
Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Static green repositioning in bike sharing systems with broken
bikes
Yue Wang, W.Y. Szeto⁎

Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
The University of Hong Kong, Shenzhen Institute of Research and Innovation, Shenzhen, China

A B S T R A C T

Bike-Sharing Systems (BSSs) and environmental concerns have been receiving increasing popularity in transportation operations. In BSSs, the
distribution of bike demand often mismatches with bike supply and there are broken bikes. Usable bikes are needed to redistribute between stations
to satisfy the demand and all broken bikes need to be carried back to the depot for repairs. Both types of bikes are often transported by fossil-fueled
vehicles but using these vehicles for the operation may damage the environmental creditability of BSSs. A methodology is needed to mitigate the
environmental impact of this operation.
This study aims to propose a methodology to reposition both good and broken bikes in a bike-sharing network in order to achieve a perfect

balance between bike demand and supply at each station and make sure that all broken bikes are moved back to the depot. The objective of this
repositioning operation is to minimize the total CO2 emissions of all repositioning vehicles. A Mixed Integer Linear Program (MILP) model is
presented to formulate the problem mentioned above and a commercial solver is used to solve it for small applications. Using example applications,
problem characteristics and the factors that affect the CO2 emissions are discussed. The results indicate that allowing multiple visits can reduce
vehicle emissions. Moreover, when the percentage of broken bikes in the system increases, the CO2 emissions increase. Furthermore, if there is a
tolerance for meeting the demand target, when this tolerance increases, the CO2 emissions decrease. In addition, when the distance of a link in an
optimal route increases, the resultant emissions may remain unchanged. Besides, when the vehicle capacity increases, the CO2 emissions decrease.
The real world instances of Citybike Vienna are used to compare emission and distance minimization solutions and investigate the runtime com-
plexity of the proposed model. The results demonstrate that a shorter distance may not necessarily lead to lower emissions. The results also show
that as the number of vehicles increases, the total emissions and runtime increase. A clustering method based on the nearest neighbor heuristic
together with a commercial solver is used to solve a large real-world instance. This result confirms the possibility of using the clustering approach to
reduce the running time for large network instances with multiple vehicles.

1. Introduction

Cycling is an environment-friendly and healthy transport mode. It has received increasing attention in recent years. To encourage
cycling, many cities have introduced public BSSs such as Velib in Paris, Villo in Brussels, Citi-Bike in New York City, and Santander
Cycles in London. As of 16 September 2018, public BSSs were available in about 1780 cities (Meddin and DeMaio, 2018). In a
classical BSS, registered users can rent a bike at a bike station, ride the bike, and return it to any station. Due to the asymmetrical
distribution of bike flows, the deficient supply of both lockers and bikes often occur in these systems. The former situation leads to
extra travel distances for some bike users to find available lockers while the latter one causes unsatisfied demand. To cater to the
demands for both lockers and bikes, bike repositioning is essential.

In general, there are two types of bike repositioning: static and dynamic. Static bike repositioning (e.g., Li et al., 2016; Cruz et al.,
2017; Ho and Szeto, 2017; Schuijbroek et al., 2017) usually focuses on the nighttime repositioning because, during that time, system
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usage and the congestion impact can be ignored. The target is to meet the demands in the next morning. Dynamic bike repositioning
concerns with the daytime situation when the system is in high usage and the demand of each station will change during the
repositioning period (e.g., Caggiani and Ottomanelli, 2012; Contardo et al., 2012; Kloimüllner et al., 2014; Ghosh et al., 2017;
Caggiani et al., 2018; Shui and Szeto, 2018). Both types of repositioning can be found in practice.

Both types of bike repositioning are commonly performed by fossil-fueled vehicles. Using these vehicles for the operation may
damage the environmental creditability of BSSs (Wiersma, 2010) because these vehicles emit pollutants and greenhouse gases. Other
than the unmet demands for both lockers and bikes, environmental objectives should be duly considered in the repositioning op-
eration. However, in the literature, except Shui and Szeto (2018), environmental objectives are rarely considered in bike re-
positioning studies.

Another important consideration is broken bikes. Broken bikes are regularly found in BSSs (Kaspi et al., 2016, 2017). The pre-
sence of broken bikes in the systems means not only a waste of resources but also causes user dissatisfaction. Broken bikes occupy
lockers and reduce the parking spaces for users to return bikes. Moreover, broken bikes cannot be used to satisfy bike users’ demand.
In addition, broken bikes are always transported back to depots for repairs and use up some of the capacity of repositioning vehicles
for usable bikes, making the repositioning of usable bikes less effective. It is therefore important to consider the repositioning of both
usable and broken bikes simultaneously. However, no studies, except Alvarez-Valdes et al. (2016), considered this type of re-
positioning. Moreover, to the best of our knowledge, no studies simultaneously considered both broken bikes and an environmental
objective at the time of this writing.

In this paper, we study a static green Bike Repositioning Problem (BRP) in the presence of broken bikes. This problem determines
the route and the corresponding loading or unloading instructions for each repositioning vehicle to balance a BSS with broken bikes.
The objective is to minimize the total CO2 emissions of all the vehicles. An MILP model is proposed to formulate the problem, which is
then solved using a commercial solver. Numerical experiments are carried out on small example networks to clearly illustrate the
problem characteristics and investigate the factors that affect the vehicle emissions. The real world instances of Citybike Vienna are
also used to compare emission and distance minimization solutions and investigate the runtime complexity of the proposed model. A
clustering method based on the nearest neighbor heuristic and a commercial solver is used to solve the large real-world instance with
90 stations. The computational time required and solution quality obtained by this method are also demonstrated.

The contributions of this paper lie on the following:

1. to introduce a new and practical BRP—a static green BRP with broken bikes;
2. to present a model to formulate the problem, and;
3. to illustrate the problem properties and point out critical factors that affect vehicle emissions.

The remainder of the paper is organized as follows. Section 2 reviews the literature on BRPs and fuel consumption and CO2
emission modeling. Section 3 presents a mathematical model for the studied problem. Section 4 describes the numerical studies and
discusses the results. Section 5 discusses different approaches to solving large-scale BRPs. Finally, Section 6 concludes this paper and
gives future research directions.

2. Literature review

In this section, we will first briefly introduce the objectives used in BRPs. Moreover, we will describe how current research
addresses the fuel consumption and CO2 emissions, especially the factors considered in mathematical models. Afterward, we will
discuss the literature about broken bikes and the modeling assumptions in BRPs. Finally, we will depict the existing formulation
approaches to BRPs.

2.1. Objective functions in BRPs

User satisfaction has been commonly considered as the primary objective in BRPs. It is mainly measured by the number of due
date violations (e.g., Brinkmann et al., 2015), unsatisfied demand including both docks and bikes (e.g., Contardo et al., 2012),
penalty costs (e.g., Ho and Szeto, 2014), and so on. Repositioning costs are also considered in most studies, such as travel costs
including travel time or distance (e.g., Benchimol et al., 2011; Angeloudis et al., 2014; Dell’Amico et al., 2014, 2016; Cruz et al.,
2017), maximum tour distance (e.g., Schuijbroek et al., 2017), total travel and handling costs (e.g., Erdoğan et al., 2014), total
redistribution cost (e.g., Nair et al., 2013), and total relocation and lost user costs (e.g., Caggiani and Ottomanelli, 2012). Besides
single objective optimization, some studies considered the weighted sum of various measures, including the cost of unsatisfied
demand and the coefficient of variations of the duration of all routes (e.g, Alvarez-Valdes et al., 2016), the total absolute deviation
from the target number of bikes, the total number of loading/unloading quantities, and the overall time required for all routes (e.g.,
Di Gaspero et al., 2013, 2016; Raidl et al., 2013; Rainer-Harbach et al., 2013, 2015), total travel time and penalty cost (e.g., Ho and
Szeto, 2017), total vehicle travel cost and the expected user dissatisfaction in the system (e.g., Zhang et al., 2017), the total number of
unsatisfied customers and the vehicle’s total operational time (e.g., Szeto et al., 2016), and travel, imbalance, substitution, and
occupancy costs (e.g., Li et al., 2016). However, existing objectives have rarely considered environmental objectives. Indeed, re-
positioning operations are commonly carried out by fossil-fueled vehicles, which emit pollutants and greenhouse gases. These
emissions can damage the environmental creditability of BSSs (Wiersma, 2010). It is therefore important to capture environmental
objectives in BRPs. To the best of our knowledge, Shui and Szeto (2018) were the pioneers to capture an environmental objective in
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BRPs. They minimized the weighted sum of total unmet demand and the fuel and CO2 emission cost of the operating vehicle as the
objective of their study.

One may argue that using bike-trailers for bike repositioning (e.g., Citibike in New York City) are ideal for mitigating CO2
emissions during the operation. Bike-trailers can carry 3–5 bikes at most at one time (e.g., O'Mahony and Shmoys, 2015; Ghosh and
Varakantham, 2017). They are suitable for the case where stations are close to each other, the BSS is in high usage, and traffic is at its
peak (O'Mahony and Shmoys, 2015). However, since static repositioning usually happens during nighttime, the system usage and
congestion impact can be ignored. In addition, to redistribute bikes for the demand in the next morning, the capacity of bike trailers is
far from enough, which makes the bike repositioning inefficient. Furthermore, the route length can be far beyond the capability of the
staff on bikes with trailers. It is unavoidable to use trucks to perform bike repositioning for an even medium size BSS.

2.2. Fuel consumption and CO2 emission modeling

Other than BRPs, environmental issues have been considered in many transport studies, including those about vehicle routing
problems. Emissions can be reduced by optimizing vehicle routes. In vehicle routing problems that consider environmental objectives
(called green vehicle routing problems), CO2 emissions or an approximate measure – fuel consumption – is usually considered as the
model objective (e.g., Demir et al., 2012; Koç et al. 2014; Zhang et al., 2014; Ehmke et al., 2016; Xiao and Konak, 2016). Different
CO2 emission or fuel consumption models have been used in green vehicle routing problems. The measurable factors adopted in most
of these models mainly include vehicle speed, acceleration or deceleration, gradient, and the weight of vehicle loads for certain types
of vehicle and fuel (Scott et al., 2010; Demir et al., 2011; Suzuki, 2011; Lin et al., 2014; Zhang et al., 2015; Hosseini-Nasab and
Lotfalian, 2017). For static bike repositioning, which usually happens in urban cities during the nighttime, the speed can be treated as
constant because the congestion and vehicle flow impacts on the speed are very minor. The road gradient can be reflected in the
asymmetric distances between two nodes. In addition, emissions during waiting time can be omitted when a perfect balance is
considered because they are proportional to loading and unloading quantities and are constant in the objective function. Therefore, as
indicated in the study of Xiao et al. (2012), the fuel consumption rate can be treated as linear with respect to vehicle loads when
having the previous assumptions in static bike repositioning.

Xiao et al. (2012) also presented a fuel consumption model in detail, which is composed of the empty-load fuel consumption rate
0, the full-load fuel consumption rate , and the vehicle capacity Q0. The full equation is given below:

= +q
Q

q( ) 0
0

0 (1)

where q is the load on the vehicle. When the vehicle is empty, the vehicle has a fixed fuel consumption rate 0, which relates to the
vehicle type and the fuel type. The term

Q
0

0
determines the quantity of fuel consumption induced by one unit increase in the vehicle

load. Therefore, the total fuel consumption per unit of distance is the sum of fixed consumption and additional load consumption. On
the basis of Eq. (1), Zhang et al. (2014) developed a CO2 emission model, converting the fuel consumption into emissions through a
conversion rate:

= +e q CER
Q

q d( ) 0
0

0 (2)

where CER is the CO2 emission rate and d is the travel distance with a load q.
A similar model has also been proposed in the study of Kopfer et al. (2014), where the CO2 emissions are proportional to the fuel

consumption. Thus, the minimization of CO2 emissions and fuel consumption are equivalent. In their study, the following is adopted
as the objective function:

= +F q a d b q d( ) (3)

where a denotes the fuel consumption per unit of distance and b denotes the fuel consumption per unit of payload and distance.

2.3. Broken bikes in BRPs

Other than environmental objectives, another important consideration in BSSs is broken bikes. It is almost unavoidable to have
broken bikes in BSSs, due to careless use or accidents. The presence of broken bikes implies a waste of resources, as broken bikes take
up the limited lockers in a station and are unusable (Kaspi et al., 2017). The numerical results of Kaspi et al. (2017) indicate that even
a small fraction of unusable bikes can have a significant effect on user dissatisfaction. Therefore, the broken bikes need to be taken
away from stations for repairs, which certainly consumes parts of the repositioning resources that are intentionally assigned to usable
bikes. Therefore, when planning the repositioning works, broken bikes need to be considered together with usable bikes. However,
most of the existing studies do not consider broken bikes. An exception is the study by Alvarez-Valdes et al. (2016) who studied bike
repositioning with broken bikes, in which the vehicles transshipped usable bikes among stations, collected broken bikes at stations
along the tours, and dropped the broken bikes off at the depot. Nevertheless, Alvarez-Valdes et al. (2016) did not consider vehicle
emissions due to the repositioning.
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2.4. Modeling assumptions in BRPs

Existing BRPs, including those aforementioned, can be classified into different categories according to the characteristics of the
target BSS and the availability of repositioning resources. In these problems, there could be more than one vehicle carrying out the
repositioning work (e.g., Raviv et al., 2013; Alvarez-Valdes et al., 2016; Ho and Szeto, 2017). However, under some circumstances, a
single vehicle could also handle the job (e.g., Benchimol et al., 2011; Chemla et al., 2013; Erdoğan et al., 2014). Some problems
limited to at most a single visit of a vehicle to each station (e.g., Ho and Szeto, 2014; Szeto et al., 2016) while others considered
multiple visits to stations (e.g., Chemla et al., 2013; Papazek et al., 2014; Rainer-Harbach et al., 2013, 2015). In fact, multiple visits to
a station are required when the capacity of a single vehicle is insufficient to deal with the demand at that station. As demonstrated in
the numerical studies of this paper, multiple visits can also reduce vehicle emissions.

Some of the studies discussed before are summarized in Table 2.1. Compared with other static bike repositioning studies, this
study simultaneously considers broken bikes, an environmental objective, and multiple visits to depots/stations.

2.5. Formulation approaches

To formulate BRPs, various approaches can be used. Raviv et al. (2013) presented three different MILP models in their study,
including an Arc-Indexed (AI) Formulation, a Time-Indexed (TI) Formulation, and a Sequence-Indexed (SI) Formulation. The AI
formulation is the most popular in BRPs and uses binary variables to indicate the consecutive visits of two nodes. Thus, the routing
decision variables relate to two nodes, implying an arc in a route. The TI formulation adds a time index to the decision variables, so it
can handle multiple periods in the planning horizon and broadens the feasible region compared to the AI formulation. Unlike the
former two formulations focusing on arcs, the SI formulation pairs a station with its order in the visit sequence. Therefore, only one
node index appears in the decision variables, which makes it capable of tackling multiple visit instances. The TI formulation can
adapt to almost all situations as well as dynamic planning because of the time index introduced while the AI formulation cannot.
Multiple visits to stations and transshipments can both be allowed in the TI formulation. However, time discretization might cause the
loss of accuracy and also increase the problem complexity significantly compared with the AI formulation, especially when the
problem can be modeled using the AI formulation. The SI formulation is not as flexible as the TI formulation but outperforms the AI
formulation with more tolerances for assumptions. However, the SI formulation receives the least attention in the literature.

2.6. Summary

It is important to capture environmental objectives in BRPs. Moreover, when the vehicle speed is constant, the fuel consumption
rate is linear with respect to vehicle loads as shown in Eq. (1). Thus, for a certain type of fuel, the CO2 emissions are the product of the
fuel-to-CO2 conversion rate, total travel distance, and fuel consumption rate, as shown in Eq. (2), which is equivalent to Eq. (3).
Furthermore, broken bikes can be treated as another type of bike and should be tackled simultaneously. In addition, multiple visits
may be necessary for bike repositioning. To model this, the SI formulation can be used and solved by commercial solvers.

Table 2.1
Summary of the characteristics of bike repositioning problems.

Assumptions Objective function

References No. of vehicles MV BB Scenario Dev UD DS TT/ TD/ TC CVD PC LQ/ HC EI

Benchimol et al. (2011) Single Static ✓
Contardo et al. (2012) Multiple ✓ Dynamic ✓
Chemla et al. (2013) Single ✓ Static ✓
Di Gaspero et al. (2013) Multiple Static ✓ ✓ ✓
Angeloudis et al. (2014) Multiple Static ✓
Erdoğan et al. (2014) Single Static ✓ ✓
Ho and Szeto (2014) Single Static ✓
Rainer-Harbach et al. (2015) Multiple ✓ Static ✓ ✓ ✓
Alvarez-Valdes et al. (2016) Multiple ✓ ✓ Static ✓ ✓
Dell’Amico et al. (2016) Multiple Static ✓
Li et al. (2016) Single Static ✓ ✓
Szeto et al. (2016) Single Static ✓ ✓
Cruz et al. (2017) Single ✓ Static ✓
Ho and Szeto (2017) Multiple Static ✓ ✓
Zhang et al. (2017) Multiple Dynamic ✓ ✓
Shui and Szeto (2018) Single ✓ Dynamic ✓ ✓
Szeto and Shui (2018) Multiple Static ✓ ✓ ✓
This study Multiple ✓ ✓ Static ✓

MV: multiple visits; BB: broken bikes; Dev: deviation from the target number of bikes; UD: total unmet demand; DS: user dissatisfaction; TT: total
travel time; TD: total travel distance; TC: total travel cost; CVD: coefficient of variation of the duration of all routes; PC: penalty cost; LQ: the total
number of loading/unloading quantities; HC: handling cost; EI: environmental issues.
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3. Model formulation

Consider a BSS consisting of the depot and stations. These stations can be classified into three types: pick-up, drop-off, and
balanced. A pick-up station has a higher initial inventory of usable bikes than the target inventory. A drop-off station has a higher
target inventory of usable bikes than the initial inventory. A balanced station has the initial inventory equal to the target inventory.
Multiple homogenous vehicles with fixed capacity depart from the depot (denoted by 0) nonempty, transship usable bikes among
stations to meet the target inventory level of each station, take all broken bikes from stations to the depot for repairs, and transport
redundant usable bikes back to the depot. We set the monotonicity constraint for the loading/unloading instructions. That is to say,
bikes cannot be dropped off at a “pick-up station” during the repositioning process and bikes cannot be loaded from a “drop-off
station” during the repositioning process. All stations and the depot can be visited multiple times. The target inventory level of each
station must be met. All bikes on each vehicle should be unloaded to the depot at the end of the tour. In addition, once broken bikes
are loaded onto the vehicles, they cannot be dropped off at any other stations except for the depot. Balanced stations with zero broken
bikes do not need to be visited. The depot is supposed to have infinite bike stocks and infinite capacity. The total CO2 emissions of all
vehicles are used to assess the performance of the repositioning operation. We assume that the CO2 emissions are only produced when
a vehicle is moving and we ignore the emissions during waiting. Moreover, the amount of emissions just relates to the load and travel
distance of the vehicles. The objective is to reduce the total emissions.

3.1. Notations

Sets

S The set of stations
S0 The set of nodes, including the stations and the depot
V The set of vehicles

Parameters

pi The initial inventory of usable bikes at station i S
qi The target inventory of usable bikes at station i S
bi The quantity of broken bikes at station i S
dij Travel distance from node i S0 to node j S0

0 The empty-load fuel consumption rate of each vehicle (liters/km)
The full-load fuel consumption rate of each vehicle (liters/km)

CER The CO2 emission rate (kg/liter)
Qk The capacity of vehicle k
A An upper bound on the number of stops of each vehicle
M A large number for linearizing the objective function

Decision variables

xiak
= i a k1, if node is the stop of vehicle

0, otherwise
th

yiak
G The number of usable bikes loaded onto or unloaded from vehicle k at node i at its ath stop, an integer variable (a positive

number implies that a loading operation occurs there)
yiak

B The number of broken bikes loaded onto or unloaded from vehicle k at node i at its ath stop, an integer variable

Auxiliary variables

yak
G The number of usable bikes on vehicle k after loading/unloading at its ath stop, a nonnegative integer variable

yak
B The number of broken bikes on vehicle k after loading/unloading at its ath stop, a nonnegative integer variable

zaijk The emissions produced when vehicle k travels from node i and arrives at node j at its ath stop
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3.2. Sequence-indexed formulation

The problem can be mathematically stated as follows:

=
zMinimize

k V
a

A

i S j S i j
aijk

2 ,0 0 (4)

Subject to

= =x a A k V1 1, , ,
i S iak

0 (5)

=x k V1,k01 (6)

=x k V1,Ak0 (7)

+ =+ +x x x a A k V1, 1, , 2,ak a k a k0 0, 1, 0, 2, (8)

+ =+x x i S a A k V1, , 2, , 1,iak i a k, 1, (9)

=
=

p y q i S,i k V a

A
iak
G

i1 (10)

=
=

b y i S0,i k V a

A
iak
B

1 (11)

=Q x y Q x i S a A k V· · , , 1, , ,k iak iak
G

k iak 0 (12)

=y b x i S a A k V0 · , , 1, , ,iak
B

i iak (13)

=Q x y a A k V· 0, 1, , ,k ak ak
B

0 0 (14)

=p q y p q i S a A k Vmin(0, ) max(0, ), , 2, , 1,i i iak
G

i i (15)

= + =y y y a A k V, 2, , ,ak
G

a k
G

i S iak
G

1, 0 (16)

= + =y y y a A k V, 2, , ,ak
B

a k
B

i S iak
B

1, 0 (17)

=y y k V,k
G

k
G

1 01 (18)

=y k V0,k
B

1 (19)

=y k V0,Ak
G (20)

=y k V0,Ak
B (21)

+ =y y Q a A k V, 1, , ,ak
G

ak
B

k (22)

+ + + =CER
Q

y y d z M x x i j S a A k V· ·( ) · ·[2 ( )], , , 2, , ,a k
G

a k
B

ij aijk i a k jak0
0

1, 1, , 1, 0
(23)

=x i S a A k V{0, 1}, , 1, , ,iak 0 (24)

=y i S a A k V, integers, , 1, , ,iak
G

0 (25)

=y i S a A k V, integers, , 1, , ,iak
B

0 (26)

=y a A k V0, integers, 1, , ,ak
G (27)

=y a A k V0, integers, 1, , ,ak
B (28)

=z i j S a A k V0, , , 2, , ,aijk 0 (29)

The objective (4) is to minimize the total CO2 emissions of all the vehicles. Constraints (5) guarantee that each vehicle visits one
station at one time. Constraints (6) and (7) restrict the tour of each vehicle to start from and end at the depot, respectively. Con-
straints (8) make sure that no vehicle has two consecutive stops at the depot, except possibly the last stop, after all loading/unloading
activities are completed (Raviv et al., 2013). Constraints (9) prevent the situation when a vehicle visits a station at two consecutive
stops. Constraints (10) stipulate the perfect balance condition held at each station at the end of the repositioning operation, i.e., after
the repositioning is finished, the inventory level of usable bikes at each station equals the corresponding target inventory level. Note
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that the second term on the left-hand side is the sum of loading/unloading quantities at all stops of all vehicles at station i. Constraints
(11) imply that all broken bikes are transported away from all stations before the end of repositioning operation. Constraints
(12)–(14) indicate that there are no loading/unloading activities for any bike at a certain station if this station is not visited by any
vehicle. Constraints (15) set the upper and lower bounds of loading/unloading quantities of usable bikes of each vehicle at each stop.
Constraints (16) and (17) define the numbers of usable bikes and broken bikes on each vehicle after leaving the ath stop, respectively.
Constraints (18) imply that the number of usable bikes on each vehicle after leaving the first stop is the loading quantity at the depot.
Constraints (19) mean that there are no broken bikes on each vehicle after leaving the first stop. Constraints (20) and (21) require
that all types of carried bikes should be unloaded from each vehicle at the end of its tour. Constraints (22) are the vehicle capacity
constraints. Constraints (23) define the emissions produced when vehicle k travels from node i and arrives at node j at its ath stop.
Constraints (24)–(29) are the domain constraints.

Constraints (15) can be linearized by introducing an auxiliary binary variable i and extra constraints (30)–(33):

M p q i S· ,i i i (30)

+M y p q M i S k V· · , ,i iak
G

i i i (31)

p q M i S(1 )· ,i i i (32)

p q M y M i S k V(1 )· (1 )· , ,i i i iak
G

i (33)

In general, a higher value of the upper bound on the number of stops of each vehicle (A) is supposed to provide better solutions.
However, the higher value leads to more decision variables as well as a longer running time. Therefore, we can first compute the
lower bound Al for the value of A, and then increase A from the lower bound until the objective value cannot be improved. This
lower bound consists of three parts as stated below.

Firstly, all the stations with broken bikes or insufficient/excess usable bikes must be visited at least once and the depot must be
visited at the start and the end of the tour (twice). Define a new set =S i i S p q b{ | , or 0}U i i i that contains all these stations.
Then the number of stops should be no less than +S| | 2U .

Secondly, if the sum of demand/supply of all the stations exceeds the vehicle capacity Q, the depot needs to be visited halfway. Let
nd be the number of additional visits to the depot (except the first and last stops of each vehicle). Then it can be expressed as

=

+

n
p q, if ( ) 0

max , , otherwise
d

p q b
Q

i S
i i

q p
Q

b
Q

( )

( )

i S i i i S i

i S i i i S i

(34)

Lastly, if the demand of a specific station exceeds Q, this station must be visited multiple times. Define two new sets
= > + >+S i i S p q p q b Q{ | , 0 & }A i i i i i and = < >S i i S p q q p b Q{ | , 0 & max( , ) }A i i i i i , which contain all the stations that

have total loading/unloading quantities larger than the vehicle capacity. Let +nSA and nSA be the numbers of additional visits to the
stations in the corresponding sets. Then,

=
+

+ +n
p q b

Q
andS i S

i i i
A A (35)

=n
q p b
Q

max( , )
S i S

i i i
A A (36)

Therefore, the lower bound for the value of A can be computed as

= + + + ++A S n n n| | 2l U d S SA A (37)

To balance the solution equality and running time, in our experiments, the start value of A is set as Al. Then A increases until the
objective value cannot be improved.

4. Numerical studies

We will first discuss the effects of different factors on the repositioning operation strategy and the CO2 emissions in Sections
4.1–4.5, including:

1. The effect of demand tolerance (the acceptable deviation to the target demand)
2. The effect of the percentage of broken bikes in the network
3. The effect of link distances between stations
4. The effect of multiple visits
5. The effect of vehicle capacity

Then we will compare the solutions obtained from emission minimization and total travel distance minimization in Section 4.6.
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Finally, we will show the performance of the model and solution methods used in Section 4.7.
For these purposes, we set different instances and formed an MILP for each scenario. We only used ILOG CPLEX 12.6 invoked by a

C++ program in Visual Studio 2010 to solve the model for each scenario, except that for a large network instance with 90 stations, a
clustering method based on the nearest neighbor heuristic was used before executing the optimization program. This program was
executed on a computer with an Intel® Core™ i7-4790 CPU and 32 GB of RAM. For all scenarios investigating the effects of different
factors in Sections 4.1–4.5, there are 6 stations and one depot. In Sections 4.6 and 4.7, the benchmark instances created by Rainer-
Harbach et al. (2015) based on Citybike Vienna are used. In all numerical experiments in Section 4, unless otherwise specified, there
is only one vehicle and its capacity is 20 bikes. The parameters in the CO2 emission model (2) for all numerical experiments are listed
in Table 4.1 and follow the values in Ubeda et al. (2011).

A base scenario is set for the comparison between different settings in Sections 4.1–4.5. The information of the stations in the base
scenario is displayed in Table 4.2. Both the “initial inventory” and “target inventory” refer to usable bikes in the following contents.
The travel distances between nodes are shown in Table 4.3. For this base scenario, the optimal solution is shown in Table 4.4.

The first row in Table 4.4 is the visit sequence of the vehicle to each node. Each number in this row is the node number and 0
represents the depot. It can be seen that the first and last stops of the vehicle are both the depot and the depot is visited at the 7th
stop. Moreover, it is observed that Station 2 is visited twice because its demand (25 usable bikes) exceeds the capacity of the vehicle
(20 bikes). The second row shows the number of usable bikes loaded onto or unloaded from the vehicle. A positive number means
loading that number of bikes onto the vehicle whereas a negative number means unloading bikes from the vehicle and the unloading
quantity equals the absolute value of that number. According to the second row, the depot is visited at the 7th stop to collect extra 9
usable bikes for the following stations. The third row shows the number of broken bikes loaded onto or unloaded from the vehicle at
each stop. When the vehicle comes back to the depot halfway, it unloads all the broken bikes to the depot to make room for the usable
bikes to load onto the vehicle. The last row displays the total number of bikes on the vehicle after leaving the corresponding stop. The
total CO2 emissions in this scenario are 5.824 kg.

4.1. The effect of demand tolerance

This section will discuss the effect of demand tolerance on the CO2 emissions. Under the perfect balance condition, all station
demands must be satisfied, which means that the final inventory level of usable bikes of each station must be equal to its target
inventory. If a tolerance i is assigned to the demand of a stationi, the final inventory of usable bikes at that station should be
controlled within the range [qi i, +qi i] and the range between zero and its station capacity, where i = q Pi and P is the percentage
of demand tolerance. In this section, 7 scenarios with different values of P will be studied: P =0%, 5%, …, 30%.

Table 4.5 shows the optimal route and the corresponding vehicle loads, number of stops, and CO2 emissions under different
percentages of demand tolerance. The perfect balance scenario is the base scenario mentioned earlier. When P =5%, the optimal
route does not change compared with the perfect balance scenario. The initial load on the vehicle slightly decreases from 10 bikes to
9 bikes. Thus, there is nearly no difference between the emissions under these two scenarios. When P =10%, the first four stops in
the optimal route stay the same but the following visit sequence changes greatly compared with the former scenario. Station 2 is still
visited twice, but the depot is not visited halfway during the tour, i.e., it is visited just at the start and the end of the tour. This result
indicates that the vehicle does not need to collect extra usable bikes or unload bikes at the depot halfway. Therefore, the vehicle is
full-loaded at the start of the tour. In addition, the route has one stop less than the former case and the emissions decrease from
5.812 kg to 5.472 kg. When P =15%, Station 4 is visited two stops earlier compared with the 10% case. The emissions are further
reduced to 5.205 kg. When P =20%, Station 2 is only visited once and the tour length is reduced to 8 stops. The emissions are
4.848 kg. In the cases of the 25% and 30% tolerance, the optimal route remains the same as that in the case of the 20% tolerance, but
the emissions keep decreasing as the percentage of demand tolerance increases. The trend of emissions under different percentages of
demand tolerance is displayed in Fig. 4.1. In general, when the percentage of demand tolerance increases, the CO2 emissions

Table 4.1
Parameter settings of the CO2 emission model for all numerical experiments.

Settings Value

CO2 emission rate in terms of diesel oil CER (kg/liter) 2.61
The empty-load fuel consumption rate 0 (liters/km) 0.296
The full-load fuel consumption rate (liters/km) 0.39

Table 4.2
Station information in the base scenario.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 5 0 17 15 22 7 66
Target inventory 18 25 5 18 15 4 85
Broken bikes 3 4 0 3 1 2 13
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Table 4.3
Travel distances (in hundred meters) between stations in the base scenario.

Depot 1 2 3 4 5 6

Depot 0 14 10 15 15 16 12
1 11 0 7 9 4 12 6
2 12 13 0 10 12 8 4
3 14 10 6 0 8 6 14
4 7 10 8 13 0 11 6
5 6 16 14 10 7 0 6
6 16 9 14 6 13 8 0

Table 4.4
Optimal repositioning route and loading instructions in the base scenario.

Node 0 2 6 3 2 5 0 1 4 0

Loading instruction for usable bikes 10 −10 3 12 −15 7 9 −13 −3 0 Emissions= 5.824 kg
Loading instruction for broken bikes 0 0 2 0 4 1 −7 3 3 −6
Vehicle load 10 0 5 17 6 14 16 6 6 0

Table 4.5
The optimal solutions under different percentages of demand tolerance.

Optimal route Loads on the vehicle Number of stops Emissions (kg)

Perfect balance 0-2-6-3-2-5-0-1-4-0 10-0-5-17-6-14-16-6-6-0 10 5.824

Percentage of demand tolerance 5% 0-2-6-3-2-5-0-1-4-0 9-0-5-17-6-14-16-6-6-0 10 5.812
10% 0-2-6-3-1-2-5-4-0 20-0-5-17-8-9-16-15-0 9 5.472
15% 0-2-6-3-1-4-2-5-0 20-0-5-17-8-10-12-18-0 9 5.205
20% 0-2-6-3-1-4-5-0 20-4-9-20-9-12-17-0 8 4.848
25% 0-2-6-3-1-4-5-0 19-4-8-19-9-12-17-0 8 4.816
30% 0-2-6-3-1-4-5-0 18-4-8-19-9-12-16-0 8 4.796
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Fig. 4.1. The CO2 emissions under different percentages of demand tolerance.

Table 4.6
The ranges of the final inventory level for each station under different demand tolerances.

Station

1 2 3 4 5 6

Target inventory level 18 25 5 18 15 4

Demand tolerances 0 18 25 5 18 15 4
5% 18 [24,25] 5 18 15 4
10% [17,19] [23,25] 5 [17,19] [14,16] 4
15% [16,20](17) [22,25] 5 [16,20] [13,17] 4
20% [15,20](19) [20,25] [4,6] [15,20] [12,18] 4
25% [14,20](18) [19,25] [4,6] [14,20](15) [12,18] [3,5]
30% [13,20](18) [18,25] [4,6] [13,20](15) [11,19] [3,5]
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decrease.
Table 4.6 summarizes the ranges of the final inventory level for each station under different demand tolerances. The lower and

upper bounds are rounded up to the nearest integer. If the final inventory level hits the upper or lower bound in the range, the
corresponding number is underlined. If not, the final inventory level is recorded in the parenthesis after the range.

For Station 2, its initial inventory level is 0 usable bike and the target inventory level is 25 usable bikes. When the demand
tolerance increases, the lower bound of the final inventory keeps decreasing, but the upper bound stays the same (25 usable bikes)
because the station capacity is 25 bikes. The final inventory levels always hit the corresponding lower bound in all scenarios, because
Station 2 is in need of usable bikes and a lower final inventory level implies lower demand, leading to smaller loads on the vehicle and
vehicle emissions.

For Station 3, Station 5, and Station 6, they have extra usable bikes that need to be transported away. The final inventories at
these stations always hit the corresponding upper bound in all scenarios, because collecting fewer bikes can also make the loads on
the vehicle and hence vehicle emissions smaller.

For Station 1 and Station 4, they are in need of usable bikes. However, unlike station 2, which is also a drop-off station, their final
inventory levels are not always equal to the lower bound of the corresponding range and are in fact higher than the lower bound. In
the case of the 15% tolerance, Station 1 is visited before Station 4 and the second visit to Station 2. Extra usable bikes are dropped off
at Station 1, because (1) these bikes obtained from the previous pickup stations have to unload at some drop-off stations anyway and
(2) when they are dropped off earlier, fewer bikes are on the vehicle for the later part of the route, leading to lower vehicle emissions.
For the cases of the 20%, 25%, and 30% tolerance, since the final inventory range of Station 1’s succeeding station (Station 4)
contains the initial inventory level (15 usable bikes), no extra usable bikes are needed for Station 4 (see Table 4.7 for reference). In
addition, the two preceding pick-up stations (Station 3 and Station 6) of Station 1 already have their initial inventories more than
their corresponding upper bound, and therefore at least the difference between them has to be picked up by the vehicle and should be
dropped off as soon as possible. As a result, the final inventory at Station 1 is larger than its lower bound in each of these scenarios.

In summary, when a tolerance to the demands of stations increases, the CO2 emissions decrease, and the route, vehicle load, or
loading instructions may be adjusted to reduce the emissions. Moreover, the number of stops in an optimal route is non-increasing
with respect to the tolerance. Furthermore, both the upper and lower bounds of the final inventory may not be the resulting inventory
level when a demand tolerance is allowed.

4.2. The effect of the percentage of broken bikes

In this section, we still consider 79 bikes as in Table 4.2. The initial total number of bikes in each station is also the same as that in
Table 4.2. However, we varied the percentage of broken bikes. The percentage of broken bikes increased from 0 to 20% of the total
number of bikes at regular intervals equal to 5%. When 5% of total bikes were broken, the total number of broken bikes was 3.95,
which was rounded up to the nearest integer (i.e., 4) and then distributed evenly among four stations (without loss of generality, we
picked Stations 1, 3, 4, 5). To eliminate the effect of the spatial distribution of broken bikes on the emissions, the stations without
broken bikes in the “5%” scenario also had no broken bikes in all other scenarios. The initial inventory (of usable bikes) at each
station was then constructed using the total number of bikes minus the corresponding number of broken bikes. Other station in-
formation, including the station capacity and the target inventory of usable bikes, are the same as those in Table 4.2. The broken bike
distributions under different percentages are shown in Table 4.8. The travel distances between stations are the same as those in the
base scenario shown in Table 4.3.

The results are displayed in Table 4.9. When there are no broken bikes, the optimal route has 8 stops and the depot is not visited

Table 4.7
The optimal routes, loading instructions for usable bikes, and loads of usable bikes on the vehicle under different demand tolerances.

Tolerance Results

15% Optimal route 0-2-6-3-1-4-2-5-0
Loading instructions for usable bikes (20)-(-20)-(3)-(12)-(-12)-(-1)-(-2)-(5)-(-5)
Loads of usable bikes on the vehicle 20-0-3-15-3-2-0-5-0
Loading instructions for broken bikes (0)-(0)-(2)-(0)-(3)-(3)-(4)-(1)-(-13)

20% Optimal route 0-2-6-3-1-4-5-0
Loading instructions for usable bikes (20)-(-20)-(3)-(11)-(-14)-(0)-(4)-(-4)
Loads of usable bikes on the vehicle 20-0-3-14-0-0-4-0
Loading instructions for broken bikes (0)-(4)-(2)-(0)-(3)-(3)-(1)-(-13)

25% Optimal route 0-2-6-3-1-4-5-0
Loading instructions for usable bikes (19)-(-19)-(2)-(11)-(-13)-(0)-(4)-(-4)
Loads of usable bikes on the vehicle 19-0-2-13-0-0-4-0
Loading instructions for broken bikes (0)-(4)-(2)-(0)-(3)-(3)-(1)-(-13)

30% Optimal route 0-2-6-3-1-4-5-0
Loading instructions for usable bikes (18)-(-18)-(2)-(11)-(-13)-(0)-(3)-(-3)
Loads of usable bikes on the vehicle 18-0-2-13-0-0-3-0

Loading instructions for broken bikes (0)-(4)-(2)-(0)-(3)-(3)-(1)-(-13)
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halfway during the journey. The CO2 emissions are 4.436 kg. When the percentage of broken bikes increases to 5% and 10%, Station
4 needs to be visited because broken bikes can be found there. Therefore, the emissions increase in these two cases compared with the
base case (0% broken bikes). When the percentage of broken bikes increases to 15%, the visit order of Station 4 in the optimal route
changes and so do the vehicle loads. The emissions increase to 5.408 kg. For the case of 20% broken bikes, the optimal route changes
greatly and the depot is visited halfway during the journey. The number of stops increases to 10 and the emissions increase to
5.826 kg. This increasing trend of emissions is displayed in Fig. 4.2.

In summary, when the percentage of broken bikes increases, the CO2 emissions increase. The number of stops is a non-decreasing
function of the percentage of broken bikes. The route and vehicle loads may be adjusted due to the change in the percentage.

4.3. The effects of distances between stations

This section will discuss the effects of the distance between two specific stations on the CO2 emissions. To show different pos-
sibilities, we created four different scenarios as shown in Table 4.10. In each scenario, the distance of one link in the base scenario
increased.

4.3.1. Scenarios 1 and 2
There is a base scenario for the comparison with Scenarios 1 and 2. The station information and travel distances in the base

scenario for the comparison follow Tables 4.2 and 4.3, respectively. The optimal solution in this base scenario is shown in Table 4.4
and is also reported in the first row of Table 4.11.

Scenario 1: Double the distance between Station 2 and Station 6

Link 2-6 is in an optimal route in the base scenario. If the distance between Station 2 and Station 6 increases from 4 to 8, the
optimal solution does not change. As shown in the row called “Double d26” in Table 4.11, the optimal route is still 0-2-6-3-2-5-0-1-4-0
and link 2-6 is also in the optimal route. However, as the link distance doubles, the CO2 emissions increase to 6.133 kg, which
increases by 5.3% compared with the base scenario.

Table 4.8
Station information with different percentages of broken bikes.

Station 1 2 3 4 5 6 Total

Percentage of broken bikes 0% 0 0 0 0 0 0 0
5% 1 0 1 1 1 0 4
10% 2 0 2 2 2 0 8
15% 3 0 3 3 3 0 12
20% 4 0 4 4 4 0 16

Table 4.9
The optimal routes under different percentages of broken bikes.

Optimal route Loads on the vehicle Number of stops Emissions (kg)

Percentage of broken bikes 0 0-1-2-6-3-2-5-0 14-4-0-5-17-0-8-0 8 4.436
5% 0-2-6-3-1-4-2-5-0 17-0-5-17-7-7-3-11-0 9 4.994
10% 0-2-6-3-1-4-2-5-0 20-0-5-17-7-7-6-14-0 9 5.082
15% 0-2-6-3-1-2-5-4-0 20-0-5-17-7-6-14-14-0 9 5.408
20% 0-1-4-0-2-6-3-2-5-0 18-8-8-8-0-5-17-4-12-0 10 5.826

Fig. 4.2. The CO2 emissions under different percentages of broken bikes.
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Scenario 2: Double the distance between Station 4 and Station 6

Link 4-6 is not in an optimal route in the base scenario. If the distance between Station 4 and Station 6 increases from 6 to 12, the
optimal route and emissions do not change and link 4-6 is still not in the optimal route as shown in the last row of Table 4.11.

4.3.2. Scenarios 3a and 3b
For Scenarios 3a and 3b, a symmetric network was created to demonstrate the two possibilities on emissions after a link distance

on an optimal route increases. The station information and distance matrix for the base scenario are displayed in Tables 4.12 and
4.13, respectively. In this base scenario, the two optimal routes are 0-5-6-1-2-3-4-0 and 0-2-1-6-5-4-3-0. The CO2 emissions are both
3.999 kg as shown in the “Base scenario” row of Table 4.14.

Scenario 3a: Double the distance between the depot and Station 5

The link between the depot and Station 5 is only in one optimal route. If the distance of this link increases from 7 to 14, the
optimal solution will change. As shown in the “Double d05” row of Table 4.14, the optimal route after this increase is 0-2-1-6-5-4-3-0
and Link 0-5 is not in an optimal route any more. Although the visit sequence of the vehicle changes compared with the base scenario,
the CO2 emissions stay the same as those in the base scenario. It is because in the base scenario, there are two optimal routes having
the same emissions. Therefore, when the distance of one link in one of the two optimal routes but not both in the base scenario
increases, the other optimal route is used after the increment and hence the emissions remain unchanged.

Scenario 3b: Double the distance between Station 1 and Station 6

The link between Stations 1 and 6 appears in both optimal routes in the base scenario. If the distance between these stations
increases from 9 to 18, the two optimal solutions change to the one as shown in the last row of Table 4.14. Link 6-1 is not in an
optimal route after the increment and the total emissions increase to 4.179 kg. Unlike Scenario 3a, the existence of two optimal routes
cannot help to maintain the emission level because when the distance of Link 6-1 increases, the vehicle emissions of both routes
increase. Unlike Scenario 1, the increase in distance is relatively large so that Link 6-1 is not in the resulting optimal route after the
increase in distance.

4.3.3. Summary
In summary, the effects of distances between stations on emissions are shown in Table 4.15.

4.4. The effect of multiple visits

This section will explain the necessity of multiple visits. The vehicle has multiple visits to the depot and stations due to different

Table 4.10
Four scenarios for studying the effect of link distance on emissions.

The link is in an optimal route before the increase The link is in an optimal route after the increase

Scenario 1 Yes Yes
Scenario 2 No No
Scenarios 3a and 3b Yes No

Table 4.11
The optimal routes and emissions in Scenarios 1 and 2 in Section 4.3.

Optimal route CO2 emissions (kg)

Base scenario 0-2-6-3-2-5-0-1-4-0 5.824
Scenario 1: Double d26 0-2-6-3-2-5-0-1-4-0 6.133
Scenario 2: Double d46 0-2-6-3-2-5-0-1-4-0 5.824

Table 4.12
Station information in the base scenario in Section 4.3.2.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 15 25 8 14 22 6 90
Target inventory 17 20 11 17 17 8 90
Broken bikes 2 0 3 3 0 2 10
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reasons: (1) insufficient vehicle capacity to cope with the total excess supply of all stations or the single excess demand of a specific
station, (2) to decrease vehicle loads by dropping off broken bikes halfway, and (3) to satisfy the demands over several visits to
reduce the vehicle loads. To illustrate them, different datasets from the base scenario are used in the following subsections.

4.4.1. Multiple visits due to excess supply or demands
When the absolute value of either the sum of the supply of all stations or the single demand of a specific station exceeds the

vehicle capacity, the vehicle needs to visit the depot and/or a specific station multiple times. Two instances are provided for these
two scenarios. They share the same distance matrix as shown in Table 4.16.

Scenario 1: Multiple visits to the depot

A new set of stations having information as shown in Table 4.17 is used to demonstrate the need of multiple-visit to the depot. It
can be found that the total supply from all stations is 22 usable bikes, which means that 22 usable bikes need to be transported away
from the stations to the depot. However, the vehicle capacity is only 20 bikes. Therefore, the depot is visited halfway to drop off some
bikes. The optimal route in Scenario 1 is 0-3-2-5-0-1-4-0.

Scenario 2: Multiple visits to stations

A set of stations having different demands as shown in Table 4.18 is used to illustrate the need for multiple-visit to stations. The

Table 4.13
Travel distances (in hundred meters) between stations in Scenarios 3a and 3b in Section 4.3.2.

Depot 1 2 3 4 5 6

Depot 0 8 7 7 7 7 7
1 8 0 5 13 15 13 9
2 7 5 0 9 12 14 12
3 7 13 9 0 4 12 14
4 7 15 12 4 0 9 13
5 7 13 14 12 9 0 6
6 7 9 12 14 13 6 0

Table 4.14
The optimal routes and emissions in Scenarios 3a and 3b in Section 4.3.2.

Optimal route Emissions (kg)

Base scenario 0-5-6-1-2-3-4-0 and 0-2-1-6-5-4-3-0 3.999
Scenario 3a: Double d05 0-2-1-6-5-4-3-0 3.999
Scenario 3b: Double d16 0-6-5-4-3-2-1-0 4.179

Table 4.15
The effects of distances between stations on the optimal routes and CO2 emissions in different scenarios.

The link is in an optimal route before the
increase

The link is in an optimal route after the
increase

Change of the optimal
route

Change of CO2 emissions

Scenario 1 Yes Yes No Increase
Scenario 2 No No No Unchanged
Scenario 3a Yes No Yes Unchanged
Scenario 3b Yes No Yes Increase

Table 4.16
Travel distances (in hundred meters) between stations in the two scenarios in Section 4.4.1.

Depot 1 2 3 4 5 6

Depot 0 13 15 15 19 13 9
1 12 0 8 17 8 13 9
2 12 20 0 16 18 15 20
3 17 19 6 0 12 12 19
4 10 8 7 19 0 17 5
5 7 12 9 17 13 0 11
6 9 10 10 6 12 20 0
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distance matrix is the same as that in Scenario 1. The optimal solution in Scenario 2 is 0-5-1-4-2-3-5-0.
It can be seen from Table 4.18 that Station 5 is in need of 23 usable bikes, which is larger than the vehicle capacity (20 bikes).

Therefore, Station 5 is visited twice, with the first and second visits dropping off 18 and 5 usable bikes, respectively.

4.4.2. Multiple visits due to broken bikes
The difference in handling between usable and broken bikes is that the usable bikes can be transferred among stations whereas

broken bikes stay on the vehicle all the way to the depot. Therefore, the emissions contributed by a broken bike on average are larger
than those by a usable bike and it is wise to drop off broken bikes by visiting the depot whenever possible. Thus, in some cases,
although the vehicle capacity is enough to handle both types of bikes in one tour, the vehicle still goes back to the depot to drop
broken bikes in order to reduce the load and hence the emissions. An example is provided using the station and distance information
shown in Table 4.19 and Table 4.20, respectively.

Table 4.21 provides the solution details. The second row named “Multi-visit to the depot” is the optimal solution provided by
CPLEX, where multiple visits are allowed. The optimal vehicle route has 9 stops in total, including the start and the end, and has one
extra visit to the depot halfway. Other stations are visited exactly once. The average load over 8 links is 6.75. The total distance of the
whole route is 4.8 km and the vehicle generates 4.113 kg of CO2 emissions. The third row named “Single-visit to the depot” is the case
that the extra visit to the depot is manually deleted. It can be found that the optimal solution with a single visit to the depot also
complies with the capacity constraint. However, the average load increases by 77.78%. Although the single-visit case reduces the
distance by 4.17% compared with the multiple-visit counterpart, the emissions increase by 2.21%.

The different trend between the distance and emissions is due to the fundamental definition of emissions — the emissions are
determined by not only travel distance but also vehicle loads. If the extra visit to the depot is eliminated, the number of stops is
reduced by 1. However, this elimination is associated with an additional fixed load to all the links after the depot. This fixed load
equals the number of broken bikes on the vehicle before visiting the depot. Therefore, the vehicle will have an extra visit to the depot
if the emissions caused by those loads are larger than those caused by going back to the depot.

4.4.3. Multiple visits due to emission minimization
In some cases, the demand of a specific station can be satisfied by a single visit. However, in order to reduce the emissions, the

vehicle may visit this station twice although sometimes at the cost of a longer travel distance. The station information shown in
Table 4.22 and the distance information given in Table 4.23 are used as an example of this situation.

Table 4.24 provides the solution for this example. The second row is the optimal solution where multiple visits are permitted. In
the optimal route, Station 3 is visited twice by the vehicle. There are 9 stops in total and the average load over 8 links is 7.25. The
total distance of the whole route is 4.5 km and the CO2 emissions are 3.821 kg. However, the demand of Station 3 is actually less than
the vehicle capacity, which means that its demand can be covered within one visit, as shown in the third row of Table 4.24. For the
single-visit case where the extra visit to Station 3 is manually deleted, the vehicle loads are within the vehicle capacity after every

Table 4.17
Station information in Scenario 1 in Section 4.4.1.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 15 23 8 17 16 9 88
Target inventory 5 11 7 16 18 9 66
Broken bikes 0 2 3 3 3 0 11

Table 4.18
Station information in Scenario 2 in Section 4.4.1.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 20 11 8 17 0 9 65
Target inventory 5 23 7 16 23 9 83
Broken bikes 0 2 3 3 3 0 11

Table 4.19
Station information for multiple visits due to broken bikes.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 11 11 9 13 8 9 61
Target inventory 8 9 5 20 12 7 61
Broken bikes 2 2 3 5 3 4 19
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stop. However, the average load increases by 39.86% compared with the multi-visit case and the emissions increase by 3.79%
although the travel distance can be reduced by around 2.22%.

This example shows the impact of vehicle loads on emissions. In this example, a longer distance leads to fewer emissions. The
reason is that the emission function (2) actually assigns a ‘weight’ to each link distance, whose value increases with the vehicle load
on this link. According to the emission function (2), emissions are composed of two parts: the sum of travel distances and the sum of
the product of load and distance, each having a coefficient. A shorter route can lead to a larger sum of the product of load and
distance, leading to larger emissions.

4.4.4. Summary
Multiple visits are essential in balancing a BSS. First, when a perfect balance is required and the total supply of all stations is larger

than the vehicle capacity, a vehicle may need to go back to the depot halfway. Alternatively, the demand of a single station is larger
than the vehicle capacity, a vehicle is required to visit this station twice or more to satisfy the demand. Second, a vehicle can go back

Table 4.20
Travel distances (in hundred meters) between stations for multiple visits due to broken bikes.

Depot 1 2 3 4 5 6

Depot 0 12 10 5 8 2 4
1 10 0 17 10 4 13 13
2 9 15 0 9 16 7 9
3 12 10 11 0 12 6 12
4 7 6 14 9 0 9 9
5 2 12 7 8 12 0 4
6 4 15 9 9 9 6 0

Table 4.21
Solutions for multiple visits due to broken bikes.

Vehicle route Loads on the vehicle Average load Distance (km) Emissions (kg)

Multi-visit to the depot 0-3-1-4-0-6-2-5-0 0-7-12-10-0-6-10-9-0 6.75 4.8 4.113
Single-visit to the depot 0-3-1-4-6-2-5-0 0-7-12-10-16-20-19-0 12 4.6 4.204
Change (%) - - +77.78 −4.17 +2.21

Table 4.22
Station information for multiple visits due to emission minimization.

Station 1 2 3 4 5 6 Total

Station capacity 20 25 17 20 25 15 122
Initial inventory 16 20 14 7 15 3 75
Target inventory 18 12 0 20 21 4 75
Broken bikes 1 2 1 3 2 1 10

Table 4.23
Travel distances (in hundred meters) between stations for multiple visits due to emission minimization.

Depot 1 2 3 4 5 6

Depot 0 12 14 4 9 12 13
1 6 0 8 6 7 13 5
2 12 11 0 11 8 3 13
3 11 7 15 0 6 7 7
4 9 10 10 6 0 9 12
5 14 2 9 15 11 0 12
6 15 9 15 7 12 10 0

Table 4.24
Solution for multiple visits due to emission minimization.

Vehicle route Loads on the vehicle Average load Distance (km) Emissions (kg)

Multi-visit to a station 0-3-6-3-4-2-5-1-0 0-1-1-15-5-15-11-10-0 7.25 4.5 3.821
Single-visit to a station 0-3-6-4-2-5-1-0 0-15-15-5-15-11-10-0 10.14 4.4 3.966
Change (%) – – +39.86 −2.22 +3.79
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to the depot halfway to unload all broken bikes and collect some usable bikes at the depot so that it can carry fewer usable bikes at the
first departure from the depot and along the journey after the second visit of the depot, leading to lower the emissions generated.
Third, the demand of a station can be satisfied over multiple visits to reduce the vehicle loads and hence the emissions.

4.5. The effect of vehicle capacity

This section will investigate the effect of vehicle capacity on the emissions. Following the study of Erdoğan et al. (2015), we
carried out the experiments using the data in the base scenario withQ {10, 15, 20, 25, 30, 35, 40, 45, 1000}. We assume that the fuel
consumption induced by one unit increase in the vehicle load is fixed for all scenarios. The corresponding results are shown in
Table 4.25.

When the vehicle capacity is only 10, the optimal route has 13 stops in total and an extra visit to the depot halfway. Station 2 is
visited three times and Stations 1 and 3 are visited twice. The emissions are 8.460 kg. When the capacity increases to 15, the optimal
route changes greatly compared with the former case. The number of stops is reduced by 2 and the emissions decrease to 6.710 kg.
The number of stops keeps decreasing before the capacity increases to 25, in which case the depot is not visited halfway during the
journey. After that, the number of stops remains at 8, and the emissions remain at 4.995 kg. When the vehicle capacity is far more
than the station demand (i.e., the capacity is set as 1000), the emissions are still 4.995 kg. It can be found that in this case, when the
vehicle capacity is larger than 30, the capacity has no effect on the optimal solutions. Theoretically, when the vehicle capacity is
equal to or larger than 26, the capacity has no effect on the optimal solution, because the load on the vehicle is no longer affected by
the capacity.

In summary, when the vehicle capacity increases, the CO2 emissions and the number of stops are non-increasing functions of the
vehicle capacity. The route and vehicle load may be adjusted due to the change in the vehicle capacity. However, when the capacity
exceeds a certain value, it will have no effect on the optimal solutions.

4.6. Comparison between emission and distance minimization solutions

This section will compare emission and distance minimization solutions. The mathematical model for distance minimization is the
same that as shown in Section 3 except for the objective function. We used the data in the benchmark instances created by Rainer-

Table 4.25
Solutions under different vehicle capacities.

Optimal route Loads on the vehicle Number of stops Emissions (kg)

Vehicle capacity Q 10 0-2-5-3-2-0-1-3-2-6-1-4-0 9-0-8-10-5-10-0-10-3-8-8-8-0 13 8.460
15 0-1-3-2-5-0-2-6-1-4-0 13-0-12-4-12-13-0-5-8-8-0 11 6.710
20 0-2-6-3-2-5-0-1-4-0 10-0-5-17-6-14-16-6-6-0 10 5.824
25 0-2-6-3-1-5-4-0 25-4-9-21-11-19-19-0 8 5.465
30 0-2-6-3-1-4-5-0 26-5-10-22-12-12-20-0 8 4.995
35 0-2-6-3-1-4-5-0 26-5-10-22-12-12-20-0 8 4.995
40 0-2-6-3-1-4-5-0 26-5-10-22-12-12-20-0 8 4.995
45 0-2-6-3-1-4-5-0 26-5-10-22-12-12-20-0 8 4.995
1000 0-2-6-3-1-4-5-0 26-5-10-22-12-12-20-0 8 4.995

Table 4.26
Comparison between emission and distance minimization solutions.

Instance Characteristics of the optimal solution Emission minimization Distance minimization Change

S10B10_00 Emission (kg) 25.334 25.334 25.334
Distance (km) 29.0 28.6 −1.38%
No. of stops 12 12 0.00%

S10B10_06 Emission (kg) 23.807 24.865 4.44%
Distance (km) 27.8 26.4 −5.04%
No. of stops 11 11 0.00%

S10B10_12 Emission (kg) 23.975 24.662 2.87%
Distance (km) 26.8 26.3 −1.87%
No. of stops 12 12 0.00%

S10B10_18 Emission (kg) 24.403 25.967 6.41%
Distance (km) 27.9 27.6 −1.08%
No. of stops 12 12 0.00%

S10B10_24 Emission (kg) 20.994 21.708 3.40%
Distance (km) 23.7 23.1 −2.53%
No. of stops 12 12 0.00%
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Harbach et al. (2015) based on Citybike Vienna. Five instances with 10 stations were then selected as shown in the first column of
Table 4.26 and 10% broken bikes were randomly distributed among stations. The name of each instance is formatted as [“S”]
[Number of stations][“B”][Percentage of broken bikes]_[Counter in the dataset]. For example, “S10B10_00” is an instance numbered
as “00” in the dataset with 10 stations and 10% of the bikes are broken. The results are shown in Table 4.26. For different objectives,
i.e., emission minimization or distance minimization, the characteristics of the optimal solution are presented, including the total
emissions, total travel distance, and the number of stops. The last column shows the changes in the corresponding characteristics
obtained under distance minimization with respect to emission minimization.

Based on the instances shown in Table 4.26, the optimal solutions under distance minimization generally have shorter travel
distances but larger emissions than those under emission minimization. There is no change in the number of stops, which implies that
no multiple visits are triggered due to emission minimization in this example. Moreover, the difference in solutions under two
objectives indicates that a shorter distance may not necessarily lead to lower emissions.

4.7. Model and clustering performance

This section will illustrate the performance including the runtime complexity of the proposed model under single- and multiple-
vehicle cases, and provide an alternative—clustering before using an exact method—in solving large network instances. The runtime
performance and solution quality obtained by this alternative will also be demonstrated. The data in the benchmark instances created
by Rainer-Harbach et al. (2015) are adopted here.

To show the runtime performance of the proposed model, the number of stations increased from 0 to 14 at regular intervals equal
to 2. For each number of stations, the runtime was recorded under the tightest value of A, i.e., the number of stops in the optimal
solution. The relationship between the runtime and the number of stations is shown in Fig. 4.3.

It can be found that when the number of stations is 10 or less, the model can be solved within less than 5min. However, when the
number of stations increases to 12, the model requires much more runtime to be solved. When there are 14 stations, the problem
cannot be solved within two hours. It implies that for larger network instances, it is intractable to solve the model using exact
methods in a reasonable running time. It is because the decision variable xiak has three dimensions. The number of variables equals
A S V·| |·| |. If the number of vehicles is fixed, when the number of stations increases, the upper bound A also increases. Moreover, S| | is
larger when the number of stations is larger. Therefore, A S·| | and the number of variables are nonlinear functions of the number of
stations, which leads to the nonlinear trend in the runtime.

For the multiple-vehicle case, we used the instance “S10B10_00” mentioned in Section 4.6 to compare the solutions under dif-
ferent numbers of vehicles. The results are shown in Table 4.27, including the optimal routes, the total emissions of all vehicles
employed, and the runtime. It can be observed that when the number of vehicles increases, the total emissions increase and so does
the runtime.

One possible approach to overcoming the time complexity issue for solving a realistic large network instance is to decompose the
large network into several clusters, assign one vehicle to each cluster, develop a model for each cluster based on the formulation in
Section 3, and finally solve each model by CPLEX sequentially (e.g., Forma et al., 2015; Brinkmann et al., 2016; Schuijbroek et al.,
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Fig. 4.3. Runtime against the number of stations.

Table 4.27
Optimal solutions and the corresponding runtimes under different numbers of vehicles.

Number of vehicles Optimal routes Total emissions (kg) Runtime (s)

1 0-8-6-9-2-4-1-10-3-5-7-0 25.334 266.11
2 0-6-8-3-5-7-0 27.907 495.09

0-9-2-4-1-10-0
3 0-3-9-2-0 30.609 20541.76

0-5-7-4-0
0-6-8-1-10-0
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2017; Ghosh et al., 2017). A network having 90 stations is used to show the performance of this clustering approach. 10% of total
bikes were assumed to be broken and distributed randomly among stations. 13 clusters were constructed in total using the nearest
neighbor heuristic with each cluster having 6 to 7 stations and one depot. The clustering results and corresponding optimal routes are
provided in Table 4.28. The total computing time is 11.42 s and the total emissions are 231.321 kg. This result confirms the possibility
of using the clustering approach to reduce the running time for large network instances with multiple vehicles.

To compare the performance with and without using the clustering approach, 2 clusters were generated for the 12-station network
using the nearest neighbor heuristic. The emissions of each cluster are 11.591 kg and 19.175 kg and the total amount is 30.766 kg.
The computational time is 0.82 s. If the clustering approach was not used, the emissions are 28.666 kg and the computational time is
more than half an hour as recorded in Fig. 4.3. It can be seen that although the solution quality is reduced, the computational time is
improved significantly.

When the network size is 30, CPLEX is not able to converge to the optimal solution within a limit of 3 h. The feasible solution
provided by CPLEX within 3 h gives 82.969 kg with a gap of 100.00%. If three clusters were created using the nearest neighbor
heuristic, the solution gives 78.462 kg, which is 5.43% better than the emissions without clustering, but the computational time is less
than half an hour.

The clustering results also relate to the number of stations in each cluster. Taking the 90-station network in Table 4.28 as an
example, when the cluster size increases from 5 to 10 stations, the emissions have a decreasing trend in general as shown in Fig. 4.4
(a) but the runtime is a nonlinear increasing function of the cluster size (Fig. 4.4b).

Different clustering methods exist and can be used before applying the exact method for the BRP. The solutions also depend on the
clustering method adopted. For example, if we used the insertion heuristic to generate 13 clusters for the same 90-station network as
in Table 4.28, the optimal emissions are 235.936 kg (about 2% worse than the solution of the nearest neighbor heuristic) and the
computational time is 24.2 s (more than doubled the running time of the nearest neighbor heuristic). Schuijbroek et al. (2017) also
provided another option for clustering, which was derived based on the problem’s properties. We believe that more effective clus-
tering methods can be developed to obtain better solutions to our proposed problem. Indeed, developing more effective clustering
techniques for our problem is an important research topic that deserves a full investigation. This is left for future research.

5. Discussion

Other than the clustering approach used in Section 4.7, there are at least three approaches to solving a large scale BRP. One
approach is to incorporate well-known decomposition techniques (e.g., Largangian, Benders, Dantzig-Wolfe) into exact methods to
get global optima. For example, Erdoğan et al. (2014, 2015) used Benders decomposition together with a branch-and-cut algorithm to
solve the static BRP with the objective of cost minimization. They showed that the method can solve the instances with up to 60
stations. Contardo et al. (2012) used Dantzig-Wolfe and Benders decomposition to efficiently find the lower and upper bounds for the
branch-and-bound algorithm for a dynamic BRP with the objective of unmet demand minimization. The key challenge for using this
approach to solving our proposed problem with multiple vehicles to optimality is to identify the problem structure so that the
subproblem can be solved to optimality efficiently. This is left for future research.

An alternative approach to solving a large scale BRP is to decompose the whole problem into different specific subproblems, such as a
routing problem (i.e., the problem of finding the route of each vehicle) and a loading subproblem (i.e., the problem of finding loading and
unloading quantities at each visited station for each vehicle). Each subproblem is then solved by exact methods, heuristics, or meta-
heuristics (with local search incorporated) (see e.g., Forma et al., 2015; Brinkmann et al., 2016). The main challenge for using this
approach to solving our proposed problem with multiple vehicles is to ensure that after the decomposition, all the subproblems can be
either solved to optimality by exact methods or solved by heuristics/metaheuristics efficiently. This is left to future studies.

One more approach is to develop heuristics or metaheuristics to solve the whole problem without decomposition or clustering.
The major challenge is to identify the problem properties that can help to perform local search quickly. The authors are going to use
this approach to overcome the time complexity issue of the multiple vehicle case. The methodology will be reported in another paper.

Table 4.28
Optimal routes in all the clusters.

Cluster Optimal route

1 0-59-36-39-0-89-18-22-2-0
2 0-11-51-56-84-88-77-35-0
3 0-14-53-76-58-40-42-6-0
4 0-28-23-0-46-68-41-54-27-0
5 0-26-62-86-70-55-44-24-0
6 0-33-50-45-19-65-13-4-0
7 0-43-83-75-82-79-69-0
8 0-21-29-57-47-60-9-0
9 0-1-31-67-63-12-5-17-0
10 0-80-81-72-71-78-74-90-0
11 0-3-7-16-73-64-61-8-0
12 0-32-34-87-85-38-25-30-0
13 0-66-37-52-48-20-15-0
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6. Conclusion

This study has tackled a repositioning problem in a BSS with broken bikes. In addition to shipping usable bikes among stations
and the depot by multiple fossil-fuelled vehicles to achieve a perfect balance between bike demand and supply at each station, the
operator also needs to transport broken bikes to the depot for repairs. Unlike most of the other existing BRPs, this problem is aimed to
minimize the total CO2 emissions of all repositioning vehicles. The emissions relate to not only the travel distance, which has been
used as the objective in many studies, but also the loads on the vehicles. An MILP model is proposed to formulate this problem using
the sequence-indexed formulation approach. Vehicle capacity is taken into consideration. CPLEX has been applied to determine the
routing and loading decisions for the repositioning operation.

Small networks have been used in the numerical examples to illustrate the properties of the proposed model. Five possible
dimensions are considered to analyze their effects on emissions, including the demand tolerance, the percentage of broken bikes, the
distances between stations, multiple visits to the depot and stations, and vehicle capacity. The results indicate that if there is a
tolerance for meeting the demand target, when this tolerance increases, the CO2 emissions decrease. Moreover, increasing the
percentage of broken bikes aggravates the emissions. Furthermore, the effect of link distance depends on whether it is in an optimal
route. If it is not in the optimal route, the increase of link distance does not affect the CO2 emissions. Otherwise, the increase in link
distance often leads to an increase in the CO2 emissions but the emissions may remain unchanged in some cases. In addition, allowing
multiple visits can reduce vehicle emissions. Besides, employing larger vehicles can lead to lower emissions.

We have also used the data in the benchmark instances created by Rainer-Harbach et al. (2015) based on Citybike Vienna to
compare emission and travel distance minimization solutions and the effect of the number of vehicles. The results indicate that a
shorter distance may not necessarily lead to lower emissions. The results also show that as the number of vehicles increases, the total
emissions and runtime increase. For large network instances with multiple vehicles, we used a clustering method based on the nearest
neighbor heuristic to decompose the network into several groups, each of which was tackled sequentially using the proposed model
together with CPLEX. This result illustrates the performance of this solution approach and confirms the possibility of using the
clustering approach to reduce the running time for large network instances with multiple vehicles. Further developments will be on
meta-heuristics, which can provide satisfactory results within a reasonable time, even for large network instances with multiple
vehicles. Solving the proposed problem using decomposition techniques can be a good future research direction. Developing a
clustering technique that can give better solutions to our proposed problem than classical geographical clustering techniques is
another research direction.
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