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Abstract 
Short-term traffic speed forecasting is an important component of Intelligent Transportation 
Systems (ITS). Multi-step-ahead prediction can provide more information and predict the 
longer trend of traffic speed than single-step-ahead prediction. This paper presents a multi-step-
ahead traffic speed prediction approach by improving the gradient boosting regression tree 
(GBRT). The traditional multiple output strategies, e.g., the direct strategy and iterated strategy, 
share a common feature that they model the samples through multi-input single-output 
mapping rather than multi-input multi-output mapping. This paper proposes multivariate 
GBRT to realize simultaneous multiple outputs by considering correlations of the outputs 
which have not been fully considered in the existing strategies. For illustrative purposes, traffic 
detection data are extracted at the 5-min aggregation time interval from three loop detectors in 
US101-N freeway through the Performance Measurement System (PeMS). The support vector 
regression (SVR) is used as the benchmark. Assessments on the three models are based on the 
three criteria, i.e., prediction accuracy, prediction stability, and prediction time. The results 
indicate that (I) Multivariate GBRT and GBRT using the direct strategy have higher prediction 
accuracies compared with SVR; (II) GBRT using the iterated strategy has a good prediction 
accuracy in short-step-ahead prediction and the prediction accuracy decreases significantly in 
long-step-ahead prediction; (III) Multivariate GBRT has the best stability which means the 
higher reliability in multi-step-ahead prediction while iterated GBRT has the worst stability; 
and (IV) Multivariate GBRT has an enormous advantage in the prediction efficiency and this 
advantage will expand with the increasing prediction horizons. 
 
Keywords: Traffic speed forecasting; multivariate GBRT; multi-step-ahead prediction; direct 
strategy; iterated strategy  
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1. INTRODUCTION 

With the development of social economy and motorization, traffic congestion of urban road 
networks has been more and more serious. The realization of short-term traffic speed 
forecasting is the prerequisite and key of many intelligent transportation systems (ITS), e.g., 
traffic guidance system, traffic signal optimization system, and vehicle scheduling management 
system. Compared with the one-step-ahead forecasting of traffic speed, the multi-step-ahead 
prediction of short-term traffic speed is more necessary and meaningful in practice. For traffic 
policymakers and regulators, the multi-step-ahead prediction information is conducive to the 
development of more effective traffic control strategies to alleviate traffic congestion, which 
improves the allocation efficiency of human and material resources. For informed travelers, 
the multi-step-ahead forecasting information is beneficial for pre-trip route planning or en-
route decisions. However, due to the fluctuation and uncertainty of traffic speed, the multi-
step-ahead prediction can be easily disturbed by many random factors, e.g., travel demand 
fluctuations, weather conditions, accidents, and road work, which make the multi-step-ahead 
prediction more difficult than the one-step-ahead prediction. 

As one of the fundamental parameters to evaluate traffic states, traffic speed can be 
easily understood and accepted by both travelers and managers. Based on the predicted speed, 
informed travelers can select the route, departure time, and travel mode more effectively. 
Traffic speed prediction is a complicated and challenging task. It usually fluctuates strongly at 
different times due to the interference of external factors such as driver behavior, weather, 
incidents, and road surface conditions. These fluctuations are usually non-linear and complex. 
So it is important to fully understand these fluctuations and develop accurate prediction 
algorithms for short-term forecasting. The measured speed data of the target observation 
location and its adjacent locations are spatially correlated, meanwhile, the speeds measured at 
different time intervals are temporally correlated. Considering both the temporal and spatial 
correlations will have a positive effect on the forecasting accuracy. 

This paper improves the gradient boosting regression tree (GBRT) to achieve the multi-
step-ahead prediction. GBRT is a type of ensemble learning algorithm in machine learning. 
Compared with another ensemble learning algorithm (i.e., random forest), GBRT builds the 
model by adding simple regression trees into the model sequentially by boosting instead of 
bagging. GBRT is a strong learner that has been proved with good prediction performance 
(Breiman, 2001). GBRT can uncover hidden model structures in the traffic speed data to 
enhance the accuracy and interpretability of the model.  

In the literature, traditional multi-output strategies primarily include the iterated 
strategy (Ikeguchi & Aihara, 1995; Williams & Zipser, 2014), direct strategy (Sorjamaa et al., 
2007) and multiple-input-multiple-output (MIMO) strategy (Ben et al., 2012; Xiong et al., 2013; 
Bao et al., 2014; Bao et al., 2014). Both the direct strategy and iterated strategy train the 
samples through multi-input single-output mapping and are applicable to most prediction 
algorithms. For the iterated strategy, multi-step-ahead prediction requires iterating for H times, 
where H is the number of prediction steps. At each iteration, the predicted value of the previous 
model would be used as the input value of the current model to replace the corresponding input 
variable. Compared with the iterated strategy, the direct strategy trains H models separately 
and each model corresponds to an independent output. Since only observed data are used as 
input values, it will not cause the accumulation of errors across iterations. The MIMO strategy 
only trains one model to achieve multi-step-ahead prediction by considering the stochastic 
dependency between different prediction horizons. 

Since the output values related to the same inputs are apparently autocorrelated, it’s 
better to build a single model that is capable of simultaneously predicting traffic of all time 
steps. However, the tree-based ensemble methods such as GBRT cannot directly employ the 
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MIMO strategy for multi-step-ahead prediction due to its structure limitations. This paper 
proposes an MIMO strategy based on GBRT to support multi-step-ahead prediction by 
considering the stochastic dependency to predict all the outputs simultaneously, namely the 
multivariate GBRT. First, we need to store H output values in nodes of the regression tree which 
is an important part of the tree. Second, in each node, splitting criteria are applied to compute 
the average reduction across all H outputs. Through the improvement of the basic regression 
tree, we can extend the basic GBRT to enable the multi-step-ahead prediction. 

In order to evaluate and compare the aforementioned strategies, we take into account 
the following three criteria: (I) The prediction accuracy, which determines the decision-making 
effectiveness of the traveler and the decision maker; (II) The prediction stability, which is 
defined as the standard deviation of the prediction errors of all prediction steps, reflects the 
fluctuation and discreteness of the prediction accuracy with respect to prediction steps; (III) 
The prediction time, which reflects the efficiency of the strategies. In this paper, the prediction 
time excludes the time for parameter-tuning and training the models, which can be conducted 
offline.  

The contributions of this study are three folds: (I) We utilize the GBRT algorithm to 
achieve multi-step-ahead prediction of short-term traffic speed. Compared with one-step-ahead 
prediction, multi-step-ahead prediction can reflect the trend of speed change and provide more 
useful and meaningful information for policymakers and travelers; (II) To improve the 
efficiency and effectiveness, we propose the multivariate GBRT model for multi-step-ahead 
traffic speed forecasting; and (III) We incorporate the traditional multi-output strategies (e.g., 
iterated strategy, and direct strategy) into the GBRT model to achieve multi-step-ahead traffic 
speed forecasting. Compared to the traditional strategies, multivariate GBRT can achieve to 
forecast outputs of all prediction horizons simultaneously while considering the output 
variables’ autocorrelation.  

This paper is organized as follows. Section 2 revisits the literature on short-term traffic 
speed forecasting and reviews tree-based ensemble methods. Meanwhile, the strategies that are 
used to solve multi-output problems are summarized. Section 3 first presents two traditional 
multi-output strategies, i.e., the iterated strategy, and direct strategy, which can be used for 
GBRT. Then, we propose multivariate GBRT by improving the regression trees to consider the 
output variable autocorrelation. Section 4 compares the performances of support vector 
regression (SVR), direct GBRT, iterated GBRT, and multivariate GBRT in terms of the 
prediction accuracy, prediction time, and prediction stability, respectively. Finally, Section 5 
concludes this paper and outlooks the future research. 

2. LITERATURE REVIEW  

In the literature, there has been extensive research conducted and numerous models proposed 
in the field of short-term traffic speed forecasting, e.g., historical average and smoothing 
methods (Farokhi Sadabadi et al., 2010; Williams et al., 1998; Guo et al., 2017), statistical and 
regression methods (Fei et al., 2011; Min & Wynter, 2011; Qiao et al., 2016), machine learning 
(Wei & Chen, 2012; Zhang & Rice, 2003), and traffic flow theory based method (Li et al., 2013; 
Li et al., 2014; Wu et al., 2016). Recently, artificial intelligence and machine learning 
algorithms have been successfully applied to the traffic prediction filed, e.g., neural networks 
(Hinsbergen et al., 2009; Wei & Chen, 2012), support vector machines (Wang & Shi, 2013), 
and hybrid or ensemble techniques (Antoniou et al., 2013). In contrast to statistical models, 
machine learning algorithms do not assume any specific model structures of data and treat the 
structure unknown. Therefore, machine learning algorithms can handle a large-size amount of 
data. Although the structure of the data is not apparent, machine learning algorithms can 
capture the potential structure. Nevertheless, a disadvantage that limits the applications of 
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machine learning algorithms in traffic prediction is the lack of interpretability (Vlahogianni et 
al., 2014). 

In recent years, tree-based ensemble methods were widely used in solving prediction 
problems and proved to have good performance. For instance, Leshem (2007) employed the 
AdaBoost algorithm by taking random forests as weak base models to predict traffic flow. This 
algorithm could deal well with missing data. Hamner (2010) proved that random forest 
performed better than other models in traffic prediction for intelligent GPS navigation. Wang 
(2011) applied an ensemble bagging regression tree to predict the weather impact on airport 
capacity and demonstrated its superior performance compared with a single support vector 
machine. Ahmed and Abdelaty (2013) applied a stochastic gradient boosting method to study 
incidents and hazardous conditions, which outperformed statistical approaches. Similarly, 
Chung (2013) utilized boosted regression trees to identify the crash occurrence. Zhang and 
Haghani (2015) used the gradient boosting method in travel time prediction, but did not 
consider the spatial correlation between sensor locations. Considering temporal and spatial 
correlations, GBRT was reported to achieve a better prediction accuracy than ARIMA, 
generalized boosted regression models, and random forest in urban travel time forecasting 
(Zhang et al., 2016). 

For multi-output forecasting problems, there are three commonly used strategies, i.e., 
iterated strategy, direct strategy, and MIMO strategy, to enable multi-step-ahead prediction. 
Chevillon (2007) pointed out that the iterated strategy used the predicted value as the new input, 
so it was easy to cause the error accumulation. In contrast to the iterated strategy that 
constructed a single model, the direct strategy proposed by Cox (1961) only used its past 
observations to build a set of models for each prediction step. So the number of models was 
equal to the number of prediction steps. However, there are some drawbacks on both strategies. 
The error accumulation in the iterated strategy greatly reduces the prediction accuracy, while 
the direct strategy is time-consuming and ignores the correlation between the output variables. 
Bontempi (2008) introduced an MIMO strategy for multi-step-ahead prediction with preserving 
the stochastic dependency between prediction horizons. The algorithm used for the MIMO 
strategy was lazy learning. Bao (2014a) proposed a PSO-MISMO modeling strategy for multi-
step-ahead prediction, which was an extension of MIMO. The implementation technique for 
PSO-MISMO was a feed-forward neural network (FNN). As we know, the standard 
formulation of Support Vector Regression (SVR) can only achieve one-step-ahead prediction 
if not taking iterated or direct strategies. Bao (2014b) proposed the M-SVR model with the 
MIMO strategy for multi-step-ahead time series prediction. For the tree-based algorithm, Segal 
and Xiao (2011) achieved the multi-output prediction with the random forest by improving the 
splitting function of decision trees. Dumont et al. (2009) applied a multivariate random forest 
to fast multi-class image fusion, which can be used for face recognition. As an effective 
machine learning algorithm, there is a research need for the GBRT model with the MIMO 
strategy for multi-step-ahead prediction.  

Multi-step-ahead prediction can provide more practical guidance to both decision 
makers and travelers. In this paper, we aim to achieve multi-step-ahead prediction by using 
GBRT with a high prediction accuracy and short forecasting time, which is not fully understood 
in the literature and worthy for further investigations. To the knowledge of the authors, the 
multi-step-ahead prediction with GBRT has not been fully studied. This paper aims to propose 
the multivariate GBRT that considers the stochastic dependency of outputs and predicts multi-
output results simultaneously. The multivariate GBRT can achieve multi-step-ahead prediction 
by improving the splitting function of the basic regression tree, which will be formulated in 
Section 3. 
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3. METHODOLOGY 

3.1 Gradient Boosting Regression Tree 

GBRT integrates basic regression trees with the boosting method to solve the regression and 
classification problems. The boosting method adds additional trees in sequence, without 
changing the model parameters that have been added, to minimize a loss function (such as the 
squared error or absolute error) of the data. The loss function indicates the degree to which the 
prediction value deviates from the true value. By adding the basic tree that minimizes the loss 
function in each step, the loss function is eventually minimized.  

In the regression problem, given the sample set 1 1{( , ),..., ( , )}N Ny yx x  with N  input 
variables tx  and the corresponding output variable ty , 1,...,t N= . The objective is to find a 
function  that minimizes the specific loss function . GBRT approaches the 
optimal solution ˆ ( )F x   gradually through the weighting of some simple models ( )th x   to 
minimize the loss function . For GBRT, ( )th x  is the basic regression tree which is 
built by the input variables x  and the negative gradient of loss function in the previous model. 
GBRT starts with a constant function 0 ( )F x  and builds the model in a greedy way. The model 
is formulated as follows: 

0
1

( ) arg min ( , )
N

t
t

F L y
γ

γ
=

= ∑x                         (1) 

( )1( ) ( ) γ−= +m m m mF F hx x x                         (2) 

where ( )mF x  is the integration of prediction values for the basic regression trees. ( )mh x  is 
the m th regression tree, γ m  is the weighting coefficient of the m th regression tree. 

GBRT is optimized by the steepest descent method, the negative gradient ( )mz x   is 
given by 

1

1

( , ( ))( )
( )

t m t
m t

m t

L y Fz
F

−

−

∂
= −

∂
xx

x                         (3) 

 
The next regression tree ( )mh x  is built by modeling ( )mz x  and x  . The weighting 

coefficients can be obtained by 

( )1
1

arg min , ( ) ( )
N

m t m t m m t
t

L y F h
γ

γ γ−
=

= −∑ x x               (4) 

GBRT strategically adds extra basic models to minimize the loss function. It focuses 
more on the samples that are difficult to estimate. In contrast to the random forest that builds 
each basic model by randomly sampling with an equal probability, GBRT generates the model 
by the boosting method. The pseudo code of GBRT is shown in Table 1. 
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Table 1   The pseudo code of GBRT 
Input: Training set 1{( , )}N

t t ty =x , differentiable loss function ( , ( ))L y F x , and the maximum 
number of trees M . 

Initialize model with a constant value: 0
1

( ) arg min ( , )
N

t
t

F L y
γ

γ
=

= ∑x . 
For 1m =  to M , do  

For 1t =  to N , do 

Compute negative gradient 
1

1

1 ( ) ( )

( , ( ))=
( )

m

t m t
tm

m t F F

L y Fz
F

−

−

− =

 ∂
 ∂  x x

x
x

－ .  

End for 
Fit regression tree ( )mh x  to predict negative gradient mz  using input variables x . 
Compute the gradient descent step size (learning rate) given by 

1
1

arg min ( , ( )+ ( ))
N

m t m t m t
t

L y F h
γ

γ γ−
=

= ∑ x x . 

Update model 1( ) ( ) ( )m m m mF F hγ−= +x x x .  
End for 
Output model ( )mF x . 

 
The performance of GBRT can be affected by the number of trees ( M ), learning rate ( J ), 

and max-depth of the tree ( D ). The best performance of the model can be achieved by selecting 
the best combination of these parameters via parameter tuning. M  refers to the number of 
basic regression trees that are integrated into GBRT. With the increase in the number of trees, 
the error will be smaller. But too many trees will lead to overfitting and reduction in the 
prediction accuracy. The model will become complex and minor fluctuations in data will be 
exaggerated. Therefore, the number of trees needs to be controlled. J  is also an important 
parameter, referring to the contribution of each basic regression tree to the final result. It is 
commonly between 0 and 1, which means to shrink the contribution of each basic regression 
tree. An excessive learning rate can lead to overfitting and a low learning rate may reduce the 
prediction accuracy. D   can be expressed as the complexity of the tree. GBRT is a strong 
learner formed by the integration of a set of weak learners. So it is necessary to control the 
max-depth of each tree to limit the ability of each tree. A too large or too small D  may lead 
to a reduction in the prediction accuracy. 

3.2 Multi-Output Forecasting Strategies 

3.2.1 Iterated strategy 

The iterated strategy was first proposed by Chevillon (2007), which used the predicted value 
as the input to predict the next step output. The predicted value replaces the corresponding 
input value in the current iteration and the number of input variances in each iteration keeps 
unchanged. This step iterates for H times. 

  For the iterated strategy, given the training set 1{( , ) ( )}d N
t t ty == ∈ ×x    , where 

T
1[ , , ]t t t dϕ ϕ − +=x  is a temporal pattern of length d , 1t ty ϕ += , tϕ  is the time series value 

at time t  , d   represents the embedding dimension, d   and    are the d  -dimensional 
and 1-dimensional real sets, respectively.  

  The iterated strategy trains one model through the training set: 

1 ( )t tfϕ ω+ = +x                                         (5) 
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where ω  is the scalar zero-mean noise term. 
      After the training process, the predicting process is given by 

       
1 1

1 1

1

ˆ ( , , , )      if    1                
ˆˆ ˆ ˆ( , , , , , ) if    {2, , }
ˆ        if    { 1, , }ˆ ˆ( , , )

N N N d

N h N h N N N d h

N h N d h

f h
f h d

h d Hf

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

− − +

+ + − + − +

+ − − +

 == ∈ …
 ∈ + …



 



           (6) 

  As shown in Figure 1, the iterated strategy takes the predicted value as the input, which 
may result in the error accumulation. When the number of prediction steps increases, the effect 
of the error accumulation will be enlarged. So this strategy performs poor in terms of the multi-
step-ahead prediction accuracy. This strategy only needs to establish one model to predict but 
it cannot output all the results simultaneously. 

One-step prediction

Two-step prediction

Three-step prediction

t + 1

t + 2

t + 3

Legend Observation 
value Prediction value Predicted value

as input  
Figure 1   An illustration of the iterated strategy. 

3.3.2 Direct strategy 

The direct strategy was first proposed by Cox (1961), which required building a set of models 
for each step. The input variable only takes into account the actually observed values rather 
than the predicted values. So the model for each step is relatively independent. 

For the direct strategy, given the training set: 11 1{( , ) ( )}d N
t t ty == ∈ ×x    ,…, 

1{( , ) ( )}d N
t tHH ty == ∈ ×x   , where 1x {( , , )}ϕ ϕ − +∈ t t t d , y ϕ +=th t h , for which we intend 

to predict the next H observations by using the single-output method. 
The direct strategy trains H  models through the training sets 1{ , , }h H∈    : 

                         ( )t h h tfϕ ω+ = +x                               (7) 

where hf  is the learned single-output model, 1, ,h H=  . 
After the training process, the predicting process is as follows: 

              }{1 1
ˆˆ ( , , , ) ,        1, ,N h h N N N df h Hϕ ϕ ϕ ϕ+ − − += … ∈ …               (8) 

As shown in Figure 2, in contrast to the iterated strategy, the direct strategy is not easy 
to form the error accumulation. However, this strategy ignores the correlation between output 
variables. Since it needs to train a set of models independently for each step of the outputs, 
more computational costs will be spent on the training process. 
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t+1

t+2

t+3

Legend Observation 
value Prediction value 

One step prediction

Two step prediction

Three step prediction

 

Figure 2   An illustration of the direct strategy. 

3.3 Multivariate GBRT 

The multivariate GBRT can consider the correlation of the output variables and predict all 
output variables simultaneously. The basic GBRT model adds basic decision trees in sequence. 
In order to output all prediction values simultaneously, we need to improve the basic GBRT. 
The main idea is to store all the output variables simultaneously rather than one output in the 
nodes of the regression tree. Besides, in the process of splitting the nodes into child nodes, the 
splitting function takes into account all the output variables. 

The regression tree has the tree-based structure whose basic elements include the 
internal nodes, branch and leaf nodes. Each internal node needs to perform a binary split 
(yes/no). Each branch represents a splitting output and each leaf node represents a splitting 
category. The most important part of the regression tree is the splitting process. The splitting 
process makes the nodes to generate child nodes. At the same time, the samples are passed 
from nodes to the child nodes. With the splitting process, the regression trees are gradually 
developed and eventually reach the leaf nodes (terminal nodes). The first step in the splitting 
process is to establish a series of binary questions (yes/no) based on the input features. Those 
questions determine how the sample is allocated to the child nodes and divide the sample into 
two parts. The second step is to use the impurity measure as the criterion of splitting for each 
node. Generally, the impurity measure in the regression problem is the variance of the output 
variables. Finally, the splitting function ( , )s kφ   is used to evaluate the results of each 
allowable splitting s  at the node k . The optimal splitting in all feasible splits corresponds to 
the optimal splitting function, which means that the sample distribution in the child nodes for 
the optimal splitting is the most uniform. The procedure of splitting process is shown in Figure 
3. 

For single-output problems, given the sample set 1 1{( , ),..., ( , )}N Ny yx x   with input 
variables tx  and the corresponding prediction variable ty , 1,...,t N= . The splitting process 
divides the nodes into two child nodes, namely the left node Lk  and a right node Rk . We try 
all the possible splits of the node k   based on the binary splitting question. The impurity 
measure of the node k  is 2( ) ( ( ))tt k

SS k y kµ
∈

= −∑ , where ( )kµ  is the mean of ty  for all 
the samples in the node k  . The corresponding splitting function is 

( , ) ( ) ( ) ( )L Rs k SS k SS k SS kφ = − − . Through the above splitting process, the regression tree can 
achieve the single output. 

For multi-output problems, given the sample set 1 1{( , ),..., ( , )}N Nx y x y   with input 
variables tx  and the corresponding prediction variables T

1 2[ , , , ]t t t tHy y y= …y , 1,...,t N= . 
The prediction variable is an 1×H  vector. Binary splitting questions are based on the input 
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features, where the multivariate GBDT needs to be improved is impurity measure. First, we 
need to define the correlation matrix of the prediction variables ( , )kθV  in node k , where 
θ  is the prediction variable sequence length when calculating the correlation coefficient. That 
is to calculate the correlation coefficients of the sequences for each prediction step. When θ  
equals to ( 1) / 2H H + , we can make no assumptions on the correlation matrix. In order to 
consider the interpretability and efficiency of the model, we need to limit the value of θ , 
generally taking the smaller θ  (Segal, 1992). 

In order to achieve multiple outputs, the impurity measure can be improved as follows: 

T 1

1
( ) ( ( )) ( , )( ( ))

N

t t
t

SS k k k kθ−

=

= − −∑ y μ V y μ                         (9) 

where ( , )kθV  represents the correlation matrix for each prediction step, θ  is the sequence 
length when calculating the correlation coefficient, k  is the node number, and ( )kμ  is the 

1×H  mean vector of the predictor variables in the node k . 
The form of the multi-output splitting function is the same as the single-output splitting 

function, namely ( , ) ( ) ( ) ( )φ = − −L Rs k SS k SS k SS k  . Through the above improvement, the 
regression tree can output all prediction variances simultaneously. Thus, the multivariate 
GBDT is used to achieve multi-step-ahead prediction simultaneously by the boosting method 
to integrate basic decision trees. Since the correlation matrix is introduced to calculate the 
impurity measure, the correlation between the output variables is also considered during the 
calculation. 
As shown in Table 2, the three strategies have different characteristics in training and predicting 
process and can be used to solve multi-output prediction problems. 

Start

Regression tree

Data set

Node

Feasible spilts considering all 
feature and feature value Splitting function

Best splitting 
feature and value

Divide samples in node into two part: 
Left child node, Right child node

Reach max_depth or  
min_smaple_split?

Over: Leaf nodes

Yes

No

Leftnode

No

Rightnode
Maximum value

 

FIGURE 3   A flowchart of the splitting process for basic regression trees.  
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Table 2   Comparison of the three multi-output strategies 

Multi-output 
GBRT 

Model 
number 

Training 
times 

Predicting 
times 

Whether 
using the 
predicted 
value as 
inputs? 

Remark 

Direct strategy H H H yes 
Ignoring 

correlations among 
outputs 

Iterated strategy 1 1 H no Error accumulation  
Multivariate 

GBRT 1 1 1 yes Predict all outputs 
simultaneously 

Note: H is the prediction horizons. 

4. EXPERIMENTS 

In this paper, SVR is used as the benchmark model because it is widely used in the field of 
prediction due to a good prediction accuracy and GBRT is taken as the basic model. Several 
multi-output traffic prediction models are tested and compared to achieve multi-step-ahead 
prediction, i.e., GBRT using the direct strategy, GBRT using the iterated strategy, and the 
proposed multivariate GBRT. The performance of those three strategies is evaluated from the 
three perspectives: prediction accuracy, prediction stability, and prediction time.  

In order to test the performance of the three strategies at different prediction horizons, 
two experiments are conducted in this paper, i.e., 6-step-ahead prediction (30-min), and 12-
step-ahead prediction (60 min).  

4.1 Data Description and Preparation 

In this paper, traffic data are extracted at the 5-min aggregation time interval from three loop 
detectors in US101-N freeway between May 1 and June 14, 2017 (45 days), through the 
Performance Measurement System (PeMS) that provides real-time and historical data collected 
from over 42,000 detectors deployed on freeways throughout California. The observation rate 
of the extracted data at the study site is up to 99.6%, which means only 0.4% of data are missed 
and repaired by imputation method (temporal medians). 

The three loop detectors are located from the 3rd Street to Bacon Street in the US101-
N. The first 31-day data are used as the training set, the middle 7-day data as the validation set, 
and the remaining 7-day data are used as the test set. The 5-min aggregated travel speed is used 
to represent traffic conditions. As shown in Figure 4, the detection locations are denoted by W2 
(upstream), W3 (target), and W4 (downstream), respectively. The distance between W2 and 
W3 is 0.45 miles and the distance between W3 and W4 is 0.3 miles. To consider the spatial 
correlation, the speed data from the three loop detectors are used. That is, we aim to predict the 
speed of W3 by incorporating data collected from both W2 and W4. 
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FIGURE 4   Configuration of loop detectors on US101-N, CA. 
  

Figure 5 shows that the patterns of traffic speed at target detector W3 are distinct in 
different days. There are clear morning and evening peaks on Wednesday while the peak hours 
happen in the afternoon for Saturday and Sunday. The pattern of speed change on Monday is a 
little different from that of Wednesday, on which the evening peak is not obvious.  

 

 

FIGURE 5   Temporal traffic speed profiles at target detector W3. 
 

Table 3 proves that the speed at W3 has a great correlation with the speed at its upstream 
and downstream. When the coefficient of correlation is close to 1, the correlation between two 
detectors is close to perfectly positive correlation. As shown in Table 4, the speeds of detectors 
have significant temporal correlations with their previous traffic speeds. So considering the 
spatial and temporal correlation can improve the speed prediction accuracy. 
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Table 3   Coefficient of correlation of speed among target detector W3, upstream 
detector W2, and downstream detector W4 for a week 
Detector Correlation coefficient 
W2-W3 0.843** 
W3-W4 0.933** 

** Significantly correlated at the 0.01 confidence level (two-tailed). * Significantly correlated 
at the 0.05 confidence level (two-tailed). 
 

Table 4   Temporal autocorrelation of target detector W3 for different lag times 
Detector t t-1 t-2 t-3 t-4 t-5 

W2 1 0.974** 0.925** 0.864** 0.801** 0.739** 
W3 1 0.987** 0.965** 0.938** 0.910** 0.883** 
W4 1 0.984** 0.960** 0.933** 0.907** 0.882** 

** Significantly correlated at the 0.01 confidence level (two-tailed). * Significantly correlated 
at the 0.05 confidence level (two-tailed). 
 

Table 5 lists basic characteristics of the inputs variables/features for multi-step-ahead 
traffic speed forecasting. In order to consider both the spatial and temporal correlations, the 
speed data at the upstream and downstream locations are used as input variables and the speed 
within the previous 25-min time interval is taken into account. Since the data in the training 
set, validation set, and test set are all larger than 7 days, traffic speed differences between 
weekends and weekdays have been considered. 
 

Table 5   Features for multi-step-ahead traffic speed forecasting 
ID Features Feature Description Type Range/set 
1 Day of week  Day of week discrete {1, 2, 3,…, 7}* 
2 Time of day Every 5-min time stamp of the day discrete {1, 2, 3,…, 288}** 

3 1tj −  
Speed measurements of the upstream 
detector at time step 1t −  

continuous [0, +∞) 

4 2tj −  
Speed measurements of the upstream 
detector at time step 2t −  

continuous [0, +∞) 

5 3tj −  
Speed measurements of the upstream 
detector at time step 3t −  

continuous [0, +∞) 

6 4tj −  
Speed measurements of the upstream 
detector at time step 4t −  

continuous [0, +∞) 

7 5tj −  
Speed measurements of the upstream 
detector at time step 5t −  

continuous [0, +∞) 

8 1tf −  
Speed measurements of the target detector 
at time step 1t −  

continuous [0, +∞) 

9 2tf −  
Speed measurements of the target detector 
at time step 2t −  

continuous [0, +∞) 

10 3tf −  
Speed measurements of the target detector 
at time step 3t −  

continuous [0, +∞) 

11 4tf −  
Speed measurements of the target detector 
at time step 4t −  

continuous [0, +∞) 
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12 5tf −  
Speed measurements of the target detector 
at time step 5t −  

continuous [0, +∞) 

13 1th −  
Speed measurements of the downstream  
detector at time step 1t −  

continuous [0, +∞) 

14 2th −  
Speed measurements of the downstream  
detector at time step 2t −  

continuous [0, +∞) 

15 3th −  
Speed measurements of the downstream  
detector at time step 3t −  

continuous [0, +∞) 

16 4th −  
Speed measurements of the downstream  
detector at time step 4t −  

continuous [0, +∞) 

17 5th −  
Speed measurements of the downstream  
detector at time step 5t −  

continuous [0, +∞) 

18 1t−∆  1 1 2t t tf f− − −∆ = −  continuous (-∞, +∞) 

19 2t−∆  2 2 3t t tf f− − −∆ = −  continuous (-∞, +∞) 

20 3t−∆  3 3 4t t tf f− − −∆ = −  continuous (-∞, +∞) 

21 4t−∆  4 4 5t t tf f− − −∆ = −  continuous (-∞, +∞) 

22 tf  Observed travel speed at time step t  continuous [0, +∞) 
Note: * Numbers 1,…, 7 indicate Monday through Sunday; * Numbers 1,…, 288 indicate each 5 min. 

 
Figure 6 lists the importance rankings of all features used in the model and the 

parameter combination is adopted as described in Section 4.3. We can find that 1tf −  has the 
greatest impact on the final prediction results and the feature of time of day also has the high 
relative importance. The features with the spatial correlations like 1tj −  and 1th −  have non-
negligible impacts on the model. The differences in speed of two adjacent time stamps like 

1t−∆  are important for the model. As shown in Figure 6, all features used in this model have 
considerable contributions to the final outputs. 

 

 
FIGURE 6   Relative importance ranking of features used in the model. 
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4.2 Measures of Effectiveness 

In this paper, the prediction accuracy, prediction time, and prediction stability are used as the 
evaluation criteria. Through a comprehensive comparison, the performance of the three 
strategies in multi-step-ahead prediction can be clearly illustrated. 

4.2.1 Prediction accuracy 

In order to compare the advantages and disadvantages of different strategies, four error 
measures are defined as follows:  

(I) Mean absolute percentage error (MAPE) 
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(III) Root mean square error (RMSE) 
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(IV) Normalized root mean square error (NRMSE) 
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where tf  denotes the true speed value at time t , t̂f  denotes the predicted speed value at 
time t , and m  is the sample size of the test set. 

4.2.2 Prediction stability  

For multi-step-ahead prediction, this paper introduces a new evaluation criterion, namely, 
prediction stability, which indicates the standard deviation of prediction errors for multiple 
steps. The stability of different strategies in multi-step-ahead prediction is determined by 
calculating the standard deviation of the prediction accuracy of all steps. The smaller the 
standard deviation, the higher the prediction stability. That is, the transition between the 
synchronization accuracy is more stable. With the increase of prediction horizons, the model 
with higher stability will perform better.  

4.2.3 Prediction time 

In field applications, decision makers and travelers pay more attention to the real-time 
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prediction time because parameter tuning and model training can be conducted periodically 
offline. Thus, parameter tuning and training time have no direct impacts on real-time prediction 
time. So this paper only considers the real-time prediction time. Too long prediction time will 
seriously affect the user experience. While a short prediction time is helpful to accelerate the 
prediction information provision, improve the user experience, increase the applicability of the 
prediction model, and reduce delay.  

4.3 Parameter Tuning 

In this paper, the grid search method is used to search for the optimal parameters. The 
evaluation criterion for parameter tuning is minimizing MAPE. SVR uses the radial basis 
function (RBF) as the kernel function. So the parameters that need to be adjusted are C and γ , 
where C is the penalty factor that represents the tolerance to the error. A higher C value means 
a lower tolerance to the error. γ  is a parameter that comes with the RBF, which implicitly 
determines the distribution of the data in the new feature space. Through the grid search, 36 
combinations of parameters C and γ  are evaluated with each ranging from 10-3 to 103. The 
optimal combination of the parameters obtained from the training set and validation set would 
be used to predict speed in the test set.  

As depicted in Section 3.1, we evaluate 448 combinations of GBRT parameters by the 
grid search method, too. The GBRT model is trained with M  ranging from 1 to 5000, J  
from 0.0005 to 0.5 and D  from 1 to 8. The step sizes of grid search for GBRT are shown in 
Figure 7. For GBRT, there are three strategies to achieve multi-step-ahead prediction including 
the direct GBRT, iterated GBRT, and multivariate GBRT. Considering the similarity of the data 
structure and parameter tuning time, parameter tuning is only conducted for the direct GBRT 
and iterated GBRT. The parameter tuning results of the first-step prediction model are 
employed in the following multi-ahead-prediction models. Multi-output GBRT can output all 
prediction values simultaneously so only one shot of parameter tuning is required.  

For the 30-min-ahead prediction experiment, Figure 7 shows the relationship between 
the prediction accuracy of models and the number of trees with different learning rates (J) and 
maximum depth (D) for multivariate GBRT. Before a certain threshold (number of trees), 
MAPE decreases with M, while MAPE increases when M exceeds the threshold. The 
decreasing slopes of the curves vary with the different learning rates. So the prediction accuracy 
will be the best when M reaches the threshold. As shown in Figure 8, a certain value of D will 
reach the optimum, not necessarily the highest maximum depth. Table 6 shows the optimal 
parameter combination for different strategies and the corresponding prediction accuracy. The 
MAPE of multivariate GBRT represents the total error of 6-step predictions while the MAPE 
of SVR and other GBRT strategies is the error of the first-step prediction only. So the MAPE 
of multivariate GBRT is relatively high. 

For the 60-min-ahead prediction experiment, Table 7 shows the optimal combination 
of parameters and the corresponding prediction accuracy. In this experiment, the optimal 
combination of parameters for multivariate GBRT and other strategies are different. From the 
optimal combination of parameters, we can know that the optimal maximum depth increases 
when the sample structure becomes more complex. For example, the optimal maximum depth 
increase from 5 to 7 when the prediction step increases from 6 to 12. 
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Figure 7   The relationship between MAPE and the number of trees (M) with different 
learning rates (J) and maximum depths (D): (a) D = 1; (b) D = 2; (c) D = 3; (d) D = 4. 

 

 

Figure 8   The relationship between MAPE and the maximum depth (D) with different 
learning rates (J) and numbers of trees (M). 

 
Table 6   Optimal combination of parameters for 30-min-ahead prediction 

Model M J D MAPE 
Multivariate GBRT 2000 0.01 5 3.41% 

Direct GBRT 2000 0.01 4 1.77% 
Iterated GBRT 2000 0.01 4 1.77% 

- C γ  - MAPE 
SVR 10 0.001 - 2.02% 
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Table 7   Optimal combination of parameters for 60-min-ahead prediction 
Model M J D MAPE 

Multivariate GBRT 1500 0.005 7 4.15% 
Direct GBRT 2000 0.01 4 1.77% 

Iterated GBRT 2000 0.01 4 1.77% 
- C γ  - MAPE 

SVR 10 0.001 - 2.02% 
 
As shown in Table 8, the parameter tuning time is different for the models. The total 

tuning time is the whole computing time for all parameter combinations while the average 
tuning time is equal to the total tuning time divided by the number of combinations. We can 
find that the average tuning time is quite short for each model and the values are similar. To 
accelerate the procedure of parameter tuning, parallel computing and narrowing grid search 
space can be adopted in the real-world operation. 

Table 8   Comparison of parameter tuning time 

Model Total tuning time (h) Average tuning time (s) 

SVR 0.40 29.06 
Direct GBRT 3.39 27.21 

Iterated GBRT 3.39 27.21 
Multivariate GBRT 

(30-min-ahead) 4.14 33.25 

Multivariate GBRT 
(60-min-ahead) 6.18 49.67 

4.4 Model Comparison 

In this section, the aforementioned models are evaluated and compared with the measures of 
effectiveness defined in Section 4.2. All models in this section are executed 10 times and the 
results is obtained from the average values of 10 execution results. To ensure the statistical 
significance of the models comparison, analysis of variance (ANOVA) test and Tukey’s test 
are employed. ANOVA is used to determine if the results of four models are statistically 
different. We use Tukey’s test to compare the results of all pairwise models and Tukey’s test is 
a post-hoc test which means it can be perform only if we reject the null hypothesis in ANOVA. 

4.4.1 Prediction accuracy  

We employ the ANOVA test on the results of prediction accuracy and the analysis results 
indicate that there are statistically differences among four models at 0.05 significance level. 
Then by using Tukey’s test, we check the statistically differences between each pairwise 
models. The analysis results prove the error differences between any two models are significant 
at 0.05 significance level, which mean the ranks in Table 9 and Table 10 are credible. The 
analysis results are not listed alone limited by the length of paper. 

Table 9 compares the prediction accuracies of the models. All of the direct GBRT, 
iterated GBRT and multivariate GBRT are better than SVR in 30-min-ahead prediction. Iterated 
GBRT has the best performance in accuracy because it uses updated predicted values as inputs. 
It strengthens the relationship between adjacent steps while the effect of error accumulation is 
not significant in short-step prediction. In 30-min-ahead prediction, the direct GBRT has the 
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better prediction performance than multivariate GBRT but the margin of the prediction 
accuracy is quite small. Both of them have good prediction accuracies.  

As shown in Table 10, the prediction accuracy of iterated GBRT decreases rapidly in 
60-min-ahead prediction, which is very sensitive to the error accumulation in the iteration 
process. The prediction accuracy of direct GBRT and multivariate GBRT are significantly 
better than the performance of SVR, in which multivariate GBRT has a large degree of 
improvement in prediction accuracy compared with the 30-min-ahead prediction. The 
prediction accuracies of direct GBRT and multivariate GBRT are comparable. In general, both 
multivariate GBRT and direct GBRT have a better prediction accuracy than SVR in 60-min-
ahead prediction. The advantage of multivariate GBRT in multi-step-ahead prediction is 
gradually reflected with the increasing prediction step. Iterated GBRT is greatly affected by the 
error accumulation which leads to a poor accuracy. 

Table 9   Comparison of prediction accuracy for 30-min-ahead prediction 

Model Error Rank 
Prediction step 

1 2 3 4 5 6 
 MAPE        

SVR 5.12% 4 2.75% 3.97% 5.09% 5.83% 6.35% 6.75% 
Direct GBRT 4.64% 2 2.06% 3.42% 4.52% 5.36% 5.99% 6.48% 

Iterated GBRT 4.50% 1 2.06% 3.24% 4.32% 5.17% 5.85% 6.34% 
Multivariate 

GBRT 4.70% 3 2.22% 3.48% 4.59% 5.43% 6.03% 6.49% 

 SMAPE1        
SVR 4.70% 4 2.65% 3.78% 4.72% 5.32% 5.73% 6.01% 

Direct GBRT 4.38% 2 2.04% 3.32% 4.30% 5.02% 5.59% 6.01% 
Iterated GBRT 4.23% 1 2.04% 3.16% 4.13% 4.86% 5.42% 5.79% 

Multivariate 
GBRT 4.45% 3 2.19% 3.37% 4.35% 5.10% 5.63% 6.03% 

 SMAPE2        
SVR 3.74% 4 2.12% 3.01% 3.75% 4.21% 4.55% 4.80% 

Direct GBRT 3.62% 2 1.75% 2.76% 3.55% 4.14% 4.57% 4.92% 
Iterated GBRT 3.48% 1 1.75% 2.62% 3.38% 3.95% 4.40% 4.73% 

Multivariate 
GBRT 3.66% 3 1.84% 2.78% 3.60% 4.20% 4.62% 4.93% 

 RMSE        
SVR 4.36 4 2.27 3.29 4.18 4.78 5.19 5.55 

Direct GBRT 4.09 1 1.75 3.02 3.90 4.50 4.96 5.30 
Iterated GBRT 4.32 3 1.75 2.94 3.94 4.70 5.35 5.85 

Multivariate 
GBRT 4.20 2 1.86 3.09 4.04 4.65 5.07 5.41 

 NRMSE        
SVR 6.85% 4 3.56% 5.17% 6.56% 7.52% 8.16% 8.72% 

Direct GBRT 6.43% 1 2.75% 4.74% 6.14% 7.07% 7.80% 8.33% 
Iterated GBRT 6.79% 3 2.75% 4.63% 6.19% 7.39% 8.40% 9.19% 

Multivariate 
GBRT 6.60% 2 2.92% 4.86% 6.35% 7.30% 7.96% 8.49% 
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Table 10   Comparison of prediction accuracy for 60-min-ahead prediction 

Model Error Rank 
Prediction step 

1 2 3 4 5 6 7 8 9 10 11 12 
 MAPE              

SVR 6.34% 4 2.75% 3.97% 5.09% 5.83% 6.35% 6.75% 6.93% 7.09% 7.37% 7.76% 8.04% 8.22% 
Direct GBRT 5.94% 2 2.06% 3.42% 4.52% 5.36% 5.99% 6.48% 6.81% 7.09% 7.32% 7.34% 7.41% 7.45% 

Iterated GBRT 6.01% 3 2.06% 3.24% 4.32% 5.17% 5.85% 6.34% 6.78% 7.12% 7.38% 7.65% 7.94% 8.25% 
Multivariate GBRT 5.92% 1 2.44% 3.67% 4.64% 5.37% 5.94% 6.41% 6.70% 6.89% 7.05% 7.15% 7.29% 7.45% 

 SMAPE1              
SVR 5.71% 4 2.65% 3.78% 4.72% 5.32% 5.73% 6.01% 6.18% 6.32% 6.58% 6.88% 7.09% 7.20% 

Direct GBRT 5.55% 2 2.04% 3.32% 4.31% 5.02% 5.59% 6.01% 6.31% 6.56% 6.76% 6.81% 6.90% 6.93% 
Iterated GBRT 5.53% 1 2.04% 3.16% 4.13% 4.86% 5.41% 5.79% 6.16% 6.47% 6.71% 6.96% 7.20% 7.42% 

Multivariate GBRT 5.57% 3 2.42% 3.58% 4.45% 5.09% 5.59% 6.00% 6.26% 6.45% 6.60% 6.69% 6.80% 6.93% 
 SMAPE2              

SVR 4.58% 4 2.12% 3.01% 3.75% 4.21% 4.55% 4.80% 4.95% 5.19% 5.30% 5.52% 5.69% 5.79% 
Direct GBRT 4.57% 3 1.75% 2.76% 3.55% 4.14% 4.57% 4.91% 5.17% 5.43% 5.57% 5.61% 5.68% 5.70% 

Iterated GBRT 4.54% 1 1.75% 2.62% 3.38% 3.95% 4.40% 4.73% 5.06% 5.33% 5.53% 5.73% 5.90% 6.07% 
Multivariate GBRT 4.55% 2 1.98% 2.92% 3.64% 4.14% 4.55% 4.89% 5.11% 5.27% 5.39% 5.47% 5.54% 5.64% 

 RMSE              
SVR 5.30 3 2.27 3.29 4.18 4.78 5.19 5.55 5.67 5.81 6.00 6.22 6.36 6.47 

Direct GBRT 5.09 1 1.75 3.02 3.90 4.50 4.95 5.30 5.55 5.85 5.98 6.07 6.04 6.07 
Iterated GBRT 5.63 4 1.75 2.94 3.93 4.70 5.33 5.83 6.20 6.48 6.67 6.79 6.90 7.05 

Multivariate GBRT 5.15 2 2.08 3.30 4.07 4.55 4.95 5.34 5.66 5.86 5.97 6.01 6.05 6.12 
 NRMSE              

SVR 8.32% 3 3.56% 5.17% 6.56% 7.52% 8.16% 8.72% 8.91% 9.12% 9.42% 9.77% 10.00% 10.17% 
Direct GBRT 8.00% 1 2.75% 4.74% 6.13% 7.07% 7.78% 8.33% 8.72% 9.19% 9.39% 9.53% 9.49% 9.54% 

Iterated GBRT 8.84% 4 2.75% 4.62% 6.18% 7.38% 8.38% 9.16% 9.75% 10.18% 10.47% 10.66% 10.77% 10.99% 
Multivariate GBRT 8.08% 2 3.26% 5.18% 6.40% 7.15% 7.78% 8.39% 8.89% 9.21% 9.38% 9.44% 9.51% 9.62% 
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4.4.2 Prediction stability 

ANOVA test and Tukey’s test are also adopted on the results of prediction stability. The analysis 
results indicate that there are statistically significant differences among four models in 
prediction stability and the ranks of prediction stability is believable through pairwise model 
comparisons.  

The prediction stability analysis is to determine the smoothness of the prediction 
variation in the multi-step-ahead prediction by calculating the standard deviation of each step 
prediction error. A higher stability can prevent the prediction accuracy from suddenly 
decreasing in the relatively long-term prediction.  

 
Table 11   Comparison of prediction stability  

Model 
30-min-ahead prediction 60-min-ahead prediction 

Prediction stability Rank Prediction stability Rank 
 MAPE  MAPE  

SVR 1.52% 1 1.68% 2 
Direct GBRT 1.67% 4 1.77% 3 

Iterated GBRT 1.63% 3 1.96% 4 
Multivariate GBRT 1.62% 2 1.59% 1 

 SMAPE1  SMAPE1  
SVR 1.28% 1 1.39% 1 

Direct GBRT 1.49% 4 1.59% 3 
Iterated GBRT 1.43% 3 1.69% 4 

Multivariate GBRT 1.46% 2 1.43% 2 
 SMAPE2  SMAPE2  

SVR 1.02% 1 1.13% 1 
Direct GBRT 1.19% 4 1.29% 3 

Iterated GBRT 1.14% 2 1.37% 4 
Multivariate GBRT 1.18% 3 1.17% 2 

 RMSE  RMSE  
SVR 1.24 1 1.31 2 

Direct GBRT 1.33 3 1.39 3 
Iterated GBRT 1.55 4 1.72 4 

Multivariate GBRT 1.33 2 1.28 1 
 NRMSE  NRMSE  

SVR 1.95% 1 2.05% 2 
Direct GBRT 2.09% 2 2.19% 3 

Iterated GBRT 2.42% 4 2.67% 4 
Multivariate GBRT 2.10% 3 2.02% 1 

 
Table 11 shows that SVR has the strongest prediction stability in both 30-min-ahead 

and 60-min ahead prediction, which indicates that its prediction accuracy is the most stable 
with multiple prediction steps. Among GBRT models, multivariate GBRT has the highest 
prediction stability. In 60-min ahead prediction, iterated GBRT has the worst prediction 
stability because of the rapid accuracy descent caused by the error accumulation. Multivariate 
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GBRT outputs all the prediction values simultaneously. Although the prediction accuracy of 
multivariate GBRT is a little bit worse than direct GBRT and iterated GBRT in the first-step 
prediction, with the increasing prediction step, the gap in the prediction accuracy among these 
multi-output GBRT models gradually becomes narrowed. It can be seen that the advantages of 
the prediction stability can be reflected in the prediction with long steps. Besides, the prediction 
stability is also an important consideration for travelers and traffic managers. 

4.4.3 Prediction time 

The prediction time only considers the predicting process, regardless of the parameter tuning 
and training process. In the real-time applications, the prediction time determines the prediction 
efficiency. A shorter prediction time means a better applicable potential of the model and better 
user experience. As shown in Table 12, multivariate GBRT has significant advantages in the 
prediction time in 30-min-ahead prediction and the prediction time is far less than other models. 
Since the direct GBRT and iterated GBRT need to predict each step separately in the prediction 
process, the prediction time is greater than multivariate GBRT. Iterated GBRT needs to update 
the feature space in each iteration process and replaces the corresponding values with predicted 
values. Due to the spatial and temporal correlations, it is necessary to predict the speeds of the 
upstream and downstream sections in each iteration and replace them with predicted values. 
So the prediction time of iterated GBRT is 3 times longer than direct GBRT. SVR has no 
advantage in prediction time because the prediction time of SVR is much longer than that of 
GBRT. For 60-min-ahead prediction, with the increase of the prediction step, the gap in 
prediction time between multivariate GBRT and the other GBRT models is gradually widened. 
SVR is time-consuming so it may have limitations in real-time applications. 
 

Table 12   Comparison of prediction time 

Model 
30-min-ahead prediction 60-min-ahead prediction 

Prediction time (s) Rank Prediction time (s) Rank 
SVR 3.26 4 6.57 4 

Direct GBRT 0.96 2 1.94 2 
Iterated GBRT 2.92 3 5.79 3 

Multivariate GBRT 0.27 1 0.26 1 
 

4.4.4 Prediction results 

As shown in Figure 9, each model has good prediction performance in the first-step prediction, 
while the prediction accuracy obviously declines in the 12th prediction step. With the 
prediction step growth, the prediction ability decreases due to variable reasons, e.g., traffic 
congestion, accidents, morning and evening peaks. At the same time, the prediction ability on 
a working day is higher than that of the weekend for all models. Figure 9(b) shows that iterated 
GBRT and SVR have poor ability to predict the sudden change of speed caused by accidents.  
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FIGURE 9   Comparison of prediction results on Thursday and Saturday. 
 

4.4.5 Application in the scenario with target detector W4 

To prove the applicability of the proposed model, we test it in another scenario, in which W4 
is the target detector, W3 is the upstream detector, and W5 is the downstream detector. As 
shown in Table 13, we can conclude the same results as the scenario with target detector W3 
we mentioned above. The multivariate GBRT has the advantage on the prediction stability and 
time. With the increasing prediction horizon, the multivariate GBRT performs better in 
prediction accuracy. 
 

Table 13   Model performance comparison for target detector W4 

 Model Prediction accuracy 
(MAPE) 

Prediction stability 
(MAPE) Prediction time 

30-min-
ahead 

prediction 

SVR 4.22% 1.08% 3.28 
Direct GBRT 3.95% 1.26% 0.97 

Iterated GBRT 3.99% 1.31% 2.93 
Multivariate 

GBRT 3.99% 1.26% 0.24 

60-min-
ahead 

prediction 

SVR 5.05% 1.14% 6.56 
Direct GBRT 4.86% 1.27% 1.92 

Iterated GBRT 5.37% 1.73% 5.81 
Multivariate 

GBRT 4.84% 1.18% 0.25 
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5. CONCLUSIONS 

In this paper, we conduct multi-step-ahead short-term traffic speed prediction by improving the 
gradient boosting regression tree. To solve multi-step-ahead prediction by GBRT, we use three 
strategies, namely direct GBRT, iterated GBRT, and multivariate GBRT. The proposed 
multivariate GBRT model achieves to output all prediction values simultaneously and consider 
the correlations between prediction variables through improving basic regression trees by 
taking into account all the predictor variables in the splitting process and modifying the 
splitting function. The models are evaluated by three criteria: prediction accuracy, prediction 
stability, and prediction time.  

We explored the real-world data extracted from loop detectors in US101-N freeway 
through PeMS. SVR is used as the benchmark model and GBRT is taken as the basic model. 
The results show that: (I) Both direct GBRT and multivariate GBRT have obvious advantages 
in terms of the prediction accuracy compared to SVR; (II) Iterated GBRT has good performance 
in short-step prediction while the prediction accuracy decreases significantly with the increase 
of the prediction step due to the error accumulation; (III) Multivariate GBRT has the strongest 
prediction stability in multi-step-ahead prediction. With the prediction step growth, advantages 
of the high prediction stability are gradually reflected, which the prediction error distribution 
is relatively uniform; (IV) Multivariate GBRT outperforms the other models in the prediction 
time. Besides, with the increase of the prediction step, the advantages in prediction time are 
more obvious. Multivariate GBRT can save computational resources and improve the 
efficiency of prediction, which is significant for real-time applications. 

In future research, we expect to learn how to select important features more efficiently 
and find a way to achieve dynamic calibration in the large-scale road networks. We will also 
compare the performance of random forest and GBRT in multi-step-ahead prediction. 
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