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Strategies have emerged over the past decade to enable the direct functionalization of the remote and
inert b-CAH bonds of carbonyl compounds. Based on these strategies, a wide collection of novel b-CAC
bond formation transformations have been developed, including arylation, alkylation, alkenylation, alk-
ynylation, and carbonylation. This review summarizes these recent methods for CAC bond formations
via direct b-CAH functionalization of carbonyl compounds. The scope and limitation of each strategy
are also discussed.
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Introduction

Functionalization of carbonyl compounds represents a corner-
stone of organic chemistry. The inherent electrophilicity of the car-
bonyl group and acidity of the a-CAH bond provide convenient
handles for the installation of various functional groups at the ipso
and a-position of carbonyl compounds, respectively. However, the
b-CAH bond is usually considered inert and thus less facile to func-
tionalize directly. On the other hand, such b-substituted motifs are
frequently found in a wide array of bioactive compounds, including
pesticides, anti-oxidants, and drug candidates.1 Traditionally,
functionalization of the b-position is often accomplished
with conjugate addition of nucleophiles to the corresponding
a,b-unsaturated carbonyl compounds (Scheme 1).2 However, a,b-
unsaturated carbonyl compounds are often prepared from their
saturated derivatives using stoichiometric oxidants.3 Thus, direct
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methods to convert the b-CAH bond to the desired functional
group would considerably increase the efficiency of preparing b-
substituted carbonyl compounds. During the last decade, signifi-
cant efforts have been devoted toward direct b-CAH functionaliza-
tion of carbonyl compounds. In this digest, we primarily focus on
discussing the transformations that directly replace a b-CAH bond
of carbonyl compounds with a CAC bond. While not intended to
comprehensively cover all literature references, it rather offers a
perspective on strategy design and discovery through selected
examples to highlight representative reaction types.

Cyclometallation via directing groups

Directing-group strategies have been widely applied in transi-
tion-metal-mediated site-selective CAH activation, through which
a significant number of catalytic transformations have been devel-
oped. Nevertheless, compared with sp2 CAH bonds, the sp3-hybrid-
ized b-CAH bond of carbonyl compounds is less prone to be
cleaved by transition metals from both kinetic and thermodynamic
prospectives,4 which presents a significant challenge for design
and development of new directing groups.

General mechanisms

Regarding the mechanism of these cyclometallation-type trans-
formations, two general classes can be imagined based on the cou-
pling partners employed. When an electrophile, such as an aryl
halide, is involved, a typical reaction pathway proceeds through a
selective metallation at the b-position assisted by the directing
group, followed by oxidative addition of the electrophile to the
metal giving intermediate 1 (Scheme 2, pathway A). It is also pos-
sible that the CAH metallation and oxidative addition occur in a
reverse order (pathway B). Under either pathway, reductive elimi-
nation of intermediate 1 delivers the b-functionalization product
and restores the active catalyst.
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When an organometallic reagent (i.e., arylboronic acids) is used,
the coupling proceeds through a different mechanism (Scheme 3).
After the CAH metallation step, transmetallation between the
organometallic reagent and intermediate 2 installs the functional
group on the metal center while the oxidation state of the metal
remains unchanged. Subsequent reductive elimination affords the
product, and oxidation of the reduced catalyst (4) by an external
oxidant regenerates the catalyst.

According to the types of the directing groups employed, the
b-functionalization through cyclometallation can be classified into
two categories: type A is with strong bidentate directing groups;
type B is with weaker coordinating directing groups.

Type A: Bidentate directing group

Arylation

In 2005, Daugulis and co-workers disclosed a palladium-cata-
lyzed b-arylation of amides using 8-aminoquinoline (AQ) as a
directing group (Scheme 4).5 In their proposed intermediate, the
8-aminoquinoline auxiliary provides an L-type (quinoline) and an
X-type (amide) ligand to chelate with palladium in a bidentate fash-
ion. The 5–5 fused palladacycle 5 was formed after the selective pal-
ladation of the b-CAH bond. Methyl, methylene, and benzylic CAH
bonds b to the carbonyl can be arylated selectively with aryl iodides
as the aryl source under neat conditions. Silver salts are likely used
as an iodide scavenger. When activating a methyl group, the aryla-
tion occurred twice to give diarylation products.

Soon after the seminal work by Daugulis, Corey and co-workers
successfully applied this strategy to prepare non-natural amino
acids (Scheme 5).6 With the 8-aminoquinoline moiety as the
directing group, N-phthaloyl valine and phenylalanine derivatives
underwent diastereoselective b-arylation through coupling with
a range of aryl iodides. The diastereoselectivity could be explained
by the formation of a less sterically hindered trans-palladacycle (7).
When alanine derivative 6 was submitted to the reaction condi-
tions, a diarylation product was selectively formed, which is con-
sistent with the observation by Daugulis.5

Daugulis and co-workers subsequently discovered that the use
of silver salts and neat conditions can be avoided by using a com-
bination of main-group inorganic salts and alcoholic solvents
(Scheme 6).7 In addition, while the diarylation product dominates
when 8-aminoquinoline was used as the directing group,
2-methylthio aniline was found to afford selective monoarylation
of primary b-CAH bonds. This new directing group also works for
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a secondary benzylic CAH bond albeit with a moderate yield when
a catalytic amount of pivalic acid was employed as a proton shut-
tle. In contrast, the 8-aminoquinoline directing group is more effi-
cient for secondary CAH bonds; a number of cyclic and acyclic
methylene b-CAH bonds can be arylated in good yields. Notably,
Daugulis and co-workers later demonstrated that these comple-
mentary reaction conditions could also be nicely applied to the
syntheses of non-natural amino acids via diastereoselective b-
CAH arylation of N-protected amino acid derivatives.8

Recently, Chen and co-workers reported a mono-selective b-
arylation of N-phthaloyl alanine derivatives using 8-aminoquino-
line as the directing group (Scheme 7).9 With the assistance of
the trifluoroacetate anion, the b-arylation reaction proceeded
under room temperature to afford the monoarylation product in
a high selectivity. The authors also demonstrated that the mono-
arylation products could be further arylated, alkylated, or amidated
at the b-position using the same directing group under different
reaction conditions.

A strategy to synthesize chiral a-amino-b-lactams was devel-
oped by Shi and co-workers using a palladium-catalyzed monoary-
lation/amidation sequence with 2-(pyridine-2-yl)isopropyl (PIP) as
the auxiliary (Scheme 8).10 The PIP directing group is critical for the
success of the sequence, because first it displays a high selectivity
for the monoarylation step (mono/di > 25:1) and second it is robust
enough to survive during the subsequent oxidative amidation step.

Chen and co-workers developed the first intramolecular version
of the b-arylation reaction to construct benzannulated rings in a
rapid fashion using 8-aminoquinoline as the directing group
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(Scheme 9).11,12 Through the selective intramolecular coupling of
aryl iodides and b-methylene CAH bonds, benzannulated products
with different ring sizes were prepared, bearing ether, amine, or
amide linkages. The ortho-phenyl benzoic acid (o-PBA) ligand 8
was found to enhance the overall efficiency, which was proposed
to facilitate the oxidative addition of aryl iodides.

Besides using aryl iodides, Zeng and co-workers demonstrated
that less reactive aryl bromides are also suitable aryl sources for
the palladium-catalyzed b-arylation reactions (Scheme 10, Eq.
1).13 8-Aminoquinoline was employed as the directing group. Use
of potassium carbonate as the base and pivalic acid as the additive
was shown to be critical for the high efficiency. Diaryliodonium
salts can be used as an alternative aryl source, reported by Shi
and co-workers (Eq. 2).14 In this case, the NHC-ligated
Pd(SIMes)(OAc)2 [SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidaz-
ole-2-ylidane)] complex was employed as the catalyst and only a
slight excess of diaryliodonium salt was required, which is a nota-
ble difference from the reactions with aryl halides.

The 8-aminoquinoline auxiliary later proved to be a versatile
directing group and readily applicable to CAH activation reactions
catalyzed by metals other than palladium. An iron-catalyzed ver-
sion of the b-arylation reaction was developed by Ilies, Nakamura
and co-workers in 2013 (Scheme 11).15 The iron-catalyzed aryla-
tion utilized in situ generated diarylzinc reagents as the aryl
source, 1,2-dichloroisobutane (DCIB) as a terminal oxidant, and
additional Grignard reagent to deprotonate the amides. A trans-
metallation-based mechanism was proposed (vide supra,
Scheme 3). A high selectivity for methyl over benzylic CAH bonds
was observed without ‘over arylation’ of methyl groups, which is
distinct from the palladium-catalyzed reactions. In 2014, Acker-
mann and co-workers demonstrated the iron-catalyzed b-arylation
can be carried out using triazolyldimethylmethyl (TAM) as the
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directing group,16 which can be easily accessed via click cyclization
(Scheme 12).17

Recently, a nickel-catalyzed b-arylation of amides was reported
by the Chatani group using 8-aminoquinoline as the directing
group (Scheme 13, Eq. 3).18 A wide spectrum of sensitive functional
groups were tolerated under the reaction conditions, including
amines, iodides, indoles, and thiophenes, although substrates with
a-protons gave lower yields (or no reaction). Shortly after Chatani’s
work, You and co-workers developed an analogous arylation reac-
tion using aryl bromides as the coupling partner. With You’s
method, activation of the methyl group gave monoarylation prod-
ucts (Eq. 4).19

Alkylation

Compared to the arylation reactions, b-alkylation of carbonyl
compounds with alkyl halides has been largely underdeveloped.
The challenge to realize the b-alkylation stems from the sluggish
oxidative addition of alkyl halides and alkyl–alkyl reductive elimi-
nation, as well as potential side reactions of alkyl halides, including
decomposition and esterification with carboxylate or carbonate
bases.

Use of 8-aminoquinoline directing group to facilitate the b-
alkylation reaction was first demonstrated by Shabashov and Dau-
gulis in 2010 (Scheme 14, Eq. 5).7 The palladium-catalyzed cou-
pling of the b-methyl CAH bond of propionic amide and i-butyl
or n-octyl iodide was successful with K2CO3 as the base and a cat-
alytic amount of pivalic acid. An example of an intramolecular
alkylation of a more challenging b-methylene CAH bond was
achieved by Chen and co-workers (Eq. 6).12
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Scheme 14. Early examples of b-alkylation reaction.
A general solution to the challenging b-alkylation of methylene
groups was independently provided by the Chen and Shi groups in
2013 (Scheme 15).20,21 A wide range of methylene groups, cyclic or
acyclic, were alkylated using a-iodoacetate, methyl iodide, or ethyl
iodide. The combination of Ag2CO3 and (BnO)2PO2H, which was
first introduced by Chen, appeared to be the key for the success.
When alkylating a methyl CAH bond, Shi and co-workers were able
to expand the alkyl-halide scope to alkyl iodides or bromides that
contain various sensitive functional groups including alkenes,
esters, and acetals.21 Reactions with secondary alkyl iodides did
not proceed under either Chen or Shi’s conditions.

Recently, Ge and co-workers reported that b-alkylation can also
be achieved via nickel catalysis using 8-aminoquinoline as the
directing group (Scheme 16).22 A tertiary a-carbon is necessary
for the amide substrates to be arylated. Activation of methyl
groups tends to be more favorable than methylene groups. It was
found that the reaction was sensitive to the sterics of the alkyl
halides, as isobutyl iodide and secondary halides did not give any
alkylation product. Addition of TEMPO suppressed the reaction
and a TEMPO/alkyl adduct (9) was also isolated along with the
desired product. Therefore, a Ni(II)/Ni(III) catalytic cycle involving
alkyl radicals was proposed by the authors for this reaction.

Alkynylation

A palladium-catalyzed b-alkynylation reaction with the 8-ami-
noquinoline directing group was published by Tobisu, Chatani,
and co-workers in 2011 (Scheme 17).23 Bromotriisopropylsilyl-
acetylene was used as the alkyne source. Interestingly, while sec-
ondary CAH bonds reacted effectively under the reaction
conditions, reactions with methyl CAH bonds only gave a trace
amount of product (10). This method offered a straightforward
and site-selective approach to install alkyne motifs onto the
carboxylic derivatives.

Carbonylation

The Chatani group also published a ruthenium-catalyzed b-car-
bonylation reaction directed by a 2-pyridylmethylamine auxiliary
(Scheme 18).24 A range of succinimide derivatives were formed
using this approach. The reaction was proposed to go through a
sequence of b-CAH activation, CO migratory insertion, and CAN
reductive elimination. In the proposed catalytic cycle, ethylene
serves as the H2 acceptor, and water reacts with complex 13 (the
resting state of the catalyst) to generate active species 14.
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Application in total synthesis

When applied in a much more complex setting, the bidentate
directing-group strategy still proved to be versatile and reliable.
The first total synthesis using this transition-metal-catalyzed
direct b-CAH functionalization was reported by Feng and Chen in
2010 (Scheme 19).25 In the synthesis of the bicyclic peptide natural
product, celogentin C, 8-aminoquinoline was used as the directing
group in the palladium-catalyzed b-arylation reaction to construct
the key CAC bond between the Leu Cb and Trp C6 position. This
b-arylation reaction proceeded smoothly to give the coupling
product on a multi-gram scale with complete diastereoselectivity.

Similar CAH functionalization strategies were utilized by Baran
and co-workers in construction of the unsymmetrical cyclobutane
cores of piperarborenines (Scheme 20).26 Cyclobutane 15 contain-
ing a 2-methylthio aniline directing group underwent efficient b-
arylation with 3,4,5-trimethoxyliodobenzene under the optimized
conditions. Bis-arylation on both methylene groups was not
observed presumably due to the sterically hindered all-cis orienta-
tion of the tri-substituted cyclobutanes 16. Different epimerization
conditions were then applied to invert either the ester or amide
stereocenter on the cyclobutane ring to afford diastereoisomers
17 and 18. With reduced steric hindrance, the second arylations
with 3,4-dimethoxyiodobenzene proceeded smoothly to give
tetra-substituted cyclobutane core structures 19 and 20, which,
upon further modifications, led to piperarborenine B and the pro-
posed structure of piperarborenine D, respectively. Later, the same
group applied this CAH functionalization logic to the synthesis of
the proposed structure of pipercyclobutanamide A, where a CAH
arylation/olefination sequence was accomplished (Scheme 21).27

Recently, Ting and Maimone reported a concise synthesis of
aryltetralin lignan podophyllotoxin via a palladium-catalyzed
b-CAH arylation reaction (Scheme 22).28 The major competing
reaction of the arylation step was the b-lactam formation through
a CAN bond reductive elimination. The authors discovered that the
conformation of the rigid polycyclic system was important to con-
trol the selectivity between the CAC bond formation and CAN
bond formation.
Type B: Weaker coordinating directing group

The use of weaker coordinating non-pyridine-type directing
groups in the b-C(sp3)AH functionalization of carbonyl compounds
was pioneered by Yu and co-workers.29 Compared to bidentate
directing groups, such as 8-aminoquinoline, using a monodentate
directing group should form a less thermodynamically stable thus
more reactive metallacycle after the CAH metallation (Scheme 23).
The enhanced reactivity of the metallated intermediate has
enabled a collection of challenging CAH functionalization transfor-
mations. Furthermore, since an extra coordination site becomes
available when using monodentate directing groups, the role of
ligand is expected to be more important in controlling the reactiv-
ity and selectivity of the CAH functionalization reaction.

In 2007, Yu and co-workers reported the first b-arylation reac-
tion of simple carboxylic acids with aryl iodides (Scheme 24, Eq.
7).30 As proposed by the authors, the in situ generated potassium
carboxylate guides palladium insertion into the b-CAH bond
through a five-membered palladacycle, which, upon oxidative
addition of aryl iodide and subsequent CAC bond reductive elimi-
nation, gives the b-arylation product. Phenylboronic acid pinacol
ester (PhBpin) could also be coupled with the b-CAH bonds in
the presence of benzoquinone (BQ) and Ag2CO3 as oxidants, albeit
with lower efficiency (Scheme 25, Eq. 8).

Later, by employing O-methyl hydroxamic acids as the directing
group, Yu and co-workers improved the yield of the b-arylation
reaction with organoboron reagents (Scheme 25, Eq. 9).31 Notably,
an analogous b-alkylation reaction with alkyl boronic acids was
also achieved. In this transformation, 2,2,5,5-tetrame-
thyltetrahydrofuran was used as solvent, which might act as a
bulky ligand to inhibit undesired homo-coupling and b-hydride
elimination (Scheme 26). Besides silver salts, air was also demon-
strated to be a suitable terminal oxidant for the b-arylation and
alkylation reactions.

Unfortunately, when the authors attempted the hydroxamic
acid-directed b-arylation using aryl iodides as the aryl source, a
CAN bond coupling between the amide and aryl iodide proceeded
readily (Scheme 27, Eq. 10).32 To suppress the CAN bond formation
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pathway, an acidic but less-nucleophilic N-pentafluorophenyl
amide was used and found superior as the directing group. A range
of b-methyl CAH bonds were arylated efficiently with Pd(OAc)2/
Cy-JohnPhos as a precatalyst and CsF as a base.
The acidic N-arylamide directing groups later found broad
applications in the palladium-catalyzed b-functionalization reac-
tions. A straightforward synthesis of succinimide derivatives via
CAH carbonylation was reported by Yu and co-workers in 2010
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(Scheme 28).33 Note that a ruthenium-catalyzed analogue was
reported by Chatani with a bidentate directing group (vide supra,
Scheme 18). Besides primary CAH bonds, cyclopropyl methylene
groups are also suitable substrates. A palladium-catalyzed cou-
pling between b-CAH bonds and benzyl acrylates was later devel-
oped by the same group (Scheme 29). The in situ generated
vinylation intermediate (the oxidative Heck product) underwent
an intramolecular 1,4-addition affording the lactam products.34

The aforementioned studies with the weaker N-arylamide
directing groups mainly focused on primary (methyl group) and
activated secondary CAH bonds in cyclopropanes. In contrast,
methylene CAH bonds are more inert toward palladium insertion
due to the unfavorable steric hindrance and enhanced risk for
undesired b-hydride elimination.35 Thus, to achieve a general
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b-methylene CAH functionalization with the weaker N-arylamide
directing group, these challenges must be addressed. In 2012, a sig-
nificant breakthrough was achieved by Yu and co-workers
(Scheme 30).36 The N-arylamide-directed b-arylation of various
methylene groups was enabled by a bulky and electron-donating
quinoline ligand 21. Only a single ligand was proposed to strongly
coordinate to the palladium center due to its steric hindrance,
which leaves room for palladium to bind with the N-arylamide
directing group. Methylene CAH bonds in both cyclic and acyclic
substrates were arylated efficiently under the reaction conditions.
Later, a Pd(0)-catalyzed alkynylation of b-methylene and methyl
CAH bonds with alkynyl bromides was accomplished by the same
group. In this case, the bulky and electron-donating NHC ligand 22
was used (Scheme 31).37

Recently, toward the synthesis of b-Ar-b-Ar0-a-amino acids
with the N-arylamide directing group, Yu and co-workers demon-
strated that selectivity for mono- versus di-CAH arylation can be
determined by the choice of ligands (Scheme 32).38 Simple 2-pico-
line ligand 23 afforded the b-monoarylation products with high
yield and selectivity while the quinoline-type ligand (24) with
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incorporate two different aryl groups at the b-position of amino
acid derivatives was accomplished in a one-pot fashion without
isolating the monoarylation intermediate.
N
H

O

H

OMe
N

O

A

C-N cou

N
H

O
R1

R2

H
(100 mol%)

ArI (300 mol%)
Pd(OAc)2 (10 mol%)
Cy-JohnPhos HBF4

(20 mol%)
CsF (300 mol%)

3Å M.S.
Toluene, 100 °C, 24 h

[Pd]/base

Ar I

F
F

F
F

F

O

NHC6F5H
H

Ph

58% Yield

PhthN

O

NHC6F5
HPh

p-Tol

84% Yield

Selected examples:

Scheme 27. Palladium-catalyzed b-arylation u

Alkyl-B(OH)2 (1
Pd(OAc) 2 (10

BQ (50 mo
Ag2O (200 

K2CO3 (200 
2,2,5,5-tetrame

70 °C, 1(100 mol%)

N
H

O
R

R'
H

OMe

N
H

O

65% Yield

Ph

OMe H
N

O
OM

Et

60% Yield

Selected examples:
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Enantioselective b-CAH functionalization reactions have also
been achieved with the acidic N-arylamide directing groups
(Scheme 33). In 2011, Yu and co-workers reported a desymmetri-
zation-type arylation of cyclopropane methylene CAH bonds with
organoboron reagents (Eq. 11).39 The mono-N-protected amino
acid ligand (25) was found to induce high enantioselectivity for
the b-arylation. In contrast, the coupling of alkylboron reagents
with the same ligand resulted in a compromised enantioselectivity.
An enantioselective b-arylation of cyclobutane methylene groups
was later developed by the same group (Eq. 12).40 In this case,
the chiral O-methyl hydroxamic acid ligand 26 was employed,
which is more Lewis basic than the corresponding amino acid
ligands. The desymmetrization of the prochiral b-methyl groups
was also demonstrated using a similar ligand 27 (Eq. 13).

Migratory coupling

In 2002, while studying the scope of the palladium-catalyzed a-
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an unexpected 2:1 mixture of a- and b-arylation products
(Scheme 34).41 The novel b-arylation product, as speculated by
the authors, came from reductive elimination of a palladium
homoenolate, which was rearranged from the hindered palladium
enolate.

After Hartwig’s seminal discovery, Baudoin and co-workers
reported a systematic study of the palladium-catalyzed b-arylation
reaction of carboxylic esters with aryl halides (Scheme 35).42 The
optimized conditions feature the use of Pd(0)/DavePhos as the pre-
catalyst and lithium dicyclohexylamide as the stoichiometric base
to generate enolate species. Aryl halides bearing an ortho electron-
withdrawing group tended to give a high or complete selectivity
for the b-arylation instead of the a-arylation. Regarding the ester
scope, a tertiary a-carbon is required for the b-selectivity, presum-
ably because the resulting palladium enolate would disfavor a
direct reductive elimination to give a-arylation due to the steric
hindrance. Notably, moderate er values were obtained when a chi-
ral version of the DavePhos ligand (28) was used (Scheme 36).

A plausible catalytic cycle, supported by both experimental and
computational studies, was proposed by the authors (Scheme 37).43

Initially, Pd(0) would undergo oxidative addition with aryl bro-
mides and subsequent ligand exchange with the lithium enolate
to give palladium enolate 31. Direct reductive elimination of 31
would afford the a-arylation product 32. To access the b-arylation
product, palladium homoenolate 35 is expected to form via a
sequence of b-hydride elimination, olefin rotation and PdAH rein-
sertion. Subsequent reductive elimination of the less hindered pal-
ladium homoenolate would give the b-arylation product (36) and
regenerate the Pd(0) catalyst.

This migratory-coupling type of b-arylation approach has been
readily applied to the modification of amino esters utilizing diben-
zyl-protected alanine esters as the substrates.44 Baudoin and
co-workers further demonstrated that silyl ketene acetals, surro-
gates for lithium enolates, can be also adopted for the b-arylation.45

Under the optimized conditions, a wide range of sensitive
functional groups are tolerated, including methyl esters, ketones,
acetates, and triflates (Scheme 38).

Photoredox catalysis

An innovative direct b-arylation of ketones and aldehydes was
recently disclosed by MacMillan and co-workers via the combina-
tion of photoredox and enamine catalysis (Scheme 39).46 In the
presence of a fluorescent light bulb and 1,4-diazobicyclo[2.2.2]
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nonane (DABCO) as the base, the coupling between aldehydes and
electron-deficient arylnitriles afforded the arylation product with
complete b-selectivity. Ir(ppy)3 and N-isopropylbenzylamine 38
were used as the photoredox and organocatalyst, respectively.
The scope of the aldehyde substrates is broad: primary, secondary,
and even tertiary b-CAH bonds can be arylated in good yields.
When azepane 39 was employed as the organocatalyst, cyclohexa-
none derivatives also gave the b-arylation products. The compati-
bility with cyclic ketone substrates represents a significant
advance of the b-functionalization, as the previous directing-group
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or migratory-coupling approaches do not work for cyclic carbonyl
compounds. The authors also demonstrated the potential for
developing enantioselective b-arylation reactions (Scheme 40). A
moderate ee value was obtained from the reaction between
cyclohexanone and 1,4-dicyanobenzene using a cinchona-derived
catalyst (40).

In the proposed mechanism, shown in Scheme 41, 1,4-dicyano-
benzene is first reduced by the excited catalyst ⁄Ir(ppy)3 via a sin-
gle-electron transfer to afford radical anion 41 and the oxidized
catalyst [IrIV(ppy)3]+ (42). Subsequently, photoredox and organo-
catalytic cycles would merge: IrIV(ppy)3 first oxidizes enamine 43
to give radical cation 44 and regenerate the photoredox catalyst.
In the presence of a base, the weakened allylic CAH bond in 44
would be deprotonated to give the b-enamine radical 45, a 5pe sys-
tem. The coupling between radical anion 41 and b-enamine radical
45, followed by aromatization and hydrolysis of the enamine,
provides the b-arylation product (46), releases cyanide (CNA) as
a byproduct, and restores the amine catalyst.

Employing a similar photoredox mode, the MacMillan group
also realized a formal b-aldol coupling between cyclic and aryl
ketones (Scheme 42).47 The b-enamine radicals from the cyclohex-
anone or cyclopentanone derivatives could readily couple with the
ketyl radical generated from the aryl ketone, which provides access
to a range of c-hydroxyketones. The addition of LiAsF6 was pro-
posed to inhibit the dimerization of the ketyl radicals. Recently,
the same group also reported a b-alkylation reaction of aldehydes
with Michael acceptors (Scheme 43).48 In the proposed mecha-
nism, the b-enamine radical generated from the aldehydes is
directly intercepted by the Michael acceptor to give an a-acyl rad-
ical. Such a radical would then be reduced and protonated to afford
the b-alkylation product.

An interesting b-alkylation of cyclopentanones was recently
reported by Fagnoni and co-workers with tetrabutylammonium
decatungstate (TBADT) as the catalyst (Scheme 44).49 Under Xe-
lamp or sunlight irradiation, the electronegative oxygen-centered
radical in the excited TBADT catalyst would selectively abstract a
b-hydrogen from the cyclopentanone. The resulting b-radical
would then be intercepted by a Michael acceptor to give an acyl-
radical, which would then receive a hydrogen atom back from
the reduced TBADT catalyst to afford the alkylation product. The
absence of a-alkylation products was tentatively explained by an
unfavorable transition state (49) involving an electron-deficient
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products.

Palladium tandem catalysis

Aiming for a direct b-arylation of simple ketones using readily
available aryl halides, the Dong group conceived a tandem catalysis
strategy via merging the palladium-catalyzed dehydrogenation
and Heck-type reactions. In the designed catalytic cycle
(Scheme 45), the ketone substrate would first undergo a Pd(II)-
mediated dehydrogenation to give an a,b-unsaturated enone and
Pd(0) intermediate 53. Subsequent oxidative addition of an aryl
halide to the Pd(0) species was expected to provide the Pd(II)-aryl
complex 54, which would then undergo migratory insertion into
the enone olefin. Protonation of the resulting b-aryl-Pd(II)-enolate
55 with acid would ultimately lead to the b-arylation product and
release the Pd(II) catalyst.

The b-arylation between simple ketones and aryl iodides pro-
ceeded smoothly with Pd(TFA)2/P(i-Pr)3 as the precatalyst and
AgTFA as an additive (Scheme 46).50 Complete selectivity for the
b-position was obtained without forming any a-arylation product.
Aryl iodides with various electronic properties can participate in
the reaction, representing a distinct feature from the photoredox
chemistry. In addition, substrates with base- and nucleophile-sen-
sitive functional groups, which are difficult to handle under conju-
gate addition conditions, also work well with this Pd tandem
catalysis. Aryl bromides can also react but give lower yields.
Regarding the scope of ketones, both acyclic and cyclic ketones
with different ring sizes were compatible with this b-arylation
protocol.
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The direct b-arylation of 1,3-dicarbonyl compounds with elec-
tron-rich arenes is also viable through an a,b-unsaturated interme-
diate. In 2012, Pihko and co-workers reported a palladium-
catalyzed oxidative b0-indolation of b-keto esters under mild
conditions (Scheme 47).51 The selective coupling between the C3
position of indoles and the b0-position of b-keto esters was
achieved using Pd(TFA)2 as a pre-catalyst and t-BuOOBz as a stoi-
chiometric oxidant. The authors proposed the reaction proceeds
through a palladium-catalyzed dehydrogenation of b-keto esters,
followed by a nucleophilic conjugate addition of indoles.52 Notably,
both experimental and computational studies indicated that the
indole also functions as a ligand to promote the palladium-
catalyzed dehydrogenation of b-keto esters. Later, the same group
expanded the scope of arenes to trialkoxybenzenes and phenols
assisted by additional Brønsted acids.53 Under the new conditions,
molecular oxygen is used as the sole oxidant.
Organocatalysis

The field of using organic molecules as catalysts has experi-
enced explosive growth during the past decade, which has led to
the discovery of a number of new transformations. For the func-
tionalization of carbonyl compounds, amines54 and N-heterocyclic
carbenes (NHCs)55 have been extensively applied as catalysts due
to their facile reactions with carbonyl groups, highly modulable
structures and capability to induce enantioselectivity. Recently,
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new modes of activation have been developed to allow b-function-
alization directly from saturated carbonyl compounds based on
amine or NHC catalysis.

In 2011, Wang and co-workers reported an oxidative enamine
catalysis for the direct b-functionalization of aldehydes
(Scheme 48).56 They discovered that the enamine produced by
the condensation of the aldehyde and the secondary amine catalyst
was first oxidized by o-iodoxybenzoic acid (IBX) to give an
a,b-unsaturated iminium ion; subsequently, the conjugate addi-
tion of carbon nucleophiles followed by hydrolysis afforded the
b-substituted aldehydes. Using a chiral amine catalyst (56), a range
of aldehydes coupled with fluorobis(phenylsulfonyl)methane
(FBSM) selectively at the b-position with high enantioselectivity.
Shortly after, Hayashi et al. published a cross-coupling of
aldehydes and nitromethanes using a similar strategy.57,58 With
2,3-dichloro-5,6-dicyanoquinone (DDQ) as the stoichiometric
oxidant, a sequential enamine oxidation and conjugate addition,
in which both steps are catalyzed by the same chiral amine (56),
proceeds to give a range of b-substituted c-nitro aldehydes in a
one-pot fashion with high enantioselectivity (Scheme 49).

Recently, an oxidative NHC catalysis was developed by Chi and
co-workers for the direct b-functionalization of aldehydes
(Scheme 50).59 They proposed the Breslow intermediate (57) can
be oxidized first to an NHC-bound ester (58), which is a tautomer
of enol 59, and a second oxidation process leads to an a,b-unsatu-
rated ester (60). The interception of such a Michael acceptor with a
carbon nucleophile is expected to introduce a CAC bond at the
b-position. Based on this concept, the authors demonstrated an
enantioselective synthesis of enol d-lactones via coupling between
saturated aldehydes and 1,3-dicarbonyl nucleophiles. In this trans-
formation, NHC 61 was used as the catalyst and quinone 62 was
used as the oxidant.

Later, the same group found that treatment of intermediate 58
with a base (instead of an oxidant) would trigger an a- then b-CAH
deprotonation sequence resulting in a nucleophilic b-carbon
(Scheme 51).60 The acidity of the b-CAH bonds in intermediate
63 might stem from the electron-withdrawing nature of the
triazolium group, as well as the conjugated system. The reaction
of intermediate 64 with chalcone derivatives afforded cyclopen-
tene products through a cascade process involving Michael
addition, aldol reaction, lactonization, and decarboxylation
(Scheme 52, Eq. 14). Trifluoroketones and hydrazones can also
serve as electrophiles to give corresponding lactones and lactams
(Eqs. 15 and 16). With chiral NHC 65 as the catalyst, all these prod-
ucts were formed with high enantioselectivity.

Conclusion

During the past decade, the challenge of direct b-functionaliza-
tion of carbonyl compounds has been a stimulus for new method-
ology development in organic synthesis. While the toolbox for the
direct b-functionalization has been extended dramatically, general
and practical methods with broader substrate scope and better
functional group tolerance remain to be further developed. Consid-
ering the great potential of using direct b-functionalization to
streamline complex molecule synthesis, we expect there will be
continuing and vigorous development in this area.
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