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We study the Fermi liquid properties of a single component Fermi gas with p-wave interactions. In the
weak repulsive limit, we obtain exact perturbative expansions for the ground state energy, the chemical
potential, and the effective mass of the Landau quasiparticle up to second order in scattering volume a. We
also calculated the corresponding Landau functions and Landau parameters and show that they satisfy the
general Fermi liquid identities. Using the Landau transport equation, we show that undamped zero sound
only appears in the second order in scattering volume, in contrast to the s-wave case.
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Introduction.—The weakly interacting Fermi gas with
s-wave interactions provides a paradigmatic model of a
Landau Fermi liquid theory [1] where various parameters
can be computed exactly and expressed entirely in terms of
s-wave scattering length as up to the second order [2]. This
model has found renewed interest in ultracold Fermi gas
where as can be tuned by Feshbach resonance and a great
many properties, including both static and dynamical, are
investigated [3–5].
On the other hand, studies ofp-wave Fermi gas have been

quite limited due to significant atom loss in actual experi-
ments [6–20]. A crucial difference between the s- and
p-wave cases is the existence of a centrifugal barrier in
the latter case which tends to support a quasibound state
within the barrier that leads to a fast loss of atoms [10,21,22].
However, some progress has been made, in particular, the
fast spectroscopicmeasurements [23] reveal that thep-wave
Fermi gas also obeys a set of universal relations in 3D
[24–28], as well as in 2D [29,30] and 1D [31–33], similar to
the s-wave case. Theoretically, it is known that unlike the
s-wave case, the low-energy properties of a p-wave gas
requires at least two parameters for its characterization
[25,34,35], given by the effective range expansion for the
on-shell scattering amplitude fpðk;k0Þ ¼ 3k2 cos θ½−1=a−
k2=ð2RÞ − ik3�−1. Here, jkj ¼ jk0j ¼ k, and θ is the angle
between incoming k and outgoing k0. a is the p-wave
scattering volume, and R is the p-wave effective range. The
relevance of R can be seen from the expression for the
binding energy of the p-wave dimers, Ep ¼ 2R=ðmaÞ (we
set ℏ ¼ 1), which depends both onR and a, in contrast to the
s-wave case Es ¼ 1=ðma2sÞ. This has been confirmed in
experiments [10,11].
In this Letter, we study Fermi liquid properties of a single

component Fermi gas with weak repulsive p-wave inter-
actions (a > 0). This corresponds to the Bose-Einstein
condensate side of the Feshbach resonance realized in
Ref. [23] where measurement of free energy implies that
the system remains on the scattering states and no p-wave

dimer is present. In addition, it is found that, in this regime,
the system is stable against collapse, thus, providing an ideal
setting for exploring the physics of a weakly repulsive
p-wave gas. To carry out consistent calculation of the Fermi
liquid properties to the second order in a, we show that it is
also necessary to take into account the effective range
correction, in contrast to the s-wave case [2,36]. As in
the classic Galistkii calculation [2], we compute the ground
state energy, quasiparticle effective mass and lifetime, and
also, Landau functions and Landau parameters for the
p-wave Fermi gas. We show that, as a result of anisotropic
p-wave scattering, undamped zero sound only appearswhen
one takes into account the a2 order in Landau functions. Our
calculations also highlight a few distinct features of p-wave
scattering which are common to all high-partial wave
scattering, thus, extending and complementing the
Galistkii calculation, and provides another nontrivial model
of exact calculation in many-body physics. On the other
hand, attractive p-wave Fermi gas has been explored
extensively theoretically, including various possible pairing
states [37–42], superfluid transition temperatures [43–45],
and normal state properties [46–49].
The model.—Let us consider a single component Fermi

gas with isotropic short-range potential VðrÞ which van-
ishes for r≳ r0. In momentum space, the potential can be
written as Vk0k ¼ R

drVðrÞ exp½−iðk0 − kÞ · r�. Here, k
and k0 are the momentum of incoming and outgoing
particles in the center of mass frame. Because of rotational
invariance, Vk0k can be further expanded in terms of
Legendre polynomials: Vk0k ¼ P

lð2lþ 1ÞVl
k0kPlðcos θÞ

where θ is the angle between k and k0. k ¼ jkj and
k0 ¼ jk0j. In particular, the p-wave component of Vl¼1

k0k is
given by

Vl¼1
k0k ¼ 4π

Z
r2VðrÞj1ðkrÞj1ðk0rÞdr: ð1Þ

In low-density Fermi system, the typical magnitude
of k and k0 is of the order of kF ≡ ð6π2nÞ1=3 ≪ 1=r0,
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where n is the density. As a result, for k ≪ 1=r0
and k0 arbitrary, the integration in (1) can be simplified
by using the expansion j1ðkrÞ ≈ kr=3 and one obtains
Vl¼1
k0k ¼ ð4π=3Þk R r3VðrÞj1ðk0rÞdr ¼ kḡðk0Þ. Similarly,

we have for k0 ≪ 1=r0 and k arbitrary, Vl¼1
k0k ¼ k0ḡðkÞ.

Thus, apart from the regime where both k; k0 ≳ 1=r0, an
appropriate form for the interaction potential can be written
in a separable form

Vl¼1
k0k ¼ λgðkÞgðk0Þkk0: ð2Þ

For a small value of k, the function gðkÞ can be expanded as
gðkÞ ¼ a0 þ a1k2 þ � � � and higher order terms can be
neglected. As a result, Vl¼1

k0k ¼λða0þa1k2Þða0þa1k02Þkk0.
As we shall show later, for our calculation, it is only
necessary to retain the term up to second order in k2, and
thus, we choose our model potential as follows:

Vk0k ¼ ½g1 þ g2ðk2 þ k02Þ�k · k0: ð3Þ

The parameters g1 and g2 can be related to the scattering
parameters a and R by calculating the scattering amplitude
fpðk; θÞ perturbatively. For details, see the Supplemental
Material [50]

g1 ¼
12πa
m

þ 24a2

m

Z
Λ

0

dqq2; ð4Þ

g2 ¼ −
3πa2

Rm
þ 12a2

m

Z
Λ

0

dq; ð5Þ

where Λ ∼ 1=r0 is an appropriate high momentum cutoff.
The unphysical high-momentum part of Vk0k will be
renormalized by Eqs. (4) and (5) when the final results
are expressed in terms of a and R. We note that, in the weak
coupling limit, g1 is of the order of a and g2 is of the order
of a2. In our calculation, we shall treat R as a constant,
which is appropriate to experiments [23], and focus our
attention on the expansion in terms of a.
At this point, it is useful to point out a crucial difference

between the s-wave and p-wave scattering that will have
profound implications for many-body physics. In the
s-wave case, as is well known, the on-shell scattering
amplitude is given by fsðkÞ ¼ ð−a−1s − ikÞ−1, where as is
related to the bare coupling constant g by g ¼ 4πas=mþ
8a2s=m

R
dq [36]. What is special about the s-wave case is

that this renormalization condition is sufficient to remove
divergences in both the on-shell and off-shell elements of
scattering vertex function, to the second order in as [36].
On the contrary, the p-wave case is more complicated. The
renormalization conditions (4) and (5) are fixed via
scattering amplitude fpðk; θÞ, which, in general, are not
guaranteed to remove the divergence in the off-shell
elements of scattering vertex function Γðk;k0;P; iΩÞ
(see below), in contradiction to the s-wave case [36,50].

To remove the ambiguity of off-shell divergence in Γ, it is
necessary to include extra parameters, in addition to a and
R, that characterize the low-energy scattering properties of
few-body systems [51,52]. At low-energy and density, this
leads to higher order corrections in a and, thus, will be
neglected. To the second order in a, we will compute the
physical quantities that depend only on the low-energy
scattering parameters a and R, or equivalently, the dimen-
sionless parameters α ¼ k3Fa and ζ ¼ kFR.
Now, we investigate the many-body problem and cal-

culate the self-energy Σðp; iωÞ to the second order in a. We
will work in Matsubara formalism and take the temperature
T → 0 limit. For that, we need to compute the many-body
vertex function Γðk;k0;P; iΩÞ up to second order in g1 and
first order in g2. Explicitly, this is given by

Γðk;k0;P; iΩÞ

¼ Vk0k −
1

βV

X
q;iq0

VqkG0

�
P
2
þ q; iq0

�

× G0

�
P
2
− q; iΩ − iq0

�
Vk0q; ð6Þ

where P ¼ ðP; iΩÞ is the total four momentum, and k and
k0 are the relative incoming and outgoing momentum of the
colliding fermions. G0ðq; iq0Þ ¼ ðiq0 − ξqÞ−1 is the free
fermion Green’s function. ξq ¼ q2=ð2mÞ − ϵF where ϵF ¼
k2F=ð2mÞ is the Fermi energy for a noninteracting Fermi
gas. β ¼ 1=ðkBTÞ is the inverse temperature. It is explicitly
shown in the Supplemental Material [50] that the on-shell
element Γ(k;k0;P; ðk2 þ k02Þ=ð2mÞ þ P2=ð4mÞ − 2ϵF) is
finite by using the renormalization equations (4) and (5),
while the off-shell elements of Γðk;k0;P; iΩÞ in general
diverge. The self-energy Σðp;iωÞ is given by [k¼ðp−qÞ=2;
P¼pþq and iΩ ¼ iωþ iq0]

Σðp; iωÞ ¼ 2

βV

X
q;iq0

G0ðq; iq0ÞΓðk;k;P; iΩÞ: ð7Þ

One can write Σðp; iωÞ ¼ Σ1ðp; iωÞ þ Σ2ðp; iωÞ, where
Σ1;2 gives the self energy to order a and a2, respectively.

Σ1ðp; iωÞ ¼ Σ1ðpÞ ¼
6

π
ϵFα

�
1

5
þ 1

3

�jpj
kF

�
2
�
; ð8Þ

which is independent of frequency iω, as in the s-wave case
[36]. Unlike the s-wave case, however, it contains explicit
momentum dependence arising from the momentum
dependent p-wave scattering. The second order term
Σ2ðp; iωÞ is more complicated and is given in the
Supplemental Material [50].
To the second order in a, the single particle Green’s

function Gðp; iωÞ can be written as
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Gðp; iωÞ ¼ 1

iω − ξp − Σ1ðpÞ − Σ2ðp; iωÞ
: ð9Þ

The quasiparticle energy and lifetime are given by the
pole of G, iω ¼ ξ̃p þ iγp, and this leads to the implicit
equation ξ̃p þ iγp ¼ ξp þ Σ1ðpÞ þ Σ2ðp; ξ̃p þ iγpÞ. We are
only interested in ξ̃p and γp to the second order in a; thus,
we can replace ξ̃p þ iγp by ξp þ iη (η is a positive
infinitesimal) in Σ2 in the above equation, obtaining the
explicit expression

ξ̃p þ iγp ¼ ξp þ Σ1ðpÞ þ Σ2ðp; ξp þ iηÞ: ð10Þ

Effective mass of the quasiparticle.—The effective
mass m� of the quasiparticle is determined by ξ̃p, kF=m� ¼
∂ξ̃p=∂jpj when jpj ¼ kF. This leads to the explicit
expression

m
m� ¼ 1þ 2

π
α −

�
1

πζ
−
8ð313 − 426 ln 2Þ

315π2

�
α2: ð11Þ

The term ð2=πÞα corresponds to the mean field correction
to the effective mass. This is different from the s-wave case
where momentum independent scattering leads to zero
correction to effective mass at the mean field level [see,
also, Eq. (8)]. The term α2=ðπζÞ arises essentially from the
expansion of scattering amplitude fpðk; θÞ to order a2=R
and does not include the medium scattering effects, while
the last term is due to medium scattering. We note that the
effective mass only relates to the on-shell self-energy in
Eq. (10). On the other hand, if we want to calculate the
quasiparticle residue Z−1 ¼ 1 − ∂ReΣðp;ωþ iηÞ=∂ω at
the Fermi surface jpj ¼ kF, it is necessary to know the
off-shell self-energy which is divergent in our calculation.
This means that, in general, Z depends on more details of
the interatomic potential than given by a and R [50]. This is
in direct contrast to the s-wave case where the on-shell
renormalization condition automatically removes the diver-
gence in the off-shell self-energy [36]. Finally, we note that
the density of state at the Fermi surface νð0Þ ¼ m�kF=
ð2π2Þ, is entirely determined by m�.
Lifetime of the quasiparticle.—Because of scattering, the

quasiparticle is only well defined in the vicinity of the
Fermi surface according to Landau Fermi liquid theory. In
p-wave Fermi gas, this is also the case and one finds, for
momentum close to the Fermi surface,

γp ¼ −
24α2

5πm
ðjpj − kFÞ2: ð12Þ

The lifetime of the quasiparticle is correspondingly given
by τp ¼ −1=ð2γpÞ ¼ ð5πmα−2=48Þðjpj − kFÞ−2, which
diverges at the Fermi surface. We note that the mean field
terms (α and α2=ζ) do not contribute to τp, and the only

contribution (α2) arises from medium scattering, as it
should.
Chemical potential.—By definition, the chemical poten-

tial μ represents the minimal energy required to add an extra
particle to the system; in the case of a Fermi liquid, at the
Fermi surface, μ ¼ ξ̃kF þ ϵF. Therefore,

μ ¼ ϵF

�
1þ 16

5π
α −

�
6

7πζ
−
2066 − 312 ln 2

315π2

�
α2
�
: ð13Þ

Similar discussions regarding different contributions, as in
the case of effective mass, can be performed. The velocity
of the first sound can be calculated straightforwardly as
c21 ¼ ðn=mÞ∂μ=∂n,

c21¼
k2F
3m2

�
1þ8α

π
−
�
3

πζ
−
8ð1033−156ln2Þ

315π2

�
α2
�
: ð14Þ

In the limit α → 0, c1 tends to kF=ð
ffiffiffi
3

p
mÞ, as in the s-wave

case. It is also consistent with the general result from Fermi
liquid theory that c21 ¼ k2Fð1þ F0Þ=ð3mm�Þ where F0 is
the Landau parameter calculated below in Eq. (22).
Ground state energy per particle.—According to

thermodynamic identity, the ground state energy E can
be obtained by integrating μ over N, the number of
particles: E0 ¼

R
N
0 dN0μðN0Þ for a fixed volume at zero

entropy. By using Eq. (13), the ground state energy per
particle up to the a2 order is given by

E0

N
¼ ϵF

�
3

5
þ 6α

5π
−
�

9

35πζ
−
2066 − 312 ln 2

1155π2

�
α2
�
: ð15Þ

From here, one can calculate the two p-wave contacts.
Using the adiabatic relations Ca ¼ −2m∂E0=∂a−1jR and
CR ¼ −4m∂E0=∂R−1ja [25]

Ca ¼
2N
kF

�
3

5π
α2 −

�
9

35πζ
−
2066 − 312 ln 2

1155π2

�
α3
�
; ð16Þ

CR ¼ 18

35π
α2NkF: ð17Þ

Ca and CR can be measured via either momentum dis-
tribution or radio-frequency spectroscopy [23].
Landau functions and parameters.—The formulation of

Fermi liquid theory for a collection of spinless fermions is
much simpler than the usual Fermi liquid theory because of
the absence of spin degrees of freedom. As usually defined,
the Landau f function is given by the functional derivative
with respect to the distribution function

fðp;p0Þ ¼ δξ̃p
δnp0

¼ δReΣðp; ξ̃p þ iγpÞ
δnp0

����
jpj¼jp0j¼kF

: ð18Þ
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For systems with reflection symmetry, fðp;p0Þ ¼
fð−p;−p0Þ. Unlike the s-wave case, here, only the equiv-
alent of the symmetric Landau function fs exists. For the
isotropic case, fðp;p0Þ depends only on the angle χ
between p and p0 and can be expanded in Legendre
polynomials, fðχÞ ¼ P

l flPlðcos χÞ. To compute the
functional derivative in Eq. (18), we need to obtain the
expression of ReΣðp; ξ̃p þ iγpÞ in terms of Fermi distri-
bution function; this is readily given in the Matsubara
formalism as given in Eqs. (17), (20)–(22) in the
Supplemental Material [50]. Up to the order a2, one finds

fðχÞ¼ π

mkF

�
12αð1−cosχÞ−3α2

ζ
ð1−cosχÞ2

þπα2

16
csc

χ

2

��
1428sin

χ

2
−674sin

3χ

2
þ330sin

5χ

2

�

þ3

2
ln
1þsinχ

2

1−sinχ
2

ð153cosχ−30cos2χ

þ55cos3χ−18Þ
�	

: ð19Þ

The terms of order α and α2=ζ again arise from the
mean field correction. To see that explicitly, consider
two quasiparticles, with momenta p and p0 on the Fermi
surface, that undergo forward scattering. In this case, the
relevant matrix element at the mean field level is given by

�
12πa
m

−
3πa2

mR
2

�
p − p0

2

�
2
��

p − p0

2

�
2

: ð20Þ

Using ðp − p0Þ2 ¼ 2k2Fð1 − cos χÞ, this produces the first
two terms in fðχÞ, apart from an overall constant. The
remaining terms in fðχÞ are second order in α and come
from medium scattering. In particular, one can see that a
logarithm singularity occurs when χ ¼ π. This is the same
as in the s-wave case and its removal requires the
summation of the principal terms exhibiting logarithm
divergences [53].
In a Galilean invariant system, a well-known relation

between the effective mass m� and f function can be
established [1,53]. In the case of p-wave Fermi gas, this
takes the simpler form

1

m� ¼
1

m
−

kF
ð2πÞ3

Z
fðχÞ cos χdΩ; ð21Þ

where dΩ denotes the integration over solid angles. One
can readily verify that Eq. (21) is satisfied by using Eq. (19)
and comparing with Eq. (11). Below, we give the explicit
expression for several dimensionless Landau parameters
Fl ¼ νð0Þfl.

F0 ¼
1

π

�
6α −

�
2

ζ
−
48 ln 2þ 44

7π

�
α2
�
; ð22Þ

F1 ¼
1

π

�
−6αþ

�
3

ζ
þ 4ð852 ln 2 − 311Þ

105π

�
α2
�
; ð23Þ

F2 ¼
1

π

�
−
1

ζ
þ 8ð66 ln 2 − 13Þ

21π

�
α2: ð24Þ

We note that the linear term in a or in α appears in both F0

and F1 for reasons already explained above. For l ≥ 2, Fl
will be of, at least, second order in scattering volume a. We
note that the values of Landau parameters are such that
stability conditions, Fl > −ð2lþ 1Þ are all satisfied.
Collective modes.—The fact that F0 and F1 cancel each

other to leading order in a has the consequences that
undamped zero sound and transverse sound do not exist in a
single component repulsive Fermi gas to leading order in a.
In the s-wave case, for spin-1=2 repulsive Fermi gas, the
dominance of a positive Fs

0 ¼ 4πas=m guarantees the
existence of zero sound since all other Landau parameters
are of the order a2s and can be neglected in the calculation of
zero sound dispersion [53]. However, for the p-wave case
to obtain an undamped zero sound, it is necessary to keep
the α2 order in the Landau function, Eq. (19). Let us denote
the displacement of the Fermi surface as uðθ;ϕÞ where θ
and ϕ denote the direction of momentum p at the Fermi
surface. Then a similar transport equation can be written
down [53]

ðcos θ − λÞuðθ;ϕÞ þ cos θ
4π

Z
dΩ0FðχÞuðθ0;ϕ0Þ ¼ 0; ð25Þ

where χ is the angle between p and p0. The parameter λ ¼
ω=ðqvFÞ is the ratio between the phase velocity of the
collective wave to the Fermi velocity vF ¼ kF=m�. For an
undamped collective mode to exist, it is necessary that
λ > 1 [53].
Zero sound.—In this case, uðθ;ϕÞ ¼ uðθÞ, independent

of the azimuthal angle ϕ. It is straightforward to show that
to the first order in α, there is no well-defined zero sound
mode [50], and it is necessary to keep second order terms
in α. Defining νðθÞ ¼ ðcos θ − λÞuðθÞ, one can rewrite
Eq. (25) as

νðθÞ þ cos θ
4π

Z
dΩ0FðχÞ νðθ0Þ

cos θ0 − λ
¼ 0: ð26Þ

When FðχÞ → 0, it is easy to see from Eq. (25) that λ → 1,
so the integration is dominated by the region where θ0 ≈ 0.
In that case, one can replace FðχÞ by Fð0Þ ¼ 48α2 at θ ¼ 0

and one obtains λ ¼ 1þ 2 exp½−1=ð24α2Þ�. Namely, the
zero sound only exists if the high order term in α is retained,
similar to the conclusion in the two-dimensional dipolar
gas [54].
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Transverse sound.—Similarly, one can investigate the
transverse sound mode for which uðθ;ϕÞ ¼ ũðθÞ expðiϕÞ.
Substituting this into Eq. (25), one finds that, in order to
have λ > 1, one must have F1 > 6 [50,55], which is
obviously not satisfied by F1 in Eq. (23). As a result,
no well-defined transverse sound mode exists.
Conclusions.—In this Letter, we investigated the Fermi

liquid properties of a single component p-wave Fermi gas
with weak repulsive interactions to the second order in the
scattering volume a, treating the effective range R as a
constant. A major difference, as compared with the s-wave
case, is the divergence of an off-shell element in the many-
body scattering vertex function which requires more details
of the interatomic potential other than a and R. In addition,
we showed that an undamped zero sound mode only exists
due to higher order terms in the scattering volume, in
contrast to the s-wave case. Given the stability of p-wave
Fermi gas in the weakly repulsive side of the Feshbach
resonance [23], it should be possible to verify the predictions
made above, especially the quantitative prediction of p-
wave contacts. Furthermore, single component Fermi gas
offers an ideal setting for exploring the effects of anisotropic
scattering in transport phenomenawhich can be readily dealt
with in the framework of Landau Fermi liquid theory.
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