).    

2.1 Stress-strain behavior and microstructures 

Fig. 1(a-c) show typical stress-strain curves of the three types of BMG microwires tested. 

The end of each curve denotes the fracture point, and the first yield point is marked by an arrow. 

In the initial stage of deformation, all strain-stress curves generally exhibit a smooth and 

continuous elastic behavior, and then, a sudden deviation from the initial linear behavior occurs, 

and this is identified as the first-yield point 𝜎𝑦. After that, fracture soon occurred at stress 𝜎𝑓.   

 SEM examination of the surface morphology of the MG microwires revealed discrete shear 

bands as the main signs of plastic deformation, as shown in the case of Cu48Zr48Al4 in Fig. 2.  Of 

particular interest is the observation that the distribution of shear bands is highly inhomogeneous, 

and in locations close to the fracture, the number of shear bands is intense. The evidence here 

indicates that shear events are highly localized.   

 

2.2 Weibull distributions for first-yield and fracture stress 

As shown in Fig. 1(a), in the case of the Cu46.5Zr46.5Al7 alloy, the strengths of the samples 

scatter significantly, but a clear trend of “longer being weaker” size effect is not observed. Fig. 3(a, 
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c, e) show the Weibull plot of the strength data of the three types of alloys, according to (Weibull, 

1951):   

𝐹(𝜎) = exp[−𝑉(𝜎 𝜎0⁄ )𝑚].                                                  (1)  

where 𝜎 is 𝜎𝑦 or 𝜎𝑓, m is the Weibull modulus, and 𝜎0 is a scaling parameter. The volume of the 

tested samples V is the gauge length (12 mm, 30 mm or 60 mm) times the cross-sectional area of 

the wires which is common for all tested samples, and hence, V is proportional to the gauge length. 

The survival probability 𝐹(𝜎) is calculated by  𝐹(𝜎𝑖) = 1 − 𝑖 (𝑁 + 1)⁄ , where N is the total 

number of tested specimens in each group, and i is the rank in ascend order of the yield or fracture 

stresses 𝜎𝑖 in the group (Pugno and Ruoff, 2006; Qin et al., 2013; Zhao et al., 2008). The double 

logarithmic plots in Fig. 3(a, c, e) show that although eqn. (1) is roughly obeyed for a given gauge 

length or sample volume V, for each alloy the plots for different gauge lengths or V do not collapse 

into a single trend. Therefore, the tensile test data from all of the three alloys do not obey eqn. (1), 

with V being the entire volume of the sample. 

 In Fig. 3(b, d, f), ln ln(1/𝐹), instead of ln ln(1/𝐹) − ln 𝑉, is plotted against ln 𝜎𝑦 or  ln 𝜎𝑓. 

It can be seen that, for each alloy, the discrepancies between different groups of gauge length have 

remarkably reduced, compared to the case when ln ln(1/𝐹) − ln𝑉 is plotted against ln 𝜎𝑦 or  ln 𝜎𝑓 

in Fig. 3(a, c, e). In particular, data from different gauge lengths now approximately collapse into 

a single trend, describable by  

𝐹(𝜎) = exp[−Ω(𝜎 𝜎0⁄ )𝑚]      (2)  

where Ω is a volume parameter independent of the gauge length of the sample. In Fig. 4, instead 

of separately plotting the data from different gauge lengths, all data from different gauge lengths 

are pooled together and ranked without referencing to their gauge lengths, and new survivability 
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probability is assigned according to 𝐹(𝜎𝑖) = 1 − 𝑖 (𝑁 + 1)⁄  where 𝑖 is the rank in the combined 

pool, and 𝑁 its size. It can be seen that, for a given alloy, eqn. (2) is obeyed with Ω being an 

arbitrary constant independent of the volume of the sample.  

The fact that eqn. (2) (with a constant Ω) rather than eqn. (1) (with V being the volume of 

the entire sample) is obeyed for a volume Ω independent of the gage length is intriguing. To shed 

light on this and other aspects of the deformation, molecular dynamics (MD) simulations were 

carried out, as detailed below.   

3. Insights from Molecule Dynamics (MD) Simulations   

              Molecule dynamics (MD) simulations were performed using the LAMMPS code (Plimpton, 

1995; Sha et al., 2014; Sopu et al., 2016). Atoms of Cu, Zr and Al were randomly distributed into 

a simulation cell to construct a glassy Cu48Zr48Al4 sample, and embedded-atom-method (EAM) 

potentials (Cheng et al., 2009; Kaban et al., 2015) were used for the atomistic interactions. The 

constructed sample was a cuboid block with 22,221 atoms of the Cu48Zr48Al4 composition with 

periodic boundary conditions (PBC) applied along all of three dimensions. The block was first 

equilibrated at 2300K for 2ns, then quenched from the melt state to 50K at a constant cooling rate 

of 1010K/s at NPT condition, and then relaxed at 50K for 2ns. (Integration step time was 1fs.) 

Plate-shape metallic glass samples were produced via replicating the initial small glassy block into 

a large size ~6.7nm×20.5nm×133.1nm with ~1,066,600 atoms, followed by annealing at 800K for 

0.5ns and taken back to 50K finally (Sha et al., 2014). Uniaxial tensile deformation was carried 

out on the replicated glassy plate along the z direction at a constant strain rate of 6×107/s, while 

three-dimensional PBCs were applied to avoid the occurrence of necking (Albe et al., 2013; Zhou 

et al., 2013). The atomistic deformation was investigated by visualizing the local atomic shear 
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strain, calculated via the OVITO analyzing and visualization program (Shimizu et al., 2007; Şopu 

et al., 2011; Şopu et al., 2015).  

Fig. 5(a) shows a typical set of simulation result for the deformation process of the metallic 

glass samples. Here, the simulated stress-strain curve shows the first sign of deviation from 

linearity at an overall tensile strain of  ~ 0.027. To reveal the discrete shear transformation zones 

(STZs), the accumulative local shear strain around each atomic site is calculated with reference to 

the relaxed state before deformation (Luan et al., 2017; Sha et al., 2014; Sopu et al., 2017). The 

simulated snapshot in Fig. 5(a) at the noticeable yield point at which  ~ 0.027 shows the atomic 

positions only with accumulative shear strains ≥ 0.2, whereas atoms with accumulative strains < 

0.2 are not shown. Treating those atomic sites with accumulative shear strains ≥ 0.2 as the STZs, 

the snapshot in Fig. 5(a) indicates that at the noticeable yield point, STZs have already occurred 

sporadically in scattered places in the sample. Fig. 5(b) shows the development of the STZs after 

the yield point, and again, in each snapshot, discrete STZs (marked as green) are identified as 

locations with accumulative shear strains ≥ 0.2, whereas atoms with accumulative strains < 0.2 

are not shown. It can be seen that, with increasing straining past the yield point (snapshot 1) 

discrete STZs tend to occur close to one another, and their coalesced operation leads to microscopic 

shear bands that run across the sample at ~45° to the long axis in the end. The first occurrence of 

clear shear bands takes place at total strain  ~ 0.078 (snapshot 4), and this corresponds to the peak 

of the stress-strain curve in Fig. 5(a), after which the stress falls at the constant imposed strain rate 

due to the formation of more shear bands. To show the spatio-temporal correlation of the 

occurrence of the discrete STZs statistically, for each STZ i, its position and time of occurrence, 

namely 𝑟𝑖⃗⃗  and 𝑡𝑖, were recorded during the tensile deformation at an interval of ~0.03% in the total 
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strain. For every pair i and j of STZs, their distance ∆𝑟𝑖𝑗 and time interval of occurrence ∆𝑡𝑖𝑗 were 

calculated as:  

             ∆𝑟𝑖𝑗 = |𝑟𝑖⃗⃗ − 𝑟𝑗⃗⃗ |,                                                             (3) 

∆𝑡𝑖𝑗 = |𝑡𝑖 − 𝑡𝑗|,                                                            (4) 

and then the joint probability density 𝑝(∆𝑟, ∆𝑡) was obtained as 

𝑝(∆𝑟, ∆𝑡) =
1

2𝑁
∑

𝛿(∆𝑟−∆𝑟𝑖𝑗)𝛿(∆𝑡−∆𝑡𝑖𝑗)

4𝜋∆𝑟2𝑖,𝑗                                        (5) 

where 𝑁  is the total number of STZs. Fig. 5(c) shows the 𝑝(∆𝑟, ∆𝑡)  at the initial stage of 

deformation before noticeable yielding, namely from strain 0 to ε ~ 0.027 in the MD simulation. 

At the simulated strain rate, it takes ~550ps to reach the noticeable yielding at ε = 0.027, while the 

STZs are mainly produced within the last ~40 ps of such a straining process close to the observable 

yield. This is why Fig. 5(c) shows high values of the probability density 𝑝(∆𝑟, ∆𝑡) at ∆𝑡 ~ 40 ps; 

however, the STZs that emerge during this window of time are not spatially correlated, since the 

probability density spreads over a wide range of ∆𝑟 values up to over 1 nm. Fig. 5(d) shows 

the 𝑝(∆𝑟, ∆𝑡) for the regime from the noticeable yielding at ε = 0.027 to ε = 0.076 at which clear 

shear bands have formed. It can be seen that the 𝑝(∆𝑟, ∆𝑡) peaks near (∆𝑟 = 0, ∆𝑡 = 0), indicating 

a high tendency for discrete STZs to occur very close to each another in both the space and time 

domains, within the strain regime from yielding to shear banding. The results in Fig. 5(c,d) indicate 

that near the noticeable yield point, plasticity is due to the uncorrelated operation of STZs at 

different locations in the sample, and then later on in the post-yield strain path, the occurrence of 

STZs begins to exhibit a strong correlation or localization effect, namely, the past operation of a 

STZ leaves behind a history effect in the neighborhood to trigger the occurrence of another STZ 
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nearby. Eventually, the operation of such highly correlated STZs leads to a microscopic shear band 

locally. Fig. 5(e) shows the correlated emergence of STZs within the red box region Ω in Fig. 5(b) 

during a shear banding process, from snapshots 3 to 5 in (b) with overall strain ~0.072, ~0.075 and 

~0.078 respectively. At each overall strain, the atomic positions with local accumulative strains 

over 0.2 are shown in the middle panel to indicate the STZs operated, and the right panel shows 

the positions of atoms with ΔE larger than 0.25 eV, where ΔE is the potential energy increment 

relative to the mean energy of the corresponding atomic species in the load-free state. The blue 

boxes mark regions where ΔE is high due to some operated STZs nearby, and the blue arrows 

indicate that in the next strain increment, new STZs emerge from these high-energy regions. The 

results here show a correlated behavior of STZs in which new STZs preferentially emerge at the 

high energy (or stress) locations near previously operated STZs.  

 

Length independence of strength – The MD results here enable one to understand why the strength 

data from the present experiments in Figs. 1, 3 and 4 do not depend on the length of the BMG wire 

in a statistical sense. The MD simulation snapshot in Fig. 5(a) shows that at the noticeable yield 

point at which  ~ 0.027, a rather large quantity of STZs have already emerged sporadically and 

operated in different, isolated sites of the sample. In Fig. 5(b), snapshot 2 shows that as the overall 

strain  increases further past the yield point, the STZ quantity increases further throughout the 

sample. This is an important observation that will explain the length independence of strength of 

the micro-wires. If yielding were to mark the emergence and operation of a single discrete event 

such as a STZ, then the yield strength would have to depend on the sample volume V according to 

eqn. (1). This is because, if the survivability of a small material volume Ω against the emergence 

of a single event is 𝐹Ω(𝜎), then, the survivability 𝐹 of the entire sample V against yielding would 
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be  𝐹 = [𝐹Ω(𝜎)]𝑉/Ω, which would give ln ln(1/𝐹) − ln 𝑉 = − lnΩ + ln ln[1/𝐹Ω(𝜎)]. If this were 

the case for the observable yield in the present experiments, then the plots in Figs. 3(a, c, e) would 

have collapsed into single trends independent of 𝑉, since the right side of the above equation, 

namely, − lnΩ + ln ln[1/𝐹Ω(𝜎)], would depend on 𝜎  and not on 𝑉 . Observable yield in the 

present experiments is evidently not due to the stochastic emergence of a single event such as a 

STZ. In fact, the strain scale in the plots in Fig. 1 suggests that at noticeable yield, the proof strain 

is already likely ~0.001, and for even the shortest wires of length 12 mm, the plastic elongation 

would be ~ 12 m. Such an amount of displacement has to be due to the operation of a lot of STZs 

in the wire.    

When discussing the formation of a discrete STZ in a statistical way, the atomic degrees 

of freedom (atomic positions and velocities) that are pertinent must be those within a small atomic 

cluster that contains only the eventual STZ plus its immediate neighborhood, i.e. a nucleus volume. 

The microwires used in the present experiments were 12 mm to 60 mm long and their diameters 

were ~45 m, and so they would contain a huge number of such potential nucleating sites for STZs. 

With such a large quantities of STZ nuclei, the overall plastic strain of the wire is simply the 

average strain of all activated STZs in the wire, and so if the overall plastic strain is to be noticeable 

at some proof strain value of, say, 0.001, the average strain of the activated STZs has to be equal 

to this value too. Since all the volume elements of the STZ nuclei within the wire are subjected to 

rather similar stress state, they form a statistical ensemble in thermo-mechanical equilibrium, and 

the condition of observable yield becomes one of requiring a specific average strain from the 

ensemble. When interpreted in this way, since the number of STZ nuclei in the ensemble (i.e. the 

wire) is huge, the stress that leads to a specific average strain from the ensemble should not depend 
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on the size of the ensemble. Therefore, the yield strength of the wires should not depend on their 

length in a statistical way, as is observed experimentally in Figs. 1, 3 and 4. 

In addition to the first yield, Figs. 1, 3 and 4 also show that the fracture strength of the 

micro-wires does not depend on their length or volume, and the explanation is also similar to the 

above for the first yield. Shear fracture is evidently (see Fig. 2) due to the operation of intense slip 

bands. In the MD simulations in Fig. 5, since the PBC is used, fracture is not simulated directly, 

but the snapshots 4 to 7 in Fig. 5(b) showing the formation of multiple shear bands mark a sharp 

drop in the stress-strain curve (Fig. 5(a)) and hence an instability condition. Therefore, in a real 

wire near its fracture point, many shear bands should have occurred simultaneously along the wire, 

and the action of one extreme shear band leads to fracture (c.f. Fig. 2(a)).  

In Fig. 5(b), the detailed formation of a microscopic shear band is shown in the regime 

framed by the red boxes in snapshots 3 to 5 in Fig. 5(b). Here, as the overall strain  increases from 

0.072 to 0.078 (snapshots 3 and 4), the occurrence of STZs suddenly speeds up in the framed 

region, where a few already operated STZs trigger the formation of a lot more STZs nearby in a 

highly correlated manner (c.f. Fig. 5(d, e)). This process eventually forms a discrete shear band 

that runs across the specimen thickness at ~ 45° with respect to the specimen axis, as snapshots 5 

to 8 show. It is interesting to note that the majority of the already operated STZs in snapshot 3, in 

particular those outside the red box, do not trigger the accelerated formation of nearby STZs in 

snapshot 4, indicating the statistical nature of the correlated formation/operation of STZs. When 

discussing the formation of a microscopic shear band in a statistical way, the atomic degrees of 

freedom (atomic positions and velocities) that are pertinent must be those within a small, localized 

representative volume element (RVE) that contains only the eventual shear band plus its immediate 

neighborhood, namely, a region similar to the red box Ω in Fig. 5(b). Since the eventual shear band 
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runs at ~ 45° with respect to the wire axis, Ω is approximately a section of the wire with length 

equal to the wire diameter. Therefore, again, since the present micro-wires in the experiments were 

12 mm to 60 mm long, and so with the size of Ω estimated above, these wires would contain 

thousands of RVE’s stacked together along the wire-axis direction. Such a large amount of RVE’s 

would form an ergodic enough statistical ensemble in thermo-mechanical equilibrium, since all 

the RVEs along the wire are subjected to the same tensile loading as they are connected in series 

(Fig. 6). Now, unlike yield which requires a specific average strain from the ensemble, the criterion 

for shear fracture requires the distribution in the ensemble to be in such a way that the extreme 

RVE’s produce a large enough shear to result in instability. But again, for an ergodic ensemble in 

equilibrium, the distribution of properties amongst its replicas should not depend on the ensemble 

size. Therefore, the fracture strength of the wires should not depend on their length in a statistical 

way, as is observed experimentally in Figs. 1, 3 and 4. 

The yield and fracture of BMG micro-wires in fact bear some interesting analogy with the 

“global sharing” concept, as opposed to the “local sharing” or “weakest link” concept, in the 

discussion of statistical strength (Ibnabdeljalil and Curtin, 1997; Phoenix and Raj, 1992). In the 

“local load sharing” model, breakage of the weakest link raises stress in neighboring ones to make 

them break in a cascade manner, so that strength obeys a characteristic volume dependence. 

However, in the “global sharing” model, the stress change due to a broken link is shared globally 

by all remaining links, so that strength is determined by the ensemble behavior of all links rather 

than by the weakest one, and hence does not depend on volume. The yield and fracture of the 

present BMG micro-wires are determined by the ensemble behavior of the RVEs in terms of STZ 

operation, and so is akin to the “global sharing” concept without a volume dependence. 
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4.  A Model for Shear Banding in Metallic Glasses 

The MD results in the above section indicate that initial yield is due to the sporadic 

emergence and operation of STZs, and later on in the strain path, the operation of STZs becomes 

correlated locally, leading to shear localization in the form of shear banding, which eventually 

should correspond to the experimentally observed shear fracture at the end. As indicated in Fig. 

5(b) (e.g. snapshot 7), although many shear bands can form simultaneously, the formation of each 

shear band should be determined by the atomic degrees of freedom within an RVE of a micro-

scale volume Ω  that contains the shear band plus its immediate neighborhood. Nanometric 

volumes of metallic glasses are in fact known to deform in a homogenous manner without strain 

localization (Guo et al., 2007a; Jang and Greer, 2010; Zhou et al., 2013; Zhou et al., 2015), and 

hence the RVE for shear banding has to be large enough to contain all the atomic degrees of 

freedom that are pertinent for the shear band to form; hence Ω is a micro-sized volume instead of 

being smaller. As mentioned above, since the eventual shear band in a micro-wire sample runs at 

~ 45° with respect to the wire axis, Ω should be approximately a section of the wire with length 

equal to the wire diameter. Thus, along a wire of tens of mm long, a large number of RVEs would 

be stacked in series and they are subjected to the same applied load (Fig. 6); such an ensemble of 

RVEs forms a statistical-mechanics ensemble in thermo-mechanical equilibrium (Ngan, 2009) (i.e. 

the RVEs are subjected to the same stress state and temperature). Within each RVE, at sufficient 

applied load, a shear band may form due to the correlated emergence and operation of discrete 

STZs, as illustrated in Fig. 5(b). However, since the different RVEs in the ensemble have in general 

different internal structures, the shear banding may not be synchronized in the ensemble, so that 

at a given point in time, the shear band formation may be more mature in some RVEs and less in 

others (c.f. Fig. 5(b), e.g. snapshots 5 and 6). But it is the average behavior (i.e. strain) of the RVEs 



16 
 

in the ensemble that gives the overall proof strain of the wire, or the extreme strain in the ensemble 

that determines the shear fracture. Then, it follows that understanding the statistical variability of 

the RVEs at different points in the load path would be critical in understanding yielding and 

fracture of BMGs. 

Based on the above consideration, we develop a model here to account for the variability 

in the shear localization within the ensemble RVEs in a statistical way. This model is based on an 

ensemble concept which we used earlier to study a transition in deformation from stochastic to 

deterministic behavior (Ngan and Ng, 2010), and here, we further develop it to predict shear 

localization in the form of shear banding. Consider a large ensemble of such RVEs, as shown in 

Fig. 6, with identical shapes and dimensions but varying individual microstructures, subjected to 

the same load simultaneously. Due to their varying microstructures, the sequential occurrence of 

discrete STZs (labelled by their order of emergence k = 1, 2, 3, etc.) amongst the RVE replicas are 

not necessarily synchronized. Let Ω be the volume of each RVE in the ensemble, and 𝐹𝑘 be the 

ensemble survivability against the kth discrete STZ, namely, 𝐹𝑘 is the fraction of the RVEs in the 

ensemble in which the kth STZ has not yet occurred. Meanwhile, by considering the average 

microstructure in the RVE replicas, we define 𝑛𝑘 to be the density of potential sites (i.e. nuclei) 

from which the kth STZ can emerge, i.e. 𝑛𝑘 is the number of STZ nuclei per unit volume, averaged 

from all the RVEs in the ensemble. Supposing there are N RVEs in the ensemble, then, the number 

of RVEs that are potent to produce the kth STZ at a given time point at site i is (𝐹𝑘 − 𝐹𝑘−1)𝑁. 

Among these potent RVEs, by definition of 𝑛𝑘  above, the total number of STZ nuclei is 

𝑛𝑘 Ω (𝐹𝑘 − 𝐹𝑘−1)𝑁 at a given time instant. Operation of these STZ nuclei will lead to a reduction 

𝑑(𝐹𝑘𝑁) of the number of RVEs in which the kth event has not occurred; hence,  
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(𝐹𝑘 − 𝐹𝑘−1)
𝑑𝑛𝑘

𝑑𝐿
Ω = −

𝑑𝐹𝑘

𝑑𝐿
                                           (6) 

where L is a convenient load-path variable, such as time, or load in a load-controlled test. 

Specifically, 𝑑𝑛𝑘/𝑑𝐿 is the occurrence rate of the density of nuclei for the kth STZ with respect to 

the variable 𝐿; if 𝑑𝑛𝑘/𝑑𝐿 is constant with respect to 𝑘 or 𝐿 then the occurrence of the sequential 

STZs are independent, but if the occurrence of the current STZ is affected by past STZs or the 

load-path variable 𝐿, then  𝑑𝑛𝑘/𝑑𝐿 would change to reflect this. As is shown in the Appendix 2, 

the solution to eq. (6) is: 

𝐹𝑘(𝐿) = ∑ 𝐴𝑘,𝑗 exp[−𝑛𝑗(𝐿) Ω]𝑘
𝑗=1       (7a) 

where 𝐴1,1=1, and the other 𝐴𝑘,𝑗 are given recursively by  

𝐴𝑘,𝑗 =
𝑛𝑘

′

𝑛𝑘
′ −𝑛𝑗

′ 𝐴𝑘−1,𝑗, for all 𝑗 < 𝑘,𝑛𝑘
′ = 𝑑𝑛𝑘/𝑑𝐿, and  ∑ 𝐴𝑘,𝑗

𝑘
𝑗=1 = 1.                (7b) 

Next, we consider the likely form of the density of potential nuclei 𝑛𝑘. Quite generally, 𝑛𝑘 

may be written as: 

 𝑛𝑘(𝜎) = 𝑓𝑘(𝜎) exp[−(𝐸 − ∆𝐸)/𝑘𝐵𝑇]    (8a) 

where  𝑓𝑘(𝜎) is the dependence of 𝑛𝑘 on the externally applied stress 𝜎, 𝑘𝐵𝑇 is the thermal energy, 

𝐸 is the activation energy for STZ formation, and ∆𝐸 is the increase in potential energy due to the 

accumulated strain from the previously operated STZs. The history effect shown in Fig. 5(d,e) is 

one in which previously operated STZs in the RVE raise the strain energy so that the formation of 

a new STZ from the RVE is enhanced. Therefore, ∆𝐸 is expected to increase as more STZs have 

formed and operated in the RVE, i.e. ∆𝐸 should be proportional to (𝑘 − 1). Eqn. (8a) can therefore 

be rewritten as:  
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𝑛𝑘(𝜎) ∝ exp[𝛼1(𝑘 − 1)] 𝑓𝑘(𝜎)    (8b) 

where 𝛼1 is proportional to 1/𝑘𝐵𝑇. Furthermore, 𝑓𝑘(𝜎) may be assumed to be a power law 𝜎𝑚𝑘 

in which the stress exponent (or Weibull modulus) 𝑚𝑘  reflects the stress sensitivity of the 

operation of the kth STZ. To model the possible effect that structural change due to the previously 

operated STZs may have on the stress sensitivity of the generation of a new STZ, 𝑚𝑘 may increase 

or decrease as k increases, and a convenient form is   𝑚𝑘 ∝ exp[𝛼2(𝑘 − 1)] where 𝛼2 can be 

positive or negative. Thus, we study the following phenomenological law for the STZ nucleus 

density: 

𝑛𝑘(𝜎) = 𝜈𝑘 𝜎
𝑚𝑘                                                             (9) 

where  

𝜈𝑘 = 𝜈1 exp[𝛼1(𝑘 − 1)],                                                   (10) 

and 

  𝑚𝑘 = 𝑚1 exp[𝛼2(𝑘 − 1)]                                                  (11) 

Here, 𝜈1 and 𝑚1 are positive model parameters, and the other two model parameters 𝛼1 and 𝛼2 

control whether the nucleus density 𝑛𝑘 grows or decays on increasing STZ order 𝑘. This simple 

model enables us to understand strain localization, which is a condition for shear band formation 

leading to yield or even shear fracture. As shown in the example in Fig. 7(a), when 𝛼1, 𝛼2 > 0, 𝑛𝑘 

in eqn. (9) grows rapidly with 𝑘, and the 𝐹𝑘(𝜎) curves for successive 𝑘 values calculated from eqn. 

(7) converge to an asymptotic behavior. In this case, successive occurrence of STZs in the same 

RVE Ω  speeds up on increasing stress, and this may be regarded as the condition of shear 

localization that leads to a localized shear band. On the other hand, for 𝛼1, 𝛼2 < 0, the example in 
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Fig. 7(b) shows that the 𝐹𝑘(𝜎) curves do not converge on increasing 𝑘, meaning that, at the same 

location, successive occurrence of STZs does not accelerate or even slows down. In this case, 

strain will not be localized. Physically, the model parameters 𝛼1 and 𝛼2 describe whether, and how 

fast, new STZs emerge due to a history or memory effect in the BMG microstructure after old 

STZs have operated in the same location. If past shear events generate new STZs, then the 

emergence rate of STZs will increase with 𝑘, and this will be the case represented by 𝛼1, 𝛼2 > 0. 

This should be the condition for shear localization that leads to shear banding. Also shown in Fig. 

7(a) are the sum of the nucleus densities 𝑛 = ∑ 𝑛𝑗
𝑘
𝑗=1  and its emergence rate 𝑑𝑛/𝑑𝜎  in the 

asymptotic limit 𝑘 → ∞, after normalization by their maximum values. It can be seen that the 

emergence rate of STZ nuclei peaks at a stress of ~2GPa, which may be taken to be the average 

stress for shear band formation in this example. For stresses larger than this value, the survival 

probability drops to zero, and the nucleus density of STZs rises to a maximum, indicating the rapid 

acceleration of STZ emergence at high stresses. 

Specifically, in the assumed growth law for the STZ nuclei in eqn. (10) and (11), 𝛼1 reflects 

the interaction effects of nearby STZs (i.e. how the emergence of a new STZ is assisted by the 

stress field of a previous one nearby), 𝛼2  reflects effects on the stress sensitivity or Weibull 

modulus due to previous STZs nearby (i.e. how the stress sensitivity of the nucleation of a new 

STZ is correlated with previous ones). The coupling effects of the two parameters 𝛼1 and 𝛼2 on 

strain localization or shear band formation are shown as in Fig. 8. The stress 𝜎0.5 at which 𝐹𝑘(𝜎) 

= 0.5 for the kth STZ is recorded, then the slope of the 𝜎0.5 
vs k curve, i.e. 𝑑𝜎0.5 𝑑𝑘⁄ , is calculated 

and plotted. If 𝑑𝜎0.5 𝑑𝑘⁄  approaches zero, then the 𝐹𝑘(𝜎) curves finally converge at increasing k, 

implying the occurrence of shear localization; otherwise successive occurrence of STZs does not 
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accelerate or even slows down on increasing k. It can be seen that changes in 𝛼2  affect the 

occurrence of shear localization much more than changes in 𝛼1.    

What does the model tell – When the curves 𝐹𝑘(𝜎) converge as → ∞ , the value [1 − 𝐹∞(𝜎)] gives 

the fraction of the RVEs in the ensemble (i.e. the wire) that contain an infinite number of operated 

STZs and hence extreme straining, at different applied stress 𝜎. Thus, in the example of Fig. 7(a), 

at 𝜎 = 1 GPa about half of the ensemble RVEs should have no STZ operated (𝐹1 ≈ 0.5), about 

20% of the RVEs should have two or more STZs operated (𝐹2 ≈ 0.8), and only about 2% of the 

RVEs have extreme straining (𝐹∞ ≈ 0.98). Therefore, at 𝜎 = 1 GPa, although the wire should 

have yielded, the overall plastic strain should be very small and extreme straining has not yet 

occurred. It will be seen that at 𝜎 = 2 GPa, about 45% of the RVEs have extreme straining (𝐹∞ ≈

0.55), while ~40% of the RVEs have not had the 5th STZ emerged (𝐹5 ≈ 0.4) – this indicates 

exactly the situation of strain localization or shear banding, i.e. some locations in the sample have 

extreme straining while others have low strains. In the example of Fig. 7(a), the stress regime in 

which strain localization or shear banding occurs is approximately from 1.5 GPa to 2.5 GPa. At a 

much higher stress of 3 GPa, for example, nearly all of the RVEs have extreme straining (𝐹∞ ≈

0.03), and so straining becomes homogeneous again albeit extreme everywhere. However, shear 

fracture should have occurred beforehand in the stress window from ~1.5 GPa to 2.5 GPa where 

there is already a good chance that straining in some locations (RVEs) is already extreme. 

Shear fracture condition – Therefore, shear fracture of the macroscopic wire occurs when shear 

banding in some of the RVEs in the ensemble become extreme, thus reaching a critical condition 

of instability. The survivability for the specimen against this would be represented by the 𝐹∞(𝜎) 

curve for the average RVE in the ensemble. 
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First yield condition – As mentioned above, macroscopic yield of the wire at observable strain is 

not caused by the operation of the first STZ in the wire, but due to the operation of many isolated 

STZs in the wire, the average strain of which corresponds to the macroscopic proof strain. 

Therefore, assuming that all STZs produce the same shear, the condition of a given macroscopic 

proof strain would manifest itself as requiring an average RVE in the ensemble to have a certain 

number 𝑘Ω of STZs already operated, so that the 𝐹𝑘Ω
(𝜎) curve for the ensemble RVEs (of small 

volume Ω ) would represent the survivability 𝐹(𝜎)  of the macroscopic specimen against 

observable yield. As shown in Appendix 3, the number 𝑘Ω of STZs needed per RVE to produce a 

macroscopic proof strain 𝜀𝑦 is given by 

𝑘Ω  =  𝜀𝑦 (𝜆/𝑠)     (12) 

where 𝜆 is the length of each RVE, and 𝑠 is the shear displacement produced by each STZ. 

 

5. Reconciliation of MD and Experimental Results 

MD results – Next, we use eqn. (7) to analyze the survival probabilities 𝐹𝑘 calculated from the MD 

simulation results, in order to verify the reasonableness of the phenomenological growth law for 

the 𝑛𝑘 in eqns. (9-11). To do this, the cuboid glassy simulation block was divided into 20 adjoining 

but non-overlapping RVEs, as shown in Fig. 9(a). Then, the stresses 𝜎 at which successive STZs 

occur in each RVE were recorded from a sequence of simulation snapshots. In order to increase 

the number of data for better statistical accuracy, the simulation was re-run with another randomly 

generated glassy block of the same dimensions and loading conditions, and the results were merged 

with the first set of simulation to obtain an ensemble of 40 RVE replicas. Amongst the 40 RVEs, 

the occurrence stresses 𝜎𝑘 for the kth STZ were ranked, and the survival probability was calculated 
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as 𝐹𝑘(𝜎𝑘) = 1 − 𝑖 (𝑁 + 1)⁄ , where N = 40 is the total number of RVEs, and i is the rank of each 

𝜎𝑘  in ascending order in the ensemble. The discrete data points in Fig. 9(b) show the 

calculated 𝐹𝑘(𝜎) – it can be seen that, on increasing STZ order k, the 𝐹𝑘 curves quickly approach 

an asymptotic state. This means that, as the applied stress is increased, the emergence and operation 

of successive STZs within a RVE speeds up quickly, thus indicating a strain localization behavior 

similar to Fig. 7(a). The model constitutive law in eqns. (9) to (11) can now be used to reconcile 

the MD results in Fig. 9(b). With such a law for 𝑛𝑘, the 𝐹𝑘(𝜎) relations calculated from eqn. (7) 

are plotted in Fig. 9(b) as smooth curves. It can be seen that, by choosing 𝛼1 = 0, 𝛼2 = 0.00275, 

the predictions from eqn. (7) match the MD results rather well, thus showing the validity of eqns. 

(9-11) as a phenomenological law for 𝑛𝑘.      

Experimental results – Next, we employ the above model to reconcile the experimental results in 

Fig. 4. Before this can be done, a reasonable value for the representative volume Ω needs to be 

assigned. As discussed in Section 3 above, the Ω in eqn. (7) should be the volume occupied by an 

eventual shear band that runs through the specimen thickness, plus some of its neighborhood, and 

since a shear band is likely to incline at 45̊ from the wire axis, Ω should be approximately a 

segment of the wire with length equal to the wire diameter. Moreover, according to the SEM 

observations in Fig. 2, shear bands are often intensively concentrated within segments of the BMG 

wires that are 50 μm long, regardless of the total gage length of the microwires. The length of 50 

μm here is also close to the diameter (~45 µm) of the micro-wires. Hence, the magnitude Ω of the 

RVE is taken to be that of wire cylinder of length 45μm, i.e. Ω = 71.6 × 103 μm3.  

When using the survival probability curves 𝐹𝑘(𝜎) from eqns. (7) to (11) to predict the 

experimental data of the Cu48Zr48Al4 MG microwires, a caveat here is that for the first yield 

noticeable experimentally, the average quantity of STZs already operated in an RVE volume Ω in 
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the sample is not known precisely, since yielding is a gradual process and the number of STZs 

operated should depend on the proof strain that is noticeable. However, yielding in metallic glasses 

should be just before shear banding, while fracture should be the state where shear banding is 

intense (Greer et al., 2013). Therefore, the process from the emergence of the first few STZs in an 

average RVE in the ensemble (e.g. snapshot 1 in Fig. 5(b)), to the clear-cut formation of shear 

banding (e.g. snapshot 7 in Fig. 5(b)), may be taken to represent the strain path from first yield to 

fracture. For a given macroscopic proof strain 𝜀𝑦, the number 𝑘Ω of STZs needed in an average 

RVE is given by eqn. (12) (see Appendix 3). Fig. 1 indicates that for the present microwire samples, 

the proof strain at noticeable yield should be on the order of 𝜀𝑦 ~ 0.001. As stated above, the 

length 𝜆 of each RVE is close to the wire diameter which is ~ 45 µm. Considering that the shear 

displacement 𝑠 of each STZ is likely to be on the order of a few nm’s, the 𝑘Ω estimated from eqn. 

(12) is on the order of 10. Also, as discussed above, the survivability of the sample against fracture 

should be represented by the 𝐹∞(𝜎) curve for the average RVE in the ensemble. Fig. 10(a-c) show 

the predicted 𝐹𝑘(𝜎) curves on increasing event order k obtained from eqns. (7) to (11) for a set of 

model parameters, alongside with the experimental data for the survivability against first yield and 

fracture for the present Cu48Zr48Al4 MG microwires shown in Fig. 4. It can be seen that the model 

parameters are chosen such that the 𝐹∞(𝜎) curve matches the experimental fracture data, whereas 

the 𝐹10(𝜎) curve matches the experimental first yield data. Here, the value of 10 for 𝑘Ω here is 

only an order-of-magnitude estimate, but one can see that the model can capture the transition from 

first yield to fracture in at least an indicative way.   

 

6. Discussion 
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The major significance of the present work falls in the following three aspects: 

(i) MD simulations elucidate clearly how shear bands are formed from the correlated operation 

of STZs. Although glass plasticity is widely believed to take place via STZs, STZs are 

atomic-scale clusters and how they lead to microscopic shear banding remains poorly 

understood. The present MD simulations in Figs. 5 and 7 show, for the first time, that shear 

bands are formed from the correlated emergence and operation of STZs in a cascade manner. 

Before the occurrence of shear banding (e.g. snapshots 1 to 2 in Fig. 5(b)), the glassy 

plasticity is due to the uncorrelated emergence and operation of isolated STZs in the sample, 

and such a deformation mode is homogeneous without strain localization. Then, due to a 

history effect where new STZs preferentially emerge in the high stress regions close to 

previously operated STZs (Fig. 5(e)), the emergence of STZs becomes correlated in both 

the time and space domains (Fig. 5(d)).     

(ii) A novel statistical-ensemble model (eqns. 6-7) was constructed to describe the stochastic 

nature of shear banding in glasses, as described in Section 4. This model is based on 

statistical mechanics consideration of an ensemble of micro-scale RVEs which are potent 

to undergo shear banding. The input to this model is a growth law for the STZ nuclei density 

along the strain path (eqns. 9-11), and the model predicts whether shear localization will 

occur (Fig. 8), and if it does, the occurrence probability (Fig. 7(a), as an example). By 

choosing suitable parameters for the growth law, the model can capture the MD and 

experimental results well (Figs. 9(b) and 10). In particular, the model can describe the 

history effect in (i) above, namely, the notion that previous operated STZs trigger the 

occurrence of new STZs nearby is described by an accelerated growth law for the STZ 

nuclei density illustrated in eqns. (9-11) and Fig. 8. The severity of the history effect, which 
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dictates the potential of the glass to undergo shear banding, is represented mainly by the 

parameter 𝛼2 (Fig. 8) which reflects how rapidly the stress sensitivity of STZ nucleation 

(𝑚𝑘) grows due to the operation of past STZs nearby (eqns. 9 and 11). Although the growth 

law in eqns. (9-11) is phenomenological, it provides the first mathematical description for 

the intrinsic process of shear banding in glasses from correlated STZ generation. 

(iii) The present experimental results in Figs. 1, 3 and 4 show clearly the length independence 

of strength of the glass wires studied. While this may be counter-intuitive for some readers, 

to the best knowledge of the present authors there has not been any report proving that glass 

microwires exhibit an obvious length dependence on strength. On the contrary, Pardini and 

Manhani (Pardini and Manhani, 2002) tested carbon and glass fibers and reported strength 

data that do not vary with the fiber length in a statistically significant way. Furthermore, 

their ln ln(1/𝐹) vs ln 𝜎𝑓 plots also collapse into straight-line trends regardless of the fiber 

length, in a similar way as Fig. 4 and according to eqn. (2). For high-quality fibers, that 

strength should be independent of length is in fact well expected from the discussion in 

Section 3, namely, that yield or fracture is controlled by the average or extreme behavior of 

many simultaneous STZs or shear bands in different locations in the wire. The nuclei or 

volume elements that are pertinent to their emergence are small and isolated, and they form 

a statistical ensemble in thermo-mechanical equilibrium. It is then a simple fact in statistical 

mechanics that the size of the ensemble, which is the volume of the wire, does not affect the 

distribution, or average or extreme behavior in the ensemble.  

 

While the present MD simulations in Fig. 5 elucidate the process of shear banding, it is 

also important to realize their limitations. It can be noted that the Weibull modulus 𝑚1 from the 
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MD simulations in Fig. 9(b) is ~27.98, while that for first yield in the experiments ranges from 

2.17 to 2.52 in Fig. 4. In fact, the RVE of Ω = 71.6 × 103 μm3 in the real experiments is around 

~1011 times of that in MD simulations, and the deformation time scale is also many magnitudes 

longer, thus the MD simulated glassy structures should be much less varying than the real 

experimental samples. A more monolithic ensemble should have a larger Weibull modulus and 

this should explain the discrepancy between the MD and experimental values. Noteworthily, 

Weibull moduli much larger than the present were reported in some previous experiments (Neilson 

et al., 2015; Wu et al., 2010; Zhang et al., 2016). However, in such experiments, tensile samples 

which failed at the gripped points were not excluded from the analysis, or compressive loading 

was used which suppressed the propagation of stick-slip shear bands in MG specimens. In the 

present experiments, as stated in Section 2, those tensile micro-wire specimens that broke at the 

gripped ends were excluded from the analysis, and so it is reasonable for the Weibull modulus to 

be lower; in fact the present Weibull moduli should reflect the intrinsic behavior of the materials 

rather than effects due to stress concentration at the gripped ends. 

Finally, a note on the effects of cross-sectional areas of the experimental micro-wires is 

also necessary. As stated in Section 2 above, the micro-wires used in the present experiments were 

very uniform in cross-section to begin with, and wires with non-uniform cross sections were 

discarded. In Fig. 4, the Weibull model is applied to both the first-yield and fracture strength. Up 

to the first-yield strength, the deformation is elastic and uniform, and so Weibull modelling should 

be very valid. For the fracture, somewhere the cross-section will be reduced when slip bands have 

occurred, although for places without slip bands the cross section did not change significantly, as 

observed in Fig. 2(c). Such local cross-sectional area changes are not explicitly modelled in the 

Weibull model. However, in the MD simulations in Figs. 5 and 9, the RVEs are arranged 
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periodically, so there are no free surfaces or any local cross-sectional area changes. Fig. 9(b) still 

shows that the MD simulated results also exhibit accelerated and correlated STZ occurrence that 

agrees well with predictions from the Weibull model. In a real micro-wire undergoing shear 

localization, additional complications would arise due to the cross-sectional area reductions locally, 

but when this happens, one can just expect the acceleration of the correlated STZ emergence, and 

hence the localized shear, to be even faster. The main physics unveiled here is still the correlated 

STZs and their accelerated occurrence, while the local areal changes towards the fracture are 

relatively unimportantly conceptually.    

 

7. Conclusion 

To conclude, a stochastic model was proposed to describe strain localization leading to 

shear fracture in BMGs. The model predicts that, if the intrinsic emergence rate of the shear 

transformation zones grows along the strain path, then the successive occurrence of discrete shear 

events speeds up rapidly leading to shear localization in the form of a shear band. MD simulations 

indicated strong correlation of the occurrence of discrete shear events and their exponential growth 

along the strain path. The model gives predictions that agree well with experimental results from 

three kinds of Cu/Zr-based BMG microwires. 
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Appendix 1 – Glossary of Terms 

BMG – bulk metallic glass 

MG – metallic glass 

PBC – periodic boundary conditions 

RVE – representative volume element 

STZ – shear transformation zone 

𝐹 – survival probability (dimensionless) 

𝐹𝑘 – ensemble survivability against the emergence of the kth STZ, i.e. fraction of ensemble replicas 

in which the kth STZ has not yet occurred (dimensionless) 

𝑘Ω – number of STZs operated in an RVE needed to produce macroscopic yielding  

L – a variable along the strain path  

𝑚 – Weibull modulus (dimensionless) 

𝑚𝑘 – stress sensitivity of STZ nuclei density 𝑛𝑘; a model parameter in eqns. (9, 11) 

N – number of replicas in ensemble (ensemble size); number of samples tested 

𝑛𝑘 – density of nuclei for the kth STZ, i.e. number of STZ nuclei per unit volume, averaged from 

all the RVEs in the ensemble 

𝑝 – joint probability density of the spatial and temporal separation of the occurrence of two STZs  

𝑟𝑖⃗⃗  – position of the ith STZ  

∆𝑟𝑖𝑗 – distance between the ith STZ and the jth STZ (nm) 
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𝑠 – shear displacement of each STZ (nm) 

𝑡𝑖 – time at which the ith STZ occurs (ps) 

∆𝑡𝑖𝑗 – difference in occurrence times of the ith STZ and the jth STZ (ps) 

𝑉 – volume of specimen (mm3) 

𝛼1, 𝛼2 – model parameters in eqns. (9-11) 

  – strain (dimensionless) 

𝜀𝑦 – macroscopic proof strain (dimensionless) 

𝜆 – length of RVE (m) 

𝜈𝑘 – model parameter in eqns. (9, 10) 

𝜎 – tensile stress (MPa) 

𝜎0 – normalizing constant of stress unit in Weibull formula (MPa) 

𝜎𝑓 – fracture stress (MPa) 

𝜎𝑦 – yield stress (MPa) 

Ω – volume of RVE (m3) 
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Appendix 2 – Proof of eqn. (7a,b) 

Eqn. (6) reads 

𝑑𝐹𝑘

𝑑𝐿
+ 𝐹𝑘  (𝑛𝑘

′ Ω) = 𝐹𝑘−1(𝑛𝑘
′ Ω)                          (A1) 

where 𝑛𝑘
′ = 𝑑𝑛𝑘/𝑑𝐿. This equation can be solved recursively. For 𝑘 = 1, the 𝐹𝑘−1 = 𝐹0 on the 

right side is zero, and so the solution to eq. (A1) is 𝐹1(𝐿) = exp[−𝑛1(𝐿)Ω], which satisfies the 

form in eqn. (7a, b) in the main text. Next, we show eqn. (7) by induction. Given eqn. (7) is correct 

for 𝑘 − 1, we prove that it is also correct for 𝑘. We therefore seek a particular solution to  

𝑑𝐹𝑘

𝑑𝐿
+ 𝐹𝑘  (𝑛𝑘

′ Ω) = (𝑛𝑘
′ Ω)∑ 𝐴𝑘−1,𝑗 exp[−𝑛𝑗(𝐿) Ω]𝑘−1

𝑗=1    (A2) 

To satisfy the right side, the particular solution to eqn. (A2) has to take the form  

𝐹𝑘(particular) = ∑ 𝐴𝑘,𝑗 exp[−𝑛𝑗(𝐿) Ω]𝑘−1
𝑗=1           (A3) 

where 𝐴𝑘,𝑗, 𝑗 = 1, 2, … , 𝑘 − 1, are new constants to be found. Substituting eqn. (A3) into eqn. (A2), 

we find 

𝐴𝑘,𝑗 =
𝑛𝑘

′

𝑛𝑘
′ −𝑛𝑗

′ 𝐴𝑘−1,𝑗                            (A4) 

so that the first condition in eqn. (7b) in the main text is verified for the case of 𝑘. Furthermore, 

the homogeneous solution to eqn. (A2) is   

𝐹𝑘(homogeneous) = 𝐴𝑘,𝑘 exp[−𝑛𝑘(𝐿) Ω]          (A5) 

where 𝐴𝑘,𝑘 is a constant to be found. The full solution for 𝐹𝑘 is therefore 

 𝐹𝑘 = 𝐹𝑘(particular) + 𝐹𝑘(homogeneous) = ∑ 𝐴𝑘,𝑗 exp[−𝑛𝑗(𝐿) Ω]𝑘
𝑗=1           (A6) 
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which is the form in eqn. (7a). Moreover, by the conditions 𝐹𝑘(𝐿 = 0) = 1 and 𝑛𝑗(𝐿 = 0) = 0, 

we have ∑ 𝐴𝑘,𝑗
𝑘
𝑗=1 = 1 which allows the last constant 𝐴𝑘,𝑘 to be found, given the other 𝐴𝑘,𝑗 terms 

are known from eqn. (A4). Also, the second equation in eqn. (7b) in the main text is also verified 

for the case of 𝑘. 

 

Appendix 3 – Eqn. (12) 

The number 𝑘Ω of STZs needed in each RVE to produce a macroscopic proof strain 𝜀𝑦 is estimated 

here. Assume that the shear displacements of the operated STZs add up to produce the overall 

elongation of the sample: 

𝑘𝑉  𝑠 =  𝜀𝑦 (V/A)     (A7) 

where 𝑘𝑉 is the total number of STZs already operated in the macroscopic sample (of volume 𝑉, 

and cross-sectional area A), 𝑠 is the shear displacement of each STZ, 𝜀𝑦 is the macroscopic proof 

strain, and V/A  is the length of the macroscopic sample. Suppose the STZs are rather 

homogeneously distributed, then 𝑘𝑉/𝑉 = 𝑘Ω/Ω, and so eqn. (A7) becomes eqn. (12), in which 

𝜆 =  Ω/A is the length of each of the RVEs, which are stacked together along the axis of the wire 

sample as shown in Fig. 6. 
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Figure 1. Typical strain-stress curves for (a) Cu46.5Zr46.5Al7, (b) Cu48Zr48Al4 and (c) 

Cu47.5Zr48Al4Nb0.5 microwires in tension. The incipient yielding point of shear band is indicated 

by black-color arrows.  
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Figure 2. Typical SEM images of Cu48Zr48Al4 with gauge lengths of (a) 12mm (b) 30mm and (c) 

60mm after deformation. The occurrence of shear bands is marked by red arrows.  
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Figure 3. Weibull plots for first-yield and fracture strength of tested BMG microwires grouped 

according to their lengths: (a, b) Cu46.5Zr46.5Al7, (c, d) Cu48Zr48Al4 and (e,f ) Cu47.5Zr48Al4Nb0.5. In 

(a, c, e), V is the volume of the micro-wire gauge length, which is proportional to the wire length 

as all wires have a common diameter of ~45m.  

  



41 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Weibull plots for first-yield and fracture strength of tested BMG microwires without 

referencing to their lengths: (a) Cu46.5Zr46.5Al7, (b) Cu48Zr48Al4 and (c) Cu47.5Zr48Al4Nb0.5.   
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Figure 5. (a) MD simulated stress-strain behavior, showing noticeable yielding at overall strain of 

~0.027, at which atomic-sized shear transformation zones (STZs) (marked as green) have appeared 

sporadically at many sites scattered throughout the sample. (b) Simulation snapshots showing 

formation of shear bands running across the thickness of the sample at ~ 45°, from sequential 

formation of nearby STZs (marked as green). The discrete STZs are identified as atomic sites 

around which the accumulative shear strains are over 0.2. As shown in the red-framed region, at 

sufficiently large straining, such discrete STZs occur preferentially very close to one another 

(space- and time-wise), and their coalescence forms a microscopic shear band. (c, d) Joint 

probability density function 𝑝(∆𝑟, ∆𝑡) of the spatial and temporal separation of the occurrence of 

two STZs from the MD simulation data, (c) from zero strain to the noticeable yield point at ε = 

0.027, and (d) from the noticeable yield point to strain ε = 0.076 at which clear shear banding 

occurs. (e) Correlated emergence of STZs within the red box region Ω from snapshots 3 to 5 in 

(b), with overall strain ~0.072, ~0.075 and ~0.078 respectively, during shear banding. At each 

overall strain, the atomic positions with local accumulative strains over 0.2 are shown in the middle 

panel to indicate the STZs operated, and the right panel shows the positions of atoms with potential 

energy increments ΔE (relative to the load-free state) larger than 0.25eV. The blue boxes mark 

regions where ΔE is high due to proximity to operated STZs, and the blue arrows show that in the 

next strain increment, new STZs emerge from these high-energy regions.   
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Figure 6. Schematic of the model for shear banding. Different wires are subjected to testing under 

the same macroscopic conditions. Along each wire, RVEs are stacked in series. In this example, 2 

wires each containing 5 RVEs form an ensemble of N = 10 RVEs under the same macroscopic 

conditions. Emergence of STZs in the RVEs may not be synchronized due to their different internal 

structures.   
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Figure 7. Examples predicted from eqns. (7) and (9) when (a)  𝛼1, 𝛼2 > 0 and (b) 𝛼1, 𝛼2 < 0 

respectively. Parameters 𝑚1 = 2.0, 𝑣1 = 0.01 𝑀𝑃𝑎−2 and Ω = 71.6 × 103 μm3 are used in both 

cases. In (a), the sum of the nucleus densities 𝑛 = ∑ 𝑛𝑗
𝑘
𝑗=1  and its emergence rate 𝑑𝑛/𝑑𝜎 in the 

asymptotic limit 𝑘 → ∞ are shown, after normalization by their maximum values in the range. 
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Figure 8. Factor α1-α2 mapping effect on strain localization (shear band formation) of BMG 

microwires. Parameters 𝑚1 = 2.0, 𝑣1 = 0.01 𝑀𝑃𝑎−2 and Ω = 71.6 × 103 μm3 are applied.  
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Figure 9. (a) Scheme of definition for representative volume element (RVE) belonging to a single 

BMG sample in MD simulation. A single glassy sample is divided into 20 adjacent but non-

overlapping RVEs. (b) Computed 𝐹(𝜎) curves plots through eqns. (4) with 𝛼1 = 0, 𝛼2 = 0.00275. 

The square symbol stands for the survival probability of shear events obtained through RVEs in 

order.   
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Figure 10. (a)-(c) Computed 𝐹(𝜎) plots from eqns. (4) and (6) for the tested BMG microwires 

with parameters (a)  𝛼1 = 0.0805, 𝛼2 = 0.000625 , (b)  𝛼1 = 0.0795, 𝛼2 = 0.000635  and 

(c) 𝛼1 = 0.067, 𝛼2 = 0.000575, are used respectively.  

 


