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Abstract 
Read alignment is an important step in RNA-seq analysis as the result 
of alignment forms the basis for downstream analyses. However, 
recent studies have shown that published alignment tools have 
variable mapping sensitivity and do not necessarily align all the reads 
which should have been aligned, a problem we termed as the false-
negative non-alignment problem. Here we present Scavenger, a 
python-based bioinformatics pipeline for recovering unaligned reads 
using a novel mechanism in which a putative alignment location is 
discovered based on sequence similarity between aligned and 
unaligned reads. We showed that Scavenger could recover unaligned 
reads in a range of simulated and real RNA-seq datasets, including 
single-cell RNA-seq data. We found that recovered reads tend to 
contain more genetic variants with respect to the reference genome 
compared to previously aligned reads, indicating that divergence 
between personal and reference genomes plays a role in the false-
negative non-alignment problem. Even when the number of 
recovered reads is relatively small compared to the total number of 
reads, the addition of these recovered reads can impact downstream 
analyses, especially in terms of estimating the expression and 
differential expression of lowly expressed genes, such as 
pseudogenes.
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Introduction
Read alignment is the process of mapping high-throughput 
sequencing reads against a reference genome or transcriptome 
to identify the locations from which the reads originate. This 
step is typically one of the first steps in the analysis of RNA 
sequencing (RNA-seq) data prior to downstream analyses such 
as variant calling and gene expression analysis. There have been 
a number of published tools which have been developed to per-
form RNA-seq alignment, such as HISAT21, STAR2 Subread3, 
CRAC4, MapSplice25 and GSNAP6. More recently, new alignment- 
free tools have been developed specifically for gene expression 
analysis which skips the alignment of reads to the reference and 
instead performs pseudoalignment. However, these alignment-
free tools are only applicable to specific types of analyses and 
have limitations compared to traditional alignment methods7. 
The correctness of alignment programs are crucial to the accu-
racy of the downstream analyses. Unfortunately, previous stud-
ies have shown that while these tools have low false positive 
rates, they do not necessarily have low false negative rates8,9. This 
means that while many of the reads were likely to be cor-
rectly aligned, there are still many incorrectly unaligned reads 
which should have been aligned. These incorrectly unaligned 
reads, or false negative non-alignments, adversely affect the 
accuracy of the alignment produced and can also affect the 
result of downstream analyses, such as variant calling, indel 
(insertion-deletion) detection and gene fusion detection9.

There are a number of factors which contribute to the false 
negative non-alignment problem. One such factor is the type of 
algorithm utilised in the alignment tool. In order to efficiently 
perform alignment against a typically large reference genome 
in an acceptable amount of time, and to account for splicing 
events inherent in RNA-sequencing data, many alignment tools 
use heuristic-based matching of seed sequences generated 
from read sequences. Due to the typically short length of a seed 
sequence and the existence of repetitive regions within the genome, 
there may be multiple locations assigned to a given read which 
results in the alignment tool excluding the read due to ambigu-
ity – a problem known as multi-mapping reads. Another factor 
which causes false negative non-alignment problems is the diver-
gence between the reference genome and the personal genome 
of the organism being sequenced. The reference genome is typi-
cally constructed from a small number of samples and thus will 
only represent a limited degree of the organism’s diversity. 
Alignment of reads to the reference genome will thus be 
imperfect due to natural variation present in an individual organ-
ism. While alignment tools do take into account the variability 
between the reference genome and an individual’s genome by 
allowing for mismatches, insertions and deletions during align-
ment, they are unable to handle a substantial degree of genetic 
variation, such as hyper-edited sites, gene fusion and 
trans-splicing.

Correcting for a false negative non-alignment problem is much 
more difficult compared to correcting false positive reads. For 
false positive reads, there are a number of strategies which can 
be employed to help filter these type of reads, such as by remov-
ing lower quality alignments, removing reads with multiple 

alignment locations and re-aligning reads with a more specific 
alignment tool. Recovering false negative reads, on the other 
hand, is not as straightforward as it is not possible to identify 
their putative alignment region in the genome. One possible strat-
egy for solving the false negative non-alignment problem is to 
tune the parameters used for alignment in order to maximise the 
amount of reads aligned, such as by increasing the threshold for 
multi-mapping reads and/or increasing the number of mis-
matches allowed. However, this approach is limited as there is no 
ground truth in real data to help with optimisation, and increas-
ing the number of reads aligned will also result in an increase in 
the number of false positive reads. Another strategy for solving 
the false-negative non-alignment problem is by incorporating 
variation information during alignment, in the form of utilis-
ing alternate loci sequences within the reference genome10 or 
integration of a single nucleotide polymorphism database to the 
reference1, to help minimise the effect of divergence of the per-
sonal genome compared to the reference genome. This approach 
is also limited as it requires existing variation information, which 
may not be available in non-model organisms.

We have recently applied the idea of Metamorphic Testing – a 
software testing technique designed for the situation where there 
is an absence of an oracle (a method to verify the correctness of 
any input) – for performing software testing on the STAR sequence 
aligner11. Metamorphic testing involves multiple executions of 
the program to be tested with differing inputs, constructed based 
on a set of relationships (Metamorphic relations - MR), and 
checking that the outputs produced satisfy the relationships12,13. 
In our previous study11, we developed an MR to test the realign-
ability of previously aligned reads in the presence of irrelevant 
’control’ chromosomes constructed from previously unaligned 
reads. We discovered that a non-trivial amount of reads that were 
previously aligned to the reference genome were now aligned to 
the control chromosomes consisting of reads which were unable 
to be aligned to the reference. Further investigation indicated that 
some of the unaligned reads have high similarity to the aligned 
reads, indicating the possibility of these reads being false 
negative non-alignments.

In this paper, we aim to tackle the problem of false-negative 
non-alignments by taking inspiration from our previous work on 
metamorphic testing. We have developed Scavenger, a pipeline 
designed to recover incorrectly unaligned reads by exploiting 
information from reads which are successfully aligned. We applied 
the Scavenger pipeline on a number of simulated and actual 
RNA-seq datasets, including both bulk (normal) and single-cell 
RNA-seq datasets, and demonstrated the ability of Scavenger 
in recovering unaligned reads from these datasets. We then ana-
lysed the impact of adding these recovered reads on downstream 
analyses, in particular gene expression analysis, and discovered 
that lowly expressed genes, in particular genes of the pseudogenes 
category, are more affected by the false-negative non-alignment 
problem. We also verified that the divergence between the per-
sonal genome and the reference genome is a contributing factor to 
the false-negative non-alignment problem and showed that Scav-
enger is able to recover reads which are unaligned due to higher 
degree of variability within the reads sequence.
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Methods
Implementation
Scavenger is a python-based pipeline designed to recover una-
ligned reads by utilising information from aligned reads. The 
pipeline takes in sequencing reads in FASTQ format as the input, 
along with a reference genome sequence in FASTA format and a 
corresponding index for the alignment tool built using the reference 
genome. There are 4 main steps in the Scavenger pipeline - source 
execution of alignment tool, follow-up execution using aligned 
reads as input and unaligned reads as index, consensus filtering 
of follow-up execution result to obtain putative alignment loca-
tion, and re-alignment of unaligned reads to the reference genome 
(Figure 1). The unaligned reads which are able to be success-
fully re-aligned back to the genome are then re-written back to 
the alignment result from the source execution.

Source execution
The first step of the Scavenger pipeline is the source execution 
where sequencing reads are aligned to the reference genome using 
a sequence alignment program. The alignment program used 
must satisfy the three properties which are required to validate 
the metamorphic relation underlying the read recovery pipeline - 
deterministic alignment, realignability of mapped reads, and non-
realignability of unmapped reads. Currently, STAR is utilised 
for aligning RNA sequencing reads in the Scavenger pipeline  
as it has been previously evaluated as being a reliable general- 
purpose RNA-seq aligner, with good default performance8, as well� 
as satisfying the three properties above11. The source execution 
step can be skipped if the user has previously performed alignment 
of sequencing reads by passing in the alignment file produced in 
either SAM or BAM format as input to the Scavenger pipeline.

Follow-up execution
In the follow-up execution step, both aligned and unaligned 
reads are first extracted from the alignment file produced during 
source execution. For reads which have been successfully and 
uniquely aligned, a sequencing reads file (in FASTQ format) is 
created using the reads’ sequence and qualities retrieved from the 
alignment records. In the case of reads which did not align to the 
reference genome, reads with identical sequences are first grouped 
together in order to minimise computational complexity and to 
reduce the potential location for alignment. The unique unaligned 
sequences are then extended with spacer sequences (sequence of 
N nucleotides) in order to form sequence bins of equal length and 
to ensure that aligned reads do not align between two unaligned 
sequences. These sequence bins are concatenated into artifi-
cial chromosomes and stored into a new temporary genome file. 
Depending on the alignment program utilised, a new index will 
then need to be created based on the temporary genome con-
taining the artificial chromosomes prior to alignment. Finally, 
sequencing reads of previously aligned reads are aligned to the 
temporary genome containing unaligned read sequences using the 
alignment tool used in source execution. In the current Scavenger 
pipeline, STAR is again utilised in the follow-up execution with 
a number of extra parameters in order to disable spliced align-
ment to ensure that input reads only align to one unaligned read 
sequence and to remove the restriction of the number of 

locations (i.e. unaligned read sequence) that the input reads can 
align to in the temporary genome.

Consensus filtering
The next step of the Scavenger pipeline is consensus filtering. 
Reads which align during the follow-up execution step are extracted 
from the alignment file produced from the previous step to  
obtain information regarding similarity between reads aligned 
during source execution and reads which did not align during 
source execution. Each unaligned sequence may have alignments 
to multiple aligned reads from the source execution. As these 
aligned reads may be aligned to different regions in the reference 
genome, consensus filtering is performed to select putative sites 
for re-alignment. For each unaligned sequence, intervals are cre-
ated based on the reference genome location of previously aligned 
reads that align to the unaligned sequence. Overlapping inter-
vals are then merged to form longer intervals to both reduce the 
number of putative sites and to increase the support for the inter-
val to be selected as a putative site. An interval is considered as 
being a putative site if there is more than one read within the 
interval and the level of support for the interval (i.e. the number 
of aligned reads that fall within the interval) is greater than the 
consensus threshold, which is set to 60% of the number of pre-
viously aligned reads that align to the unaligned sequence by 
default. During this step, there is also an optional filtering criteria 
that can be utilised to remove unaligned sequences which likely 
originate from a low complexity region or tandem repeat region. 
The filtering method is based on the tandem repeat detection 
step used in the ROP tool14, which uses MegaBLAST15 to align 
reads against a repeat sequence database, such as RepBase16.

Re-alignment
The final step is the re-alignment step where unaligned sequences 
which pass the filtering steps are re-aligned to the reference 
genome using the putative location obtained from reads aligned 
during source execution as a guide. For each unaligned sequence, 
the reference genome sequence around the putative location 
(extended 100 base pairs at both the start and the end of the 
putative location) is extracted and stored as the new genome for 
aligning the unaligned sequence. Alignment of the unaligned 
sequence is then performed against the new genome using either 
MegaBLAST or STAR depending on whether the putative loca-
tion of the unaligned sequence originated from unspliced align-
ment or from spliced alignment during the source execution, 
respectively. MegaBLAST is utilised for unspliced alignment due 
to its high sensitivity, though a strict parameter of 64% overlap 
and 85% query identity (which replicates the result of STAR 
alignment) is also utilised to reduce the false positive recovery 
of sequences. Unaligned sequences which are successfully and 
uniquely aligned back to the reference genome are then added 
back to the alignment file of the source execution by modify-
ing the alignment records of previously unaligned reads whose 
sequence matches the recovered unaligned sequence.

Parallelising Scavenger
Both the consensus and re-alignment steps of the Scavenger 
pipeline are computationally expensive due to the potentially 
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large number of unaligned reads to be processed. However, 
the processing of the inputs are independent to each other thus 
allowing for parallelisation of processing unaligned reads in 
order to reduce the overall runtime of the pipeline. Scavenger 
takes advantage of Python’s built-in multiprocessing library in 
order to parallelise the consensus and re-alignment steps across 
the available CPU cores of the machine.

To enhance the scalability of Scavenger, a framework has been 
provided to enable parallel computation of a read recovery 
session on cloud computing resources. Cloud computing enables 
convenient, on-demand network access to a shared pool of con-
figurable computing resources17. Central to the model of cloud 
computing is the virtualisation of computing resources to enable 
sharing of pooled resources. These resources can be commis-
sioned and decommissioned as the user requires. Scavenger has a 
framework that employs the resources offered by the cloud pro-
vider Amazon Web Services (AWS). The cloud provider enables 
the user, using their own account credentials, to create a number 
of computing “instances”, which are the virtual machines upon 
which the user can perform their computational workload. In the 
case of AWS, such resources are termed “EC2 instances”. An 
instance typically can be provisioned within minutes of the user 
request, and the user is charged by the hour. Some cloud pro-
viders, such as AWS, offer reduced price “spot” instances at a 
greatly reduced price, such that the user places a “bid” for a spot 
instance on the proviso that the instance will be terminated should 
the current market price for the instance exceed the initial bid 
price. To minimise the cost for users, Scavenger utilises AWS spot 
instances. The cloud computing feature of Scavenger, after ini-
tial configuration on the user’s controlling computing resource, 
uses the AWS EC2 cloud instances to perform the various steps 
of read recovery, and also uses AWS cloud storage (S3) to store 
test data and results. The Scavenger cloud processing feature 
co-ordinates all interactions with the cloud resources, with log-
ging information stored both locally and on the cloud. The user 
can elect to have a large job to be spread among a number of 
cloud instances, with Scavenger creating the instances and dis-
tributing the work load evenly amongst the instances. The cloud 
computing feature of Scavenger is optional, and the user can elect 
to use their own computing resources if desired.

Operation
Scavenger is written in Python 3 and is designed primarily as a 
command line program for Linux operating system. The runt-
ime and memory requirement of Scavenger depends on the size 
of the sequencing reads input and the aligner used, with 30GB 
being the minimum amount of RAM required for alignment and 
recovery of reads from human dataset using STAR aligner. The 
Scavenger pipeline is available from Scavenger GitHub reposi-
tory (https://github.com/VCCRI/Scavenger), with archived 
source code available from Zenodo18.

Datasets
Three different types of RNA-seq datasets – simulated, nor-
mal (bulk) and single-cell – were utilised to evaluate the Scav-
enger pipeline. The simulated datasets were obtained from a 
previous study8 which generated 3 sets of simulated RNA-seq 

datasets from the hg19 reference genome using BEERS 
simulator19 with varying parameters to emulate different level 
of dataset complexity. As the simulated datasets were format-
ted in FASTA format, high quality scores were added to each 
of the simulated reads to produce corresponding FASTQ files. 
These files were then input into Scavenger for both source align-
ment and read recovery with either STAR v2.5.3a or Subread 
v1.6.0 as the alignment tool. The GRCh37.p13 reference genome 
was obtained from GENCODE20 and modified to contain refer-
ence chromosomes only, and used to create the indexes for each 
alignment tool. For STAR specifically, the annotation file was 
extracted from a previous study8 and utilised in index creation to 
help increase the accuracy for alignment across splice junctions. 
In the evaluation of alignment results for simulated datasets, 
we used the analysis script that was used in the previous study8 
to analyse the correctness of the alignment results.

The normal and single-cell RNA-seq datasets were obtained 
from publicly available human and mouse datasets which were 
deposited to the NCBI Sequence Read Archive21 (Table 1). Pre-
processing of the datasets was performed using Trimmomatic 
v0.36 to remove low quality sequence and short reads. The pre-
processed datasets were then analysed by Scavenger using STAR 
v2.5.3a as the alignment tool in the source execution and for 
realignment of spliced reads, together with BLAST v2.6.0 for 
re-alignment of unspliced reads. Indexes used for aligning of both 
human and mouse datasets were generated from GRCh38 and 
GRCm38 reference genomes respectively, which were obtained 
from GENCODE together with the corresponding annotation 
files (version 27 for human and version 15 for mouse). As before, 
annotation was used to augment the index to increase accuracy 
for alignment. The Repbase database16 was also utilised to remove 
low complexity reads and reads from repetitive regions. For 
human datasets, the simple, humrep and humsub sequence files 
from Repbase were concatenated and used to create a BLAST 
database. Reads that passed consensus were aligned to this data-
base and the aligned reads that have a minimum of 90% sequence 
identity and 80% sequence coverage were removed for further 
processing in Scavenger. A similar approach was used for the 
mouse datasets, but the simple and mousub sequence files were 
used instead.

For mouse strain analysis, strain-specific VCF files for non- 
reference mouse strains containing SNPs derived against the ref-
erence C57BL/6J mouse genome were downloaded from the 
Mouse Genome Project (MGP)22. The calculation of the number 
of SNPs found within aligned reads was performed using the 
intersect tool from Bedtools v2.27.123, while statistical analysis 
were performed using the independent t-test function from SciPy 
library v1.2.1 (Python v3.6.4).

For running the alignment using STAR, the following command 
is used: STAR –runThreadN <threads> <aligner_extra_
args> –genomeDir <genome_index> –readFilesIn 
<read_files> –outFileNamePrefix <output_
prefix>. As for running the alignment using subread, the 
following command is used: subread-align -T <threads> 
-t 0 <aligner_extra_args> -i <genome_index> 
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<read_files> -o <output_file> <bam_option>. 
And lastly, for running the alignment using BLAST, the follow 
command is used: blastn -query unmapped_read -
subject target_genome -task megablast -perc_
identity <identity> -qcov_hsp_perc <coverage> 
-outfmt ″17 SQ SR ″ -out <sam_output> -parse_
deflines. During follow-up alignment using STAR, the 
following parameters are additionally used: –
outFilterMultimapNmax <num_reads> –
alignIntronMax 1 –seedSearchStartLmax 30.

Results
Recovery of reads on simulated data
To evaluate the ability of the Scavenger pipeline to recover 
false-negative non-aligned reads, we first tested Scavenger using 
previously published human simulated data. The varying level 
of complexity of the simulated datasets represents the degree of 
divergence between the sequencing reads generated compared 
to the reference genome, ranging from low polymorphism and 
error rate (T1), moderate polymorphism and error rate (T2) and 
high polymorphism and error rate (T3). The results of the source 
execution of STAR with default parameters are consistent with 
the previously published result, with >99% of reads being 
aligned in both T1 and T2 and >90% of reads being aligned in 
T3 (Table 2). After running the Scavenger pipeline, we were 
able to recover between 4-30% of the previously unaligned reads 
in the three datasets, resulting in an increase of aligned reads 

ranging from ~1,500 to ~160,000. The majority of reads recov-
ered by Scavenger are aligned in the correct position, with 79.4% 
of reads being correctly recovered in T1 and >98% of reads 
being correctly recovered in T2 and T3.

The difference in the number of aligned reads between the three 
datasets can be explained by the degree of divergence between 
the sequencing reads and the reference genome; and the limi-
tation of the alignment tool in aligning reads which display a 
high degree of polymorphism. The simulated sequencing reads 
in both T1 and T2 have high homology to the reference genome 
due to the lower degree of polymorphism and error rate intro-
duced meaning that the majority of these reads will be accurately 
mapped to the reference genome with a very small number of mis-
matches during alignment. In contrast, the sequencing reads in 
T3 – with the higher polymorphism and error rate – have a much 
higher degree of divergence compared to the reference genome 
thus resulting in more mismatches during alignment and there-
fore causing it to fail to be aligned. The Scavenger pipeline is 
able to recover more reads in T2 and T3 compared to T1 due to 
the greater number of aligned reads that contain mutations within 
the sequence. During follow up execution, Scavenger exploits 
the fact that these aligned reads will have closer similarity to the 
unaligned reads, which will also contains mutations, therefore 
resulting in the alignment of the aligned reads to the unaligned 
reads to obtain the putative location for the unaligned reads 
for recovery.

Table 1. List of datasets used for Scavenger testing and evaluation. The datasets are divided into three sections: 1. Datasets from 
selected non-reference mouse strain, 2. Normal (bulk) RNA-seq dataset from either human or mouse, and 3. Single-cell RNA-seq 
dataset from mouse.

Accession ID Samples ID Organism Tissue/Source

SRP039411 SRR1182782 - SRR1182783 Mus musculus Liver

ERP000614 ERR032989 - ERR032991; ERR032997 - ERR032998; 
ERR033006 - ERR033009; ERR033017 - ERR033019

Mus musculus Brain

SRP020636 SRR826292 - SRR826299; SRR826308 - SRR826315; 
SRR826340 - SRR826347; SRR826356 - SRR826363

Mus musculus Liver

SRP068123 SRR3087147 - SRR3087158; SRR3087171 - 
SRR3087176

Mus Musculus Hippocampus

SRP013610 SRR504764 - SRR504766 Mus musculus Eye

SRP076218 SRR3641982 - SRR3641983; SRR3641990; SRR3642003 
- SRR3642005; SRR3642012 - SRR3642014

Mus musculus Heart

SRP045630 SRR1554415 - SRR1554417 Mus musculus Retina

SRP016501 SRR594393 - SRR594401 Mus musculus Brain; Colon; Heart; Kidney; Liver; Lung; 
Skeletal Muscle; Spleen; Testes

SRP075605 SRR3578721 - SRR3578725 Homo sapiens Fibroblasts

SRP122535 SRR6337339 - SRR6337344 Homo sapiens Embryonic stem cell

SRP013027 SRR4422503 - SRR4422506; SRR4422535 - 
SRR4422538; SRR4422626 - SRR4422629

Mus musculus Hindbrain; Limb; Heart

SRP045452 80 randomly selected samples Mus musculus Hippocampus
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Another method to solve the false-negative non-alignment prob-
lem is to adjust the parameters of the alignment tool utilised in 
order to allow alignment of reads with a higher degree of poly-
morphism. As has been shown previously, alignment of the 
simulated datasets using STAR with optimised parameters results 
in >99.2% of the reads being aligned, with T1 and T2 reaching 
nearly 99.9% of reads being aligned (Table 3). The Scavenger 
pipeline is unable to obtain the high degree of alignment achieved 
with parameter optimisation due to limitations in Scavenger’s 
approach to recover reads. Since Scavenger utilises informa-
tion from aligned reads to find the putative location of unaligned 
reads for recovery, it is not possible to recover any unaligned 
reads from regions which have no read alignments. As such, the 
reads that the Scavenger pipeline is able to recover are reads from 
regions which already have alignment. This is unlike param-
eter optimisation, which allows for alignment with a higher 
threshold of mismatches in any region irrespective of whether 
there was alignment in the region. This observation can be seen 
in the high degree of overlap (>96.5%) of the reads recovered 
by the Scavenger pipeline compared to the reads recovered by 
optimised parameters. The Scavenger pipeline is still able to 
recover some reads which are unaligned with optimised param-
eters, particularly in T3 where Scavenger recovered ~9.75% 
of previously unaligned reads. Unlike Scavenger recovery with 
default parameters, the majority of recovered reads after align-
ment with optimised parameters are incorrectly aligned in both 
the T1 and T2 datasets. Given the very high degree of alignment 
in these lower complexity datasets, it is likely that the unaligned 
reads are reads which can align to many locations in the genome 
and thus correctly recovering these reads is very difficult and 
error prone. These results indicate that parameter optimisation 
provides a solution to the false-negative non-alignment problem, 

performing better than Scavenger. However, given that perform-
ing parameter optimisation is not trivial due to lack of ground 
truth in real datasets, these results also show that Scavenger 
can be utilised as an alternative to help recover false-negative 
non-aligned reads.

We also performed a comparison of the Scavenger pipeline 
against a recently published tool, Read Origin Protocol (ROP) 
v1.0.8, which is primarily designed to identify the origin of una-
ligned reads14. The ROP tool consists of 6 steps, with each step 
designed to identify different causes for unaligned reads: reads 
with low quality, lost human reads, reads from repeat sequences, 
non-colinear RNA reads, reads from V(D)J recombination and 
reads belonging to microbial communities. The result of running 
ROP on the simulated dataset shows that ROP is able to iden-
tify an average of ~29,000 reads in the T1 and T2 datasets, and 
~58,500 reads in T3 dataset (Table 4). In particular, the major-
ity of reads in the T1 and T2 dataset are correctly identified as 
lost human reads, while the majority of reads in T3 dataset are 
incorrectly identified as immune reads. Checking the correctness 
of ROP identified reads is not straightforward given that most 
steps within ROP does not produce alignment information. Thus, 
correctness testing was performed only on the genome-based 
alignment information produced during the lost reads steps. The 
result of the correctness testing shows that >92.6% of the reads 
identified by ROP are incorrectly aligned (Table 5).

Divergence of personal genome results in false-negative 
non-aligned reads
One factor which may affect the false-negative non-alignment 
problem is the divergence of sequences between the reference 
genome and personal genome which results in alignment tools 

Table 2. Alignment statistics for simulated datasets before and after Scavenger recovery using default parameters for STAR.

Dataset Source execution Scavenger pipeline Unaligned 
reads

% recovered % recovered

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned recovered reads 
correct

reads 
incorrect

T1 9,671,586 8,022 33,486 9,672,770 8,330 31,994 1,492 79.4 20.6

T2 9,617,585 17,163 56,827 9,634,469 17,496 39,610 17,217 98.1 1.9

T3 8,595,549 67,559 933,274 8,753,899 67,995 774,488 158,786 99.7 0.3

The result shown is an average from 3 samples.

Table 3. Alignment statistics for simulated datasets before and after Scavenger recovery using optimised parameters for STAR.

Dataset Source execution Scavenger pipeline Unaligned 
reads

% recovered % recovered

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned recovered reads 
correct

reads 
incorrect

T1 9,673,309 6,861 15,660 9,673,362 6,948 15,519 141 37.8 62.2

T2 9,643,573 14,570 11,237 9,643,715 14,675 10,990 246 55.5 44.5

T3 9,437,748 75,395 83,687 9,445,855 75,448 75,527 8,160 99.4 0.6

The result shown is an average from 3 samples.
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Table 4. Unaligned reads identified by ROP in the simulated dataset.

Dataset Unaligned reads 
identified

Low Quality 
Reads

Low Complexity 
Reads

rRNA 
reads

Lost 
Reads

Repeat 
reads

NCL 
Reads

Immune 
Reads

Microbial 
Reads

T1 31,469 1 188 251 30,398 502 9 120 1

T2 27,328 0 306 148 23,508 1,690 28 1,639 9

T3 58,544 3 2,469 13 3,085 7,123 132 45,696 24

The result shown is an average from 3 samples.

Table 5. Unaligned reads identified by ROP in the simulated dataset.

Dataset Unaligned reads recovered % recovered read correct % recovered read incorrect

T1 29,614 5.1% 94.9%

T2 22,032 6.6% 93.4%

T3 2,986 7.4% 92.6%

The result shown is an average from 3 samples.

Table 6. Alignment statistics for all RNA-seq datasets in source alignment with STAR and after recovery of reads with Scavenger.

Accession 
ID

Read 
length 

(bp)

Total 
reads

Source 
aligned 

reads

Source 
unaligned 

reads

Source 
mappability 

(%)

Rescue 
aligned 

reads

Rescue 
unaligned 

reads

Rescue 
mappability 

(%)

Rescued 
reads

Unaligned 
reads 

rescued 
(%)

SRP039411 97 47,077,051 44,052,994 3,024,056 93.6 44,162,052 2,915,000 93.8 109,057 3.61

ERP000614 73 30,406,321 29,529,186 877,136 97.1 29,571,416 834,905 97.3 42,230 4.72

SRP020636 93 10,695,056 10,023,946 671,110 93.8 10,053,119 641,937 94 29,173 4.43

SRP068123 89 36,237,495 29,132,806 7,104,689 82.2 29,342,165 6,895,330 82.7 209,360 2.9

SRP013610 54 21,039,752 20,514,308 525,444 97.5 20,531,454 508,298 97.6 17,146 3.19

SRP076218 86 20,183,248 19,802,286 380,962 98.1 19,822,443 360,805 98.2 20,157 5.49

SRP045630 99 15,931,928 15,550,706 381,221 97.6 15,578,309 353,618 97.8 27,603 7.24

SRP016501 48 85,677,826 82,218,772 3,459,055 96.2 82,614,984 3,062,842 96.6 396,213 8.86

SRP075605 51 30,851,404 29,278,793 1,572,611 95 29,356,220 1,495,184 95.2 77,427 5.26

SRP122535 50 15,658,933 15,121,371 537,562 96.6 15,133,718 525,214 96.7 12,347 2.58

SRP013027 100 28,031,517 26,043,731 1,987,786 92.9 26,092,526 1,938,992 93.1 48,794 2.49

SRP045452 51 2,286,199 1,307,716 978,483 57.3 1,313,084 973,116 57.5 5,368 0.621

The result shown is an average of all samples per accession ID.

being unable to properly align the reads due to the higher number 
of mismatches. To evaluate the ability of Scavenger in recover-
ing these false-negative non-aligned reads which arise due to 
divergence of the personal genome, an experiment was devised 
where reads from non-reference inbred laboratory mouse strains 
were aligned to the reference C57BL/6J mouse genome to imi-
tate alignment of reads from the personal genome against the 
reference genome. Multiple nonreference mouse strains – 129S1/
SvImJ, A/J, CAST/EiJ, DBA/2J and NOD/ShiLtJ – were utilised 
as the genomes of these strains have previously been character-
ised by the Mouse Genome Project (MGP), with variations from 
each strain identified relative to the reference mouse genome. 

We collected 80 publicly available RNA-seq samples from the 
selected mouse strains, with each strain having a minimum of 
13 samples from at least 3 different projects with varying char-
acteristics, and performed alignment of these samples against 
the reference genome using STAR with default parameters. 
The result of the source alignments shows that there is 
generally a high degree of mappability of the reads, rang-
ing from 82.2% up to 98.1%. After recovery with Scaven-
ger, we were able to re-align ~4.75% of unaligned reads in 
the source execution, corresponding to an increase in the 
number of aligned reads ranging from 17,000 to 396,000 reads 
(Table 6).
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Further analysis was performed to evaluate the hypothesis 
that reads recovered by Scavenger have a higher degree of 
polymorphism due to the divergence between the ’personal’ non-
reference mouse strain genome against the reference genome. 
We randomly selected 1,000 unspliced reads which are aligned 
in the source execution and 1,000 unspliced reads recovered by 
Scavenger from each sample, and then calculated the number of 
single nucleotide polymorphisms (SNP) found within the loca-
tion of the aligned reads from the list of strain-specific SNPs 
published by MGP against the reference mouse genome. The 
same analysis was then repeated a further 9 times, for a total of 
10 iterations, to allow for significance testing. The majority of the 
reads which are either successfully aligned or recovered did not 
contain any known SNPs. However, the number of reads which 
contain SNPs is significantly higher (by t-test, p-value < 10−27) in 
the reads recovered by Scavenger compared to the reads aligned 
in the source execution for 4 of the 5 strains analysed (Figure 2A). 
Furthermore, the number of reads with a high number of SNPs 
(> 5) are also significantly higher (by t-test, p-value < 10−21) 
in the reads recovered by Scavenger for all of the strains ana-
lysed indicating that Scavenger is able to recover reads which 
are more polymorphic compared to the reads aligned during the 
source execution (Figure 3 and Figure 2B). These results vali-
date the hypothesis that reads recovered by Scavenger have a 
higher degree of polymorphism as a result of the divergence 
between the personal genome and the reference genome and fur-
ther demonstrates the ability of Scavenger in dealing with the 
false-negative non-alignment problem.

Effect of Scavenger recovery pipeline on downstream 
analysis
While alignment of reads is an important step in RNA-seq analy-
sis, further downstream analyses are required in order to inter-
pret the data into meaningful results. As one of the most common 
applications of RNA-seq analysis is gene expression analysis, 
we focused on identifying the effect of adding reads recovered 
by Scavenger on the expression of genes. The dataset utilised 
for testing consisted of 23 publicly available RNA-seq samples 
selected from 3 separate projects of varying characteristics, with 
11 samples originating from two human projects and 12 samples 
originating from a single mouse project. The result of source exe-
cution using STAR with default parameters shows a high degree 
of mappability in all datasets, ranging from ~95.9% in human 
datasets and ~92.9% in the mouse dataset (Table 6). After recovery 
of reads with Scavenger, we were able to recover ~3.1% of una-
ligned reads on average across the three datasets, corresponding to 
an increase ranging from 7,000 reads up to 102,000 reads. While 
the number of reads recovered are quite low relative to the number 
of previously aligned reads, the addition of tens and hundred 
of thousands of reads is still likely to affect the expression of the 
genes.

Gene quantification of aligned reads is performed using 
featureCounts24 to produce read counts per gene, which is then 
normalised to reads per million (RPM). In the source alignment, 
the number of genes expressed, defined as having non-zero read 

Figure 2. The number of reads containing SNPs found within 
source aligned reads and Scavenger recovered reads. A. The 
number of reads with ≥ 1 SNPs found within reads. B. The number 
of reads with high number of SNPs (> 5) found within reads.

counts, in the human datasets average to 26,000 genes, while the 
number of genes expressed in the mouse dataset is 25,800 genes. 
In Scavenger recovered alignment, we see an increase of up to 3 
expressed genes per sample, indicating the ability of Scavenger 
to recover genes which are falsely considered as non-expressed 
in the source alignment (Figure 5A). The recovery of reads 
in previously non-expressed genes is likely due to the extension of 
putative alignment locations, which may introduce regions which 
have no alignment in the source execution. Further investiga-
tion into the reads recovered by Scavenger shows that the reads 
are not distributed evenly across all the expressed genes – with  
only ~2150 and ~5900 genes receiving an increase in read counts 
in human and mouse datasets, respectively. The majority of genes 
with increased read counts do not see much change in gene 
expression, with only ~14 genes having more than 1 fold-change 
difference between source expression and recovered expres-
sion. Interestingly, genes which have substantial difference after 
recovery are generally genes with low expression in the source 
execution (log2(RPM) < 5), potentially indicating that some 
lowly expressed genes may actually have higher true expression 
than what is reported due to the alignment tool being unable to 
pick up these reads (Figure 4). This also has implications in fur-
ther downstream analyses as lowly expressed genes are typically 
excluded from analysis, when instead it should not have 
been excluded as their true expression is actually higher.

We then performed further investigations into the genes with 
more than 1 fold-change difference after recovery to study the 
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types of genes affected by the false-negative non-alignment 
problem. The majority of genes with recovered expression in the 
human and mouse dataset are classified as pseudogenes (>60%), 
with the second most frequent type being protein coding genes 
(22% and 9% for human and mouse dataset, respectively) 
(Figure 5B). Moreover, most recovered genes with very low 
expression in the source alignment (log2(RPM+1) < 5) are in the 
pseudogenes category implying that many pseudogenes expres-
sion are likely to be under-reported due to reads originating 
from pseudogenes not being picked up by the alignment tool 
(Figure 4). Frequency analysis of the recovered genes also 

shows that some genes are consistently recovered across at 
least half of the samples in human and mouse datasets respec-
tively, potentially indicating that these genes are harder to be 
picked up by the alignment tool due to its sequence being highly 
polymorphic. The finding that expression of pseudogenes are 
particularly affected by the false-negative non-alignment prob-
lem is significant as recent studies have shown that pseudogenes 
are incorrectly assumed to be non-functioning and actually have 
a role in regulating  biological processes, particularly in diseases 
such as cancer25,26. The reason that pseudogenes are more affected 
by Scavenger recovery is likely due to a number of factors, 

Figure 3. Distribution of number of SNPs found within source aligned reads and Scavenger recovered reads. A. The number of reads 
with ≥ 1 SNPs found within reads. B. The number of reads with high number of SNPs (> 5) found within reads.
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Figure 4. Gene expression in source alignment and after Scavenger recovery for genes whose reads are recovered. Coloured points 
indicates genes with expression difference of greater than 1 fold change.

including the large number of mutations accumulated which 
results in divergence between pseudogene sequences and per-
sonal genomes; and the typically low expression of pseudo-
genes which is therefore more affected by increase an in reads as 
a result of recovery by Scavenger (Figure 6).

Applying Scavenger recovery on single-cell RNA-seq data
Single cell RNA-sequencing (scRNA-seq) is fast becoming a 
mainstream method for transcriptomics analysis due its ability 
to elucidate transcriptional heterogeneity of individual cells. 
However, there are a number of challenges when dealing with 
scRNA-seq datasets due to systematically low read counts, as a 
result of the small amount of transcripts which are captured dur-
ing library preparation, and a high degree of technical noise27. 
Given Scavenger’s ability in recovering false-negative non-
recovered reads in normal bulk RNA-seq datasets and the effect 

it has on downstream analyses, we hypothesise that recovery 
of unaligned reads in scRNA-seq datasets with Scavenger will 
likely have a greater impact on downstream analysis due to lim-
ited amount of reads available, while also helping with reduc-
ing technical noise. To test this hypothesis, 80 randomly selected 
samples were collected from a mouse brain scRNA-seq dataset 
and which are then aligned with STAR, followed by recovery 
of reads with Scavenger. The scRNA-seq samples have an aver-
age read depth of ~2.3 million reads (after pre-processing), with 
~57.3% of the reads able to be aligned in the source execu-
tion (Table 6). Scavenger was only able to recover 0.6% of the 
unaligned reads, corresponding to an increase of ~5,400 reads. The 
low number of reads which are able to be successfully recov-
ered by the Scavenger pipeline is likely due to the low number of 
aligned in reads in source alignment, which provides less informa-
tion that Scavenger can utilise during the follow-up execution.
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As per the norm for scRNA-seq datasets, the number of genes 
with non-zero read counts is much lower compared to the number 
of non-expressed genes in bulk RNA-seq datasets, averaging 
5,800. Of these expressed genes, only 12% of the genes (~700) 
have an increase in read counts, with the majority of these genes 
having little difference in expression and ~12 genes having a 
fold-change difference greater than 1 (Figure 7A). Unlike in 
bulk RNA-seq datasets, genes with substantial difference after 
recovery range from lowly expressed genes up to highly expressed 
genes, though genes with the greatest difference in expression 
are still those with low expression in the source alignment 
(Figure 4). Furthermore, a different pattern was also observed in 
the types of genes which have substantial difference in scRNA-
seq datasets, with the protein coding category being the major-
ity, followed by the pseudogene category (Figure 7B). The 

difference in pattern is likely due to comparatively higher abun-
dance of protein coding genes and the low capture efficiency of 
scRNA-seq methods, meaning that reads from pseudogenes 
are less likely to be captured and therefore rescued. This can be 
seen from the much lower number of pseudogenes expressed in 
scRNA-seq dataset (~150) compared to bulk RNA-seq datasets 
(~3,500).

Discussion
The false-negative non-alignment problem is a prevalent problem 
in many of the published RNA-seq alignment tools, resulting 
in loss of information from incorrectly unaligned reads. To help 
solve the false-negative non-alignment problem, we have devel-
oped Scavenger – a pipeline for recovery of unaligned reads 
using a novel mechanism based on sequence similarity between 

Figure 5. Effect of Scavenger read recovery on gene expression for normal (bulk) RNA-seq datasets. A. The number of genes whose 
reads are recovered by Scavenger, categorised based on the fold change in normalised expression (RPM) between source alignment and 
after Scavenger recovery. B. The number of genes with more than 1 fold change in normalised expression categorised based on their gene 
types.

Page 13 of 22

F1000Research 2019, 8:1587 Last updated: 12 OCT 2021



Figure 6. Distribution of Scavenger recovered reads categorised by gene type for normal (A) and single-cell (B) RNA-seq datasets. In 
general, most reads are located in a region without a feature or within a protein coding gene. However, a high percentage of reads in human 
bulk RNA-seq datasets are located in other gene types, more specifically mitochondrial genes, due to the high source expression of these 
genes.

unaligned and aligned reads. Scavenger utilises the follow-up exe-
cution concept adapted from our previous work on metamorphic 
testing to find aligned reads from the source execution which 
have similar sequences to the unaligned reads by aligning the 
aligned reads against unaligned reads. The location of the aligned 
reads are then used as a guide to re-align the unaligned reads 
back to the reference genome using either BLAST or the 
original alignment tool depending on if the putative location 

originates from unspliced or spliced alignment, respectively, to 
ensure that splicing information is retained in recovered reads.

We have applied Scavenger on simulated datasets with vary-
ing degrees of complexity and showed that Scavenger is able to 
recover unaligned reads across all complexity levels with a rea-
sonably high degree of accuracy. In particular, Scavenger is able 
to recover the most amount of reads in datasets that exhibit a 
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high degree of complexity where read sequence is more diver-
gent compared to the reference genome. We further show that 
although alignment of reads with optimised parameters are able 
produce a higher number of aligned reads compared to after recov-
ery with Scavenger, the reads recovered by Scavenger have high 
degree of overlap to reads recovered with parameter optimisa-
tion. The lower number of reads recovered by after Scavenger is 
a result of Scavenger using information from aligned reads to find 
putative locations for unaligned reads, meaning that Scavenger 
is unable to recover reads from region with no alignment – unlike 
parameter optimisation which does not have the same limita-
tion. Given the non-trivial difficulty of performing parameter 

optimisation on real datasets, we recommend the use of Scav-
enger as an alternative to help with recovering incorrectly 
unaligned reads.

There are a number of possible factors which may contribute 
to the false-negative non-alignment problem. One such fac-
tor is the divergence between the reference genome and the per-
sonal genome, leading to higher mismatches during alignment of 
sequenced reads against the reference genome. In order to vali-
date that divergence of genomic sequences result in incorrectly 
unaligned reads, we devised an experiment whereby RNA-seq 
datasets from non-reference mouse strains were aligned against 

Figure 7. Effect of Scavenger read recovery on gene expression for single-cell RNA-seq datasets. A. The number of genes whose 
reads are recovered by Scavenger, categorised based on the fold change in normalised expression (RPM) between source alignment and 
after Scavenger recovery. B. The number of genes with more than 1 fold change in normalised expression categorised based on their gene 
types.
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the reference mouse strain. We then analysed the reads which 
were aligned in the source execution against those recov-
ered by Scavenger and showed that Scavenger is able to sig-
nificantly recover more reads which have a higher number of 
reported strain-specific SNPs. This result both confirms that 
divergence of sequences between the reference genome and the 
personal genome does affect the false-negative non-alignment 
problems and that Scavenger is able to recover reads which 
are incorrectly unaligned due to a higher degree of sequence 
divergence.

As alignment of reads is only the first step in an RNA-seq data 
analysis, we also investigated the effect of the false-negative 
non-alignment problem on downstream analyses, in particular on 
gene expression analysis. After recovery of reads with Scavenger, 
we show that ~14 genes have more than 1 fold change in expres-
sion compared to the source alignment and that these genes are 
typically genes with low expression. Interestingly, the majority 
of genes with >1 expression difference belong to the pseudogenes 
category, indicating that the expression of pseudogenes are 
likely to be under-reported due to reads from pseudogenes being 
incorrectly unaligned by the alignment tool. Given the abil-
ity of Scavenger to recover gene expression in normal (bulk) 
RNA-seq datasets, we then investigated the ability of Scaven-
ger in recovering reads from scRNA-seq dataset as scRNA-seq 

datasets have the characteristics of having low reads counts and 
high degree of technical noise. Scavenger recovery affected the 
expression of 12% of the expressed genes, with ~12 genes hav-
ing more than 1 fold change in expression. Unlike the bulk RNA-
seq dataset, the genes with >1 change in expression range from 
lowly expressed genes up to highly expressed genes, with the 
genes belonging primarily to the protein coding category.

The current version of Scavenger supports STAR as the align-
ment tool for source execution and re-alignment of spliced reads.  
However, the user can choose to modify the alignment tool utilised 
by Scavenger with the alignment tool of their choice. Ideally the 
tool should satisfy the three properties underlying the read recov-
ery pipeline – deterministic alignment, realignability of mapped 
reads, and non-realignability of unmapped reads – to ensure that 
the recovered reads are deterministic. To show the extensibility of 
Scavenger, we have tested Subread, another RNA-seq alignment 
tool, as a replacement for STAR within the Scavenger pipeline 
and demonstrated that Scavenger is still able to recover incor-
rectly unaligned reads with similar performance to STAR 
(Table 7 and Table 8). It should be noted that the recovery 
performance of Subread is different compared to STAR due to 
the different algorithm employed by Subread for alignment and, 
potentially, due to Subread violating the deterministic alignment 
property.

Table 7. Alignment statistics for simulated datasets before and after Scavenger recovery using default parameters for Subread.

Dataset Source execution Scavenger pipeline Unaligned 
reads

% recovered % recovered

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned recovered reads 
correct

reads 
incorrect

T1 9,305,067 74,497 620,436 9,332,335 79,653 588,012 32,424 84.1% 15.9%

T2 8,985,799 87,576 926,625 9,107,130 92,296 800,574 126,051 96.3% 3.7%

T3 4,802,130 106,487 5,091,384 4,984,817 108,947 4,906,235 185,148 98.7% 1.3%

The result shown is an average from 3 samples.

Table 8. Alignment statistics for simulated datasets before and after Scavenger recovery using optimised parameters for 
Subread.

Dataset Source execution Scavenger pipeline Unaligned 
reads

% recovered % recovered

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned recovered reads 
correct

reads 
incorrect

T1 9,416,480 262,926 320,594 9,419,057 264,906 316,037 4,557 56.5% 43.5%

T2 9,283,792 397,323 318,885 9,287,022 398,775 314,203 4,682 69.0% 31.0%

T3 7,111,603 2,251,068 637,330 7,122,864 2,251,625 625,512 11,818 95.3% 4.7%

The result shown is an average from 3 samples.
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Data availability
Source data
Simulated datasets used in this study were obtained from Baruzzo 
et al.8

The datasets are publically available from: http://bioinf.itmat.
upenn.edu/BEERS/bp1/datasets.php

Software availability
Project name: Scavenger

Project home page: https://github.com/VCCRI/Scavenger

Archived source code: https://doi.org/10.5281/zenodo.335899518

Operating system(s): Linux

Programming language: Python 3 and Shell

Other requirements:STAR and Subread

License:MIT
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Page 4: "(i.e. the number of aligned reads that fall within the interval)" -> which aligned 
reads? the unaligned realigned or the aligned? 
 

○

Page 4: please describe (intuitively) what “realignability of mapped reads” and “non-
realignability of unmapped reads” means. 
 

○

 Page 6: "mousub" > “mouse”? 
 

○

Page 6-7: command lines are ugly (maybe due to two columns page format). 
 

○

Section “Results”: it would be useful to describe the running times and the RAM 
requirements of Scavenger in the various experimental analysis to better understand 
whether it can be run on low-end and mid-range servers. 
 

○

Table 6 reports the results of different experiments described in the manuscript. The last 
sentence on page 9 might be confusing since it states that the minimum number of rescued 
reads is 17,000 whereas the table includes two smaller values (12,347 and 5,368).  We 
suppose that these two lines refer to the results on Mouse scRNA reads. We suggest the 
authors to better specify the experiment on each line (or split the table in two). 
 

○

Table 6 reports the results for all the samples considered in the evaluation (human and 
mouse). We believe that the authors should specify the organism for each accession ID. 
 

○

Page 10: We concur with the other reviewer and we think that the sample size for random 
sampling of reads is too small relative to the total mapped reads.  The authors should 
improve this part of the manuscript. 
 

○

Page 10: "11 samples originating from two human projects" -> there is no table. I would like 
to see it (as done for the mouse samples). 
 

○

Figure 3: the caption is wrong. There is no B subfigure. Moreover, the axes have no labels 
making the charts harder to understand. 
 

○

Page 12: “and the typically low expression of pseudo- genes which is therefore more 
affected by increase an in reads as a result of recovery by Scavenger” -> please rephrase this 
sentence since it’s not completely clear to us. 
 

○

Page 15: "are able produce" -> "are able to produce"○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 October 2019

https://doi.org/10.5256/f1000research.21296.r53438

© 2019 Nguyen Q. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Quan Nguyen   
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia 

The authors present Scavenger, a pipeline to recover false unaligned reads by remapping or 
BLAST-search unmapped reads that are similar to aligned reads. The false unaligned reads 
commonly arise from two sources: the actual sequence variation to the shared reference genome 
and the mapping to multiple regions. These reads are usually discarded in a standard analysis 
pipeline.  
 
The software can be useful to rescue unmapped reads in a quantifiable way, which can be 
important in many sequencing data analysis scenarios. Example usage cases are to study the 
expression of frequently mutated genes in diseased samples and in the mapping cases where a 
genome reference is not complete or high divergence to the reference exists. 
 
The authors comprehensively tested Scavenger using three simulation settings, 80 RNA-seq 
datasets from non-reference inbred laboratory mouse strains, 11 human and 12 mouse datasets 
and 80 single-cell datasets. They performed analyses on the effects of recovering falsely unaligned 
reads to downstream analyses and show that pseudogenes affect expression measurements. 
Scanvenger input files are FASTQ files, or mapped BAM/SAM files, and the software has 
functionalities for parallelisation on CPUs and AWS cloud processing.  
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I suggest some minor revisions below: 
FASTQ read statistics like length and quality should be described. What preprocessing steps 
are required, for example trimming of N bases, filtering of low-quality reads? While multiple 
mapping and divergence in genome sequence are two primary sources of false unaligned 
reads, another common source can be from sequencing base calling error. The authors may 
add discussion on how quality scores affect read recovery.  
 

○

The tests for difference in the level of polymorphism between unligned and aligned reads 
are interesting and can lead to important conclusions. These tests can be improved. The 
sample size from a random sampling of reads (1000 reads) is small relative to the total 
mapped reads (< 0.1%), and t-test for results from 10 iterations is not suitable to test for 
testing the enrichment of SNPs in aligned vs unaligned reads. The authors may consider the 
permutation test or others. The authors may also consider known regions of the genome 
where more mutations are expected.  
 

○

The recovery of un-detected genes and effects on fold-change are interesting. The author 
may consider adding information or a panel in figure 5 to show expression levels of these 
affected genes before and after read recovery.  
 

○

Page 4: clarify "qualities" as mapping or sequencing qualities.  
 

○

Page 4: clarify "to reduce potential location for alignment". Can be useful to output total 
reads that can not be rescued due to multiple mapping.  
 

○

Tables 2 and 3, the unaligned category on the third column should be a part of the source 
execution. 
 

○

Add discussion on when Scavenger should be used as an alternative for parameter 
optimisation approach in STAR alignner. For example, on Pages 8 and 15, the authors dicuss 
"performing parameter optimisation is not trivial due to lack of ground truth", how does 
Scavenger perform better in the absence of ground truth?  Would it be due to speed, 
accuracy and quantitativeness?  
 

○

Figure 3, add label A) and B), and description for panel titles and graph axis titles. 
 

○

Page 12, what single-cell sequencing platforms were used for the selected datasets. 
Variation in recovery efficient may occur in, for example, 3'-sequencing and full-length 
sequencing data. 

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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