IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 10, 2019, accepted May 28, 2019, date of publication June 5, 2019, date of current version June 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920936

PACoGen: A Hardware Posit
Arithmetic Core Generator

MANISH KUMAR JAISWAL “, (Member, IEEE), AND HAYDEN K.-H. SO, (Senior Member, IEEE)

Department of Electrical and Electronics Engineering, The University of Hong Kong, Hong Kong

Corresponding author: Manish Kumar Jaiswal (manishkj@hku.hk)

This work was supported in part by the Research Grants Council of Hong Kong Project General Research Fund (GRF) under
Grant 17245716, and in part by the Croucher Foundation, Croucher Innovation Award 2013.

ABSTRACT This paper proposes open-source hardware Posit Arithmetic Core Generator (PACoGen) for
the recently developed universal number posit number system, along with a set of pipelined architectures. The
posit number system composed of a run-time varying exponent component, which is defined by a composi-
tion of varying length “‘regime-bit” and ““exponent-bit” (with a maximum size of ES bits, the exponent size).
This in effect also makes the fraction part to vary at run-time in size and position. These run-time variations
inherit an interesting hardware design challenge for posit arithmetic architectures. The posit number system,
being at an infant stage of its development, possess very limited hardware solutions for its arithmetic archi-
tectures. In this view, this paper targets the algorithmic development and generic HDL generators (PACoGen)
for basic posit arithmetic. The proposed open source PACoGen currently includes the adder/subtractor, mul-
tiplier, and division arithmetic. The PACoGen can provide the Verilog HDL code respective posit arithmetic
for any given posit word width (N) and exponent size (ES), as defined under the posit number system.
Further, pipelined architectures of 32-bit posit with 6-bit exponent size are also proposed and discussed for
addition/subtraction, multiplication, and division arithmetic. The proposed posit arithmetic architectures are
demonstrated on the Virtex-7 (xc7vx330t-3ffg1157) FPGA device as well as Nangate 15 nm ASIC platform.
The PACoGen would open a gateway for further posit arithmetic hardware exploration and evaluation.

INDEX TERMS Adder, ASIC, digital arithmetic, division, floating point arithmetic, FPGA, multiplier, posit

arithmetic, subtractor, universal number system.

I. INTRODUCTION

The universal number (unum) system was first proposed
in 2015 and has undergone a number of progressive evo-
lution since then as type-1 [1]-[3], type-2 [4], [5], and
type-3 [6], [7]. Posit is the part of latest revision, the type-3
unum. Unum is claimed as a possible substitute for float-
ing point (FP) number system [8]. Interesting, type-3 unum,
the posit, format is more closer to FP representation than
type-1 and type-2 unum. As claimed and shown by its devel-
opers’, posit provides many benefits over FP standard, includ-
ing better dynamic range and accuracy over same bit field,
more accurate and exact arithmetic computations [6].

These proposals have created a significant amount of
interest in the community. As a result a range of software
tools are developed for unum using Julia, C, C4++ etc.
However, very limited work has been aimed for hardware

The associate editor coordinating the review of this manuscript and
approving it for publication was Gian Domenico Licciardo.

solutions. This paper is aimed towards an open-source
hardware Posit Arithmetic Core Generator (PACoGen) for
recently developed posit number system under the unum
umbrella. Currently, it is focused on basic arithmetic of posit
addition/subtraction, multiplication and division arithmetic.

Sign Regime—Dbit Exponent—bit, if any Mantissa—Dbit, if any
S

S rr...r;’ elez...e f1f2 (1)
es .
Run—Length Max. ES—Bit Remaining—Bit, if any

A posit format is defined as a combination of its word
size (N) and exponent size (ES), as (N,ES). As shown
in (1), the components in posit format (regime, exponent
and mantissa) varied at run-time which provides various
options of dynamic range and accuracy/precision. As claimed
and shown (with detailed demonstration on several example
cases) by the posit developers [6], [9], these available choices
in posit would be beneficial for a variety of applications
having different set of requirements on dynamic range and

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

74586

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8722-508X
https://orcid.org/0000-0002-6514-0237

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

Decimal accuracy

4 I
10 5 5 10 og2()

FIGURE 1. Decimal accuracy of 8-bit posit vs 8-bit FP.

accuracy, while providing significant benefits over float-
ing point standard. Posit provide several key benefits over
FP standard, including

o Better dynamic range: for a similar word size, posit
provide more wider dynamic range than FP.

« Posit provide more accurate and exact arithmetic com-
putations than FP.

o Posit does not Overflow/Underflow, and thus does not
lose all the information.

o Posit defines only one ZERO, one Infinity and no
Not-a-Number (NaN). The Infinity represen-
tation can also be used for NaN outcome. By not includ-
ing NaN, with a M-bit FP mantissa, posit saves on
2M+1 _ 2 invalid (NaN) combinations.

A brief analysis of 8-bit floating point and posit format
is shown below along with their accuracy variation in Fig. 1
(taken from [9])

Floating Point (1,4,3) Posit (with ES=1)

Range: 1/1024 to 240 1/4096 to 4096

Dynamic range of 5.1 decades | Dynamic range of 7.2 decades
14 NaN Combinations No NaN Combinations

Tapered Accuracy Symmetric Accuracy
(More Accuracy around 1.0)

While posit provides a range of qualitative numerical bene-
fits over FP standard, the run-time variation in its component
provide an interesting hardware design challenge. Handling
components extraction and components packing due to run-
time variation in Posit are primary challenging part in its
hardware implementation. This requires a significant dynam-
icity in related hardware components, and further including
parameterization in these including other sub-components of
each arithmetic unit, poses an additional design challenge.
It is discussed in all related sections how these are handled
during architectural development.

Earlier = related hardware solutions on posit
includes [10]-[13]. The initial work on posit hardware
research [10], [13] are proposed by the authors which briefly
includes the primary on posit arithmetic generators. Fol-
lowing these initial work, [11] has proposed a fixed width
(32-bit) posit adder and multiplier architectures, and [12] has
briefly presented a (proprietary) generator for posit adder
and multiplier. These literature has briefly laid down the
initial findings on the posit hardware work. Following these
literature, the current manuscript is aimed as a detailed,
improved as well as augmented proposal on posit arithmetic
core generator, named as PACoGen.

This manuscript is build upon the work presented in [10]
which has briefly discussed the HDL generators for posit

VOLUME 7, 2019

adder and multiplier on a FPGA platform. The current
manuscript includes a much wider and minute explanation
of the PACoGen for adder and multiplier along with sev-
eral improvements over earlier work. The current manuscript
also includes the posit HDL generator for division arith-
metic based on Newton-Raphson method [14]-[16]. Our
future work on posit division generator will also be focused
on including other division methods (digit recurrence, digit
convergence, SRT methods). The current manuscript also
presents a pipelined version of posit adder, multiplier and
divider arithmetic architecture for a specific posit configura-
tion for performance improvement. It also demonstrated the
implementation results on Nangate 15nm ASIC [17] as well
as Virtex-7 FPGA device platform.

The prime contributions of current manuscript can be sum-

marized as follows:

« Algorithmic flows for posit arithmetic architectures are
proposed for addition/subtraction, multiplication and
division (with Newton-Raphson method).

« An open source parameterized Verilog HDL generator
for posit adder/subtractor, multiplier and division (with
Newton-Raphson method) arithmetic is proposed.

« Implementations are demonstrated on a Virtex-7 FPGA
device as well as 15nm ASIC platform over a range of
word-size with varying exponent size (ES).

o A pipelined architecture for these arithmetic are also
proposed and discussed for 32-bit posit with 6-bit
exponent size.

Il. BACKGROUND: THE POSIT NUMBER SYSTEM
Here a brief introduction of posit number system is presented.
A detailed information of posit number system can be found
at [6]. A posit number is defined by its exponent size (ES)
for a given word size (N). Its generic format is shown in (1).
Posit format has following features.
« Posit format has only two reserved/special representa-
tion, one for ZERO and another for infinity.
o The ZERO is represented by all bits with zero ‘0’ value
(000. . ..000).
« The infinity is representation by all bits, but sign-bit,
as ‘0’ value (100. . .000).
« The posit format does not provide any separate/special
representation for Not-a-Number (NaN).
« It also does not consider sub-normal or denormal repre-
sentation. Thus, posits are always a normalized number.
o The posit format consists of four field: Sign-bit, Regime-
bits, Exponent-Bits and Mantissa-Bits.
o Sign-Bit:

— is O for positive posit numbers.

— is 1 for negative posit numbers. Further, for negative
number, it requires to first take a two’s comple-
ment of remaining field before decoding the regime,
exponent and mantissa bits.

« The total exponent value in posit is defined by the com-
bination of regime-bits and exponent-bits.
« Regime Bits:

74587

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

6
es=0 ——
@ 5r Infinity at 0x80 I I —
R e e T B e 1 es=2
3 - -
@ 3r : | es=3
s 2 7 i i : b : ; i
= atfx“o \ e d 1 atfxco o]
0 il | R RN ‘ P
0 50 100 150 200 250

8-bit Posit Binary Value

FIGURE 2. Variation of mantissa size with respect to exponent size (es) in 8 and 16 bits posit format.

— Regime bits are a sequence of either all 0 or 1, termi-
nated by an opposite bit. Its run-length determines
the value of regime-bit.

— A string of m-bit 0 terminated by (m+1)th bit
as 1 gives a value of -m (01 — —1), (0001 — —3)

— A string of m-bit 1 terminated by (m+1)th bit
as 0 gives a value of m-1 (10 — 0), (111110 — 4)

— With regime value of k, its contribution in total
exponent value is (Z(ZES))]‘

« Exponent Bits:

— Exponents bits are unsigned integer which can be
maximum of ES (exponent size) bits in length. The
value of ES defined the format of posit number.

— With value of e, its contribution in total exponent
is 2¢.

« Mantissa Bits:

— It function similar to the normalized floating point
standard and any remaining bits (if available) after
regime and exponent bits are occupied by it.

— For a given ES value, the maximum mantissa width
can be N-ES-3.

o With a regime value of k, exponent value of e and man-
tissa value of f (including hidden bit 1), the equivalent
decimal value of a posit would be

s % QPN g 0¢ 4 f 2)

« In case, width of exponent part is less than ES, the avail-
able portion will be treated as MSB of exponent portion.
For example, with N = 8 and ES = 4, for posit number
00000111 — 0p0001;1, sign is 0, regime sequence is
00001 and only 2-bit of exponent 11 (for ES = 4) is
available. Here, the actual exponent will be 1100, after
appending remaining LSBs with 0.

Let us go through few examples for decimal equivalent
of 8-bit posit (P). The sign, regime, exponent and mantissa
field are separated (by underscore) for easy understanding,
and negative values are first converted into 2’s complement
before decoding.

WithES =2 : Sign Regime Exp Mantissa
0_0001_11_1 = 4@ 403 *(1+1—;))
0_110_10_11 = +Q@HL 422 *(1+37'O)
74588

14
o 12 [o —— — A
m 10 B] es=0 ——
§ 8 I — es=1 e
£ S "~ Infinity at 0xgo00 T S572
= ol +1 at 0x4000 -1at 0£<COOO es=4 ——
0 . ! es=5 ——
0 10000 20000 30000 40000 50000 60000
16-bit Posit Binary Value
10001111
’ (22) 2 0 1.0
2¢0_1110.00_1 =-Q%)" 42" «(1+-)
11101011
, 22)\—2 1 1.0
2¢0.001_.01.01 =-2%H7 2! (1 +T)
WithES = 3
0_00001_11 — 12PN 425 (140.0)
1.0
0.110_101_1 — 2P w5 w14+ =)
10001111
2'¢0_1110_001 = —@2 ol «(140.0)
11101011
/ 2%)y-2 2 1.0
2¢0.001.010_1 =-QN7? «22 (I+-)

3)

As mentioned above that for a given value of ES, the man-
tissa width also varies at run-time. A graphical representation
of this variation is shown in Figs 2 for N = 8 and N = 16 posit.
It can be seen that posit representation founds more fraction
bits around £1.For a given ES, the maximum mantissa width
could be N-ES-3 (where, value 3 accounts for 1 sign bit and
minimum 2 bits for regime 01 or 10).

Ill. PACOGEN: POSIT ARITHMETIC CORE GENERATOR

In this section a detailed description of posit arith-
metic HDL generators are presented. HDL generators for
adder/subtractor, multiplier and division arithmetic is pro-
posed in this paper. These are parameterized for any posit
word size (N) and exponent size (ES). The basic computation
flow for these arithmetic is presented in Fig. 3. It starts
with the posit data extraction, then performs the core arith-
metic processing related to given arithmetic, followed by
the posit construction, rounding and final processing. The
details regarding each of these steps are discussed in each of
arithmetic section description.

A. ADDER/SUBTRACTOR HDL GENERATOR

The proposed parameterized algorithmic computational flow
for posit addition/subtraction is partitioned into 3 segments,
as shown in Fig. 3. These include posit data extraction seg-
ment which extracts the sign, regime-bit, exponent-bit, and

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

IN1, IN2: Input Operand
Parameter: N, ES

v

Posit Data Extraction

v

Core Arithmetic Processing

- D

A\ 4
Posit Construction, Rounding,
and Post-Processing

v

Final Output

-

FIGURE 3. Basic posit arithmetic flow.

D

mantissa information from the input operands, core adder
arithmetic processing for mantissa addition and effective
exponent value computation and finally followed by the posit
data composition, rounding and post-processing which com-
bine sign, regime, exponent, mantissa. This same computa-
tion flow is used for posit subtraction also, after taking a two’s
complement of second operand. So, for further discussion,
we will just refer to addition/adder only.

1) POSIT DATA EXTRACTION

The posit data extraction flow is presented in Algorithm-1.
Based on the Algorithm-1, a parameterized Verilog HDL is
constructed which takes posit word size (N) and exponent
size (ES) as its parameter and produces hardware for desired
(N and ES) requirement. Since the maximum width of regime
sequence can be of (N-1) bits, RS bits (= Logy N) can store
its maximum absolute numerical value.

The Posit extraction algorithm first check the input
operands for exceptional cases (ZERO and INFINITY)
(Line 7 to 13 in Algorithm-1). All bits with O leads to a zero
posit representation, however, all bits with O except a true sign
bit leads to infinity posit representation.

The MSB of posit operands provide the respective sign-
bits (Line 15). For negative posit operands (if true sign bit),
it would undergo a 2’s complement conversion, except the
sign bit, and produces transformed XIN1 and XIN2 operands.

The posit data extraction idea can be sought from Fig. 4.
The MSB of XIN operand act as the regime check (RC)
bit: O for negative regime sequence and, 1 for positive regime
sequence. Now, for regime sequence detection it requires to
find out the position of terminating regime bit. As shown
in Fig. 4, primary idea is to use a leading one detector (LOD)
to detect the terminating 1 in a sequence of Os (000...0001)
and use a leading zero detector (LZD) to detect the ter-
minating 0 in a sequence of Is (111...1110). However,
if the presence of a sequence of 111...1110 complemented
(1’s complement), then the use of a single LOD would

VOLUME 7, 2019

Algorithm 1 Proposed Posit Data Extraction Flow

1: GIVEN:
2: N: Posit Word Size
3: ES: Posit Exponent Size
4: RS:logy (N) (Posit Regime Value Storage Size)
5: Input Operands: /N1, IN2
6: Data Extraction:Sign (S), Regime Value (R), Exponent (E),
Mantissa (M), Exceptions (Infinity (Inf), Zero (Z))
7: Check for ZEROs
8: Z1=|IN1, Z2 =|IN2, (if all bits of IN1, IN2 are 0)
9: Z <« 7Z1&72
10: Check for Infinity’s
11: Infl =IN1[N — 1]&|IN1[N —2:0], (if all bits, except

Sign-bit, are 0)
12: Inf2 = IN2[N — 1]&|IN2[N —2:0]

13: Inf < Inf1|Inf?2

14: Extraction from IN1:

15: S1< INI[N-1] (Sign-Bit)

16: XINT[N-2:0] <= S1 ? —IN1[N-2:0] : IN1[N-2:0] (2’s
Complement if —ve)

17: RC1 <« XIN1[N-2] (Regime Check Bit)

18: XIN1_tmp <~ RC1 ? I(XIN1) : XIN1 (1’s complement if
RCl =1)

19: R < Leading One Detection (XIN1_tmp[N-2:0])

20: R1 < RC1? R-1: R (Effective Regime Value)

21: XINI1_tmp < XIN1_tmp <<R (Flush out regime
sequence)

22: El <~ MSB ES-bits of XIN1_tmp (Exponent)

23: M1 <« Remaining bits of XIN1_tmp (Mantissa, Append
Hidden Bit)

24: Extraction from IN2: — S2, R2, E2, M2

Regime Extraction: Basic Methodology

-ve RIGIME sequence
000....0001 ----- (LOD)-----

111....1110 ----- (LZD)-----
+ve REGIME sequence

Regime Extraction: Improved Method

-ve RIGIME sequence
000....0001

J_LQQ, Run-length (R)
111..1110 > 1’c--> 000...0001

+ve REGIME sequence

Regime Check (RC) bit

Sign-bit / Regime terminating bit
I SI . Regime I Exponent Mantissa
= - - 0

N-1 N2 5o
! Run-length
H (R) <<R
1

ISI . Regime , I Exponent I Mantissa
[
M
ES bits

FIGURE 4. Posit data extraction.

suffice the purpose of finding regime sequence terminating
bit. This is shown in Fig. 4 as regime extraction improved
method, and this process provides the run-length of regime
sequence (R). The effective absolute regime value would be R
for a sequence of 0 (—ve regime sequence), and R-1 for a

74589

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

in[1] in[0]

1

LOD 2

vidwy YK
in[3:2]
i Tobaz
Lop 2:1 |
VdH KH

vid L K L|
1'b1,K_L

id VK[1:0]

FIGURE 5. LOD architectural construction.

sequence of 1 (+4ve regime sequence). These are shown in
Lines 19-20 of Algorithm-1.

The parameterized Verilog based generation of leading one
detector (LOD) is shown in Algorithm-2. As shown in Fig. 5,
it is generated and constructed in a hierarchical manner. It is
based on the building up larger size LOD using 2:1 LOD.

Algorithm 2 Parameterized Generation of Leading One
Detector (LOD)

1: LOD #(N) (in[N-1:0], K[S-1:0], vId):

2 N: Word Size, S: Logy(N)

3 GENERATE

4 IF(N==2)

5: vld =1I(in), K =!in[1] & in[0]

6 ELSIF (N & (N-1))

7 LOD #(1<<S) ({1<<S {1’b0}} l'in, K, vId)
8 ELSE

9: K_L[S-2:0], K_H[S-2:0], vild_L, vild_H
10: LOD #(N>>1) (in[(N>>1)-1:0], K_L, vld_L)
11: LOD #(N>>1) (in[N-1:N>>1], K_H, vld_H)
12: vild=vld_LIvld_ L
13: K=vld_H? {1’b0,K_H} : {vld_L,K_L}

14: ENDGENERATE

After finding the regime run-length value, the regime
sequence is flushed out of XIN_tmp operand by left shifting
it by R amount with the help of a dynamic left shifter. This
process aligned the exponent and mantissa combination at
the MSB of XIN_tmp. As the length of exponent is defined
(ES bits) and its position is know at this stage of computation,
the exponent and mantissa (the remaining portion) are easily
extracted as in Lines 22-23 of Algorithm-1. The maximum
bit-width of mantissa can be N-ES-2.

The parameterized Verilog based generation and con-
struction of dynamic left shifter (DLS) is presented in
Algorithm-3. It is based on the barrel shifter and parameter-
ized with word size N and shifting amount S. It requires one
N-bit 2:1 MUX for each bit of S. Thus, here it would need
RS numbers of 2:1 MUXs each of (N-1) bit size.

Thus, posit extraction unit extract the sign bits,
effective absolute regime values, exponents value and
mantissa from respective posit operands and passes
(XIN1,S1,RC1,R1,E1,M1 and XIN2,S2,RC2,R2,E2.M2) to
next unit for further processing.

74590

Algorithm 3 Parameterized Generation of Dynamic Left
Shifter (DLS)
1: DLS #(N) (in[N-1:0], b[S-1:0], OUT):
N: Word Size, S: Logy(N), TMP[S-1:0][N-1:0]
TMP[0] = b[0] ? in << 1 : in;
GENVAR i
GENERATE
for (i=1; i<S; i=i+1)
TMP[i] = b[i] ? (TMP[i-1] << 2%*i) : TMP[i-1]
end
ENDGENERATE
OUT = TMP[S-1]

@VRXIINR LN

—_

Algorithm 4 Posit Core Adder Arithmetic Flow

1: GIVEN:

2: N: Posit Word Size

3: ES: Posit Exponent Field Size
4

5

RS: logy (N) (Posit Regime Value Store Space Bit Size)

SI,LRCI1,R1,EI,Ml,and S2,RC2,R2,E2,M2: Operands
Extracted Components
6: Core Adder Arithmetic Processing:
7: OP <« S1 xor S2 (Effective Operation)
8: Check for Large Operand and Small Operand
9: INT_gt IN2 <~ XIN1 >> XIN2? 1: 0 (Operands
Comparison)
10: Large (L) Component: LS, LRC, LR, LE, and LM
11: Small (S) Component: SS, SRC, SR, SE, and SM

12: MANTISSA ADDITION:

13: Effective Exponent Difference (Ediff):

14: Ediff < {LRC ? LR : -LR, LE}-{SRC ? SR : -SR, SE}
15: SM_tmp < SM >> Ediff (Right Shift SM by Ediff amount)
16: Add LM and SM_tmp: (Mantissa Addition/Subtraction)

17: Add_M — OP ?LM + SM_tmp : LM - SM_tmp

18: Movf < Add_M[MSB] (Mantissa Overflow)

19: Add_M <« Movf? Add_ M: Add M << 1

20: Normalization of Add_M:

21: Nshift <~ LOD of Add_M (Check for Leading-One)

22: Add_M <« Add_M << Nshift, (Dynamic Left Shifting by
Nshift)

23: Final EXPONENT (E_O) and REGIME (R_O) Computation:

24: LE_O <« Combine LR, LE, Movf and Nshift

25: E_O: < Basedon+/— of LE_O, Compute LSB ES bits from
LE_O

26: R_O: <« Based on 4+/— of LE_O, Compute MSB RS bits
from LE_O

2) CORE ADDITION ARITHMETIC

This unit mostly work like a analogous floating point adder
arithmetic unit. In this stage the core arithmetic of mantissa
addition/subtraction, and resultant exponent and regime value
computation are processed. The effective arithmetic opera-
tion (addition/subtraction) between both mantissa operands
are find by a XOR logic operation between both sign
bits (Line 7 algorithm‘4). To perform the mantissa addi-
tion/subtraction, large and small operands need to be find out
out (Line 8-11). A direct comparison of XIN1 and XIN2 gives
the information of large and small operand. It requires a
(N-1) bits greater-than-equal-to comparison component.
Based on this comparison the large and small components
of sign-bit, regime-check bit, regime, exponent and mantissa
are computed (LS, SS for sign; LRC, SRC for regime-check

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

bit; LR, SR for regime; LE, SE for exponent; and LM, SM
for mantissa). All of these require 2:1 MUXs of respective
component bit-width.

In order to perform mantissa arithmetic a decimal align-
ment of mantissa operands are required. To achieve this,
smaller mantissa is required to be dynamically right shifted
by the difference of effective total value of large exponent
and small exponent (Ediff). Eiff[BS:0] is computed by com-
bining the difference of effective regime values (by consid-
ering their signs, which then shifted left by ES bits), and
exponent differences (Line 14). The small mantissa is shifted
by Ediff amount by a dynamic right shifter, and produces
SM_tmp (Line 15). The dynamic right shifter is generated
using the Algorithm-5. It is a parameterized dynamic right
shifter designed using barrel right shifter. Its functioning is
very similar to the dynamic left shifter except for the shifting
direction.

Algorithm 5 Parameterized Generation of Dynamic Right
Shifter (DRS)
1: DLS #(N) (in[N-1:0], b[S-1:0], OUT):

2: N: Word Size, S:Logy(N), TMP[S-1:0][N-1:0]
3 TMP[0] =b[0] ?in >> 1 : in;
4 GENVAR i
5 GENERATE
6: fori=1i<S;i=i+1)
7: TMP[i] = b[i] ? (TMP[i-1] >> 2**i) : TMP[i-1]
8 end
9 ENDGENERATE
10 OUT = TMP[S-1]

The addition/subtraction of shifted small mantissa and
large mantissa is carried out using a (N-ES-2) bits add/sub
unit and produces Add_M (Line 17). For the case of effective
addition operation, any mantissa overflow (Movf) is detected
by its MSB-bit and mantissa is accordingly shifted by 1-bit
to the left, which requires an N-ES-2 bits 2:1 MUX
(Line 18-19). The final total exponent value later incremented
by one for true mantissa overflow. For an effective mantissa
subtraction operation, if LM and SM_tmp consists of very
close values, then Add_M may lose some MSB bits. In this
case a normalization of mantissa is required. This requires
a leading one detection (LOD) operation on Add_M and
further dynamic left shifting. It requires a N-ES-1 bit LOD
to get normalization shift (Nshift[RS-1:0]) amount (Line 21),
and then process the dynamic left shifting (Line 22). Nshift
amount is later adjusted in final exponent computation. The
parameterized LOD and Dynamic left shift architecture gen-
eration is already discussed above.

After above processing the computation of final regime
numerical value (R_O) and exponent (E_O) performed.

The concept of the regime value (R_O) and ES-bit expo-
nent (E_O) computation from a total effective exponent
(EXP_O) is presented in Algorithm-6. The computed resume
value is later converted appropriate sequence of either O or 1,
based on the sign of total effective exponent.

VOLUME 7, 2019

Algorithm 6 Concept of Regime Value (R_O) and ES-bit
Exponent Value (E_O) Computation From Total Effective
Exponent (EXP_O)

1: GIVEN

2: EXP_O[E:0]: Total effective exponent value, to be converted
in posit format, the regime value and ES-bit exponent value
combination

3: IF (EXP_O >=0)

4: E_O = EXP_O[ES-1:0]

5: R_O = EXP_O[E:ES]

6

7

8

: ELSE
EXP_O <« 2’s complement of EXP_O
IF (EXP_OI[ES-1:0] == 0)

9: E_O = EXP_O[ES-1:0]
10: R_O = EXP_OI[E:ES]
11: ELSE
12: E_O = 2’s complement of EXP_O[ES-1:0]
13: R_O=EXP_O[E:ES] + 1

For the posit adder these computations are shown below in
Algorithm-7, in a hardware friendly format. First, an effective
exponent output (EXP_O) is computed by combining abso-
lute large regime value (LR) and large exponent (LE), and
then adjusting it for mantissa addition overflow (Movf) and
mantissa subtraction underflow amount (Nshift). The LE_O
would be of (ES + RS + 1) bit-width. If EXP_O is less than 0,
itis negated as EXP_ON. Based on the EXP_O and EXP_ON,
the final regime R_O and final exponent E_O are computed
in lines 3-5.

Algorithm 7 Computation of Final Regime and Exponent

1: EXP_O = {(LRC ? LR : -LR),LE} + Movf - Nshift

2: EXP_ON = EXP_O[ES + RS] ? -EXP_O : EXP_O

3 EO0O = (EXP.O[ES + RS] & (IEXP_ONIES-
1:01)) ? EXP_O[ES-1:0] : EXP_ON[ES — 1:0]

4: RO = !(EXP_O[ES + RS]) | (EXP_O[ES + RS] &
(IEXP_ONIES-1:0]))

5: ? EXP_ON[ES + RS — 1:ES] + 1’bl : EXP_ON[ES
+ RS — 1:ES]

In this unit final sign-bit (LS), regime (R_O), exponent
(E_O) and mantissa (ADD_M) is processed, which are com-
bined in next unit for further processing.

3) POSIT DATA COMPOSITION AND ROUNDING

This unit deals with the posit composition, rounding and
final processing. The strategy for posit packing is shown
in Fig .5 and in Algorithm-8. It is carried out using a 2*N
+ 3 bit REM data construction. In this the MSB N-bit
are a sequence of the complement of the sign-bit of total
exponent output (LE_O). It meant for creating the desired
regime sequence. Since regime consists of a sequence of 1 for
positive exponent and a sequence of 0 for negative sequence,
a sequence of complemented sign-bit of actual exponent
would act as the desired regime sequence. Also, as the regime
termination bit is the opposite of regime sequence bits, thus,
the same sign-bit would act as the regime sequence termi-
nation bit, which is kept just after the N-bit regime sequence.

74591

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

(Exponent Sign act as Regime

(Sequence of (Appended for
Exponent Sign Complement sequence termination bit) Rounding)
act as Regime sequence) /EXP—O[MSB] 3-bit
A >
| N{IEXP_O[MSB]} | E_O[ES-1:0] | Add_M |G:R:S |
' 1
2N-1 -1 0333
N-bit N N-bit BEE
< > hp 2 &
' GRS\
| N{!IEXP_O[MSE]} | | EO[ES-1:0] | Add_M,x00xx
" i 1 !
>>Ro ;

[}
1
Required Regime Sequence/

—_—

3-bit + Ro-bit

)
1
]
1
> []
1o

Posit Data

(Append Sign-bit, Modify Accordingly)

FIGURE 6. Posit data construction.

Algorithm 8 Posit Construction, Rounding and Final Pro-
cessing Flow

: GIVEN:
N: Posit Word Size
ES: Posit Exponent Field Size
RS: logr (N) (Posit Regime Value Store Space Bit Size)
LS,R_O,LE_O,E_O, Add_M
Input Operands: IN1, IN2
: Posit Data Composition:
: REGIME, EXPONENT and MANTISSA Packing:
REM <«
N-+1 Bits Regime Sequence
N{!EXP_O[MSB]}, EXP_O[MSB],

Exponent — Mantissa GRS —Bit
—~ =

E_O,Add_MIN —ES —2:0], 3'b0
10 REM < REM >>R O
11: Rounding: Round to nearest even
12: IF(R_O < N-ES-2)
13: ULP_add = G.(R + S) + L.G.((R + S))
14: REM < REM + {(N-1)’b0,ULP_add}
15: REM <« (LS ==0) ? REM : 2’s Complement of REM
16: Final Output:
17: Combine LS with MSB (N — 1) bit of rounded REM
18: Discharge Output while considering Exceptions

—_

WRIADNE LN

Next N-1 bits are consists of ES bits of exponent output (E_O)
followed by the mantissa (ADD_M, after leaving the hidden
1 bit). Finally, a 3 bits of 0 is appended at LSB side for
Guard (G), Round (R) and Sticky (S) bits for rounding pur-
pose (Line 9).

Now, the desired composition of posit is obtained by
dynamic right shifting of above constructed REM by absolute
regime output value (R_O) (Line 10). The shifted R_O bits at
the LSB will contribute to the sticky-bit for rounding purpose
(shown in Fig. 6).

After above processing rounding is performed
(Lines 11-14). The posit format talks only of one rounding
method, round-to-nearest-even method. Rounding is per-
formed by generating the ULP-Add bit (Unit at last place
addition bit) by the combination of mantissa precision bit

74592

position (L), the next-bit as Guard-bit (G), the next-bit as
round-bit (R) and OR of remaining all bits as sticky-bit (S).
The ULP-add bit is computed using few gates by following
relation: ULP_add = G.R + S) + L.G.(\(R + S)). The
ULP_add bit is added at precision bit of the posit man-
tissa. This will provide the required combination of regime
sequence, exponent and rounded mantissa. It is to be noted
that rounding addition is required only when R_O is less than
equal to the maximum mantissa fraction width of posit format
(N-ES-3) (Line 12-14). Further, for true output sign-bit (LS) a
two’s complemented is taken as per posit format requirement
(Line 15), which is then appended by sign-bit at the MSB for
producing N-bit posit output (Line 17). The final posit output
is produced after exceptional check for zero and infinity. For
zero case all bit will be 0, and for infinity all but sign bit will
be, otherwise, computed posit value will provided as final
output.

All the above processing are parameterized for N and ES.
The above processing discussion related to the posit data
extraction, posit data construction, rounding and final pro-
cessing acts in similar way for posit multiplier and divi-
sion, except for core arithmetic computation. The dis-
cussion related to posit multiplier and division arithmetic
generation is presented in the respective unit discussed
below.

B. MULTIPLIER HDL GENERATOR

Similar to the posit adder arithmetic, the posit multiplier
arithmetic also consists of three main processing section:
posit extraction, core arithmetic and posit construction. The
algorithmic computational flow for posit multiplier generator
is shown in algorithms-9. The posit data extraction is done
exactly as in Algorithm-1. It supplies the operands com-
plemented form (XIN1, XIN2, for negative posit), sign bits
(S1, S2), regime check bits (RC1, RC2), absolute regime
sequence values (R1, R2), exponent values (El, E2),
mantissas (M1, M2), and infinity & zero check bits
(Infl, Inf2, Z1, Z2).

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

Algorithm 9 Proposed Posit Multiplier Computational Flow

1: GIVEN:
2: N:Posit Word Size
3: ES: Posit Exponent Field Size
4: RS:logy (N) (Posit Regime Value Store Space Bit Size)
5: Input Operands: /N1, IN2
6: Posit Data Extraction: — Algorithm-1
7. IN1 — XIN1, S1, RC1, R1, E1, M1, Inf1, Z1
8: IN2 — XIN2, S2,RC2, R2, E2, M2, Inf2, Z2
9. Z <« Z1&Z2 Inf < Inf1|Inf2
10: Posit Core Multiplier Arithmetic Processing:
11: Sign Processing:
12: S <« SlxorS2
13: Mantissa Multiplication Processing:
14: M <« M1xM2 (Mantissa Multiplication
15: Movf < M[MSB] (Check Mantissa Overflow)
16: M« Movf?M: M<<1 (1-bit Mantissa Shifting for
overflow)

17: Final EXPONENT (E_O) and REGIME (R_O) Processing:

18: RG1 <~ RC1? R1: -R1 (Effective regime-1 value)

19: RG2 <« RC2? R2: -R2 (Effective regime-2 value)

20: Exp_O[ES + RS + 1:0] < {RG1,E1} + {RG2,E2} 4+ Movf
(Total Exponent value)

21: Exp_ON[ES + RS:0] = Exp_O[ES + RS + 1] ? -
Exp_O: Exp_O (Absolute Total Exponent
Value)

22: E_O[ES-1:0] = (Exp_O[ES + RS + 1] & (IExp_ONI[ES-
1:0])) ? Exp_O[ES-1:0] : Exp_ONI[ES-1:0] (Exponent
Output)

23: R_O[RS:0] = !(Exp_O[ES + RS + 1]) | (Exp_O[ES +
RS + 1] & (IExp_ONI[ES-1:0])) ? Exp_ONI[ES + RS:ES] +
1’bl : Exp_ON[ES + RS:ES] (Absolute Regime Value)

24: Posit Construction, Rounding and Final Processing:

25: Algorithm-8 using S, R_O, Exp_O,E_O, M

26: Posit Data Composition:

27: REGIME, EXPONENT and MANTISSA Packing:

28: REM <«

N+1 Bits Regime Sequence

N{!Exp_O[MSB]}, Exp_O[MSB],

Exponent — Mantissa

E_O, M[(N-ES-2) bits MSBs],
GRS —Bits

M[Next 2 bits],I(M[:0])
29: REM <« REM >> R_O
30: Rounding: Round to nearest even
31: IF(R_O<N-ES-2)
32: ULP_add = G.(R + S) + L.G.({(R 4 S))
33: REM <« REM + {(N-1)’b0,ULP_add}
34: REM « (LS ==0) ? REM : 2’s Complement of REM
35: Final Output:
36: Combine LS with MSB (N — 1) bit of rounded REM
37: Discharge Output while considering Exceptions

The extracted components are processed for core multipli-
cation arithmetic. The sign-bit computation requires a 1-bit
xor operation among input sign bits (Line 12). For the man-
tissa multiplication it requires a (N-ES-2)X(N-ES-2) integer
multiplier (Line 14), which output MSB bit is checked for
any mantissa multiplication overflow (Line 15). For mantissa
multiplication overflow, the mantissa is left shifted by 1-bit
for proper normalization (Line 16), the final exponent com-
putation is incremented by 1 (Line 20). For the exponent

VOLUME 7, 2019

computation, initially the actual regime values (RG1 and
RG2) are computed using respective regime check bits and
absolute regime value (Lines 18-19). These regime values
are combined with respective exponent (E1, E2) to provide
respective effective exponent values of each operand, which
are then added along with the Movf bit (mantissa overflow) to
provide total output exponent value, Exp_O (Line 20). Based
on Algorithm-6, using the total output exponent value Exp_O,
the ES-bit exponent output E_O and absolute regime output
value R_O is computed in Lines 21-23.

After core arithmetic processing, the posit construction,
rounding and final processing is processed similar to the
Algorithm-8 and Fig. 6.

C. DIVISION HDL GENERATOR

This section discusses the posit division arithmetic HDL gen-
erator. Here, except the core division arithmetic processing,
all other processings are similar to the posit multiplier arith-
metic. Therefore, only discussion related to the core division
processing is presented here. The computational flow for
posit division arithmetic is presented in Algorithm-10.

After the posit data extraction, output sign-bit is computed
as the xor operation among operands sign bits. The expo-
nent processing (lines 17-23) consists of first combining the
regimes with respective exponents, then perform subtraction
of divisor total exponent value from dividend value. The
outcome is then adjusted for mantissa division underflow and
for whether if divisor fraction is zero. After, it is processed
similar to the posit multiplier for computation of exponent
output (E_O) and absolute regime output value (R_O).

The mantissa division generator is designed using Newton-
Raphson (NR) method [14]-[16]. Newton-Raphson method
uses the Newton’s method to find the inverse of the denom-
inator mantissa and which is then multiply by the numerator
mantissa to compute the mantissa quotient. Let N is numera-
tor and D is denominator, then it proceeds as follows:

1) Get an approximated inverse of D, as Xy

2) Compute the successive more accurate approximations

X1, X2, X3,... Xy, as
e Xit1 =Xi X (2—X;*xD)

3) Compute quotient as Q = N x Xy

Here, in step-2 the number of correct bits in inverse approx-
imation doubles after each iteration of Newton-Raphson
method. Thus, based on the correct size of initial approxi-
mation number of iteration is determined for a give output
precision.

Based on above NR method, the mantissa division gen-
erator is designed and its computational flow is presented
in Algorithm-11. It is parameterized for the number of
NR iteration. The initial approximation address and word size
is taken as ceil(mantissa width / 2NVR-%") However, for very
small mantissa width (<= 8), only look-table approximation
is used and no NR iteration is taken. With this settings it
requires two NR iterations for up-to 32-bit posits and one
NR iteration for up-to 16-bit posits, in order to achieve the
required accuracy.

74593

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

In the presented generator, a look-up table of size 28 x 9 is
used, which is suitable for up to 32-bit posit. For higher preci-
sion requirement, i.e. for more than 32-bit posit a larger look-
up table would be needed based on the effective mantissa
size and NR iterations. However, with more NR iterations
the effective look-up table size would be smaller. As shown
in Algorithm-11 lines 17-26, the required size of look-up
table is generated for a given parameter sets. Using the initial
approximation, a for loop generator is used for successive
NR iterations generation (lines 34-37). In each NR iteration
it uses two (i*IW + Dx(MW + 1) integer multipliers and
one subtractor, where i is iy, NR iteration. After completing
NR iteration final approximation is then multiplied by the
numerator mantissa (line 38) with a (MW + 1)x(MW + 1)
integer multiplier to produce the division quotient.

After the core division computation, the posit construc-
tion, rounding, and final processing is carried out simi-
lar to the posit multiplier and presented in lines (24-37)
of Algorithm-10.

IV. PIPELINED POSIT ARITHMETIC ARCHITECTURES

This section discusses the pipelined architectures for
32-bit posit with ES = 6. It is constructed for each of
the adder/subtractor, multiplier and division arithmetic unit.
Here, ES = 6 is selected as it requires a maximum mantissa
width of 23-bit (N-ES-3), which is same as that for single
precision floating point format. However, the similar archi-
tecture can be used for different ES values without any larger
modifications.

A. ADDER/SUBTRACTOR ARCHITECTURE WITH
N=32ANDES =6

The architecture of posit adder with N = 32 and ES = 6 is
presented in Fig. 7. It is constructed with 5-stage pipeline
registers.

The first stage deals with the posit data extraction, which
is carried out as shown in Algorithm-1 and Fig. 4. It requires
some logic gate operations for zero, infinity checks. It also
needs a 32-bit 2’s complement converter (invert and add-
1) if posit is negative, a 32-bit LOD for detecting regime
termination bit, a 32-bit dynamic left shifter for regime
sequence flushing out. Along with posit data extraction, this
stage also find out the large operand using a 31-bit greater-
than-equal-to unit.

The second, third and part of fourth stages perform core
arithmetic processing as discussed in Algorithm-4. The sec-
ond stage first computes the large and small operand compo-
nents (sign LS,SS; regime-check bit LRC, SRC; regime value
LR, SR; exponent value LE,SE; and mantissa LM,SM) using
2:1 MUXs. Then it computes the total effective exponent
value difference by first combining the regime values to
the respective exponent value and then perform a ES + RS
bits subtraction. The small mantissa is right shifted by this
exponent difference value using a 23-bit dynamic right shifter
which consists of 5 levels of 23-bit barrel shifters.

The third stage perform the mantissa addition/subtraction
operation based on the effective required operation (S152)

74594

Algorithm 10 Proposed Posit Division Computational Flow
1. GIVEN:
2: N: Posit Word Size

3: ES: Posit Exponent Field Size

4 RS: logy (N) (Posit Regime Value Store Space Bit Size)

5: Input Operands: IN1, IN2

6

7

8

: Posit Data Extraction: — Algorithm-1
IN1 — XIN1, S1, RC1, R1, E1, M1, Infl, Z1
: IN2 — XIN2, S2, RC2, R2, E2, M2, Inf2, Z2
9: Z <« Z1&Z2 Inf < Inf1|Inf2

10: Posit Core Division Arithmetic Processing:

11: Sign Processing:

12: S <« Sl xor S2

13: Mantissa Division Processing using Newton-Raphson Method:

14: M <« Algorithm-11 (M1, M2)

15: Mudf < M[MSB]

16: M« Mudf? M: M << 1
overflow)

17: Final EXPONENT (E_O) and REGIME (R_O) Processing:

18: RG1 <« RC1? R1: —R1 (Effective regime-1 value)

190 RG2 <« RC2? R2: —R2 (Effective regime-2 value)

20: Exp_O[ES + RS + 1:0] < {RG1, E1} - {RG2,E2} — 1 +
Mudf + I(M2) (Total Exponent value)

21: Exp_ON[ES + RS:0] = Exp_O[ES + RS +
11?7 —Exp_O: Exp_O (Absolute Total Exponent Value)

22: E_O[ES-1:0] = (Exp_O[ES + RS + 1] & (IExp_ONIES-
1:0])) ? Exp_O[ES-1:0] : Exp_ONI[ES-1:0] (Exponent
Output)

23: R_O[RS:0] = !(Exp_O[ES + RS + 1]) | (Exp_O[ES +
RS + 1] & (IExp_ON[ES-1:0])) ? Exp_ONI[ES + RS:ES] +
1’bl : Exp_ONIES + RS:ES] (Absolute Regime Value)

24: Posit Construction, Rounding and Final Processing:

25: Algorithm-8 using S, R_O, Exp_O, E_O,M

26: Posit Data Composition:

27: REGIME, EXPONENT and MANTISSA Packing:

28: REM <«

N+1 Bits Regime Sequence

N{!Exp_O[MSB]}, Exp_O[MSB],

Exponent — Mantissa

E_O, M[(N-ES-2) bits MSBs],
GRS —Bits

M[Next 2 bits],I(M[:0])
29: REM < REM >> R_0O
30: Rounding: Round to nearest even
31: IF(R_O<N-ES-2)
32: ULP_add = G.(R + S) + L.G.((R + S))
33: REM <« REM + {(N — 1)’b0,ULP_add}
34: REM « (LS ==0) ? REM : 2’s Complement of REM
35: Final Output:
36: Combine LS with MSB (N — 1) bit of rounded REM
37: Discharge Output while considering Exceptions

(Check Mantissa Underflow)
(1-bit Mantissa Shifting for

using a 24-bit add-sub unit. The result is checked for any
mantissa overflow. Further, a LOD operation is carried
out on the result to find the leading 1 in case of man-
tissa underflow following an effective subtraction opera-
tion earlier, and consequently in fourth stage the mantissa
add/sub result is accordingly left shifted to normalize it. The
fourth stage also computes the final sign bit and update the
large exponent with mantissa overflow and left shift nor-
malization amount to produce the total effective exponent
value.

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

Algorithm 11 Mantissa Division Generation Flow Using
Newton-Raphson Method

1: GIVEN:

2: N: Posit Word Size

3: ES: Posit Exponent Field Size
4: RS:logr (N) (Posit Regime Value Store Space Bit Size)
5: NR_Iter: Newton-Raphson Iteration Count
6.
.
8
9

NRB: 2#*(NR_Iter)
MW = N-ES
IW_MAX =8

(Max mantissa width + 2)
(Max data width for initial approximation)
: IW = ceil(MW/NRB)
Mantissa)
10: AW_MAX =38
approximation storage
11: AW =ceilMW/NRB) (< = AW_MAX, address width for
initial approx)

(< =IW_MAX, 1/4th bit-width of

(Max Address bit-width for initial

12:

13: M2_INV_LUT (Addr[AW_MAX-1:0], Dout[IW_MAX-
1:0]) (Initial Approx Storage)

14:

15: Input Operands: M1, M2

16:

17: Mantissa Division Processing using NR Method: M <«
M1/M2

18: Get Initial Approximation of M2 Inverse

19: IF MW > = AW_MAX) (If Mantissa Width is > = Max

Address width)

20: IF (AW == AW_MAX)

21: Dout < M2_INV_LUT (M2[MW-1:MW-AW_MAX])

22: ELSE

23: Dout <« M2_INV_LUT ({M2[MW-1:MW-
AW {AW_MAX-AW{1°b0}}})

24: ELSE

25: Dout <« M2_INV_LUT ({M2[MW-1:0],{ AW_MAX-

MW{1’b0}}})

26: M2_INVO[IW-1:0] < Dout[IW_MAX-1:IW_MAX-1-(IW-
D]

27:

28: Newton-Raphson Iteration to Improve M2 Inverse

29: GENERATE

30: M2_INV [NR_Iter:0][2*MW+1:0]
register for M2_INV, with size 2¥*MW+2)

(NR_Iter number of

31: M2_INV[0] = M2_INVO (Assign Initial Approximation
to first register)

32: IF (NR_Iter > 0)

33: M2_INVX_X M2 [NR_Iter-1:0][2*MW+1:0]

34: two-M2_INV_X_M2 [NR_Iter-1:0][MW:0]

35: for (i=0;1 < NR_Iter; i =1+ 1) (begin NR_Iteration)

36: M2_INV_X_M2[i] = M2_INV[i][i*IW MSBs] * M2

37: two-M2_INV_X M2[i] =2 — M2_INV_X_M2Ji]

38: M2_INV[i + 1] = M2_INV[i][i*IW MSBs] *

two-M2_INV_X_M2[i]
39; M = (M2[MW-1:0]) ? Ml :
M1 * M2_INV[NR_Iter][2*MW:MW]

The core computation processing completed at this
point and posit construction processing begins (Algorithm-
refposit-construct). The output regime value (R_O) and expo-
nent value (E_O) are evaluated using Algorithm-6&7, which
requires a 2’s complement converter and an adder. The regime
sequence, exponent value and mantissa along with GRS

VOLUME 7, 2019

INT, IN2: Input Operand
N=32, ES=6

- D

I Posit Data Extraction l

XIN1,XIN2

XINT >= XIN2

INF1,ZERO1,S1,RC1,R1,E1,M1
INF2,ZERO2,S2,RC2,R2,E2,M2

INT_GT_IN2

I Large & Small Operand’s Components l g
LS.LRG.LR,LE,LM, k)
SS,SRC,SR,SE,SM 3
I Total Effective Exponent Difference l 8
*SM +Exp»Diff o
I Dynamic Right Shifter l %
EE O EE EE O O S S S B S e am EE o . . @
Wo<sirsp WM W SM_Shifted E
I Add_Sub l S
+Add7M <
I Leading-One-Detector l %
- e mm o o o o -dell,L::hift- [p—p—— g
I Dynamic Left Shifter l o)
=
WLR. LE, Shited_Add_M, L_shift 8
I Output Sign, and Total Final Exponent (Exp_O) l

. e
I Output Exponent (E_O) & Regime Value(R_O) l Ke]
40
y £_O, Shifted_Add_M, %
Regime, Exponent, Mantissa (REM) i%
Packing, with GRS bits. (2*N+3 bits) =
- e o e EE EE O S EE B B B B B B . @
REM RO -
I Dynamic Right Shifter l 8
[

*REM -_—

Rounding to Nearest Even
ULP = (G.(R+S)) + (L.G.~(R+S))
REM <- REM +ULP

I Final-Processing(including inf, zero, sign) l

ouTt

FIGURE 7. Posit (32,6) adder, 5 stage pipelined architecture (dotted lines
are pipeline registers).

(Guard, Round and Sticky bits) 2*N + 3 bits packing is also
performed in 4th stage (as shown in Fig. 6).

The fifth/last stage of posit adder architecture first dynam-
ically right shift the above constructed REM sequence by
output regime value (R_O) in order to shift required regime
sequence towards right. Then it perform the rounding oper-
ation (round to nearest even), where it computes ULP (unit
at last place) using precision bit (L), Guard-bit, Round-Bit
and Sticky-bit and then add it to shifted REM at precision
bit. The result is then updated according to the sign bit (take
2’s complement if true sign bit), infinity and zero exceptional
cases and provide the final posit addition output.

B. MULTIPLIER ARCHITECTURE WITH N = 32 ANDES =6
The pipelined architecture for 32-bit posit with ES = 6 is
presented in Fig. 8. It consists of 6 pipeline stages. Here,
only core arithmetic processing are discussed and remaining
processing are similar to the corresponding adder units (the
posit extraction, posit construction and final processing).

74595

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

INT, IN2: Input Operand
N=32, ES=6

-

I Posit Data Extraction
INF1,ZERO1,51,RC1,R1,E1,M1
INF2,ZERO2,S2,RC2,R2,E2,M2
- - -

I Mantissa Multiplier (24x24) 3 Stage l

D

M = M1*M2
- e o o o o - o o o o o

Output Sign, and Total Final Exponent (Exp_O) l

I Output Exponent (E_O) & Regime Value(R_O) l

Y £ O, Shifted Add_M,

Regime, Exponent, Mantissa (REM)

Packing with GRS bits. (2*N+3 bits)
REM *FLO

I Dynamic Right Shifter l

W REM —

Rounding to Nearest Even
ULP = (G.(R+9)) + (L.G.~(R+S))
REM <- REM +ULP

12

I Final-Processing(including inf, zero, sign) l

Posit Construction Core Arfthmetic

out

FIGURE 8. Posit (32,6) multiplier, 6 stage pipelined architecture (dotted
lines are pipeline registers).

The largest unit in the posit multiplier architecture is the
mantissa multiplication. For N = 32 and ES = 6, it requires
a 24 x 24 unsigned integer multiplier. The architecture for
24 x 24 multiplier is shown in Fig. 9. It consists of 3 pipeline
stages and constructed using a DSP48E embedded unit in
Xilinx FPGA device. Primarily, a DSP48E unit can process
a 25 x 18 signed multiplication and a 48 bit accumulation,
along with several other operations. Here, one DSP48E unit
is composed with a 24 x 7 multiplier to form the 24 x 24
multiplier. The final pipeline register in this unit is merged
with the next pipeline register of main architecture (Fig. 8).

Further, the mantissa multiplication result is checked for
the mantissa overflow and processed accordingly. The sign bit
is computed as an XOR operation between both sign bits. The
total output exponent value is computed by first combining
the effective regime values with the respective exponent val-
ues and then adding them together with the mantissa overflow
bit. After this E_O and R_O are computed which is followed
by the posit construction and final processing stages.

C. DIVISION ARCHITECTURE WITH N = 32 AND ES = 6
The architecture for 32-bit posit with ES = 6 is shown
in Fig. 10. It is constructed with 12 pipeline stages. Only
core arithmetic processing are discussed here, as other related
computations are similar to the respective processing in above
arithmetic units.

The mantissa division architecture is shown in Fig 11. It is
based on 2 iterations of Newton-Raphson division method.
It consists of 9 pipeline stages: 6 for 2 NR iterations and
3 for final multiplication between dividend mantissa and final

74596

24-bit
[]
® |]
24x77 |
I 24X7 1., 17-bit
a[23:0] b[23:17] a[23:0] b[16:0]
RO -
m24x7
R1 -

\A@(

7-bit Left-shift *.
e o -DSP48E

FIGURE 9. 24 x 24 multiplier architecture.

INT, IN2: Input Operand
N=32, ES=6

I Posit Data Extraction
INF1,ZERO1,51,RC1,R1,E1,M1
INF2,ZERO2,82,RC2,R2.E2M2

- === =g

Mantissa Division (NR-Method) 8 Stages l

M =M1/M2
- -

D

Output Sign, and Total Final Exponent (Exp_O) l

I Output Exponent (E_O) & Regime Value(R_O) l

y E_O, Shifted_Add_M,
Regime, Exponent, Mantissa (REM)
Packing with GRS bits (2*N+3 bits)

REM WRO

I Dynamic Right Shifter l

W RV —

Rounding to Nearest Even
ULP = (G.(R+S)) + (L.G.~(R+S))
REM <- REM +ULP

v

I Final-Processing(including inf, zero, sign) l

Posit Construction Core Arithmetic

ouTt

FIGURE 10. Posit (32,6) division, 12 stage pipelined architecture (dotted
lines are pipeline registers).

divisor inverse approximation. First, a 9-bit inverse approxi-
mation of divisor mantissa is obtained from a 28 x 9 look-up
table with 8 MBS bits of divisor mantissa (excluding hidden
bit) as address bits.

The first NR iteration consists of two 25 x 9 multiplier
and a subtractor. The 25 x 9 multiplier architecture is shown
in Fig 12. It consists of one DSP48E unit and a 1 x 8
multiplier. The sum of both multiplier is carried out by adder
available on DSP48E unit. It requires 3 stages for first NR
iteration. The second NR iteration consists of two 25 x 17
multiplier and one subtractor. It also requires 3 pipeline
stages. The architecture for 25 x 17 multiplier is shown
in Fig. 13, which is composed by one DSP48E unit and a
1 x 17 multiplier. This produces the improved divisor

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

M2[8-bit MSBs]

M1 M2
I Look-up Table (2"8x9) l
v m2_inv0[8:0N———]

| MuTiphier 25x9 | 8
I Subtract from 2 l &9
- - - - .—.— - —ﬁ %
I Multiplier 25x9 l 0
L = = o ST 1B -
I Multiplier 25x17 I o
I
I Subtract from 2 l i
-= _———m—=e== Z
| Mutiplier 25x17 | E

—y M2_inv2[24:0§
I Multiplier 25x25 (3-Stage) l

div._M ¢

FIGURE 11. 9 stage mantissa division architecture (dotted lines are
pipeline registers).

9-bit
25-bit
L |
® L 1
[24x9 |
|_1Y9_|4 24-pit o
a[24] b[8:0] a[23:0] b[8:0]
m1x9 K

. R1"
R DSP4SE

FIGURE 12. 25 x 9 multiplier architecture.

mantissa inverse approximation which suitable for 24-bit
precision.

Finally, the dividend mantissa is multiplied by inverse
approximation using a 25 x 25 multiplier. The architecture
for 25 x 25 multiplier is shown in Fig. 14. It consists of
a DSP48E, one 25 x 8 and one 1 x 17 multiplier. The
strategy for this multiplication break-up is also shown in
Fig. 14. It is a 3 stage multiplier. Thus, mantissa division
using 2 NR iterations requires 5 DSP48 multipliers along
with several small multipliers, and a look-up table for initial
inverse approximation.

VOLUME 7, 2019

25-bit
< 17-bit .

[|

® 1

[2AXT7]
[Ixi7 1. 24-bit R
a24] Db[16:0] a[23:0] b[16:0]

. RO
- DSP48E

24-bit Left-shift ™,

FIGURE 13. 25 x 17 multiplier architecture.

25-bit
[t]
® [!]
[X7]
I D5X8 1. 17-bit >
x17 < 24-bit -
a[24] b[16:0] a[24:0] b[24:17] a[23:0] b[16:0]
Q Ned e
m x17 m 5x8 . RO
-bit Ceft-shi “'-,R1
[32:0] ;
\ DSP48E
| SB 30-Bits",
17 " R2

FIGURE 14. 25 x 25 multiplier architecture.

V. IMPLEMENTATION RESULTS

All the generated posit arithmetic units are functionally ver-
ified against the Julia package for posit [18] provided by the
posit developers using several millions of random test cases.
Moreover, a complete validation is done for 8-bit posit for all
the generated arithmetic.

The proposed HDL generators for posit arithmetic units
are demonstrated on FPGA as well as ASIC platform. These
posit arithmetic units are generated for various combinations
of word size (N) and exponent size (ES) and implemented
on Xilinx Virtex-7 (xc7vx330t-3ffg1157) FPGA device and
Nangate 15nm ASIC platform. A single cycle implementa-
tion details of proposed posit arithmetic units are presented
in Figs. 15 & 16, respectively for Virtex-7 FPGA device
and Nangate 15nm ASIC, for different posit configurations
(NLES). The timing metrics are obtained after placing regis-
ters at the primary inputs and outputs. Also, in order to get a
clear view on the variations in resource utilization, only logics

74597

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

Posit Adder Area in LUTs w.r.t. ES on Virtex-7

Posit Adder Periods (ns) w.r.t. ES on Virtex-7

FIGURE 15. Implementation details for posit adder, multiplier and divider on Virtex-7 FPGA.

are used for integer multiplications and look-up-table in posit
multiplier and posit divider implementation on FPGA device,
instead of DSP48 and BRAM IPs. It can be observed that
for the adder arithmetic, for a given word size the resource
utilization does not vary much for different ES values.
It is because all the major sub-components of adder unit
are mostly dependent on word-size dimension as com-
pared to ES. Whereas, in the case of multiplier and divider
units, the resource utilization decreases with the increasing
ES value. This is because in these units the inherent integer
multiplications are resource dominating units, and by increas-
ing ES value the effective mantissa width decreases which
leads to decrease in the multipliers resource requirements.
Further, in the posit divider unit two NR iterations are used
on 32-bit posit, while no NR iteration is used for 8-bit posit
(only enough look-up-table approximation is generated for
posit mantissa less than 9-bit). Moreover, a parametric vari-
ation in NR iterations can be seen for 16-bit posit, which is
implemented with one and two NR iterations.

The proposed pipelined architectures are also implemented
on Xilinx Virtex-7 FPGA device for (32,6) posit adder, mul-
tiplier and divider arithmetic units and respective design met-
rics are presented in Table-1. These pipelined architectures

74598

Posit Adder Dynamic Power (W) w.r.t. ES on Virtex-7

1400 T T T T T T 18 T T T T T T 0.05 T T
17 /\//\/ 4
1200 /\\/\» o | s 0.04 /\\\/\ |
_. 1000 | 1 B | =
») o
5 S ol] g 003 g
2 800 | e . 1 3 o . + . . < et
3 2 r b k=) 1 -
2 600 | g 5 E 0 0.02 T g 1
< + . + + o 12 - B o Ty
L N=32 —— N=32 —— = e N=32 ——
400 N=24 o L N=24 - 8 o1 | T N=24 o+
N=16 -+ 10 F el N=16 -+ 4 N=16 -+
200 fommmmm N=8 --+-- * N=8 --+-- N=8 -—+--
. . | h | 9 . | | 0 h |
ES ES ES
Posit Multiplier Area in LUTs w.r.t. ES on Virtex-7 Posit Multiplier Periods (ns) w.r.t. ES on Virtex-7 Posit Multiplier Dynamic Power (W) w.r.t. ES on Virtex-i
1800 T T T T T T 18 T T T T T 0.06 T T T
1 L 4
609 \\%/ 16 1 0.05 m |
1400 |- 1 e g s
@ 1200 1 G 14| | 5 004 1
g e = N . + " 2
2 1000 | v e, 1 08 € 003 |- ,
3 2 12 | b [5) . T TR
< 800 |- 1 o € T
= 600 { = & 0.02 []
-+ . . N=342t — 10 p-m “=g§ —_— 2 Nii —_—
400 | + =24 -+ =24 ---+e- [=24 -+]
N=16 - gl S N=16 | 0.01 R N=16 -
200k N=8 --+-- - N=8 ——+-- N=8 --+--
- 1 h 1 1 1 1 1 1 0 1 1 h 1
ES ES ES
Posit Divider Area in LUTs w.r.t. ES on Virtex-7 Posit Divider Periods (ns) w.r.t. ES on Virtex-7 Posit Divider Dynamic Power (W) w.r.t. ES on Virtex-7
3500 T T T T T T 7 T T T T T 0.06 T T
35 B
3000 1 [005 F 1
30 [g 1 2
7 2500 ¢ 1 z iR . | g 0.04 M]
2 2000 [T 1 g T £ 003} 1
. o ——— J— s
§ 1500 | T 1 5 aof T 1 £ T
< N=32, NR=2 —+— a N=32, NR=2 —+— g 002F-. N232;NR=2 —+— 1
1000 £y . N=24, NR=2 -+ | 15 L N=24, NR=2 -+ | Z PRSI T ON24, NR=2
Teses sz, Ne16, NR=2 ot N=16, NR=2 -+ 0.01 - N=16, NR=2 -+ |
500 |- NZ16, NR=1 --+-- | N=16, NR=1 --+-- : N=16, NR=1 —-+--
L N8N —— O N8INRO] 0 _ N8INR=O ——
ES ES ES

TABLE 1. Implementation details for (32,6) posit arithmetic pipelined
architectures on Virtex-7 FPGA.

LUTs | DSP48E | BRAM | Period| Latency
(ns) (cycle)
Adder 946 0 0 4.1 5
Multiplier 854 1 0 4.4 6
Divider 962 6 1 4.6 12

are designed using FPGA specific key resources (DSP48E,
BRAM) in order to optimize them for the design platform,
as discussed in their respective description. Here, value of ES
is taken as 6 as it would leads to a maximum mantissa width
of 23-bit (N-ES-3), similar to single precision (SP) mantissa
bit-width and it can used to visualize the design metrics of
both the posit and SP floating point. None-the-less, same
approach can be used for different ES values.

A comparison of proposed posit adder and multiplier
generator is shown in Table-2. It is compared against
Chaurasiya et al. [12]. Since [12] has reported the synthesis
results using DSP48E for mantissa multiplication in posit
multiplier, and also carried out synthesis without any pri-
mary input/output registers. So, we have also carried out a
similar synthesis for the proposed posit adder and multiplier

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

Posit Adder Area (umg) w.r.t. ES on ASIC 15nm

Posit Adder Periods (ps) w.r.t. ES on ASIC 15nm

Posit Adder Dynamic Power (mW) w.r.t. ES on ASIC 15nr

T T T T T T T T T T 5 T T
1200 | i sof T T T T ol]
280 F B =
|)l R 1
1000 |- e _ 260 | R — B
e R R 2 | I 5 35 1
€ * g L i
E] 800 4 » 240 + g
2] . S 3L]
3 Q220 fr 1 ° I
< 600 P e 1 &€ .0l B = B T,]
N=32 —— N=32 —— s 2t + + N=32 —— 4
400 | N=24 - | 180 |- N=24 -+ 4 & N=24 -
N=16 - e —— N=16 - 1.5 e N=16 -~
JUR [S N8 - 160 N8~ I N8 -
ES ES ES
Posit Multiplier Area (um2) w.r.t. ES on ASIC 15nm Posit Multiplier Periods (ps) w.r.t. ES on ASIC 15nm Posit Multiplier Dynamic Power (mW) w.r.t. ES on ASIC 15r
T T T T T T T 12 T T T T T T
2000 M\ | - M
—~ 10}]
250 E 4 =
1500 f = E
o . 2 5 8 i
g b 2 200 z
T 1000 | T { 8 T 6f 1
2 S E h *
—— N=32 —— 150 |- N=32 —— | S APy T N=32 —— 1
500 - + N=24 -+ 4) — I N=24 - a + N=24 -+
N=16 -+ N=16 -+ 5l + N=16 |
ey, NeB e 100 _oNBoe | BR e, N
ES ES ES
Posit Divider Area (umz) w.r.t. ES on ASIC 15nm Posit Divider Periods (ps) w.r.t. ES on ASIC 15nm Posit Divider Dynamic Power (mW) w.r.t. ES on ASIC 15nr
4500 T T T T T T 3 800 | T T T 10 T T
4000 - 1 700 |- I 1
3500 f 1 ol R TE— z 8 1
— L i > [N g 7r 1
Sl g R . 5
5 2500 | 1 ¢ 500 - 18 87 1
P RS- 38 a |
© 2000 - o] S 400 T i g ST]
< 4500 © N=32, NR=2 —— | o N=32, NR=2 —— 5 4t R N=32, NR=2 ——
Fo s, N=24, NR=2 -+ 300 |- N=24, NR=2 -+ | S g +Ne24, Ngzz |
1000 Tl N516,NR=2 ot N=16, NR=2 -+ a S N=16, NR=2 -+
500 - N=16, NR=1 --+-- N=16, NR=1 -—-+-- 2 ~ope _N=16, NR=1 ——+--]
e, NeBNAO 20p . N-BNBO —— T NesNR0
ES ES ES

FIGURE 16. Implementation details for posit adder, multiplier and divider on Nangate 15nm ASIC.

TABLE 2. Comparison of “Area (LUT) X Period (ns)” product for posit
adder and multiplier on Virtex-7 FPGA.

Posit Posit Adder Posit Multiplier
Format
Proposed [12] Proposed [12]
(16,1) 445x16.146 | 391x32.374 | 273x14.574 | 218x24.041
7184.9 12658 3978 5240.9
(16,2) 492x16.410 404x33.974 | 273x14.332 | 223x23.680
8073.7 13725.5 3912.6 5280.6
(16,3) 450x16.989 | 386x32.466 | 280x14.615 | 219x24.078
7645 12531.9 4092.2 5273.1
(32,1) 1211x19.150 | 934x38.041 | 668x19.076 | 576x31.013
23190.65 35530.3 12742.77 17863.5
(32,2) 1275x19.984 | 981x40.032 | 680x18.921 | 572x33.021
25480 39271.4 12866.28 18888.1
(32,3) 1272x19.752 | 951x39.254 | 720x19.203 | 582x32.263
25125 37330.554 13826.2 18777.1

generator to get the resource utilization under similar synthe-
sis environment. For both cases, the DSP48E uses are same
in all posit formats. A comparison of ‘“‘area (LUT) x period
(ns)” product is shown is Table-2 for overall comparison.
It can be seen that the proposed posit HDL generator out-
perform the [12] in various posit configurations of adder and
multiplier arithmetic.

A visualization of posit arithmetic implementation details
as against the single precision floating point arithmetic is

VOLUME 7, 2019

discussed here. Another recent pipelined implementation of
a fixed size (32,3) posit adder and multiplier architectures is
also included here, together with present proposed.

Table-3 includes the pipelined architectures of 32-bit posit
adders and single precision floating point adders. Various
methods of single precision floating point adder is included
here. The FP architecture from Flopoco [19] and Xilinx [20]
supports only simplified normal single precision implemen-
tation and thus use smaller resources compared of a fully
IEEE-754 compliant implementation. It can be visualize that
the design metrics for posit architectures found an aver-
age place among various methods of floating point adder
implementation.

Table4 presents the design metrics of pipelined posit mul-
tipliers and some recent single precision floating point mul-
tipliers. Similar to the adder unit, here also we can see that
posit multipliers do not seek beyond the FP multipliers. Also,
the presented floating-point multipliers only support normal
implementation, and it would need more resources and peri-
ods for fully IEEE-754 supported implementation.

Similarly, Table-5 includes design metric of proposed
pipelined posit division and floating point division from
Flopoco and Xilinx. The Flopoco and Xilinx uses digit

74599

IEEE Access

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

TABLE 3. 32-bit posit vs 32-bit FP adder architectures.

LUTs | Period | Latency
(ns) (cycle)

Posit Adders
(32,6) Proposed (V7) 946 4.1 5
(32,3) [11] (V7) 1053 | 4.92 | 12
FP SP Adder Methods
Flopoco Single-Path [19] | 421* 3.997 | 4
(V7)(Simplified Normal)
Xilinx FPU v7.1 [11], [20] | 508 309 |8
(V7) (Normal)
Single-Path [12] (V7) 1049 | 41.567 | 1
(Normal)
Standard Single-Path [21] | 541 27.06 1
(V2P) (Denormal) (Slices)
LOP [21] (V2P) (Denor- | 748 2533 | 1
mal) (Slices)
Two-Path [21] (V2P) (De- | 1018 | 21.82 | 1
normal) (Slices)

*Flopoco adder also uses BRAMs (of size 16x2, 64x2) along
with above LUTs, VT: Virtex-7, V2P: Virtex-II pro

TABLE 4. 32-bit posit vs 32-bit FP multiplier architectures.

LUTs | DSP48E | Period| Latency
(ns) (cycle)

Posit Multipliers
(32,6) Proposed (V7) 854 1 4.4 6
(32,3) [11] (V7) 1303 497 | 11
FP SP Multipliers
Xilinx FPU v7.1 (V7) [11] | 630 313 | 8
Xilinx FPU v7.1 (V7) [20] | 238 1 2.165 | 8
Xilinx FPU v7.1 (V7) [20] | 92 2 2.165 | 8
(Simplified Normal)
[12] (V7)(Normal) 533 4 29.051] 1
[22] (V5) (Normal) 392 i 302 | 5

recurrence method for division and support only normal float-
ing point processing. The proposed posit division and [23]
is based on Newton-Raphson division method, which is a
multiplicative division method. However, [23] has presented
the SP inverse metrics, a full division, which would need an
extra 24 x 24 integer multiplier. In general the multiplicative
division methods are used for better performance, low latency
but at some hardware cost. However, the digit recurrence
method requires smaller area but with large latency’s. With
similar division method (NR) posit appears to find similar
design metrics, as the core mantissa arithmetic processing is
exactly similar in both cases and it is dominating architectural
component.

In general, the core arithmetic computational flow is
mostly similar for both the posit and floating point. The
main difference appears in the input extraction and output
construction related architecture, which is little costly in posit
due to run-time varying fields. However, in floating point the
exceptional and sub-normal handling also require a complex
architectural handling and mostly affect the timing metrics.
On the other hand, at qualitative point of view, the posits
provides more dynamic range for similar word-size along
with more exact and accurate results [6], [9] along with
several other benefits.

74600

TABLE 5. 32-bit posit vs 32-bit FP division architectures.

LUTs | DSP48E | Period| Latency
(ns) (cycle)

Posit Division
(32,6) Proposed (V7) 962 6 4.6 12
FP SP Division Methods
SP Inverse (V4) [23] 2443 - 14.957| 15
(Newton-Raphson)
(Normal)
Flopoco (V7) [19] 1110 3.044 | 18
(SRT Digit Recurrence)
(Simplified Normal)
Xilinx FPU v7.1 [20] 173 266 | 26
(Digit Recurrence)
(Normal)

TABLE 6. FIR filter implementation details using posit cores.

Posit Size LUTs | DSP48E | Period (ns)
Posit (32,6) | 5889 16 40
Posit (32,6) | 8585 0 40
Posit (16,3) | 2719 1 25
Posit (16,3) | 3434 0 31
Posit (8,1) 1026 0 18
X
h3 h2 hi ho

FIGURE 17. 4-Tap FIR filter architecture.

All the proposed posit arithmetic HDL generator units are
parameterized for N and ES which can generate hardware
for any desired value. The source code of all the proposed
posit arithmetic HDL generator and pipelined architectures
modules will be provided as an open-source material which
will be available at [24]. To the best of authors’ knowledge
the proposed posit HDL generator for division arithmetic
remains the only available proposal. These open-source pro-
posal on posit arithmetic HDL generator would provide a
basic platform for more advance and innovative research on
posit arithmetic and its application on hardware platform.

A. FIR FILTER IMPLEMENTATION USING POSIT
ARITHMETIC

Here we are presenting the implementation details of
a 4-tap FIR filter using posit arithmetic cores as an example
case. The architecture of FIR filter is shown in Fig. 17 and
is based on the function-4. The implementation is carried
out with full-use as well as with no-use of DSP48 IP. The
implementation details for FIR filter using 3 different posit
word size is presented in Table-6. Here, the single cycle posit
units are used, however, pipelined posit units can be used for

VOLUME 7, 2019

M. K. Jaiswal, H. K.-H. So: PACoGen: Hardware Posit Arithmetic Core Generator

IEEE Access

performance improvement.
y[n] = x[n].hO + x[n — 1].h1 4+ x[n — 2].h1 + x[n — 3].h3
“

VI. CONCLUSIONS

Posit is an recent development in numerical computing and
has shown some significant benefit over IEEE-754 floating
point standard. This paper proposed an open-source parame-
terized posit arithmetic core generator (PACoGen) for posit
adder, posit multiplier and divider arithmetic. It can gen-
erated respective posit arithmetic hardware for any word
size (N) and exponent size (ES) combination and comply
fully with posit definitions. It also presented a pipelined ver-
sion of posit arithmetic architecture for a given posit format.
It addresses the algorithmic development flow of the posit
arithmetic units. This work would enable the community for
more exploration of posit arithmetic and its application. This
would provide an initial platform for posit arithmetic hard-
ware. The proposed posit HDL generators are demonstrated
on Virtex-7 FPGA device as well as on Nangate 15nm ASIC
platform form various combination of posit format. The pro-
posal is compared with available literature on posit adder and
multiplier and shows better design metrics, apart from being
open-access for further development. Moreover, the posit
division HDL generator proposal remains the only available
work. The source code of proposed posit HDL generators and
pipelined architectures would be available at [24]

REFERENCES

[11 J. L. Gustafson, The End of Error: Unum Computing, 1st ed. Boca Raton,
FL, USA: CRC Press, 2015.

[2] W. Tichy, “The end of (numeric) error: An interview with John
L. Gustafson,” Ubiquity, vol. 2016, p. 1, Apr. 2016. doi: 10.1145/2913029.

[3] Rich Brueckner. (2015). Slidecast: John Gustafson Explains Energy
Efficient Unum Computing. Inside HPC. [Online]. Available: https://
insidehpc.com/2015/03/slidecast-john-gustafson-explains-energy-
efficient-unum-computing/

[4] J. Gustafson, “A radical approach to computation with real numbers,”
Supercomput. Frontiers Innov., vol. 3, no. 2, pp. 38-53, Jul. 2016. [Online].
Available: http://superfri.org/superfri/article/view/94

[5] W. Tichy, “Unums 2.0: An interview with John L. Gustafson,” Ubiquity,
vol. 2016, p. 1, Oct. 2016. doi: 10.1145/3001758.

[6] J. L. Gustafson and I. Yonemoto, (2017). Beating Floating
Point at its Own Game: Posit Arithmetic. [Online]. Available:
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

[7] John L. Gustafson. (Feb. 1, 2017). Beyond Floating Point: Next-
Generation Computer Arithmetic Stanford EE Computer Systems Collo-
quium. [Online]. Available: http://web.stanford.edu/class/ee380/Abstracts/
170201.htm] and https://www.youtube.com/watch?v=aP0Y 1uAA-2Y &
feature=youtu.be

[8] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,
Aug. 2008, pp. 1-70.

[9] J. L. Gustafson. (2017). Posit Arithmetic.
https://posithub.org/docs/Posits4.pdf

[10] M. K. Jaiswal and H. K.-H. So, “Universal number posit arithmetic gener-
ator on FPGA,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1159-1162.

[11] J. Hou, Y. Zhu, S. Du, and S. Shong, “Enhancing accuracy and
dynamic range of scientific data analytics by implementing posit arith-
metic on FPGA,” J. Signal Process. Syst., pp. 1-12, Nov. 2018. doi:
10.1007/511265-018-1420-5.

[12] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, and R. Leupers, ‘“Parameterized posit arithmetic hardware gen-
erator,” in Proc. IEEE 36th Int. Conf. Comput. Design (ICCD), Oct. 2018,
pp. 334-341.

[Online]. Available:

VOLUME 7, 2019

[13] M. K. Jaiswal and H. K.-H. So, “Architecture generator for type-3 unum
posit adder/subtractor,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1-5.

[14] S.FE Oberman and J. M. Flynn, “An analysis of division algorithms and
implementations,” Standford Univ., Stanford, CA, USA, Tech. Rep., 1995.

[15] S. F. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7/sup TM/ microprocessor,” in Proc. 14th
1EEE Symp. Comput. Arithmetic, Apr. 1999, pp. 106-115.

[16] P. Montuschi, L. Ciminiera, and A. Giustina, ‘“Division unit with Newton-
Raphson approximation and digit-by-digit refinement of the quotient,” IEE
Proc. Comput. Digit. Techn., vol. 141, no. 6, pp. 317-324, Nov. 1994.

[17] NC State Univ. (2014). FreePDKI5. [Online]. Available:
https://research.ece.ncsu.edu/eda/freepdk/freepdk15/

[18] I. Yonemoto, (2017). Sigmoid Numbers for Julia. [Online]. Available:
https://github.com/interplanetary-robot/SigmoidNumbers

[19] F. D. Dinechin and B. Pasca. Flopoco Project: Floating-Point Cores (but
not Only) for FPGAs (but not Only). Accessed: Dec. 27, 2018. [Online].
Available: http://flopoco.gforge.inria.fr/

[20] Xilinx. LogiCORE IP Floating-Point Operator v7.1. [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/ru/
floating-point.html

[21] A. Malik, D. Chen, Y. Choi, M. H. Lee, and S. B. Ko, “Design tradeoff
analysis of floating-point adders in FPGAs,” Can. J. Elect. Comput. Eng.,
vol. 33, nos. 34, pp. 169-175, 2008.

[22] M.K.Jaiswal and H. K.-H. So, “DSP48E efficient floating point multiplier
architectures on FPGA,” in Proc. 30th Int. Conf. VLSI Design, 16th Int.
Conf. Embedded Syst. (VLSID), Jan. 2017, pp. 1-6.

[23] P. Malik, “High throughput floating-point dividers implemented in
FPGA,” in Proc. IEEE 18th Int. Symp. Design Diagnostics Electron.
Circuits Syst., Apr. 2015, pp. 291-294.

[24] M. K. Jaiswal. (2019). PACoGen: Posit Arithmetic Core Generator.
[Online]. Available: https://github.com/manish-kj/PACoGen

MANISH KUMAR JAISWAL (M’ 12) received the
B.Sc. and M.Sc. degrees from D.D.U. Gorakhpur
University, India, in 2002 and 2004, respec-
tively, the M.S. degree (By Research) from IIT
Madras, in 2009, and the Ph.D. degree from
the City University of Hong Kong, in 2014. He
is currently a Research Scientist with The Uni-
versity of Hong Kong. His research interests
include digital VLSI design, reconfigurable com-
puting, ASIC/FPGA SoC design, and reconfig-
urable machine learning. He received the Outstanding Academic Perfor-
mance Award for his Ph.D. degree.

HAYDEN K.-H. SO (S’03-M’07-SM’15) received
the B.S., M.S., and Ph.D. degrees in electri-
cal engineering and computer sciences from the
University of California at Berkeley, Berkeley,
CA, USA, in 1998, 2000, and 2007, respectively.
He is currently an Associate Professor with the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong. He received
the Croucher Innovation Award, in 2013, for his
! work in power-efficient high-performance hetero-
geneous computing systems. He received the Faculty Best Teacher Award,
in 2011, and the University Outstanding Teaching Award (Team), in 2012.

74601

http://dx.doi.org/10.1145/2913029
http://dx.doi.org/10.1145/3001758
http://dx.doi.org/10.1007/s11265-018-1420-5

	INTRODUCTION
	BACKGROUND: THE POSIT NUMBER SYSTEM
	PACOGEN: POSIT ARITHMETIC CORE GENERATOR
	ADDER/SUBTRACTOR HDL GENERATOR
	POSIT DATA EXTRACTION
	CORE ADDITION ARITHMETIC
	POSIT DATA COMPOSITION AND ROUNDING

	MULTIPLIER HDL GENERATOR
	DIVISION HDL GENERATOR

	PIPELINED POSIT ARITHMETIC ARCHITECTURES
	ADDER/SUBTRACTOR ARCHITECTURE WITH N = 32 AND ES = 6
	MULTIPLIER ARCHITECTURE WITH N = 32 AND ES = 6
	DIVISION ARCHITECTURE WITH N = 32 AND ES = 6

	IMPLEMENTATION RESULTS
	FIR FILTER IMPLEMENTATION USING POSIT ARITHMETIC

	CONCLUSIONS
	REFERENCES
	Biographies
	MANISH KUMAR JAISWAL
	HAYDEN K.-H. SO

