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3 Department of Physics, National University of Singapore, Singapore
E-mail: phykd@nus.edu.sg

New Journal of Physics 14 (2012) 093047 (12pp)
Received 22 May 2012
Published 26 September 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/9/093047

Abstract. Composite particles made of elementary fermions can exhibit a
wide range of behavior ranging from fermionic to bosonic depending on
the quantum state of the fermions and the experimental situation considered.
This behavior is captured by the fundamental operations of single-particle
addition and subtraction and two-particle interference. We analyze the quantum
channels that implement the physical operations of addition and subtraction of
indistinguishable particles. In particular, we construct optimal Kraus operators
to implement these probabilistic operations for systems of a finite number
of particles. We then use these to measure the quality of bosonic and
fermionic behavior in terms of single-particle addition and subtraction and
two-particle interference. For the specific case of composite particles made of
two distinguishable fermions, we find a transition from fermionic to bosonic
behavior as a function of the entanglement between the two constituents. We also
apply these considerations to composite particles of two distinguishable bosons
and identify the relation between entanglement and bosonic behavior for these
systems.
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1. Introduction

Most particles in Nature are not elementary and in fact are composed of elementary fermions
and bosons. These composite particles can exhibit a variety of behavior ranging from fermionic
to bosonic depending on the physical situation and the state of the system at hand. Fermionic and
bosonic behavior is captured by the fundamental operations of addition and subtraction of single
composite particles. For fermions, addition to an already occupied state is forbidden by the Pauli
principle, whereas for bosons, it is easier to add a particle to an already occupied state than for
distinguishable particles. The operations of single-particle addition and subtraction are known
to be probabilistic, i.e. in general, one can never be certain that addition or subtraction of a single
particle will be successful. These operations cannot be represented by unitary evolutions and are
best described by the language of completely positive maps and Kraus operators, which, unlike
unitary operations, allow one to represent irreversible physical evolutions such as relaxation [1].
The success probabilities of single-particle addition and subtraction are related to the quality of
fermionic or bosonic behavior of the particles. Another physical situation that one may consider
is two-particle interference, where bosonic behavior is captured by the tendency of particles to
bunch (group), while fermionic behavior is related to their tendency to anti-bunch (stay apart).
An interesting question is to quantify the quality of fermionic and bosonic behavior in composite
particle systems in these scenarios.

Recently, it was shown [2–4] that the bosonic behavior of composite particles made of two
distinguishable fermions (such as the hydrogen atom, exciton, positronium, etc) is related to
the amount of entanglement between the two fermions. There, the quality of bosonic behavior
was measured by the deviation from identity in number states of the commutator between
the creation and annihilation operators. It was shown that as the entanglement increases, the
commutation relation for the creation and annihilation operators of these composite particles
approaches that for ideal bosons. However, in general, the behavior of these systems is more
complicated and not entirely captured by the average value of the commutator in the number
state. These particles can, in fact, exhibit a variety of behavior in two-particle interference
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and particle addition–subtraction experiments ranging from fermionic to bosonic, which is not
detected by the commutator approach.

The main aim of this work is to construct a measure of bosonic and fermionic quality
on the basis of single-particle addition followed by subtraction. We analyze the operations of
single-particle addition and subtraction in terms of completely positive quantum channels. We
construct optimal bosonic quantum channels to implement these operations and apply them
to formulate a measure of bosonic and fermionic quality. This measure reflects the difficulty
of adding a single particle to a mode that is already occupied by one particle. For composite
particles made of two distinguishable fermions or two distinguishable bosons, the value of the
measure depends on the entanglement between the constituents. We also apply addition and
subtraction channels to construct a beam splitter for these composite particles and show that the
ratio of anti-bunching to bunching probabilities in a two-particle interference experiment also
depends on entanglement and that a transition point between fermionic and bosonic behavior
exists.

Unlike the previous approach to composite particles made of two distinguishable
fermions [2–4], our measure allows one to identify a critical amount of entanglement for which
the transition from fermionic to bosonic behavior occurs. Moreover, our treatment of single-
particle addition and subtraction takes into account massive particle systems that, in general, are
restricted by the superselection rules, whereas previous studies mainly concentrated on photonic
systems [5–10] that, in principle, can be prepared in an arbitrary superposition of photon number
states.

2. Addition and subtraction channels

In general, the processes of particle addition and subtraction are not deterministic [5–10].
Moreover, they cannot be formulated simply as Kraus operators K j which describe non-
deterministic evolutions in terms of completely positive quantum channels ρ ′

=
∑

j K jρK †
j [1].

The reason is that Kraus operators {K0, K1, . . .} which describe a quantum channel cannot
increase the norm of the state, i.e.

∑
j K †

j K j 6 I . Setting K0 = a† yields K †
0 K0 = aa†

= N + 1.
The eigenvalues of the bosonic particle number operator N lie in the set of all non-negative
integers, which together with the requirement that the norm cannot increase immediately implies
the negativity of the remaining operators K †

j K j for j 6= 0. The case of the annihilation process
is analogous. It is interesting that the probabilistic nature of the operators a† and a can also
be deduced from the fact that deterministic addition and subtraction could lead to an increase
of entanglement via local operations. This can be seen, for example, by considering the state
of a single particle in two modes A and B, |ψ〉 = α|0A1B〉 +β|1A0B〉 with real parameters
α2 + β2 = 1 and α2 > 4β2, that has entanglement measured by concurrence given as 2|αβ|.
It is clear that a local operation of addition followed by subtraction at mode A leads to the state
|ψAS〉 = 1√

α2+4β2
(α|0A1B〉 + 2β|1A0B〉) with entanglement measured by concurrence given as

4αβ
α2+4β2 , which is larger than the initial entanglement. The probabilistic nature of the operators
a† and a is needed to ensure that entanglement does not increase via local operations.

Any operator that effectively adds one particle to the system is of the form

a†
eff =

∞∑
n=0

fn|n + 1〉〈n|. (1)
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An effective annihilation operator is the Hermitian conjugate of the above. This operator is a
valid Kraus operator (satisfying

∑
j K †

j K j 6 I ) if | fn|
2 6 1 for all n. Note that operationally,

| fn |
2

| fn−1|
2 corresponds to the ratio of probabilities pn→n+1

pn−1→n
, where pn→n+1 denotes the probability of

adding a single particle to a mode in which there are already n particles. It is convenient to
rewrite (1) in the following form:

a†
eff = g(N )a†

=

∞∑
n=0

g(n + 1)
√

n + 1|n + 1〉〈n|, (2)

where g(N ) is a function of the particle number operator. The extreme case of an operator
in which all multiplicative factors are equal to one corresponds to the creation operator of
distinguishable particles a†

d , where g(N )= 1/
√

N .
To implement a perfect bosonic channel, we would like to have the ratios to be fn

fn−1
=

√
n+1
√

n .
In this case, g(N ) is a constant; however, the normalization constraint and the fact that the
sum over n goes to infinity imply that the only possible solution is g(N )= 0. This problem
can be circumvented if the maximal number of particles is bounded. In this case, the optimal
operator a†

eff is state dependent, i.e. for the state supported on the subspace spanned by
{|0〉, |1〉, . . . , |nmax〉} the corresponding function is g(N )=

1
√

nmax+1
, a constant for n 6 nmax,

and g(N )=
1

√
N

for n > nmax. The effective operator a†
eff with this function is then the optimal

operator to implement particle addition and its conjugate is the optimal particle subtraction
operator. Finally, note that in the case of fermions the maximal number of particles in a single
mode is naturally bounded by 1; therefore fermionic creation and annihilation operators are
already optimal Kraus channels. We can now proceed to formulate a measure of bosonic and
fermionic quality of particles based on these optimal addition and subtraction quantum channels.

3. Measure of bosonic and fermionic quality

In this section, we propose a method to quantify the behavior of particles under the operations
of one-particle addition and subtraction to a single mode. We compare the resulting state after
particle addition followed by subtraction (AS) with the initial state of the particles which
we assume to be in a mixed state ρ =

∑
n pn|n〉〈n|. The reason for this assumption is that,

in general, the particles under consideration can be massive and superselection rules prevent
us from preparing superpositions of different particle-number states. To detect the change
caused by AS, it is sufficient to measure the probability distribution of the number of particles
{p0, p1, . . .}, where pn denotes the probability of detecting n particles. In order to develop a
measure that is independent of whether the particles are bosons or fermions, we restrict our
considerations to p0 and p1 alone. Interestingly, although the number of particles involved in
the measure is small, for composite particles made of two fermions such as hydrogen atoms,
positronium atoms and excitons, we find that the measure provides us with information about
the behavior of many-particle Fock states of these composite particles as well.

We begin by defining the following quantity:

M = p0 − pAS
0 , (3)

where pAS
0 denotes the vacuum occupancy after AS. The value of M is zero for distinguishable

particles with the associated creation operators defined by c†
d =

∑
n |n + 1〉〈n|. This is because

these operators do not alter the probability distribution in the state upon addition and subtraction.
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We now argue that M is a measure of bosonic and fermionic quality in this scenario. For bosons
the action of AS affects the probability distribution in the following manner: pn → (n + 1)2 pn,
which together with normalization implies a decrease in p0. Due to the normalization the change
in p0 depends on the total probability distribution {pn}. Note that

M = p0 −
p0∑nmax

k=0 (k + 1)2 pk
= p0 −

p0

〈(N + 1)2〉
, (4)

where N denotes the particle number operator and nmax denotes the maximum number of
particles in the system. M is maximized for p0 =

nmax+1
nmax+2 and pnmax = 1 − p0. The greater the nmax,

the greater the change in p0 after AS. Since we restrict ourselves to p0 and p1 only, the optimal
probability distribution is {p0 =

2
3 , p1 =

1
3}, for which M =

1
3 in the case of perfect bosons.

We therefore fix p0 =
2
3 , and calculate the measure with respect to the state

ρM =
2
3 |0〉〈0| + 1

3 |1〉〈1|. (5)

For convenience, we now redefine the measure asM= 3M

M= 2 − 3pAS
0 , (6)

so that for ideal bosonsM= 1. For ideal fermions, successful addition to a state of the form (5)
implies that there is no vacuum in the resulting state. Since at most one fermion can occupy
a particular state, the only possible state is |1〉. It follows that subsequent particle subtraction
leads to pAS

0 = 1 and toM= −1.
So far, we have shown that the three values of M, namely 1, 0 and −1, correspond

to bosons, distinguishable particles and fermions, respectively. However, the measure is not
bounded to these values and, in general, depends on the probability of AS. Our considerations
are restricted to the two probabilities of addition p0→1 and p1→2, and the two probabilities of
subtraction p2→1 and p1→0. Since pi→ j = p j→i we are left with p0→1 and p1→2. For the state (5)

pAS
0 =

2
3 p2

0→1
2
3 p2

0→1 + 1
3 p2

1→2

=
2

2 +R2
, (7)

where

R=
p1→2

p0→1
=

|〈2|a†
|1〉|

2

|〈1|a†|0〉|2
, 06R. (8)

Therefore, the measureM reads

M=
2(R2

− 1)

2 +R2
, −16M< 2. (9)

We now discuss the various domains of validity ofM. Note thatM< 0 if R< 1, which
happens when p1→2 < p0→1. Intuitively, in this regime it is harder to add a single particle to the
mode when there is already one particle in it, which is an indication of fermionic behavior. The
critical case when it is impossible to add a particle when there is already one other particle in
the mode (p1→2 = 0) corresponds to true fermions. On the other hand,M> 0 if R> 1, which
happens if p1→2 > p0→1. This corresponds to the situation when it is easier to add a single
particle to the mode when there is already one particle in it, an indication of bosonic behavior.
Therefore, we can define domains M ∈ (−1, 0) and M ∈ (0, 1) as regions of sub-fermionic
behavior and sub-bosonic behavior, respectively. Interestingly, ifR> 2, thenM ∈ (1, 2). In this
regime, it becomes easier to add a particle than in the case of true bosons, i.e. the probability of
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addition when there is already one particle in the system is larger than for ideal bosons. We call
this the super-bosonic regime. In the following sections, we examine systems that can exhibit
sub-fermionic, sub-bosonic and super-bosonic behavior.

3.1. Composite particles of two distinguishable fermions

Let us now examine situations for whichM ∈ (−1, 1). Consider a composite particle made of
two distinguishable elementary fermions (see [2–4]), such as excitons, hydrogen atoms, etc.

The general pure state of two distinguishable fermions can be written as

|ψ〉AB =

∑
k

√
λka†

k b†
k |0〉, (10)

where a†
k (b†

k) creates a fermion A (B) in mode k, and λk are probabilities that determine the
structure of state (10). The above state is written in the Schmidt form, i.e. as a sum of tensor
products of distinct orthogonal states. The modes k can refer, for instance, to energy levels of
a confining potential, or to the position of the center of mass of A and B. The state can be
considered as a single boson state if the operator c†

=
∑

k

√
λka†

k b†
k behaves as a proper bosonic

creation operator [2, 3]. The corresponding commutation relation reads [c, c†] = I −1, where
1=

∑
k λk(a

†
k (a)k + b†

kbk). The state of n composite bosons is

|n〉 = χ−1/2
n

c†n

√
n!

|0〉, (11)

on which the action of the annihilation operator gives c|n〉 = αn
√

n|n − 1〉 + |εn〉. The
parameters χn and αn =

√
χn/χn−1 are normalization constants and |εn〉 is a vector orthogonal

to |n − 1〉 that does not correspond to any state of the tested composite particles (for details
see [2]).

Now, let us examine the operation of particle addition for composite particles. The
corresponding Kraus channel is written as

K0 = c†
eff =

nmax∑
n=0

g(n + 1)αn+1

√
n + 1|n + 1〉〈n|, (12)

where the terms related to |εn〉 are incorporated into other Kraus operators. The particle
subtraction operation is given by taking Hermitian conjugate of the above. The optimal function
corresponding to realistic implementation of the addition operator is a constant g(n + 1)= g.

We are interested in the states |0〉, |1〉 and |2〉 and in parameter χ2. Note that χ1 = 1,
c†

|0〉 = |1〉 and c|1〉 = |0〉 follow from definitions (10) and (11). Moreover, we do not consider
vectors |εn〉, which are interpreted as states resulting from an unsuccessful subtraction.
Effectively, we describe successful addition to the one-particle state and successful subtraction
from the two-particle state as

c†
|1〉 =

√
2χ2|2〉, c|2〉 =

√
2χ2|1〉. (13)

The optimal Kraus channel for the addition of these composite particles is then given by

K0 = c†
eff = g|1〉〈0| + g

√
2χ2|2〉〈1|. (14)

The parameter χ2 is related to the entanglement between the two constituent fermions as

χ2 = 2
∑
k>l

λkλl =

∑
k,l

λkλl −

∑
k

λ2
k = 1 − P, (15)
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where 0< P 6 1 denotes purity. The purity is an entanglement measure for pure bipartite
systems and is defined as P = Tr (TrB(ρAB))

2 [1]. For P = 1 there is no entanglement between
A and B, whereas for P → 0 the entanglement between A and B goes to infinity (for the
singlet state of two qubits P =

1
2 ). Hence P (and as a consequence χ2) measures the amount of

entanglement between the constituent fermions.
Although we consider only the case of a vacuum, a single particle and two particles, the

value of M reveals also the properties of many-particle Fock states. For composite particles
made of two distinguishable fermions, it was shown in [3] that purity can be used to bound the
ratios of χ -parameters, i.e.

1 − N P 6
χN+1

χN
6 1 − P. (16)

As a consequence, using χ2 one can estimate other χ -parameters and put constraints on
structural parameters λk . Note that the value of M is related to the condensate fraction
F = 〈N |c†c|N 〉 via the relation F = N χN

χN−1
.

We now show that the measure M is related to the entanglement between the two
constituent fermions of the composite particle. Firstly, we note that in order to evaluate M
for composite particles, one does not have to specify g. Since R= 2χ2 = 2 − 2P the measure
M is related to the purity as

M(P)= 2 −
3

3 + 2P(P − 2)
. (17)

It is a continuous monotonically decreasing function of P . In the limit of infinite entanglement
the two fermions behave like a bosonM(0)= 1; this behavior was also observed in [2–4]. On
the other hand, when there is no entanglement the two free fermions evidently exhibit fermionic
behavior M(1)= −1. For 0< P < 1 the two fermions exhibit either sub-fermionic or sub-
bosonic behavior, depending on the value of the purity. The transition between the two types
of behavior for the case of such composite particles in a single mode occurs for P =

1
2 , i.e. for

exactly 1 ebit of entanglement, see figure 1. The existence of a critical value of entanglement
for the transition between fermionic and bosonic behavior is an important and intuitive result in
contrast to the results derived so far in [2–4].

3.2. Composite particles of two distinguishable bosons

Let us now discuss the regime M> 1. Consider a system composed of two distinguishable
bosons, such as two photons created in a parametric down-conversion process. It is described
by equations (10)–(13), with a†

k and b†
k in (10) now being bosonic creation operators, the

commutation relation being [c, c†] = I +1. The optimal channel for the addition of these
composite particles is also given by (14) with the parameter χ2 defined as

χ2 = 2
∑
k>l

λkλl =

∑
k,l

λkλl +
∑

k

λ2
k = 1 + P. (18)

In this case, the measureM is related to the entanglement between the two constituent bosons
and is given by

M(P)= 2 −
3

3 + 2P(P + 2)
. (19)
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0.2 0.4 0.6 0.8 1.0
P

1.0

0.5

0.5

1.0

1.5

Figure 1. The plot of M as a function of P . Top curve—the measure
M for composite particles made of two distinguishable bosons; bottom
curve—composite particles made of two distinguishable fermions.

As in the case of composite particles of two fermions, the value of M can be used
to detect entanglement in the system and to learn structural properties via χ2. The plot of
M is presented in figure 1. In the limit of infinite entanglement (P = 0) between the two
bosons, the system behaves like a true boson M(0)= 1. However, for intermediate values
of entanglement (0< P 6 1), the system exhibits enhanced bosonic behavior, which we term
super-bosonic. In this regime, the probability of addition of a single composite particle to an
already occupied mode is larger than for ideal bosons. The maximal value ofM(1)=

5
3 occurs

for free unentangled bosons.

3.3. The meaning of entanglement

We now propose an intuitive explanation for the fact that in the limit of large entanglement, the
value ofM converges to the same point for both the system composed of two bosons and the
system composed of two fermions. We start by analyzing the reduced state of the subsystem A
in equation (10). At the moment we do not specify whether we deal with bosons or fermions.
The reduced state is given by

ρA =

∑
k

λka†
k |0〉〈0|ak. (20)

In the limit of small entanglement, the distribution {λk} is localized around some k and the
subsystem is in a nearly pure state. Its properties are therefore well defined and it can exhibit
either fermionic or bosonic behavior, depending on the type of particle. On the other hand,
in the limit of large entanglement the distribution {λk} is almost uniform, the state of the
subsystem is almost completely mixed and its properties are undefined. Since it can be anywhere
in the state space spanned by all a†

k |0〉 it is of little consequence to the system behavior
whether the particle is a boson or a fermion. This phenomenon is, for example, observed in
the Hong–Ou–Mandel experiment [11], where one does not observe bunching when the initial
state of the two input photons to the beam splitter is fully random. This explains why in the limit
of infinite entanglement, systems composed of two bosons and two fermions behave in a similar
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0.1 0.2 0.3 0.4 0.5 0.6
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1.0
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Figure 2. The plot of M as a function of a0
b for a single hydrogen atom in a

harmonic trap.

way (both yieldingM= 1). When the entanglement between the constituents is not infinite, the
anti-bunching or bunching of subsystems starts to play a role in the behavior of the total system,
resulting in the two regimes −16 M < 1 and M > 1.

For composite particles made of two distinguishable bosons, as the entanglement between
the bosons decreases, the value of M increases up to a maximal value of 5

3 . For systems
composed of infinitely many bosons M could reach its maximal value of 2. It would be
interesting to investigate if there are any effects in physical phenomena of bosons linked to
this regime.

3.4. The hydrogen atom

Finally, let us apply the measure M to a simple composite particle made of two fermions,
namely a single hydrogen atom in a harmonic trap. It is assumed that the atom is both in the
ground electronic state and in the ground state of the trap. We use the formula for the purity of
a state of the electron (or equivalently proton) that was derived in [3]:

P =
33

4
√

2π

(a0

b

)3
, (21)

where a0 is the Bohr radius and b is the size of the trap. The purity depends on the ratio between
the volume of the atom and the volume of the trap. The range of the value of P is between
1 and 0 for the ratio

(
a0
b

)3
being in between 4

√
2π

33 ≈ 3.21 and 0, respectively.
In order to calculate M for the hydrogen atom, we have to apply formula (17). One can

easily check that the greater the size of the trap, the more bosonic the system behaves. On the
other hand, for small traps the system behaves in a fermionic way (M< 0). The transition
between fermionic and bosonic behavior occurs for b ≈ 1.9a0. The value ofM increases very
fast and for b > 10a0 one has M> 0.99 (see figure 2). It would be interesting to test this
theoretical result via direct experimental implementation of a single hydrogen atom addition
and subtraction to and from the trap.
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4. Two-particle interference

We now investigate the properties of composite particles with respect to two-particle
interference under the action of beam splitter-like Hamiltonians [11].

4.1. Composite particles of two distinguishable fermions

The operator (14) can be used to construct a beam splitter-like Hamiltonian for composite
particles made of two distinguishable fermions

HBS = c†(1)
eff c(2)eff + c†(2)

eff c(1)eff , (22)

where superscripts (1) and (2) denote two beam splitter modes. It is easy to find that a single
composite particle in one of the two modes under the action of this Hamiltonian evolves into an
even superposition of the two modes in time t =

π

4 , irrespective of the χ2 factor. On the other
hand, the evolution of a two-particle state depends on χ2

|ψ(t)〉 = cos
(
2
√
χ2t
)
|11〉 + i sin

(
2
√
χ2t
) ( |20〉 + |02〉

√
2

)
, (23)

where the bunched state (|20〉 + |02〉)/
√

2 denotes two composite particles in one mode and the
anti-bunched |11〉 denotes one composite particle in each mode. The probabilities of bunching
(pB) and anti-bunching (pAB) after time t =

π

4 given as a function of purity P = 1 −χ2 are

pB = sin2

(
π

√
1 − P

2

)
, pAB = cos2

(
π

√
1 − P

2

)
. (24)

For P = 1 one observes perfect anti-bunching, whereas for P = 0 one observes perfect
bunching. The transition between bosonic and fermionic behavior, i.e. pB = pAB, occurs for
P =

3
4 .
The above example demonstrates that the notion of bosonic and fermionic quality is not

absolute, unlike previous considerations [2–4]. In fact, this quality must be defined with respect
to specific physical scenarios. For situations where particles are added and subtracted to a single
mode, only the transition from fermionic to bosonic behavior occurs at P =

1
2 , whereas for beam

splitter-like situations where particles are added and subtracted to two modes simultaneously,
the transition occurs at P =

3
4 . It is possible that for physical situations where an infinite number

of modes can be occupied, there is no transition, i.e. the composite particle made of two
distinguishable fermions would always behave like a boson.

4.2. Composite particles of two distinguishable bosons

One can also consider a beam splitter-like Hamiltonian for composite particles made of two
distinguishable bosons. In this case one finds that the probabilities of bunching (pB) and anti-
bunching (pAB) as a function of the entanglement between the two constituent bosons are
given by

pB = sin2

(
π

√
1 + P

2

)
, pAB = cos2

(
π

√
1 + P

2

)
. (25)

As expected, for all values of P , bunching dominates anti-bunching with pure bunching
observed at P = 0. Moreover, for a given entanglement, one finds that the composite particle

New Journal of Physics 14 (2012) 093047 (http://www.njp.org/)

http://www.njp.org/


11

made of two bosons exhibits higher probability of bunching than the composite particle made of
two fermions. However, as P increases the probability of anti-bunching also increases; therefore
the particle exhibits sub-bosonic behavior in this test rather than super-bosonic.

5. Conclusions

In this work, we have analyzed the quality of bosonic and fermionic behavior in composite
particle systems made of two distinguishable fermions or bosons. We found Kraus operators
that optimally implement addition and subtraction channels and applied them to formulate
measures of bosonic and fermionic quality in terms of single-particle addition–subtraction
and two-particle interference. We find that the bosonic or fermionic quality of these particles
depends on their quantum state as well as on the experimental scenario considered. Finally,
we apply our measure based on single-particle addition–subtraction to a hydrogen atom in a
harmonic trap and show that its bosonic and fermionic quality depends on the size of the trap.

Contrary to previous considerations, we find more complex behavior and identify
transitions between fermionic and bosonic behavior for composite particles made of two
distinguishable fermions in terms of the entanglement between the constituent fermions. For the
single-particle addition–subtraction scenario, the transition from fermionic to bosonic behavior
occurs for exactly 1 ebit of entanglement between the constituent particles. For composite
particles made of two distinguishable bosons, we relate the quality of bosonic behavior to
the entanglement between the constituent bosons. We find that these systems can exhibit
superbosonic behavior (M> 1) with respect to the measure M (see figure 1). In the limit of
large entanglement, both systems, made of two fermions and of two bosons, behave in a similar
(bosonic) way. The intuitive reason behind this phenomenon is that in this case the states of
individual constituent particles are highly mixed; therefore their properties are undefined. The
particles are still indistinguishable; however, due to the size of the state space they occupy it
does not matter whether they are bosons or fermions.

Note that the quality of the bosonic behavior can be determined also in other ways;
see, for example [12–14]. One can also study the same entanglement characteristics by using
the deformed creation and annihilation operators over the so-called algebra of fermionic and
bosonic q-deformed oscillators [15]. Finally, an interesting open problem is to find the relation
between the approach to composite particles via entanglement that was undertaken in this work
and in [2–4], and the quantum field theoretical one [16]. The problem is that given a (pure)
wave function of a two-particle system, one can easily evaluate the entanglement and purity of
the subsystem; it is not clear how this entanglement is related to our measureM. It was shown
in [17] that relativistic entanglement changes under Lorentz transformations, which suggests
that extension of our approach to relativistic systems may not be straightforward.
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