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Abstract 

This paper presents a dual boundary element analysis of three-dimensional cracks in layered 

and graded halfspaces. The fundamental solution of a multilayered solid is used to develop the 

dual boundary element method so that only the external boundary surface and crack surface 

need to be discretized while the material interfaces do not need to be discretized. Infinite 

boundary elements and crack-tip discontinuous elements are introduced to consider the far-

fields of a layered halfspace and capture the crack-tip behavior, respectively. Special attentions 

are given to strongly singular and hypersingular integrals in the discretized displacement and 

traction boundary integral equations. For square-shaped, penny-shaped and elliptical cracks 

located in a homogeneous halfspace, the stress intensity factors obtained with the present 

formulation are in very good agreement with existing numerical results and closed-form 

solutions. The square-shaped cracks in horizontally layered halfspaces and the penny-shaped 

and elliptical cracks in graded halfspaces are analyzed. Results show that the material 

heterogeneity in layered and graded halfspaces can have a profound effect on the stress intensity 

factors. 
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1. Introduction 

1.1 Background 

Layered materials, such as sedimentary rocks and layered crystals, widely exist in nature or 

man-made structures. It has been well recognized that non-homogeneity of layered solids has a 

significant effect on the deformation and failure in crack free or cracked solids. The problems 

of fracture in layered solids are extremely important and have been studied in depth. Many 

analytical and numerical methods can be used to analyze fracture mechanics problems in 

layered solids. Arin and Erdogan [1] analyzed a penny-shaped crack in an elastic layered solid 

by solving integral equations. Lin and Keer [2] calculated the crack opening displacements for 

a vertical planar crack in a layered transversely isotropic medium by the boundary integral 

equation method. Kuo and Keer [3] and Noda et al. [4] used the body force method to investigate 

penny-shaped and elliptical cracks in multilayered composites, respectively. Zhang and Jeffrey 

[5] studied crack problems in three-layered elastic media using an image method. Alaimo et al. 

[6] and Xiao and Yue [7] applied boundary element methods to layered composite structures.  

 

Functionally graded materials (FGMs), which appeared in 1984, are another type of composite 

materials formed of two or more constituent phases with a continuously variable composition. 

Owing to their unique combination of mechanical and physical properties, FGMs have been 

chosen for advanced engineering applications. The mechanical responses of FGMs are 

especially important in many engineering fields and are of great interest to material scientists, 

design and manufacturing engineers. Jin and Noda [8], Ozturk and Erdogan [9], Paulino [10], 

Yue et al. [11], etc., analyzed the fracture mechanics in FGMs. Birman and Byrd [12] further 

reviewed the principal developments in various aspects of theories and applications of FGMs, 

including the problems of fracture and fatigue of FGMs. 

 

In linear elastic fracture mechanics, the stress intensity factors (SIFs) play a major role in the 

description of singular stress fields and the prediction of crack propagations. For some simple 

geometrical and loading conditions of cracked bodies, the SIFs can be found from handbooks 

(e.g., Rooke and Cartwright [13]; Tada et al. [14]). It should be mentioned that Rooke and his 
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co-workers have used compounding methods [15, 16], integral transforms [17] and weight 

functions [18] to analyze different types of two- and three-dimensional crack problems and 

calculate SIFs. For complicated boundary conditions of layered and cracked bodies, the 

numerical methods must be developed for obtaining SIFs and other fracture parameters. 

1.2 Literature review of boundary element methods 

The boundary element method (BEM) is now firmly established in many engineering 

disciplines and is increasingly observed as an effective and accurate numerical approach (Cheng 

and Cheng [19]). The attraction of BEM can largely be attributed to the reduction in the 

dimensionality of the problem and to the efficient modeling of the stress concentration. Fracture 

mechanics has been the most active specialized area of research using BEM (for review and 

references see Aliabadi [20]). Since the geometric coincidence of opposite nodes across the 

crack surface provides identical equations for these nodal points, straightforward application of 

the conventional BEM to crack problems leads to a mathematical degeneration. To overcome 

this difficulty, the multi-domain technique of the BEM, which needs to introduce artificial 

boundaries into the cracked body, has been suggested. However, this method is not efficient 

because artificial boundaries results in the increase of the numbers of algebraic equations and 

boundary elements. 

 

Hong and Chen [21] developed dual boundary integral equations for problems containing 

degenerate boundaries and Chen and Hong [22] presented the advances of dual boundary 

element methods (DBEM) with emphasis on hypersingular integrals and divergent series. The 

DBEM for analysis of fracture mechanics have two sets of boundary integral equations: 

displacement boundary integral equation and traction boundary integral equation. In the 

conventional DBEM, the displacement boundary integral equation is collocated on the external 

boundary surface and on one side of crack surface while the traction boundary integral equation 

is collocated on the other side of the crack surface. This DBEM was firstly developed by Portela 

et al. [23] for two-dimensional problems and then extended to three-dimensional problems by 

Mi and Aliabadi [24]. Portela et al. [25] and Mi and Aliabadi [26] further used the DBEM for 

analysis of crack growth. Aliabadi [20] reviewed the development of DBEMs in the analysis of 
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the fracture mechanics. More recently, Aliabadi and his co-workers (e.g., Wen and Aliabadi 

[27]; Li et al. [28]) investigated different types of fracture problems using DBEMs. 

 

In applying the conventional DBEM, the displacements on either side of the crack surface are 

collocated as unknown variables. However, the displacements may be unnecessary for the 

calculation of SIFs and increase the calculation amounts. Pan and Amaidei [29] and Pan [30] 

developed another type of DBEM for two-dimensional anisotropic cracked solids, which 

applies the displacement integral equation to the external boundary surface only and the traction 

integral equation on one side of the crack surface. Pan and Yuan [31] further developed this 

DBEM for the analysis of three-dimensional cracks in anisotropic solids and described its 

advantages in detail. Using this single-domain BEM, many researchers have studied different 

types of crack problems. Cisilino et al. [32,33] investigated linear and nonlinear crack growth 

using the DBEM. Yue et al. [34] and Xiao and Yue [7] incorporated the fundamental solutions 

of transversely isotropic bi-materials and multi-layered isotropic solids into this DBEM for the 

analysis of three-dimensional crack problems in two different materials. Dong et al. [35] 

extended the DBEM for the analysis of cracked transversely isotropic and inhomogeneous 

solids. Herein, we will further develop this single-domain BEM for the study of three-

dimensional cracks in horizontally layered and graded halfspaces. 

1.4 Aim and approach of this study 

The layered and graded solids containing cracks can be assumed as cracked halfspaces. In this 

paper, we will present a numerical implementation of the DBEM for the analysis of three-

dimensional cracks, shown in Figs. 1 and 2. The generalized Kelvin solutions in a multilayered 

fullspace proposed by Yue [36] are applied as the fundamental solution in DBEM. As a result, 

only the external boundary surface and crack surface need to be discretized while the material 

interfaces do not need to be discretized. Furthermore, two types of boundary elements and three 

types of nine-node crack elements are used to discretize the external boundary surface and the 

crack surface, respectively. Special attentions are given to various singular integrals involved 

in the discretized boundary and traction integral equations. Finally, the proposed DBEM is 

applied to solve several crack problems in layered and graded halfspaces. Compressive tractions 
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on the external boundary surface may induce closure over a part of the crack and opening over 

the exterior region (Selvadurai [37]). This will result in a unilateral contact problem of the 

Signorini-type where the magnitude of the zone contact needs to be determined. In this study, we 

shall only consider the cases of the crack opening under the action of loadings on the external 

boundary surface and the crack surface. The influence of crack positions and material properties 

in layered and graded halfspaces on stress intensity factors are analyzed in detail. 

 

2. Dual boundary integral equations for a cracked and layered halfspace 

2.1 General 

The fundamental solution of a multilayered solid developed by Yue [36] is the analytical 

solution for the elastostatic field in a layered solid of infinite extent due to the action of 

concentrated point loads. More details of the solutions can be found in Yue [38,39]. The 

dissimilar homogeneous layers adhere an elastic solid of upper semi-infinite extent and another 

elastic solid of lower semi-infinite extent. As shown in Fig. 1, the interface between any two 

connected dissimilar layers is fully bonded and the layer number is an arbitrary non-negative 

integer. Since 2000, Yue and his co-workers (Xiao and Yue [40]) have incorporated this 

fundamental solution into the BEMs for the analysis of the fracture mechanics in layered solids 

and found the solutions for many specific problems of interests in science and technology. 

 

As shown in Fig. 3, the boundaries of a cracked and layered halfspace can be divided into 

external boundary surface S at z=0 and the two sides of the crack surface   and  . The 

boundary surface S is further divided into two parts SF and SI, which represent a core region 

around the traction area or near the crack surface and a far-field region beyond the traction area 

or the crack surface, respectively. 

 

Following the procedure of Yue et al. [34] and Xiao et al. [41], the dual boundary integral 

equations for a cracked and layered halfspace can be easily introduced using the fundamental 

solution of a multilayered fullspace. 
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2.2 Displacement boundary integral equation 

The displacement boundary integral equation (BIE) for a cracked and layered halfspace can be 

expressed as 
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where PS is a source point on the external boundary surface S (=SF +SI), Q is a field point on 

external boundary surface and/or crack surface,  QPt S
Y
ij ,   and  QPu S

Y
ij ,   are the kernel 

functions of the fundamental solution (see Appendix A),  Qt j  and  Qu j  are the tractions 

and displacements of the field point Q on the boundaries,  ju Q   is relative crack 

discontinuous displacements,  Sij Pc  is a coefficient that is dependent on the local boundary 

geometry at the source point PS. For smooth boundaries, the free terms   0 5ij S ijc P . δ . 

2.3 Traction boundary integral equation 

The traction boundary integral equation (BIE) for a cracked and layered halfspace can be 

expressed as 
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where P
   is a source point on the crack surface  ,  Q is a field point on external boundary 

surface and/or crack surface, respectively,  in P
   is the outward unit normal on the source 

point P
   ,  Y

ijkT P ,Q
  and  Y

ijkU P ,Q
  are the new kernel functions of the fundamental 

solution obtained using the kernel functions  Y
ij Γ

t P ,Q  and  Y
ij Γ

u P ,Q  
of the fundamental 

solution, which are presented in Xiao et al. [41]. 

 

3. Numerical scheme 
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Xiao et al. [41] and Yue et al. [34] presented the discretization techniques of the external 

boundary surface and the crack surface in detail, respectively. Details will not be presented here. 

Basically, the eight-node isoparametric elements are used to discretize the core region SF and 

infinite boundary elements are used to discretize the far-field region SI. Three types of 

continuous and discontinuous nine-node elements are introduced to discretize the crack surface. 

Continuous elements are used to discretize the crack surface far away from the crack tip and 

discontinuous elements are used to discretize the crack surface near the crack tip. 

 

The coordinates at any point in a nine-node element are related to its element nodal coordinates 

as follows: 

9
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           (3a) 

where cN  ( 1 9= -  ) are the shape functions of the elements on the crack surface. Detailed 

expressions for cN ( 1 9= - ) can be found in Yue et al. [34]. The nodes near the crack tip in 

discontinuous elements are at a distance of 1/3 from the element edge =-1   or  =-1 . 

 

For the element on the crack surface, the discontinuous displacements are approximated by 

their nodal values 

9

1

Δ Δc α
i α i

α

u gN u


                (3b) 

where g is the coefficient for capturing the characteristics of the discontinuous displacements 

near the crack front and is presented by 

(1) 1g   for the continuous element, 

(2) 1g η   for the discontinuous element type I, and 

(3)   1 1g ξ η    for the discontinuous element type II. 

 

Suppose that the crack front is smooth and the crack front is away from the material interface. 
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The stress and displacement near the crack front, respectively, vary with 1 / r   and r  , 

where r is as defined in Fig. 4. The relation of the discontinuous displacements on the crack 

surface and the SIFs can be expressed as 

 I 32

3

2 2 2 24 1

E π π π π
K Δu r,θ , ,φ

rν

       
                 (4a) 

 II 22

3

2 2 2 24 1

E π π π π
K Δu r,θ , ,φ

rν

       
                 (4b) 

 III 1

3

4 1 2 2 2 2

E π π π π
K Δu r,θ , ,φ

ν r
       

                  (4c) 

where ( 1 2 3x ,x ,x  ) and (  ,,r  ) are, respectively, the Cartesian coordinate and spherical 

coordinate systems located at the crack front. 

 

The discontinuous displacements near the crack front can be used to obtain accurate SIF values. 

Here, the discontinuous displacements at the points    51 10ξ ,η ,η     or 

   51 10ξ ,η ξ ,     of a discontinuous element near the crack front are calculated by using 

Eq. (3b) and are substituted into Eq. (4) to obtain SIF values. 

 

4. Numerical integration 

4.1 General 

In the displacement BIE (1), the source point PS is positioned on the external boundary surface, 

i.e., the horizontal boundary surface. In this case, on the left-hand side of Eq. (1), there are 

strongly singular integrals and on the right-hand side of Eq. (1), there are weakly singular 

integrals. In the traction BIE (2), the source point 
Γ

P   is positioned on the crack surface. All 

the integrals on the external boundary surface in Eq. (2) are not singular. On the right-hand side 

of Eq. (2), there are hypersingular integrals. 
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The regular integrals in Eqs. (1) and (2) can be calculated by using Gaussian quadrature. The 

weakly singular integrals in Eq. (1) are computed by applying an integration scheme based on 

a linear coordinate transformation (Beer [42]). In the ensuing, the evaluation of the strongly 

singular integrals in Eq. (1) and the hypersingular integral in Eq. (2) will be introduced. 

4.2 Strongly singular and hypersingular integrals 

In the formulations of the dual boundary element methods by Pan et al. [31] and Yue et al. [34], 

the strongly singular integrals together with the free term ijc  can be evaluated by the rigid-

body motion method. However, because of using infinite boundary elements in Eq. (1), this 

indirect method cannot be used for the analysis of the strongly singular integrals. In this case, 

the strongly singular integrals and the free term ijc  need to be calculated directly. Pan and Yuan 

[31] proposed the numerical method for the evaluation of the hypersingular integrals in the 

traction BIE (2). Herein, we use the methods proposed by Pan and Yuan [31] for developing 

numerical quadrature methods for strongly singular and hypersingular integrals in Eqs. (1) and 

(2). The proposed method applies Kutt’s numerical quadrature (Kutt [43,44]). 

 

On the isoparametric and infinite boundary elements of the external boundary surface in Eq. 

(1), the strongly singular integrals can be expressed as 

       
1 1

1 1

Y c c
ij S αt P ξ ,η ,Q ξ ,η N ξ ,η J ξ ,η dξdη

 
                  (5a) 

       
1 1

1 1

Y c c u
ij S αt P ξ ,η ,Q ξ ,η N ξ ,η J ξ ,η dξdη

 
                 (5b) 

where N  and uN
  are, respectively the interpolation functions of isoparametric and infinite 

boundary elements, J is the Jacobian transformation and the collocation point  c c
SP ξ ,η  

coincides with one of the nodal points on the element. It can be observed that the integrand is 

 2O r . 

 

On the elements of the crack surface in Eq. (2), the hypersingular integrals can be expressed as 

         
1 1

1 1

Y c c c
ijk αΓ

T P ξ ,η ,Q ξ ,η g ξ ,η N ξ ,η J ξ ,η dξdη
 

             (6) 
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where J is the Jacobian transformation and the collocation point  c c

Γ
P ξ ,η  coincides with 

one of the nodal points on the element. It can be observed that the integrand is  3O r . 

 

Introducing the following polar coordinates transform 

c

c

ξ ξ r cosθ

η η r sinθ

 

 
                                (7) 

Eqs. (5) and (6) can then be rewritten as 

        2
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m
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        2
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m

t P ξ ,η ,Q r,θ N r,θ J r,θ rdrdθ               (8b) 

and 

          2

1 0

θ R θ Y c c c
ijk αΓθ

m

T P ξ ,η ,Q r,θ g r,θ N r,θ J r,θ rdrdθ
           (9) 

where the summation over m is for all the triangles on the element. 

 

Now it can be observed that the integrands in Eq. (8) are of singularity  1O r   and the 

integrand in Eq. (9) is of singularity  2O r . Kutt’s numerical quadrature can be utilized to 

evaluate the inner finite-part integral with respect to r. On the other hand, the outer integral with 

respect to θ is regular and can be calculated by the regular Gaussian quadrature. 

 

For a given Gaussian quadrature sθ , the inner integral in Eq. (8) can be approximated as N-

equispace quadrature as follows 

   
0

1

1NR

l l
l

f r l
dr w c ln R f R

r N

    
 

                  (10) 

where lw   are the weights and lc   the coefficients given by Kutt, the integrand for the 

isoparametric element is given by 

          2, , , , , Y c c
ij S s α s sf r t P ξ η Q r θ N r θ J r θ r                (11a) 
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and the integrand for the infinite boundary element is given by 

          2, , , , , Y c c u
ij S s α s sf r t P ξ η Q r θ N r θ J r θ r              (11b) 

 

For a given Gaussian quadrature sθ , the inner integral in Eq. (9) can be approximated as N-

equispace quadrature as follows 

   20
1

1 1NR

l l
l

f r l
dr w c ln R f R

r R N

    
 

                   (12) 

where 
lw   are the weights and 

lc   the coefficients given by Kutt, the integrand for the 

isoparametric boundary element is given by 

            3, , , , , , Y c c
ijk s s α s sΓ

f r T P ξ η Q r θ g r θ N r θ J r θ r
           (13) 

It is point out that the weights 
lw  and the coefficients 

lc  in Eqs. (10) and (12) have different 

values for a given l value. 

 

5. Numerical results and discussion 

Based on the solution expressions presented above, the computer program has been written in 

FORTRAN to calculate the discontinuous displacements across crack surfaces and the 

displacements on the external boundary surface and further obtain the SIFs using the 

discontinuous displacements. In this section, several numerical examples including layered and 

graded solids are presented to verify the program and to show the efficiency and accuracy of 

the present DBEM formulation in calculating the SIFs. Numerical results also show that the 

material heterogeneity can have a profound effect on the SIFs. 

 

5.1 A square-shaped crack in a homogenous halfspace 

The first example given below is to analyze a square-shaped crack in a homogeneous halfspace, 

shown in Fig. 5. The square-shaped crack surfaces are parallel to the boundary surface z=0 and 

subjected to a uniform compressive stress p0. The side length of the square is 2a. As shown in 

Fig. 3, the core region SF of the traction free boundary is represented by a square area (5a×5a). 

The center of the square core region SF is identical to the origin of the coordinate system Oxyz. 
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The discretization mesh of the traction free boundary is shown in Fig. 6. The core region SF is 

discretized with a total of 320 isoparametric elements. The far-field region SI outside the square 

core region is discretized with a total of 64 infinite elements. The mesh of the crack surface is 

shown in Fig. 7. One hundred (10×10) nine-node elements are used to discretize the crack 

surface. Among these elements, there are 64 nine-node isoparametric elements, 32 

discontinuous elements of type I, and four discontinuous elements of type II. 

 

For the given loading and geometrical conditions, there are the same SIF values along the crack 

front of four sides of the square-shaped crack. Fig. 8 presents the variations of the normalized 

SIFs  I 0KI K / p πa ,  II 0KII K / p πa ,  III 0KIII K / p πa  along the crack front of 

one side of the square-shaped crack in a homogeneous halfspace with the depth d. It can be 

found that with the depth d increasing, the absolute SIF values of modes I, II and III decrease. 

At the depth d/a=6, the maximum SIF values KI=0.7580, KII=0.0008 and KIII=0.0009. 

 

It is known that in the case of a square-shaped crack in a homogeneous fullspace, the variation 

of mode-I SIFs along the crack front is independent of the material properties and the SIF values 

of modes II and III are equal to zero. Pan and Yuan [31] and Weaver [45] respectively obtained 

the maximum mode-I SIF values of a square-shaped crack subject to a uniform compressive 

stress, i.e., KI=0.7626 and 0.74. It can be found that with the depth increasing, the SIF values 

of a square-shaped crack in a homogeneous halfspace approach the ones in a homogeneous 

fullspace and at d/a=6 the difference of the SIF values between two cases becomes negligible.  

 

We choose two distances 1/4 and 1/3 of the nodes to the element edge =-1   or =-1   to 

analyze the influence of the positions of the nodes in discontinuous elements on the SIF. For a 

square-shaped crack in a homogeneous fullspace and subject to a uniform compressive stress, 

the maximum SIF values KI=0.7620 and 0.7626, respectively, for the distances 1/4 and 1/3. 

Numerical verifications illustrate that the SIFs are insensitive to the locations of these nodes in 

discontinuous elements. 

 



13/44 

5.2 Square-shaped cracks in layered bi-material halfspaces 

5.2.1 General 

The second example considers a square-shaped crack (the side length 2a) in a linear elastic 

halfspace composed of one layer bonded to another homogeneous halfspace, shown in Fig. 

9. The square-shaped crack surfaces are parallel to the external boundary surface and the 

material interface. The layer and the halfspace are assigned the name: material 1, material 2 

respectively. The coordinate systems  x, y,z   and  x , y ,z     lie in the external boundary 

surface and the crack surface, respectively. The origin of the coordinate system  x , y ,z    is 

situated at the center of the square-shaped crack, i.e.,    0 0x, y,z , ,h . The thickness of the 

layer is designed 2h and the crack is located at z=h. The external boundary surface is discretized 

into the mesh shown in Fig. 6 and the crack surface is discretized into the mesh shown in Fig. 

7. Two cases are considered as follows: Case 1: 1E 20 GPa, 1= 0.3 and 2E 40 GPa, 2 =

0.25; Case 2: 1E 40 GPa, 1= 0.25 and 2E 20 GPa, 2 = 0.3. In the ensuing, two different 

modes of loading are considered to illustrate the variations of the SIFs with material properties 

and crack positions. 

 

5.2.2 A square-shaped crack under a compressive stress on the crack surface 

The first mode of loading is that the crack surface is subject to a uniform compressive stress p0, 

shown in Fig. 9. Fig. 10 illustrates the variations of the normalized SIFs  I 0KI K / p πa ,

 II 0KII K / p πa   and  III 0KIII K / p πa   with the depth h. Table 1 presents the 

maximum values of the normalized SIFs KI, KII and KIII. For the given loading and geometrical 

conditions, there are the same SIF values along the crack front of four sides of the square-

shaped crack. Herein, only the SIFs along the crack front of one side of the square-shaped crack 

are presented. 

 

In Fig. 10, it can be found that all the SIF values approach the ones in a homogeneous fullspace 

as h increases. This is because the external boundary surface exerts a weak influence on the 

crack opening and sliding as the h value increase. The crack opening is constrained by the stiffer 
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lower halfspace (Case 1) and the constraint becomes more pronounced as the depth h decreasing. 

This induces the decrease of the SIF KI with the depth h increasing, as shown in Fig. 10a. As a 

result, for a given h value, the SIF KI for Case 1 is smaller than the one for Case 2. In Fig. 10b, 

the values of the SIF KII decrease with the depth h increasing and approaches zero in a 

homogeneous halfspace. As the stiffer lower halfspace (Case 1) exists, the crack sliding become 

more obvious and larger values of the SIF KII appear. As a result, for a given h value, the values 

of the SIF KII for Case 1 are larger than the ones for Case 2. It can also be found in Fig. 10c 

that the variations of the SIF KIII for Cases 1 and 2 with the depth h are much similar to the 

ones of the SIF KII. 

 

5.2.3 A square-shaped crack under a tensile stress on the boundary surface 

The second mode of loading is that the external boundary surface (2a×2a) at z=0 is subject to 

a uniform tensile stress p0, shown in Fig. 11. The centers of the loading domain and the square-

shaped crack are, respectively, located at the points (0,0,0) and (0,0,h) of the coordinate system 

Oxyz. Fig. 11 illustrates the variations of the SIFs KI, KII and KIII with the depth h. Table 2 

presents the maximum SIF values of the SIFs KI, KII and KIII. For the given loading and 

geometrical conditions, there are the same SIF values along the crack front of four sides of the 

square-shaped crack. 

 

In Fig. 12 and Table 2, it can be found that all the SIF values approach zero as h increases. In 

Fig. 12a, for a given h value, the values of the SIF KI for Case 2 are larger than the ones for 

Case 1. This is because the crack opening is constrained by the stiffer lower halfspace (Case 1) 

and the constraint becomes more pronounced as the depth h decreasing. However, in Fig. 12b, 

for a given h value, the values of the SIF KII for Case 2 are smaller than the ones for Case 1. In 

Fig. 12c, for a given h value, the values of the SIF KIII for Case 2 are smaller than the ones for 

Case 1. These variations of the SIF values are much related to the lower halfspace. The stiffer 

lower halfspace (Case 1) exists, the crack sliding become more obvious. Comparing to the crack 

problem studied in Section 5.2.2, the SIF values of the square-shaped cracks under the action 

of two different loadings have the same variations for Cases 1 and 2. It can further be found 

that under the same conditions, the SIF values of the crack under the action of a compressive 
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stress on the crack surface are larger than the ones under the action of a tensile stress on the 

external boundary surface. 

 

5.3 Penny-shaped and elliptical cracks in graded halfspaces 

5.3.1 General 

The third example given below is to analyze penny-shaped and elliptical cracks in 

nonhomogeneous halfspaces, shown in Fig. 2. The halfspace consists of a homogeneous 

halfspace and a nonhomogeneous layer and two materials are fully bonded. The crack is located 

at the interface between the graded layer and the homogeneous halfspace. The previous results 

show that in problems involving practical materials the influence of the Poisson’s ratio on the 

stress intensity factors is rather insignificant [9]. In this study, it is assumed that the Poisson’s 

ratio of the composite medium is constant ( 1 2= =0.3  ) and the elastic modulus has the form 

   
2 1

h zE z E e  ,   2 1

1
0= ln E z / E

h
                (14) 

where h is the thickness of the graded layer and    is a material constant representing the 

material gradients. 

 

For 0 z / a h   , the graded layer is closely approximated by n bonded layers of elastic 

homogeneous media. Each layer has the thickness equal to h/n and elastic modulus equal to 

 2E z  at the lower depth of the layer. A homogeneous material bonded with the graded layer 

is considered as a semi-infinite domain. For all the layers, the Poisson’s ratios are the same and 

equal to 0.3. Fig. 13 illustrates an approximation of the continuous depth variation of the elastic 

modulus by a large number of piece-wisely homogeneous layers. It can be observed from Fig. 

13 that a close approximation of the elastic modulus variation can be obtained using a large 

number of n. The results presented by Yue et al. [15] show that when n=20, the accurate stress 

intensity factors can be obtained. In the following analysis, the layer discretization number n=50 

is used to calculate the discontinuous displacements on the crack surface. 
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It has been shown that the crack-tip field singularities and angular distributions in graded 

materials are as the same as those in homogeneous elastic solids provided that the properties of 

the material are continuous and piecewise differentiable (see Jin and Noda [8], Ozturk and 

Erdogan [9]). The result is independent of the material properties and the orientation of the 

crack. Thus, Eq. (4) can be further used to calculate the SIF values of the cracks in a graded 

material. 

 

5.3.2 A penny-shaped crack under a compressive stress on the crack surface 

As shown in Fig. 2, a penny-shaped crack is located at the interface between a graded layer and 

a homogeneous halfspace. The crack surfaces are subject to a uniform compressive stress p0 

and the boundary surface at z=0 is not subject to any loadings. The boundary surface at z=0 is 

discretized into the mesh shown in Fig. 6 and the crack surface is discretized into the mesh 

shown in Fig. 14. 

 

Fig. 15 illustrates the variations of the normalized SIFs KI and KII where I 0/KI K K  and 

II 0/KII K K  ( 0 02 /K p a  ). The corresponding SIF values are also listed in Table 3.  

For the given values of h and  , there are the same SIF values of modes I and II at any positions 

of the crack tip. For the penny-shaped crack (h/a=2) in a homogeneous halfspace, KI=1.06458 

and KII=0.01414 from the present BEM as compared with KI=1.048 and KII=0.015 in Rooke 

and Cartwright [13]. In Fig. 15, the SIF values (KI and KII) for positive and negative   values 

are located below and above the SIF values curve for 0= , respectively. As the absolute   

value increases, the SIF values monotonically move away from the SIF curve from 0=  . 

Additionally, for a given    value, as the depth h increases the SIF values decrease. For 

1 8h / a . , KII does not vary obviously with the depth h increasing. The above results indicate 

the following physical understandings. For the crack in a compliant body (i.e., 0    or 

1 2E E ), the crack opening is constrained by the upper stiffer graded layer so that the SIF 

values decrease. On the other hand, for the crack in a stiffer solid (i.e., 0   or 1 2E E ), the 

SIF values gain enlarged. 
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5.3.3 An elliptical crack under a compressive stress on the crack surface 

As shown in Figs. 2 and 16, an elliptical crack (a=2b) is located at the interface between a 

graded layer and a homogeneous halfspace. The crack surfaces are subject to a uniform 

compressive stress p0 and the boundary surface at z=0 is not subject to any loadings. The 

boundary surface at z=0 is discretized into the mesh shown in Fig. 6 and the mesh of the crack 

surface is much similar to the one shown in Fig. 14. 

 

Figs. 17-19 illustrate the variations of the normalized SIFs KI, KII and KIII where 

 I 0/KI K p b  ,  II 0/KII K p b   and  III 0/KIII K p b  . The mode I and II 

SIF values at the minor-axis crack tip are also listed in Table 4. The SIF values are presented as 

functions of the nonhomogeneous parameter   and the crack distance h from the boundary 

surface z=0. At the minor-axis crack tip (i.e., o=90 ) of the elliptical crack in a homogeneous 

halfspace, for h/a=0.5 and 1, KI=1.18058 and 0.92462, respectively, from the present BEM as 

compared with KI=1.1878 and 0.91536 in Noda et al. [4]. 

 

Fig. 17 illustrates the variations of the mode I SIF values at the crack tip    0 0, , , ,x y z a     

(i.e., o=0  ) and  0 0b, ,   (i.e., o=90  ) with the parameters    and h. With    increasing 

from 0° to 90°, the mode I SIF values increase. It means that the mode I SIF has the maximum 

value at the minor-axis crack tip. It can be further found that the mode I SIF values for positive 

and negative values of   are located, respectively, at the two sides of the SIF curve for 0= . 

Note that the curve for 0=  presents the SIF values for the crack in a homogeneous halfspace. 

As the   values decrease, the mode I SIF values increase. This is because that more compliant 

for the graded layer, more easy the crack opening. For a given value, the SIF values decrease 

with the depth h increasing and do not vary obviously after some depth. 

 

Fig. 18 shows the variations of the mode II SIF values at the crack tip    0 0, , , ,x y z a     

(i.e., o=0  ) and  0 0, ,b   (i.e., o=90  ) with the parameters    and h. With    increasing 
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from 0° to 90°, the mode II SIF values increase. It means that the mode II SIF has the maximum 

value at the minor-axis crack tip. It can be found that the mode II SIF values for positive and 

negative values of   are located, respectively, at the two sides of the SIF curve for 0= . As 

the   values decrease, the mode II SIF values increase.  

 

Fig. 19 shows the variations of the mode III SIF values at the crack tips = 39.64°, 63.43° with 

the parameters   and h. Table 5 presents the mode III SIF values at the crack tips = 39.64°, 

63.43°. It is obvious that the absolute values of the mode III SIF at = 63.43° is larger than the 

ones at = 39.64°. Because of symmetry, the mode III SIF values are equal to zero at the crack 

tips o=0   and 90°. It can be further found that the mode III SIF values for positive and 

negative values of   are located, respectively, at the two sides of the SIF curve for 0= . As 

the   values decrease, the mode III SIF values increase. 

 

5.3.4 Comparison of penny-shaped and elliptical cracks in graded halfspaces 

To find the influence of the crack geometries on the SIFs, we compare the penny-shaped and 

elliptical cracks in graded halfspaces analyzed above. From the above results, one can have the 

following observations: 

 (1) Because of the crack geometry and the nonhomogeneous properties of the graded layer, 

the two modes of SIFs (I and II) of the penny-shaped crack are coupled together and the mode 

III SIF does not exist. However, for the elliptical crack in a graded halfspace, all the three modes 

of SIFs (I, II and III) exist and are coupled together. 

 (2) The penny-shaped crack in a graded halfspace has the same SIF values along all the 

crack tips. However, the elliptical crack in a graded halfspace has different SIF values for the 

crack tips with different   values ( o o0 90  ). 

 

6. Conclusions 
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This paper develops a new DBEM for the efficient analysis and accurate calculation of the 

stress intensity factors of three-dimensional cracks in layered and graded solids. The application 

of the fundamental solution of a layered solid can eliminate the requirement of mesh 

discretization on material interfaces so that only the horizontal boundary surface and the crack 

surface need to be discretized. Different types of elements are utilized for the discretization of 

the boundary surface and the crack surface. The corresponding numerical schemes are 

introduced to the discretized boundary integral equations. 

 

The calculation of the SIFs for three-dimensional cracks in layered and graded halfspaces is 

conducted. The SIF values obtained by the proposed DBEM are in very good agreement with 

the exiting numerical results and the effects of material properties and crack positions on the 

SIFs are demonstrated. More detailed investigations, such as cracks reaching and going through 

material interfaces or other cracks in graded solids, need to be carried out for accurately 

enhancing our knowledge for fracture mechanics in layered and graded solids. Some of the 

related problems are currently under investigation by the authors and results will be published 

in a separate paper. 
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Appendix A 

The fundamental solutions  ,Y
ijt P Q   and  ,Y

iju P Q   for a multilayered elastic medium, 

shown in Eq. (1), may be expressed as 

     
1

=, ,
j

Y
ij ik kF

t P Q P Q n Q


                       (A1) 

   
1

=, ,
j

Y
ij i F

u P Q u P Q


                             (A2) 
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where 
jF  is a concentrated force acted at the source point  0 0, ,P h  along the j direction, 

 
1j

ik F
P Q


,  and  

1j
i F

u P Q


,  are, respectively, the stresses and displacements at the field 

source  , ,Q x y z  induced by the concentrated force 
jF  and  kn Q  is the outward normal 

component of the field point Q. 

 

Yue [36, 38, 39] utilized classical integral transforms and a backward transfer matrix method 

to develop the closed-form fundamental solution of the stresses  ik P Q ,  and displacements 

 iu P Q,  in Eqs. (A1) and (A2). For completeness, the essential formulations are presented in 

the ensuing. 

 

For a layered medium, the vector fields of displacements, stresses and strains are defined as 

T
u= x y zu u u   , 

T
Tz xz yz zz      , 

T

p xx xy yy           (A3) 

where the superscript T stands for the transpose of a matrix and the symbol  ,P Q  is omitted 

for simplification. 

 

For concentrated point loads, i.e., c x y zF F F   
T

F , the solution expressions of the layer 

medium are presented as follows 

u G Fu c , T G Fz z c , G Fp p c                         (A4) 

where the matrices G u , G z  and G p
 can be expressed as 

 

2 2

1 0 2 2 2 2 13 12 2

2 2

2 2 1 0 2 2 13 12 20

31 1 31 1 33 0

2

2
2 Gu

x y xy x
J J J J

r r r

xy x y y
x, y,z J J J J d

r r r
x y

J J J
r r

 


 
       
 
 

        
 
    
 

    (A5) 
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 (A7) 

where 2 2r x y   ,  1
1 11 222= +    ,  1

2 11 222= -    ,  1
1 11 222= +    and 

 1
2 11 222= -   . The following identity of Bessel functions ( mJ ) of order m is used in the 

further reduction 

   
2

0

1
0 1 2

2
    i r sin m

m me d J r J m , , ,
     


                    (A8) 

 

The expressions of the matrices G u  , G z   and G p
  include the inverse Hankel transform 

integrals with a semi-infinite interval. The expressions also include the Bessel functions of order 

of zero, unit and second and ten fundamental functions of 11 , 13 , 22 , 31 , 33 ,  11 , 

13  , 22  , 31   and 33  . The ten fundamental functions are continuous functions of the 

integral variables  0      and the depth  0z z     except 11  ,  22   and 33  

have a unit step decrease at z=d and that they have no functions of exponential growth. The 

unit step decrease of 11 , 22  and 33  at z=d is due to the presence of the point loads at 



22/44 

z=d. In addition, as the integral variable    approaches to infinity, the ten fundamental 

functions quickly vanish to zero by following z de   . 

 

It is noted that the solutions of the plane stresses  , ,xx xy yy     and the vertical strains 

 , ,xz yz zz    due to the point loads zF  and xF  can be easily obtained from the solutions of 

the vertical stresses  , ,xz yz zz    and the plane strains  , ,xx xy yy   by using the constitutive 

equations. More details of the expressions and mathematical properties of the fundamental 

solution can be found in Yue [36, 38, 39]. 
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Table 1 The maximum SIF values under the action of a compressive stress 

on the crack surface 

Case no SIFs 
h/a 

0.5 1 1.5 3 

1 

KI 1.34204 0.99550 0.83971 0.77194 

KII 0.31149 0.09480 0.02725 0.00259 

KIII 0.10754 0.04580 0.01585 0.00192 

2 

KI 1.45188 1.04010 0.86293 0.77803 

KII 0.25117 0.05344 0.01743 0.00146 

KIII 0.08760 0.02654 0.01032 0.00120 

 

Table 2 The maximum SIF values under the action of a tensile stress 

on the external boundary surface 

Case no SIFs 
h/a 

0.2 0.3 0.4 0.5 

1 

KI 3.37182 2.04106 1.46441 1.13244 

KII 1.52567 0.87319 0.57433 0.40855 

KIII 0.32154 0.22673 0.17545 0.14083 

2 

KI 3.51686 2.08922 1.49037 1.14583 

KII 1.37491 0.79612 0.53013 0.38241 

KIII 0.29076 0.21739 0.17287 0.14047 
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Table 3 The SIF values of a penny-shaped crack located at the interface between a graded 

layer and a homogeneous halfspace 

 

h/a 
= 1   = 0 5.   =0 5.  =1  

KI KII KI KII KI KII KI KII 

0.5 1.77069 0.49528 1.72732 0.43292 1.63316 0.30989 1.58307 0.24995 

0.6 1.64684 0.38607 1.59360 0.31937 1.48176 0.19124 1.42429 0.13096 

0.7 1.55859 0.31538 1.49755 0.24598 1.37246 0.11638 1.30998 0.05767 

0.8 1.49717 0.26817 1.42628 0.19711 1.29067 0.06779 1.22303 0.01183 

0.9 1.44820 0.23641 1.37213 0.16379 1.22765 0.03540 1.15759 -0.01806 

1.0 1.41104 0.21466 1.33027 0.14067 1.17793 0.01329 1.10586 -0.03769 

1.1 1.38264 0.19979 1.29752 0.12443 1.13792 -0.00215 1.06411 -0.05084 

1.2 1.36096 0.18977 1.27172 0.11293 1.10522 -0.01314 1.02983 -0.05981 

1.3 1.34455 0.18323 1.25174 0.10460 1.07788 -0.02096 1.00126 -0.06607 

1.4 1.33235 0.17919 1.23537 0.09882 1.05526 -0.02689 0.97715 -0.07051 

1.5 1.32351 0.17694 1.22237 0.09475 1.03609 -0.03137 0.95658 -0.07372 
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Table 4 The modes I and II SIF values of an elliptical crack located at the interface between a 

graded layer and a homogeneous halfspace ( o=90 ) 

 

h/a 
= 1   = 0 5.   =0 5.  =1  

KI KII KI KII KI KII KI KII 

0.5 1.255 0.15269 1.21781 0.12011 1.14348 0.05849 1.10666 0.02983 

0.6 1.17413 0.11798 1.13216 0.08456 1.04969 0.02339 1.00967 -0.00392 

0.7 1.11968 0.09908 1.07335 0.06494 0.98371 0.00438 0.94105 -0.02163 

0.8 1.08217 0.08945 1.03178 0.0538 0.93563 -0.00639 0.89087 -0.03175 

0.9 1.05619 0.0877 1.00188 0.04737 0.89969 -0.01275 0.85292 -0.03715 

1.0 1.03809 0.08678 0.98009 0.04367 0.87227 -0.01668 0.82372 -0.04035 

1.1 1.02554 0.08559 0.96408 0.0416 0.85094 -0.01923 0.80079 -0.04239 

1.2 1.01695 0.08389 0.95225 0.04055 0.83408 -0.02099 0.78243 -0.04381 

1.3 1.01123 0.08351 0.9435 0.04022 0.82056 -0.02233 0.76748 -0.0449 

1.4 1.0076 0.08221 0.93698 0.04021 0.80949 -0.02332 0.75509 -0.04585 

1.5 1.00553 0.08201 0.93217 0.0405 0.80033 -0.02416 0.74456 -0.04673 
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Table 5 The mode III SIF values of an elliptical crack located at the interface between a 

graded layer and a homogeneous halfspace 

 

h/a 

= 1   = 0 5.   =0 5.  =1  

o=39.64  o=63.43  o=39.64  o=63.43  o=39.64  o=63.43  o=39.64  o=63.43  

0.5 0.03914 0.05258 0.03491 0.04738 0.02607 0.03626 0.02153 0.03044 

0.6 0.03149 0.04147 0.02665 0.03542 0.01679 0.02292 0.01188 0.01664 

0.7 0.02628 0.03394 0.02099 0.02729 0.0105 0.01402 0.00547 0.00763 

0.8 0.0227 0.02879 0.01706 0.02172 0.00621 0.00806 0.00119 0.00177 

0.9 0.02021 0.02528 0.01431 0.01787 0.00325 0.00403 -0.00166 -0.00208 

1.0 0.01847 0.02285 0.01236 0.01516 0.00119 0.00127 -0.00356 -0.00459 

1.1 0.01726 0.02115 0.01096 0.01324 -0.00026 -0.00063 -0.00484 -0.00622 

1.2 0.01642 0.01995 0.00995 0.01186 -0.0013 -0.00196 -0.00568 -0.00726 

1.3 0.01585 0.01911 0.00922 0.01087 -0.00203 -0.00289 -0.00624 -0.00791 

1.4 0.01547 0.01851 0.00869 0.01013 -0.00256 -0.00355 -0.0066 -0.00831 

1.5 0.01523 0.01811 0.00831 0.00959 -0.00295 -0.00401 -0.00683 -0.00854 
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Fig. 1 Three-dimensional cracks in a horizontally layered halfspace 
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Fig. 2 A three-dimensional crack located at the interface between a graded layer and a 

homogeneous halfspace 
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Fig. 3 Subdivision of boundary and crack surfaces for a cracked and layered halfspace; 

iΓ
  and 

iΓ
  are the two sides of crack surfaces iΓ;  F IS S S   is the external 

boundary surface. 
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Fig. 4 Local coordinate systems  1 2 3x ,x ,x  and  r ,θ ,φ  located at the crack front 
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Fig. 5 A square-shaped crack in a homogeneous halfspace parallel to the boundary 

surface and subject to a uniform compressive stress on the crack surface 

 

 

Fig. 6 Discretization of a traction free surface with 230 finite elements and 64 

infinite elements 
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Fig. 7 Discretization of a square-shaped crack with 100 nine-node quadrilateral 

elements 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) KI=K
I
/(p

0
(a)1/2) 

K
I

x'/a

a square-shaped crack in a fullspace: 
a square-shaped crack in a halfspace: 

 d/a=0.5,  d/a=0.75,  d/a=1,    d/a=2
 d/a=3,    d/a=4,  d/a=5,    d/a=6

 

 

 

 

 

 

 

 

 



30/44 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

(b) KII=K
II
/(p

0
(a)1/2) 

K
II

x'/a

a square-shaped crack in a fullspace: 
a square-shaped crack in a halfspace:

 d/a=0.5,  d/a=0.75,  d/a=1
 d/a=2,    d/a=3,    d/a=4
 d/a=5

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

(c) KIII=K
III

/(p
0
(a)1/2)

K
II

I

x'/a

a square-shaped crack in a fullspace: 
a square-shaped crack in a halfspace: 

 d/a=0.5,  d/a=0.75,  d/a=1
 d/a=2,    d/a=3,  d/a=4
 d/a=5

 

Fig. 8 The normalized SIFs KI, KII and KIII
 
of a square-shaped crack in a 

homogeneous halfspace with the depth d 
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Fig. 9 A square-shaped crack in a horizontally layered bi-material halfspace under a 

uniform compressive stress 
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Fig. 10 The normalized SIFs KI, KII and KIII of a square-shaped crack 

under a uniform compressive stress 
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Fig. 11 A square-shaped crack in a horizontally layered bi-material halfspace under a 

uniform tensile stress on the external boundary surface 
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Fig. 12 The normalized SIFs KI, KII and KIII of a square-shaped crack under a 

uniform tensile stress on the external boundary surface 
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Fig. 13 Approximation of the continuous depth variation of the elastic modulus by a 

layered system of 50 piece-wisely homogeneous layers for 1=  and 0 5h / a .  
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Fig. 14 Discretization of a penny-shaped crack with 64 nine-node quadrilateral 

elements 



36/44 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.8

1.0

1.2

1.4

1.6

1.8

2.0

K
I

h/a

a homogeneous halfspace
  =0

a graded halfspace
 =-1,  =-0.5
 =0.5,  =1

(a) KI=K
I
/K

0

 

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
II

h/a

a homogeneous halfspace
 =0  

a graded halfspace
 =-1,  =-0.5
 =0.5,  =1

(b) KII=K
II
/K

0

 

Fig. 15 The normalized SIFs KI and KII for the penny-shaped crack located at the 

interface between a graded layer and a homogeneous halfspace 
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Fig. 16 An elliptical crack located at the interface between a graded layer and a 

homogeneous halfspace 
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Fig. 17 The normalized SIF KI for the elliptical crack located at the interface between 

a graded layer and a homogeneous halfspace ( o o=0 90, ) 
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Fig. 18 The normalized SIF KII for the elliptical crack located at the interface between 

a graded layer and a homogeneous halfspace ( o o=0 90, ) 
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Fig. 19 The normalized SIF KIII for the elliptical crack located at the interface 

between a graded layer and a homogeneous halfspace ( o o=39.64 ,63.43 ) 
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