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Abstract—The data transmission performance of a network
protocol is closely related to the amount of available informa-
tion about the network state. In general, more network state
information results in better data transmission performance.
However, acquiring such state information expends network
bandwidth resource. Thus a trade-off exists between the amount
of network state information collected, and the improved protocol
performance due to this information. A framework has been de-
veloped in previous efforts to study the optimal trade-off between
the amount of collected information and network performance.
However, the effect of information delay is not considered in
the previous analysis. In this paper, we extend the framework
to study the relationship between the amount of collected state
information and the achievable network performance under the
assumption that information is subject to delay. Based on the
relationship we could then obtain the optimal resource alloca-
tion between data transmission and network state information
acquisition in a time-varying network. We have considered both
memoryless and memory-exploited scenarios in our framework.
Structures of the Pareto optimal information collection and
decision-making strategies are discussed. Examples of multiuser
scheduling and multi-hop routing are used to demonstrate the
framework’s application to practical network protocols.

Index Terms—Protocol design, Resource allocation, Network
state information, Delayed information

I. INTRODUCTION

Communication protocols require network state information
to achieve good performance. For example, in cellular commu-
nications, base stations need to collect various kinds of state
information (e.g., channel quality information, buffer state in-
formation) from mobile terminals to achieve good scheduling
performance. Intuitively, network performance improves as
more correct state information is collected. However, the in-
formation collection process occupies valuable bandwidth re-
source, which results in less bandwidth for data transmissions.
Therefore, there is a trade-off between the resource used for
state information collection and the performance improvement
due to such information. In [1], we have developed a general
framework to analyze the relationship between the quantity of
collected state information and network performance, based
on which we could design the optimal scheme for allocating
resource between data and network state information. The
work in [1] assumes instantaneous utilization of network
state information, i.e., there is no delay between the time of
information collection and the time of information utilization.
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However, in many application scenarios, this assumption of
zero delay does not hold: first, it takes time for the collected
information to propagate from the place where it is generated
to the place where it is to be utilized; second, there is always
some processing time before the information is transmitted and
after it has been received; in addition, the state information
is generally not updated instantaneously as the underlying
network changes. As a result, this time delay makes the
collected state information outdated and inaccurate in a time-
varying network, rendering the information less valuable and
probably resulting in degradation of network performance.
Thus, it is worth investigating how the delay will affect the
value of collected network state information and the optimal
bandwidth resource allocation scheme. More specifically, we
ask the following two questions: Q1: Assume the information
collection is subject to delay, what is the minimum amount of
state information required to achieve a given network perfor-
mance? Q2: In a time-varying network, what is the optimal
scheme to allocate resource between data and network state
information? More precisely, how often should the information
be updated, and how much information should be collected
each time to optimize the overall bandwidth efficiency?

In this paper, we extend the work in [1] to provide a general
framework to analyze the above two questions. Our framework
can give the minimum amount of delayed state information
required to achieve a given network performance. Based on
this relationship, the optimal bandwidth resource allocation
scheme could then be derived. We start by considering the
utilization of a single piece of delayed state information; then
we consider a series of collected state information and analyze
both memoryless and memory-exploited periodic information
collection strategies. The memoryless information collection
strategy has been discussed in our previous paper [2]. In the
present work, we further investigate how the exploitation of
memory affects the optimal resource allocation scheme. Struc-
tures of Pareto optimal information collection and decision-
making strategies are analyzed in both cases. The application
of our framework is illustrated by examples of multiuser
scheduling and multi-hop routing.

We would like to clarify some terms we shall use throughout
this paper. The term information collection is defined from the
viewpoint of the protocol decision maker. Since the decision
maker does not have access to the true network states, it needs
an information collection strategy to extract useful network
information to make protocol decisions. The term network
performance in our paper is a measure of the goodness of
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protocol decisions. In general, a good network performance
indicates a good match between the true network states and the
protocol decisions. This measure does not count the overhead
of network state information collection. A resource allocation
scheme is a method to distribute bandwidth between network
state information collection and data transmission. We call
a resource allocation scheme optimal if it maximizes the
overall bandwidth efficiency by considering the overhead of
information collection. We use performance-rate relationship
as an abbreviation of “the relationship between the network
performance and the amount of collected state information
(i.e., information rate)” in our paper. An optimal performance-
rate relationship therefore refers to “the performance-rate
relationship that achieves the best network performance given
the same amount of collected state information”. These terms
will be illustrated with more details in our formulation and
examples.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the framework we have
developed to solve the above problems. Sections IV, V and
VI present examples to illustrate our framework. Section VII
concludes the paper with suggestions for future research.

II. LITERATURE REVIEW

It has been well acknowledged in the research community
that the available network state information can influence the
performance of network protocols. For example, Seada et
al. studied the impact of localization errors on geographical
routing protocols [3]; Hong and Li [4] provided theoretical
analysis on the relationship between the available routing
information and the performance of distance vector based
routing protocols.

Considering that the network state information is generally
subject to delay, many researchers have investigated the effect
of outdated information on network performance. The influ-
ence of delayed feedback Channel State Information (CSI)
on channel capacity has been studied for various channel
models, including finite-state Markov channels [5], multiuser
MIMO systems [6] and finite-state Multiple Access Channels
[7]. Besides the evaluations of channel capacities, there are
also discussions on how delayed network state information
affects the performance of network-wide protocols. For exam-
ple, Murugesan et al. [8] studied the maximum throughput
of opportunistic multiuser scheduling with randomly delayed
Automatic Repeat reQuest (ARQ) feedback; the authors of [9]
showed how link state information update frequency affects
the bandwidth blocking probability of multi-path routing pro-
tocols; Ying and Shakkottai analyzed the relationship between
the delay of channel/queue information and the throughput
region of routing and scheduling in wireless networks [10].

The above work illustrates how the available (erroneous,
incomplete or outdated) network state information influences
network performance. However, the bandwidth costs of ob-
taining the network state information are not quantified and
discussed in these papers. Therefore, no bandwidth resource
allocation schemes are provided to balance between network
state information and data transmissions.

As real communication protocols have to allocate part of
the bandwidth resources to collect network state information,
some researchers have studied the optimal resource allocation
schemes under different scenarios. For example, the authors
of [11] and [12] discussed the quantity of resource that
should be allocated for training and feedback to provide
channel state information to the receiver and transmitter in a
multiple-antenna system. Chaporkar et al. studied the optimal
probing and scheduling strategies in downlink opportunistic
scheduling for the purpose of queue stablization [13]. Aiming
at optimizing bandwidth efficiency, the authors of [14] and
[15] analyzed the resource allocation between channel probing
and data transmissions in opportunistic scheduling. Hong and
Li showed the relationship between the collection range of
scheduling information and the network throughput in multi-
hop wireless networks in [16] and discussed the optimal
resource allocation schemes. As seen from the above, this
problem has been addressed under different scenarios; how-
ever, a unified framework to tackle this issue is not provided
in the above papers.

As this trade-off between the state information collection
overhead and the network performance improvement exists
in many network communication protocols, it is certainly
desirable to establish a unified framework which could be
applied to analyze this trade-off and provide guidelines on the
design of network protocols. Hong and Li established a general
framework based on rate distortion theory to analyze the
minimum amount of information required to achieve a target
network performance [17]. Their paper provides a systematic
way to resolve this problem. However, rate distortion theory
can only be used to derive an asymptotic performance-rate
relationship, which is only achievable by assuming an infinite
delay in information collection. Thus, the application of the
framework to practical network protocols is very limited. In
our previous work [1], we have provided a general formulation
to model the non-asymptotic relationship between the quantity
of state information and network performance, which could be
applied to practical network protocols to derive the optimal
resource allocation between state information collection and
data transmission. In this work, we extend the formulation by
considering delayed information, and study the non-asymptotic
performance-rate relationship and the optimal resource alloca-
tion scheme under information delay. Compared to an early
version of this work [2], the current version further studies
the exploitation of memory in state information collection and
utilization, and its impact on the optimal resource allocation
of communication protocols.

Finally, we would like to clarify the difference between
our work and the literature on multiuser channel allocation
problems, e.g., [18]–[20]. The term resource allocation used in
our paper refers to the bandwidth allocation between network
state information and data transmissions rather than allocation
among multiple users. Furthermore, we aim at providing a
general framework to analyze the trade-off between state
information collection and data transmissions. The examples
of multiuser scheduling in our paper are only for illustration,
and we do not intend to propose new multiuser scheduling
strategies. Therefore, the literature on multiuser channel allo-
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cation problems is not directly related to the present work.

III. THE FRAMEWORK

In this paper, we aim at analyzing the relationship between
the amount of collected network state information and network
performance when there is information delay. We start the
analysis in Section III-A by considering a single protocol
decision and evaluating the performance-rate relationship with
a random information delay. Then in Section III-B, we study
the memoryless periodic information collection scheme where
network state information are updated periodically and several
protocol decisions are made within a time period until new
state information is updated. Section III-C then extends the
analysis to the case where memory is exploited in the pe-
riodic information collection scheme to utilize the past state
information. For all three scenarios, our framework provides
formulations to derive the optimal performance-rate relation-
ships. Structures of the solutions that achieve the optimal
performance-rate relationship have also been analyzed.

A. Network State Information Required to Achieve a Given
Performance with a Random Delay

We first investigate the relationship between network per-
formance and the amount of collected state information with
a random information delay. We will also define the terms and
notations we use throughout the paper.

Scenario: Consider time instant t, and assume the network
state (e.g., a channel’s state, a node’s buffer state) at time t
is represented by a random variable Xt, which is unknown to
the decision maker. The collected state information at time t
is Y t. Let us assume that the information collection could be
probabilistic, i.e., given the true network state, the collected
information may vary. We use PY t|Xt to denote the transition
probability matrix from Xt to Y t, and p(yt|xt) denotes the
conditional probability that Y t = yt given Xt = xt. We call
PY t|Xt an information collection strategy at time t. Note that
PY t|Xt defines a probabilistic mapping from Xt to Y t, and
Y t could be regarded as a coded version of Xt. In this paper,
we do not consider the noise in information collection, i.e., the
probabilistic mapping from Xt to Y t is completely determined
by the protocol designer.

The collected state information Y t is transmitted to a
network decision maker (e.g., a base station or a mobile
terminal), and a protocol decision (e.g., a scheduling/routing
decision) is made at time t + D (D > 0) based on Y t.
The time difference D between the decision-making and the
information collection is modeled as a random variable and is
called information delay. Here the information delay could be
a sum of several factors: propagation delay, processing delay,
the delay in making decisions, etc. We use p(d) to denote the
probability (or probability density if D is a continuous random
variable) that the information delay D = d, and we use D to
represent the alphabet of D.

We first consider the case where D has a particular value d.
The protocol decision at time t+ d is denoted by Zt+d. The
decision rule is assumed to be probabilistic. Given the delay is
d, we use PZt+d|Y t to denote the transition probability matrix

from Y t to Zt+d, and p(zt+d|yt) is the conditional probability
that Zt+d = zt+d given Y t = yt. We refer to PZt+d|Y t as a
decision-making strategy at time t+ d.

We use PXt+d|Xt to denote the network state transition
matrix at time t with a transition time step d, and p(xt+d|xt)
is the probability for network state to transit from xt to xt+d

in the time step d.
Expected Network Performance: Given the information

delay d, the network performance at time t+ d given the true
network state Xt+d and the protocol decision Zt+d is denoted
by g(Xt+d, Zt+d). The network performance can be an arbi-
trary metric of interest about the network, e.g., the network
throughput, the packet delivery ratio. The exact expression of
g(·, ·) could be defined given a particular network scenario.
The expected network performance at time t+d therefore can
be calculated as

Gd =E
[
g
(
Xt+d, Zt+d

)]
=
∑
xt+d

∑
zt+d

p(xt+d, zt+d)g(xt+d, zt+d) (1)

where p(xt+d, zt+d) and g(xt+d, zt+d) represent the joint
probability and network performance, respectively, with ran-
dom variable Xt+d = xt+d and random variable Zt+d =
zt+d, given the delay d.

Note that the expected network performance Gd is totally
determined by the information collection and decision-making
strategies given a particular network scenario. The joint prob-
ability p(xt+d, zt+d) can be computed as

p(xt+d, zt+d)

=
∑
xt

∑
yt

p(xt)p(xt+d|xt)p(yt|xt)p(zt+d|yt) (2)

where we have used the fact that p(yt|xt, xt+d) = p(yt|xt)
and p(zt+d|xt, xt+d, yt) = p(zt+d|yt), i.e., the collected
information yt only depends on the network state xt and
the protocol decision zt+d only depends on the received
information yt. Given a particular network scenario, p(xt)
and p(xt+d|xt) are determined by the underlying network
state evolution characteristics, and g(·, ·) is determined by the
network scenario considered and the performance metric used;
therefore, the expected performance Gd in this particular case
is a function of the information collection strategy PY t|Xt and
decision-making strategy PZt+d|Y t .

Following the above calculations, it is straightforward to
obtain the expected network performance with a random
information delay D. The expected network performance at
time t+D, denoted by GD, is calculated as

GD =
∑
d∈D

p(d)Gd (3)

if D is a discrete random variable, or

GD =

∫
d∈D

p(d)Gd dd (4)

if D is a continuous random variable.
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Resource for Information Collection: Next, we determine
the amount of resource used for transmitting the network state
information. As we are concerned with the bandwidth resource
in this paper, we calculate the expected number of bits required
to transmit the collected state information. Let l(yt) be the
number of information bits required, or the codeword length
used, when Y t = yt. Then the expected resource used for Y t

is
R(Y t) =

∑
yt

p(yt)l(yt) (5)

where p(yt) =
∑

xt p(xt)p(yt|xt).
According to information theory, if we use the optimal

variable-length coding (e.g., Huffman coding), the codeword
length l(yt) is

l(yt) = dlog2
1

p(yt)
e (6)

and thus R(Y t) has the following upper and lower bounds:

H(Y t) ≤ R(Y t) < H(Y t) + 1 (7)

where H(Y t) is the entropy of Y t and is defined as

H(Y t) = −
∑
yt

p(yt) log2 p(y
t) (8)

In information theory, H(Y t) measures the amount of uncer-
tainty contained in the random variable Y t.

In practice, the codewords of Y t may require additional
encoding (e.g., channel coding), and the value of R(Y t)
depends on the specific implementation scheme.

Formulation: The problem of finding the optimal
performance-rate relationship can be formulated into the fol-
lowing form:

min
PY t|Xt ,PZt+d|Y t

λR(Y t)−GD (9)

where we use PZt+d|Y t to denote the set {PZt+d|Y t : d ∈
D}. Note that in some cases R(Y t) can affect the probability
distribution of D and therefore also affect GD according to
Equations (3) and (4). To minimize the objective, we need to
optimize the information collection strategy PY t|Xt and the
decision-making strategy PZt+d|Y t for all d ∈ D.

The optimization objective is a weighted sum of the amount
of collected network state information and the network per-
formance, with the weight coefficient λ ≥ 0. When λ = 0,
we obtain the strategies that collect the maximum amount of
network state information and achieve the best network perfor-
mance; when λ increases, the optimal solution to Problem (9)
achieves worse network performance but collects less network
state information. By changing the value of λ, we can obtain
different trade-offs between information collection rate and
network performance for a given delay D.

Given the value of λ, the obtained optimal solution
(P ∗Y t|Xt ,P∗Zt+d|Y t) of Problem (9) is Pareto optimal: there
are no other strategies that can achieve a higher network
performance (or lower information rate) without sacrificing
the information rate (or the network performance).

Structure of Pareto Optimal Strategies: Next, we will
show that it is sufficient for us to search within deterministic
information collection and decision-making strategies in order
to obtain Pareto optimal solutions. We prove this by showing
that: 1) given the information collection strategy, the decision-
making strategy that minimizes the objective function in Prob-
lem (9) should be deterministic; 2) given the decision-making
strategy, the information collection strategy that minimizes the
objective function in Problem (9) should be deterministic.

Deterministic decision-making strategies: When the infor-
mation collection strategy at time t is already given, we need to
choose a decision-making strategy that maximizes the network
performance at time t + d for all d ∈ D to minimize the
objective function of Problem (9).

Theorem 1. For any delay d ∈ D, given the information
collection strategy PY t|Xt and the codeword length l(yt) for
each value of yt, the decision-making strategy PZt+d|Y t that
maximizes the network performance at time t+ d can always
be represented in a deterministic form, i.e., the probability
distribution of zt+d given yt should have the form

p(zt+d|yt) =
{

1 if zt+d = zt+d
o

0 otherwise (10)

where zt+d
o is a particular protocol decision.

Proof. For any particular value d, from Equation (1), we have

Gd =
∑
xt+d

∑
zt+d

p(xt+d, zt+d)g(xt+d, zt+d)

=
∑
xt+d

∑
yt

∑
zt+d

p(xt+d, yt, zt+d)g(xt+d, zt+d)

=
∑
xt+d

∑
yt

∑
zt+d

p(yt)p(xt+d, zt+d|yt)g(xt+d, zt+d)

(11)

Consider the part contributed by a particular state information
yt, it could be written as

p(yt)
∑
zt+d

p(zt+d|yt)
∑
xt+d

p(xt+d|yt)g(xt+d, zt+d) (12)

where we have used the fact that p(zt+d|yt) =
p(zt+d|xt+d, yt), i.e., the protocol decision is independent of
the true network state given the collected information.

It is easy to see that, to maximize the total contribution
from yt, we should make p(zt+d|yt) = 1 if zt+d maximizes
the value of

∑
xt+d p(xt+d|yt)g(xt+d, zt+d). We denote this

particular protocol decision as zt+d
o , i.e.,

zt+d
o = argmax

zt+d

∑
xt+d

p(xt+d|yt)g(xt+d, zt+d) (13)

In fact, zt+d
o is the decision that maximizes the posteriori

expected network performance at time t+d given the delayed
information yt. When there are multiple protocol decisions
zt+d giving the same posteriori expected network perfor-
mance, we can just randomly choose one of them to be zt+d

o .
Combining Equations (11) (12) (13), we have

Gd =
∑
yt

p(yt)
∑
xt+d

p(xt+d|yt)g(xt+d, zt+d
o ) (14)
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Deterministic information collection strategies: Next, we
show that the information collection strategy should also be
deterministic when the decision-making strategy is fixed.

Theorem 2. Given the set of decision-making strategies
PZt+d|Y t , the codeword length l(yt) for each value of yt and
the value of λ, the information collection strategy PY t|Xt that
minimizes the objective function of Problem (9) can always be
written in a deterministic form, i.e., the probability distribution
of yt given xt should have the form

p(yt|xt) =
{

1 if yt = yto
0 otherwise (15)

where yto is a particular value of transmitted information.

Proof. In the following proof, we will discuss the case where
D is a discrete random variable. Proof for a continuous random
variable D will be similar to this thus is omitted.

Combining Equations (1), (3) and (5), the objective function
of Problem (9) is written as Equation (16).

We only consider the part contributed by a particular true
network state xt, and it can be transformed into the form as
in Equation (17).

Therefore, to minimize the part contributed by this particular
true state xt, p(yt|xt) should be 1 if yt = yto, where yto is
given in Equation (18). The first term is the weighted codeword
length of yt, and the second sum term is the expected network
performance at time t + D by selecting yt. Equation (18)
means that we need to select the codeword that minimizes
the weighted sum of the codeword length and the expected
network performance after a delay D, which indicates that the
information collection needs to consider the future network
performance when the collected network state information is
subject to delay.

As we have shown that both the information collection and
decision-making strategies should be deterministic, Problem
(9) has been converted to the optimal entropy-coded quantizer
design problem [21], which in general could be solved by the
generalized Lloyd algorithm [21].

B. Memoryless Periodic Information Update

In the previous part, we have considered a single piece of
collected information with a random delay. In this section, we
consider the case where network state information is updated
periodically, and the updated information is used to make
multiple protocol decisions within a time period. Again, we
will discuss the optimal performance-rate relationship and the
structures of Pareto optimal solutions.

Problem Formulation: Assume the series of the system
states over time is a stationary ergodic process. The infor-
mation is updated every T time units, and the information Y t

collected at time t is used during the period [t, t+ T ]. Assume
M protocol decisions are made at a series of distinct time
instants within this duration, where M is a discrete random
variable and p(m) denotes the probability that M = m. The
time instants of the M protocol decisions are also random and
are denoted by t+D1, t+D2, · · · , t+DM , respectively, with
D1 < D2 < · · · < DM . In the later analysis, we will use ~D

to denote the M random delays, and ~d to denote a particular
realization of ~D. The probability (or probability density) that
~D = ~d is represented as p(~d). The alphabet of Di is denoted
by D and that of ~D is denoted by ~D.

We measure the expected average network performance
during the period. Given a particular realization ~d =
(d1, d2, · · · , dm), the average network performance over a
period is defined as

G~d =
1

m

m∑
i=1

Gdi
(19)

where Gdi
is defined in Equation (1).

In some cases, different protocol decisions may not be
weighted equally. For example, the outcomes of some deci-
sions may last for a longer period, thus they can have higher
impacts on the overall network performance. We can assign
different weights to the performance functions to reflect those
unequal impacts, i.e.,

G~d =

m∑
i=1

wiGdi
(20)

where wi is the weight of the ith protocol decision and we
assume w1 + w2 + ...+ wm = 1.

Therefore, it is easy to obtain the expected average network
performance with random delays ~D:

G~D =
∑
~d

p(~d)G~d (21)

if Di is a discrete random variable, or

G~D =

∫
~d∈ ~D

p(~d)G~d d~d (22)

if Di is a continuous random variable.
To calculate G~D based on Equations (21) and (22), we need

to work out G~d for all possible ~d. This might be inconvenient
sometimes. In fact, we may determine G~D without calculating
the values of G~d explicitly. Consider Equations (19) and (21),
we have

G~D =
∑
~d

p(~d)

(
1

m

m∑
i=1

Gdi

)

=
∑
~d

m∑
i=1

1

m
p(~d)Gdi

(23)

As di ∈ D, Equation (23) can be written as the following

G~D =
∑
d∈D

∑
~d

m∑
i=1

1

m
p(~d)Gdi

1di=d

=
∑
d∈D

∑
~d:di=d,∃i

1

m
p(~d)Gd

=
∑
d∈D

αdGd

(24)

where 1di=d is the indicator function which equals 1 if
di = d and 0 otherwise, and the coefficient αd equals∑

~d:di=d,∃i
1
mp(

~d). That is, the coefficient αd is a sum of the
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λR(Y t)−GD

=λ
∑
yt

p(yt)l(yt)−
∑
d

p(d)Gd

=λ
∑
yt

p(yt)l(yt)−
∑
d

p(d)
∑
xt+d

∑
zt+d

p(xt+d, zt+d)g(xt+d, zt+d)

=λ
∑
xt

∑
yt

p(xt, yt)l(yt)−
∑
d

p(d)
∑
xt

∑
yt

∑
xt+d

∑
zt+d

p(xt, yt, xt+d, zt+d)g(xt+d, zt+d)

(16)

λ
∑
yt

p(xt, yt)l(yt)−
∑
d

p(d)
∑
yt

∑
xt+d

∑
zt+d

p(xt, yt, xt+d, zt+d)g(xt+d, zt+d)

=λ
∑
yt

p(xt)p(yt|xt)l(yt)−
∑
d

p(d)
∑
yt

∑
xt+d

∑
zt+d

p(xt)p(yt|xt)p(xt+d|xt)p(zt+d|yt)g(xt+d, zt+d)

=
∑
yt

p(xt)p(yt|xt)

(
λl(yt)−

∑
d

p(d)
∑
xt+d

∑
zt+d

p(xt+d|xt)p(zt+d|yt)g(xt+d, zt+d)

) (17)

yto = argmin
yt

(
λl(yt)−

∑
d

p(d)
∑
xt+d

∑
zt+d

p(xt+d|xt)p(zt+d|yt)g(xt+d, zt+d)

)
(18)

scaled probability p(~d)/m where ~d satisfies the condition that
d is one of its components (i.e., one of the protocol decision
is made after delay d).1

Therefore, G~D is expressed as a linear summation of Gd

for d ∈ D. By determining the values of Gd and αd for the
given network scenario, we can obtain the expected average
network performance G~D.

The calculations of network performance function Gd and
R(Y t) are the same as those in Section III-A. In this part, we
only consider time-invariant strategies, i.e.,

p(Y t = y|Xt = x) = p(Y t−nT = y|Xt−nT = x)

p(Zt+d = z|Y t = y) = p(Zt−nT+d = z|Y t−nT = y)
(25)

for all values of x, y, z, n, t. Therefore, we will drop t in
the following analysis, and use PY |X and PZd|Y to denote
the information collection and the decision-making strategies,
respectively. Moreover, R(Y t) should have the same value as
R(Y t+nT ) for any n given the time-invariant PY |X . Therefore,
we will just use R(Y ) to denote the amount of state informa-
tion collected each time. Instead of using R(Y ) as a measure
of the information collection overhead directly, we need to
use the average amount of information collected per time unit
R(Y )/T when the information is collected periodically.

Therefore, the optimal relationship between the average
amount of information collected per time unit and the average
expected network performance can be obtained by solving the
following problem (λ ≥ 0)

min
PY |X ,P

Zd|Y ,T
λ
R(Y )

T
−G~D (26)

where we use PZd|Y to denote the set {PZd|Y : d ∈ D}.

1Similarly, we could determine the value of αd for the case where Di is
a continuous random variable, or G~d

is a weighted sum of Gdi , and then
express G~D

in terms of Gd and αd.

When λ = 0, we will get the solution with the maximum
amount of information collected per time unit and the best
network performance; when λ increases, we will obtain a
solution with worse network performance and less information
collection overhead per time unit. When λ→∞, the amount
of collected information per time unit tends to zero.

Moreover, when λ→ 0, more information will be collected
each time and the optimal information collection period T ∗ in
Problem (26) will become shorter. This is easy to understand:
as λ decreases, the optimal solution to Problem (26) results in
better network performance and more information collection
overhead per time unit. As the amount of information collected
each time increases, it is possible to improve the average
network performance within a period. As the information col-
lection period decreases, we are forcing the information delay
to a smaller value, which certainly increases the relevance of
the collected information in decision-making.

Structure of Pareto Optimal Strategies: Similar to Sec-
tion III-A, the Pareto optimal information collection and
decision-making strategies obtained from Problem (26) should
be deterministic. As the proof is similar, we just present the
conclusions in the following.

Given the value of T and the information collection strategy
PY |X , the decision-making strategy PZd|Y that maximizes the
network performance at time t+ d could be calculated using
Equation (13). Similar to Equation (18), given the value of T ,
the codeword length l(yt) and the decision-making strategies
at time t+d for discrete delay d ∈ D, the selected information
yto given true network state xt is given in Equation (27).

C. Periodic Update with Memory Exploited

In the above sections, the updated information Y t at time
t only depends on the system state Xt, which means that
the information collection strategy does not consider the past
collected state information. However, as the system states
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yto = argmin
yt

(
λ
l(yt)

T
−
∑
d

αd

∑
xt+d

∑
zt+d

p(xt+d|xt)p(zt+d|yt)g(xt+d, zt+d)

)
(27)

are temporally correlated in general, utilizing the past state
information can generally improve the system performance.
Therefore, in this part, we discuss the periodic information
update scheme which exploits the past collected state infor-
mation in both information collection and decision-making.

A General Scenario: Assume the series of the system
states over time is a stationary ergodic process. Information
is updated periodically, and the update period is T time
units. Assume information is collected at time instances
..., t − T, t, t + T, ..... The collected information Y t at time
t depends on all the past and current true system states, and
therefore the information collection strategy could be denoted
by PY t|Xt

∞
, where Xt

∞ represents all the past true network
states up to time t (i.e., Xt, Xt−1, Xt−2, ...).

The collected information Y t is then transmitted to a
decision maker, and a series of protocol decisions are made at
time instants t+D1, t+D2, · · · , t+DM during the period
[t, t+ T ] as in Section III-B. The protocol decisions are made
based on all the received state information up to time t (i.e.,
all the past collected information Y t, Y t−T , Y t−2T , ...). The
decision-making strategy at a particular delay d is denoted
by PZt+d|Y t

∞
, where Y t

∞ represents all the received state
information up to time t.

Formulation as a Tracking System: In the above sce-
nario, the information collector and the decision maker have
different sets of “past information” or “memory”: at time
t, the past memory at the information collector includes
Xt−1, Xt−2, ..., and the past memory at the decision maker
is Y t−T , Y t−2T , .... Obviously, the information collector has
a larger memory than the decision maker in this case.

To simplify the problem, in the following, we would like
to consider a specific class of systems where the information
collector and the decision maker have the same set of past
information – the set of all the collected information before
time t (i.e., Y t−T , Y t−2T , Y t−3T , ...). This type of system has
been mentioned previously in Gaarder and Slepian’s paper
[22] and is referred to as a “tracking system”, where the
decision maker can keep track of the memory state of the
information collector. This assumption of memory tracking is
reasonable in many communication protocols. For example,
the information collector usually is also the decision maker
(e.g., a base station), which does not have access to all the
true network state information in the past, and therefore can
only use the past collected information to decide its next
information collection strategy.

Next, we show that the information collector and the
decision maker can be represented as state machines. We
introduce a random variable Bt, called belief state, which
represents the information collector and the decision maker’s
belief of the true network state at time t based on all the
collected information before time t (i.e., all Y t0 with t0 < t).
During the system operation, instead of maintaining all the
past collected information, the information collector and the

decision maker only maintain the current belief state of the
network. At time t, the collected information Y t therefore
depends on the true network state Xt and the belief Bt; at
a particular time t + d, the protocol decision Zt+d depends
on the belief Bt+d which has already been updated based
on the collected information Y t. Therefore, the information
collection and the decision-making strategies can be denoted
by PY t|Xt,Bt and PZt+d|Bt+d , respectively. In this paper, we
only consider time-invariant strategies, i.e.,

p(Y t = y|Xt = x,Bt = b)

= p(Y t−nT = y|Xt−nT = x,Bt−nT = b)

p(Zt+d = z|Bt+d = b)

= p(Zt−nT+d = z|Bt−nT+d = b)

(28)

for all values of n, x, y, b, z, t. That is, when the true state is
x and the belief state is b, the probability to get information
y is invariant for all the information collection time instances
t, t − T, t − 2T, ...; when a decision is made after delay d
with a belief state b, the probability to make decision z is also
invariant over all the decision-making time instances t+d, t−
T + d, t − 2T + d, .... Therefore, in the following, we will
drop t and use PY |X,B and PZd|Bd to denote the information
collection and decision-making strategies, respectively.

After transmitting and receiving the collected information
Y t at time t, the information collector and the decision maker
need to update their belief state to Bt+1, and the update rule
is written as

Bt+1 = s(Y t, Bt) (29)

From the above equation, we could see that the belief state Bt

can be regarded as a summary of the past collected information
Y t−T
∞ . In fact, Bt is a function of all the past collected

information before time t (i.e., Y t−T
∞ ).

The mapping from the sequence Y t−T
∞ to Bt is implied

by the belief update function s(·, ·). Although the sequence
Y t−T
∞ has infinite number of realizations (as the length of

the sequence is infinite), the alphabet size of Bt can either
be finite or infinite. When the alphabet size of Bt is finite,
the function s(·, ·) implies a mapping from a set of infinite
elements to a set of finite elements. By properly designing
the update rule s(·, ·), we could make the belief state Bt an
equivalence of the past collected information Y t−T

∞ , i.e., they
result in the same optimal performance-rate relationship. The
most naive way is to let Bt = (Y t−T , Y t−2T , ...), by which
we do not save any space for memory. However, in some
special conditions (e.g., the underlying network state follows
a Markov process, as in the example in Section V), we can
use less space by memorizing the belief state and still achieve
the optimal performance-rate relationship.

The expected system performance at a particular time
t + d is still denoted by Gd. As in Section III-B, for
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~d = (d1, d2, · · · , dm), the time average of the expected system
performance over the period starting at time t is

G~d =
1

m

m∑
i=1

Gdi
(30)

Alternatively, if we are considering decisions weighted
unequally, we can also assign different weights to different
decisions as in Equation (20).

As the M delays are random variables, the expected av-
erage network performance with random delays ~D could be
calculated as in Equations (21) and (22). Furthermore, it can
also be written as a weighted sum of Gd with d ∈ D as in
Equation (24).

At a random selected time t, given the past memory Bt, we
use R(Y t|Bt) to denote the expected number of bits required
to transmit information Y t. If we use the optimal variable-
length coding, the number of bits required is bounded by

H(Y t|Bt) ≤ R(Y t|Bt) < H(Y t|Bt) + 1 (31)

where H(Y t|Bt) is the conditional entropy of Y t given the
belief Bt.

Therefore, assume our belief state Bt is an equivalence of
the past collected information Y t−T

∞ , if we want to find the
optimal performance-rate relationship, we need to solve the
following optimization problem with various values of λ:

min
PY |X,B ,P

Zd|Bd ,T
λ
R(Y |B)

T
−G~D (32)

where the notation PZd|Bd represents the set {PZd|Bd : d ∈
D}. Here we have dropped the notation t to indicate that
we are considering the expected value when the process is
stationary.

Transformed Into a Markov Decision Process: When
the belief state Bt is an equivalence of the past collected
information Y t−T

∞ , we could show that the above process is
in fact a Markov Decision Process (MDP) with an infinite
horizon [23].

The belief ..., Bt−2T , Bt−T , Bt, Bt+T , Bt+2T ... are the se-
ries of states of the MDP. The information collection strategy
PY t|Xt,bt is the action taken when the state Bt is bt. Given the
state bt and the action PY t|Xt,bt , the probability distribution
of the next state Bt+T only depends on the conditional prob-
ability distributions PXt|bt , PY t|Xt,bt and the belief update
rule s(·, ·), and does not depend on the previous belief states
(since the current belief state is equivalent to all of the past
collected information) and actions (i.e., the Markov property).
The expected penalty of the action PY t|Xt,bt is then

λ
R(Y t|bt)

T
−G~D,bt (33)

where we use G~D,bt to represent the expected average network
performance after delay ~D given the current belief state bt.

Therefore, for a given value of T , solving Problem (32) is
equivalent to minimizing the expected penalty of each step of
the MDP.

Deterministic Strategies: Similar to the previous sections,
we could easily see that the Pareto optimal decision-making
strategies are still deterministic. The best decision at time t+d
is chosen by maximizing the expected network performance
given the belief state Bt+d.

For the information collection strategy, it is slightly differ-
ent. Given the decision-making strategies and the current belief
state Bt, to minimize the objective function in Problem (32),
one cannot simply map the network state Xt to the codeword
Y t which minimizes the penalty (i.e., the weighted sum of
the codeword length and the expected network performance)
within the period starting at t. This is because the transmitted
information now not only affects the performance within the
current period, but also influences the performance in the
future, by affecting the future belief states. However, we
could still show that the Pareto optimal information collection
strategy should be deterministic.

As PY t|Xt,bt is probabilistic, it is equivalent to a probability
distribution of several deterministic actions, each of which,
denoted by fi, maps a true network state Xt to a codeword
Yt given state bt, i.e., Yt = fi(X

t, bt). Each function fi is in
fact a deterministic information collection strategy. According
to the theory of Markov Decision Process [23], for a given
state bt, the same action should always be taken to minimize
the average penalty of each step in the long-term. Therefore,
we can always choose a deterministic information collection
strategy for any state bt to obtain the optimal performance-rate
relationship.

Memory Improves Network Performance: By comparing
the Problems (26) and (32), we could see obviously that
exploiting memory can achieve at least the same optimal
performance-rate relationship as in the memoryless case, i.e.,
given the same amount of information collected per time unit,
the maximum achievable network performance with memory
exploited is at least the same as that of the memoryless case.
The solution search space of Problem (32) is larger than that of
Problem (26): any memoryless information collection strategy
PY |X could be written in the form of a memory dependent
strategy PY |X,B ; similarly, any memoryless decision-making
strategy PZd|Y could also be written in a memory dependent
form.

D. Summary

So far, we have analyzed three cases: state information
with a random delay, the memoryless periodic information
update scheme, and the memory-exploited periodic informa-
tion update scheme. We have provided the formulations to
solve the optimal performance-rate relationship. We have also
shown that the Pareto optimal information collection and
decision-making strategies should always be deterministic. By
using the derived optimal performance-rate relationship, we
can then obtain the optimal resource allocation between state
information collection and data transmission.

IV. EXAMPLE: MEMORYLESS INFORMATION UPDATE

In this section, we use a multiuser scheduling problem to
illustrate the application of our framework. We consider the
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case where state information is collected periodically and no
memory is used to store the past collected information. We first
introduce the application scenario in Section IV-A, and then
apply the framework to analyze the problem in Section IV-B,
and finally present the results in Section IV-C with discussions.

A. Scenario

Consider the case where a controller has downlink data
to transmit to N users. Assume time is slotted and the
length of each slot is L bit time (L ≥ N ), where 1 bit
time is the time taken to transmit 1 data bit. The channel
between the controller and an arbitrary user is modeled as
a stationary two-state Markov chain, i.e., the channel state
at any time is one of two states {Good,Bad}. This model
has been used widely in the literature to represent a channel
with bursty noises [8] [24]. Assume the channel state transits
at the beginning of each slot, and the transition matrix is
symmetric, i.e., Pr(Good|Good) = Pr(Bad|Bad) = p and
Pr(Bad|Good) = Pr(Good|Bad) = 1− p. Let p ≥ 0.5, that
is, the states of the channel are positively correlated over time.
It is easy to see that the stationary probability distribution
of the channel state is Pr(Good) = Pr(Bad) = 0.5. We
assume that the channels between the controller and the users
are independent Markov chains with identical statistics.

Assume the controller always has data to send to any user,
and it can transmit data to only one user each time. In this case,
we consider collecting only the channel state information.
Assume time slots are grouped into frames, where each frame
contains T slots. At the beginning of each frame, the controller
collects some channel state information from the users (e.g.,
by probing the channels or requesting the users to report) and
makes scheduling decisions for this frame based on the newly
collected information (i.e., past information is not utilized).

The performance metric used in this example is the through-
put of the data transmission duration (i.e., excluding the time
used for information collection), and is defined as

throughput =
total number of data bits transmitted
total transmission period (in bit time)

(34)

When a channel is Good, it can transmit 1 data bit per bit
time; no data bit is transmitted otherwise.

The target is to find strategies for channel state information
collection and scheduling to optimize the overall resource
efficiency.

B. Analysis

First we need to identify the variables X , Y and Z in this
problem. Assume Slot t0 is the first slot of a frame. Let Xi

denote the channel state of User i in Slot t0, and Xi = 0
and 1 represent the events that User i’s channel is in Bad
and Good states, respectively. States of all the users are then
X = (X1, X2, ..., XN ). The collected information from User
i at time t0 is denoted by Yi, and Y = (Y1, Y2, ..., YN ) repre-
sents all the collected information. Let Zd be the scheduling
decision made by the controller for Slot t0 + d, and Zd = i
means User i is scheduled for Slot t0 + d. We also use Xd

to denote network states at Slot t0 + d. To find the optimal

performance-rate relationship, we need to solve the following
problem:

min
PY |X ,P

Zd|Y ,T
λ
R(Y )

T
−G~D (35)

Note that delays of the scheduling decisions in this case are
fixed, i.e., ~D = (0, 1, ..., T − 1) with probability 1. This is
possible for cellular networks, as the base station and the
mobile terminals are usually synchronized (e.g., as in the
3GPP standards).

Next we give a further analysis of PY |X , R(Y ), PZd|Y ,
and G~D in the problem.

Information Collection Strategy PY |X : PY |X in this case
can be further simplified. As discussed in Section III-B, the
Pareto optimal solution should be a deterministic mapping
from X to Y . Furthermore, we assume each user’s information
is collected independently. Therefore, we only need to consider
deterministic mappings from Xi to Yi. As Xi only has two
states, there are only two possible ways to collect Yi: (1)
Yi = Xi (complete information is collected from User i) 2;
(2) Yi = (no information is collected from User i).

A strategy PY |X that collects complete information from K
users will output a vector Y = (Y1, Y2, ..., YN ) where K of the
components have values 0 or 1, and N−K of the components
have values . As the users are homogeneous, all PY |X that
collect complete information from K users result in the same
performance and rate. Therefore, instead of optimizing PY |X ,
we only need to search for the optimal value of K.

Information Rate R(Y ): When Yi = Xi, the minimum
codeword length R(Yi) = 1; when Yi = , the minimum
length R(Yi) = 0. Therefore, when complete channel state
information of K users are collected, R(Y ) =

∑
iR(Yi) = K.

Decision-making Strategy PZd|Y : Using Equation (13),
given collected information y, decision that maximizes
throughput at time t0 + d is

zdo = argmax
i

∑
xd

p(xd|y)g(xd, i) (36)

where g(xd, i) represents the network performance at time t0+
d given Xd = xd and Zd = i. We have g(xd, i) = 1 if xdi = 1;
g(xd, i) = 0 otherwise. Therefore, we have

zdo = argmax
i

∑
xd:xd

i =1

p(xd|y)

= argmax
i

p(Xd
i = 1|y)

(37)

That is, at t0 + d, we wish to schedule User i that has the
highest probability to be Good given y.

As the states of the Markov channel is positively correlated
over time, it is easy to see that the following strategy satisfies
Equation (37):
• If yi = 1 for some i, let zdo = i where i satisfies the

condition yi = 1, i.e., choose a user that is Good at t0;

2In fact, any scheme that maps Xi = 0 and Xi = 1 to distinct values
of Yi collects complete information from User i. For example, User i can
report Yi = 1 if Xi = 1, and use silence (i.e., Yi = ) to indicate
Xi = 0. Complete information is collected in this case since Xi can be
uniquely determined by Yi. Without loss of generality, we assume Yi = Xi

for complete information collection in the analysis.
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• If yi = 0 or for all i, let zdo = i where i satisfies the
condition yi = if N > K (i.e., randomly select one
from the remaining N −K users), or let zdo be any i if
N = K.

Performance G~D: Finally, we need to characterize G~D.
Assume K users’ information collected at t0 and the above
decision-making strategy is used. Using Equation (14), the
expected throughput at t0 + d is calculated by

Gd =
∑
y

p(y)
∑
xd

p(xd|y)g(xd, zdo)

=
∑
y

p(y)p(Xd
zd
o
= 1|y)

=
∑

y:yi=1,∃i

p(y)p(Xd
zd
o
= 1|y) +

∑
y:yi 6=1,∀i

p(y)p(Xd
zd
o
= 1|y)

(38)

When yi = 1 for some i, p(Xd
zd
o
= 1|y) is the probability

that a channel is still Good at t0 + d given that it is Good
at t0; when yi 6= 1 for all i, p(Xd

zd
o
= 1|y) is the probability

that the randomly selected channel is Good at t0 + d when
none of the K channels are Good at t0. We use πd

g→g and
πd
g to denote the former and the latter, respectively. Therefore,

Equation (38) becomes

Gd = πd
g→g

∑
y:yi=1,∃i

p(y) + πd
g

∑
y:yi 6=1,∀i

p(y)

= απd
g→g + (1− α)πd

g

(39)

where α = 1− 0.5K is the probability that at least one of the
K channels is Good at t0.

Based on the transition matrix of the Markov chain, we have
the following:

πd
g→g = 0.5 + 0.5(2p− 1)d

πd
b→g = 0.5− 0.5(2p− 1)d

πd
g = 0.5 (for N > K)

πd
g = πd

b→g (for N = K)

(40)

where πd
b→g is the probability that a channel is Good at

t0 + d given that it is Bad at t0. The above relations are
derived directly from properties of the Markov chain. As
space is limited, we leave the derivations in the supplementary
materials.

Since the information collection requires K bit time, the
data transmission duration of this frame is TL−K bit time.
The expected throughput is

G~D =
L
∑T−1

d=0 Gd −KG0

TL−K
(41)

which is a weighted average of Gd with different delay d.
Optimal Performance-rate Relationship: Based on the

above analysis, Problem (35) can be converted to the follow-
ing:

min
K,T

λ
K

T
−
L
∑T−1

d=0 Gd −KG0

TL−K
(42)

By changing the value of λ, we can get the optimal
performance-rate relationship.

Net Data Rate: To find the optimal resource allocation
scheme, we calculate the net data rate Re

Re =
G~D(TL−K)

TL
(43)

The optimal resource allocation scheme is then obtained by
maximizing Re in the above equation.

C. Results

Temporal Decline of the Value of Information: As shown
in Figure 1(a), the expected throughput declines as the delay
increases when p < 1. The decline rate is larger with a smaller
value of p since the channel state changes more rapidly in this
case. When p = 0.5, the channel states of consecutive slots are
independent, and Gd drops to 0.5 for d ≥ 1 indicating that the
collected information becomes completely useless when it is
independent from the channel states. When p = 1, the channel
stays in the same state forever, and the expected throughput
remains constant.

The Performance-Rate Relationship: Figure 1(b) illus-
trates the relationship between R(Y )/T and G~D. The red
solid line with dotted markers represents the highest G~D that
could be achieved given R(Y )/T bits information per time slot
are collected (i.e., the optimal performance-rate relationship).
Figure 1(b) also plots the relationship curves with T = 1, 3
and 5.

In general, the highest achievable G~D increases as more
information is collected. However, when the value of T is fixed
(e.g., T = 3), the average expected throughput can decrease if
too much information is collected. This looks counter-intuitive.
The value of G~D drops here because the information collection
process postpones the information utilization, which increases
the information delay, thus reducing the information’s value
to network protocols.

The Optimal Resource Allocation Scheme: By using
the optimal performance-rate relationship, we calculate the
optimal resource allocation scheme that maximizes the net data
rate. In Tables I and II, we give the optimal values of T and K,
denoted by T ∗ and K∗, respectively, under different network
conditions.

TABLE I: N = 10, L = 15

T ∗ K∗ Re

p = 0.75 1 2 0.7583

p = 0.85 2 3 0.7781

p = 0.95 4 4 0.8384

TABLE II: N = 5, p = 0.8

T ∗ K∗ Re

L = 5 3 2 0.6283

L = 12 2 3 0.7328

L = 50 1 4 0.8912

In Table I, with N and L fixed and the transition probability
p increasing, both of T ∗ and K∗ increases. This means, when
the network states change more rapidly (smaller p), the optimal
information collection scheme is to update less information
each time as the information will become useless quickly, and
to update more frequently to keep track of the network states.
When the network condition is more stable, the benefit of the
collected information can last for a longer period, thus the
information update frequency can be lessened. The net data
rate also increases with the transition probability p. This is
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(a) Gd vs. d

(b) G~D vs. R(Y )/T

Fig. 1: (a) Gd as a function of d (K = 5 and N = 10); (b)
G~D as a function of R(Y )/T (L = 15, N = 10, p = 0.85)

because, when p is larger, the network state becomes more
predictable; thus less information overhead is required and the
significance of collecting information decreases slowly.

When the duration of the slot becomes longer, Table II
shows that more information should be collected (i.e., increase
the update frequency and the amount of information updated
each time), as the relative overhead of collecting information
decreases as L grows. In addition, we can see that the relatively
small overhead improves the net data rate of the system.

V. EXAMPLE: INFORMATION UPDATE WITH MEMORY

In Section IV, we discussed the multiuser scheduling prob-
lem without utilizing the past collected information. In this
part, we consider utilizing the past information, and study how
the deployment of memory affects the relationship between
R(Y )/T and G~D and the optimal resource allocation scheme.

A. Scenario

The scenario is basically the same as that in Section IV-A.
The difference is that, the information collection and the

decision-making now depend on the past collected informa-
tion. At the beginning of a frame, the controller first looks
at all the information collected in the past, based on which it
selects a subset of the channels to collect state information and
then assigns a channel for data transmission by considering all
the available information.

B. Analysis
As discussed in Section III-C, we could use the belief

state to represent all the past collected information. Let
Y t = (Y t

1 , Y
t
2 , ..., Y

t
N ) denote the collected information at Slot

t. We use Bt = (Bt
1, B

t
2, ..., B

t
N ) to represent the controller’s

belief about the channel states of the N users in Slot t. To
find the optimal performance-rate relationship, we first need to
have the belief update function s(·, ·), and then solve Problem
(32).

Memory Update Policy: Assume given all the information
collected before Slot t (i.e., excluding the information collec-
tion at Slot t), the controller believes that Channel i has a
probability Bt

i to be Good in Slot t. The controller updates
the belief states at the beginning of each time slot (before
information collection, if any). Consider Channel i at Slot t:
• If no information is collected about Channel i at Slot
t− 1:
The controller estimates the state of Channel i based on
the property of the Markov Chain, and

Bt
i = pBt−1

i + (1− p)(1−Bt−1
i ) (44)

• If information about Channel i is collected at Slot t− 1:
The controller updates the belief based on the collected
information at time t−1 and the property of the Markov
Chain, and we have

Bt
i =

{
p if Y t−1

i = 1
1− p if Y t−1

i = 0
(45)

where Y t−1
i = 1 and 0 represent the cases where Channel

i is Good and Bad at Slot t− 1, respectively.
It is obvious that maintaining the belief state vector is equiv-
alent to memorizing all the collected state information in the
past. For Channel i, due to the Markov property, we only need
to remember the latest collected state information.

Similar to Section IV-B, we analyze the information collec-
tion strategy PY t|Xt,Bt and decision-making strategy PZd|Bd .

Information Collection Strategy PY t|Xt,Bt : In this paper,
we consider the following strategy to collect information from
K channels. If information is updated at Slot t:
• The controller chooses the K channels that have the

highest belief states in Bt (with random tie-breaking) to
collect information. That is, the controller selects a subset
A ⊂ I = {1, 2, ..., N} such that |A| = K and Bt

i ≥ Bt
j

for any i ∈ A and j ∈ Ac = I\A.
Decision-making Strategy PZt+d|Bt+d : As shown in Equa-

tion (37), the controller should choose the user that has
the highest probability to be Good given all the collected
information. Let Zt+d be the scheduling decision at Slot t+d.
We have the following decision-making strategy:

Zt+d = argmax
i

Bt+d
i (46)
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If multiple users have the same belief states, the controller
randomly chooses one.

Note 1. As discussed, the memory-exploited information
update scheme forms a Markov Decision Process (MDP)
problem. The information collection strategy presented above
is a greedy policy, which means it only tries to maximize
the average expected throughput of the frame immediately
after the information collection. The greedy policy is generally
a suboptimal solution of MDP. Greedy policy is shown to
maximize the long-term reward in [25] for a multiuser schedul-
ing problem. However, their problem setting is different from
ours. As the focus of this paper is to analyze the trade-
off between information collection and data transmission, we
do not attempt to search for the best policy to collect K
users’ channel state information; we only use the mentioned
greedy policy to illustrate the performance-rate trade-off and
the resource allocation between information collection and
data transmission.

Calculation of R(Y t|Bt) and G~D: Again, when state in-
formation of K channels is collected, the average information
per time slot is R(Y t|Bt) = K/T .

Similar to Section IV, we use Gd to denote the expected
system throughput at Slot t + d, where Slot t is the first slot
of a generic frame. The calculation of Gd is the same as in
Equation (39), except the calculations of α and πd

g :

α = 1−
∏
i∈A

(
1−Bt

i

)
πd
g = Bt

jπ
d
g→g+(1−Bt

j)π
d
b→g (for N > K)

(47)

where πd
g→g and πd

b→g are defined in Equation (40), respec-
tively, and Bt

j is the belief state of the chosen channel j at
time t given none of the selected K channels are Good.

The expected throughput of the system G~D is then calcu-
lated as Equation (41), and the net data rate Re is derived
from Equation (43).

C. Results

We use computer simulations to estimate the performance-
rate relationship and determine the optimal resource allocation
scheme. With fixed K and T , for the jth simulation run, we
calculate the average throughput Ĝj

~D
at steady state (around

40000 frames after start). We conduct n = 51 simulation
runs with independent initializations, and estimate G~D as
G~D = 1

n

∑
j Ĝ

j
~D

. The computed 95% confidence intervals
of the results have lengths smaller than 0.002.

The Performance-Rate Relationship: Figure 2 shows the
relationship between the average information rate and the
average throughput. The figure is similar to Figure 1(b) in
Section IV where past information is not utilized. In general,
when the update period T is not fixed, the average throughput
increases as more information is collected per slot. However,
if T is fixed, collecting more state information may not be
beneficial for performance improvement, and it may even hurt
the system performance, due to the inaccuracy caused by the
information delay.

Fig. 2: The relationship between R(Y t|Bt) and G~D with
memory at the controller (L = 15, N = 10, p = 0.85)

Fig. 3: The effect of having memory at the controller on the
performance-rate relationship (L = 15, N = 10, p = 0.85)

Effect of Memory: Figure 3 compares the performance-
rate relationships with and without utilizing past information,
and demonstrates the effect of memory. As we could see, given
a fixed value of information rate, the use of memory effectively
improves the average throughput of the system.

The Optimal Resource Allocation Scheme: We have
also determined the optimal resource allocation schemes, and
presented the results in Tables III and IV. By comparing
the results with Tables I and II, we can observe how the
existence of memory affects the optimal resource allocation.
In general, when memory is used, the information update
frequency should be increased, and less information needs to
be collected each time. This strategy effectively utilizes the
correlations between the information updates at consecutive
frames. Furthermore, having memory installed at the controller
improves the effective data rate of the system.

VI. EXAMPLE: INFORMATION WITH A RANDOM DELAY

In this section, we use a routing problem as an example to
analyze the optimal performance-rate relationship for network
state information with a random delay.
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TABLE III: N = 10, L = 15

T ∗ K∗ Re

p = 0.75 1 2 0.8182

p = 0.85 1 2 0.8425

p = 0.95 2 2 0.8955

TABLE IV: N = 5, p = 0.8

T ∗ K∗ Re

L = 5 1 1 0.6825

L = 12 1 1 0.7841

L = 50 1 2 0.9034

We consider a wireless grid network with N ×N nodes. A
node has coordinate (i, j) if it is in the ith row and the jth

column. Figure 4 gives a 2×2 network and coordinates of the
nodes are also given. Node (i, j) has direct communication
links with Nodes (i− 1, j), (i+1, j), (i, j − 1) and (i, j +1)
(if the coordinates exist in the network). We assume Node
(1, 1) is Source, and Node (N,N) is Destination.

Fig. 4: A 2× 2 grid network

All the nodes except the Source and the Destination are
relay nodes, which may be unreachable for data transmission
sometimes (e.g., in power saving mode or due to interference).
We assume time is slotted, and the states of a node over time
follows the same Markov chain as in Section IV, and the states
of the nodes are independent Markov chains with identical
statistics.

Let X = (X1, X2, ..., XN2−2) be the states of the relay
nodes at Slot t, and Xi = 1 means Relay i is reachable.
Y = (Y1, Y2, ..., YN2−2) is the collected information about the
node states. We assume the Source receives a data transmission
request at a random time t+D after collecting the information,
where D is a random integer uniformly distributed within
interval [d1, d2] where d1 and d2 are also integers. Given
D = d, let Xd be the states of relay nodes at t + d, the
Source searches a route Zd, which is a sequence of (2N − 3)
relay nodes to send data to the Destination. In this problem, we
consider the routes where nodes only forward data downward
or to the right (i.e., no turning back). Furthermore, since
data transmission takes time, we assume it takes one time
slot to transmit data on each hop. When all nodes along a
route are reachable during data transmission, the route is said
to be active. The performance metric in this problem is the
packet delivery ratio, i.e., the probability that Source chooses
an active route.

Information Collection Strategy PY |X : Similar to the
previous section, information from different relay nodes are
collected independently, and each node has only binary states.
Therefore, instead of searching all possible PY |X , we only
need to search for I = (I1, I2, ..., IN2−2), where Ii = 1 means
complete information is collected from Relay i, i.e., Yi = Xi

if Ii = 1 and Yi = if Ii = 0.
Information Rate R(Y ): The amount of collected infor-

mation R(Y ) is then the number of 1s in I .

Decision-making Strategy PZd|Y : Let zd =
(n1, n2, ..., n2N−3), where 1 ≤ ni, nj ≤ N2−2 and ni 6= nj .
Assume Relay nj has coordinates (unj , vnj ). To make sure
zd is a route, the following constraints should be satisfied: 1)
1 ≤ unj

, vnj
≤ N ; 2) unj+1

+ vnj+1
= unj

+ vnj
+ 1.

As we assume data transmission takes time, the performance
does not only depend on Xd, but also on Xd+1, Xd+2, ....
To apply our framework in this setting, we introduce a new
variable called the modified network state X̃d to calculate the
expected performance, where X̃d

i = Xd+k−1
i if Relay i is a

k-hop neighbor of Source, i.e., ui + vi = k + 2.
We have g(x̃d, zd) = 1 if x̃dnj

= 1 for all j. Using Equation
(13), given information y, the decision that maximizes the
packet delivery ratio is

zdo = argmax
zd

∑
x̃d

p(x̃d|y)g(x̃d, zd)

= argmax
(n1,n2,...,n2N−3)

∑
x̃d:x̃d

nj
=1

p(x̃d|y)

= argmax
(n1,n2,...,n2N−3)

p(X̃d
n1

= 1, ..., X̃d
n2N−3

= 1|y)

(48)

where the maximization is constrained such that zd is a route.
That is, we pick the route that has the highest probability
to be active given information y. The value of p(X̃d

n1
=

1, ..., X̃d
n2N−3

= 1|y) could be easily derived from the property
of a Markov chain, thus the calculation is omitted here.

The Performance G~D: The expected packet delivery ratio
G~D =

∑
d p(d)Gd, where p(d) = 1

d2−d1+1 . Using Equation
(14), we can calculate Gd as follows:

Gd =
∑
y

p(y)
∑
x̃d

p(x̃d|y)g(x̃d, zdo)

=
∑
y

p(y)p(X̃d
n∗1

= 1, ..., X̃d
n∗2N−3

= 1|y)
(49)

where zdo = (n∗1, ..., n
∗
2N−3).

The Performance-Rate Relationship: Based on the above
analysis, we can solve the following problem:

min
I:Ii∈{0,1}

λR(Y )−G~D (50)

Figure 5 gives the result for a 3×3 network, with a random
delay in intervals [0, 0] (i.e., no delay), [0, 2] and [2, 4]. It
is easy to see that as the average delay becomes larger, the
expected performance G~D decreases given the same amount
of information collected.

VII. CONCLUSIONS

In this paper, we discussed the impact of information delay
on the relationship between the amount of collected state
information and network performance, and hence its effect on
the optimal resource allocation scheme. We first considered
the optimal performance-rate relationship when there is a
random information delay. Then we extended the framework
by assuming a periodic information collection strategy, and
discussed both memoryless and memory-exploited scenarios.
For all the three cases, we have analyzed the optimal rela-
tionship between the average information collected per time
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Fig. 5: G~D vs. R(Y ) with different delay intervals (p = 0.9
for the Markov chains)

unit and the expected network performance over the update
period, and the structures of the solutions that achieve the
optimal relationship. Based on the relationship obtained, the
optimal resource allocation scheme (i.e., the optimal informa-
tion update frequency and the amount of information updated
each time) could be derived.

Application of the framework is illustrated with examples
of multiuser scheduling and multi-hop routing, and some
observations about the optimal resource allocation scheme
in time-varying networks are obtained. First, when there
is information delay, collecting more information may not
result in better network performance given a fixed information
update period. Second, for a network with rapidly changing
states, information should be updated frequently while only a
small amount of information should be collected each time. In
addition, as the slot length increases, more information should
be collected. Finally, memorizing past information can indeed
improve the network performance, and it is better to have a
higher information update frequency with less information col-
lected each time to utilize the correlations between consecutive
updates.

In the future, we wish to analyze the scenario where the
collected information experiences heterogeneous delays. For
distributed networks, when the information delay is heteroge-
neous, different nodes will have different sets of knowledge
about the network states. We would like to discuss the optimal
resource allocation scheme in this scenario.
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