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ABSTRACT 62 

Plant phenology – the timing of cyclic or recurrent biological events in plants – offers insight 63 

into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally 64 

studied phenologies are readily apparent, such as flowering events, germination timing, and 65 

season-initiating budbreak. However, a broad range of phenologies that are fundamental to the 66 

ecology and evolution of plants, and to global biogeochemical cycles and climate change 67 

predictions, have been neglected because they are “cryptic” – that is, hidden from view (e.g root 68 

production) or difficult to distinguish and interpret based on common measurements at typical 69 

scales of examination (e.g leaf turnover in evergreen forests). We illustrate how capturing cryptic 70 

phenology can advance scientific understanding with two case studies: wood phenology in a 71 

deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of 72 

Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and 73 

characterizing cryptic plant phenology is needed for understanding and accurate prediction at 74 

many scales from organisms to ecosystems. We recommend avenues of empirical and modeling 75 

research to accelerate discovery of cryptic phenological patterns, to understand their causes and 76 

consequences, and to represent these processes in terrestrial biosphere models. 77 

78 
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1. INTRODUCTION 79 

All organisms have physical limits beyond which they function poorly or perish, and face trade-80 

offs in the allocation of finite resources to different structures and functions (Araújo et al., 2013; 81 

Bennett & Lenski, 2007). Evolutionary strategies to establish, survive, grow, and reproduce are 82 

shaped by such fundamental constraints and trade-offs (Roff & Fairbairn, 2007; Stearns, 1989). 83 

When physical constraints or available resources vary regularly through time, organisms often 84 

evolve temporal patterns in their activities to match or complement these variations (Diamond, 85 

Frame, Martin, & Buckley, 2011). Temporal rhythms can also arise from time-dependent 86 

biological process such as ontogeny and demography (Niinemets, García-Plazaola, & Tosens, 87 

2012; Thomas & Winner, 2002). The Earth surface experiences seasonal cycles in temperature, 88 

precipitation, and light that influence the availability of resources and the potential to carry out 89 

the chemistry underlying biological processes (Schwartz, 2013; A. H. Strahler & Strahler, 2006). 90 

Sessile organisms, such as most multicellular plants, are subjected to these seasonal cycles in-91 

place. Plant phenology—the timing of cyclic or recurrent biological events in plants—represents 92 

functional strategies to persist within the bounds of natural climate seasonality and biological 93 

possibility (Forrest & Miller-Rushing, 2010; Rathcke & Lacey, 1985). The study of phenology 94 

has thus long been used as a means for gaining insight into the ecology and evolution of plants 95 

and other organisms (Lieth, 1974). 96 

 The term ‘phenology’ traces to the Greek root phaino, meaning ‘to show,’ or ‘to appear’ 97 

(Schwartz, 2013), and early influential works on phenology promoted observations of 98 

phenomena that were ‘sharp,’ ‘visible,’ and easy to detect (Leopold & Jones, 1947). In today’s 99 

lexicon, common definitions of phenology broadly encompass the timing of cyclic or recurrent 100 

biological events in plants, along with the causes and consequences of that timing (e.g. Lieth 101 
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1974, and (phenology, n. : Oxford English Dictionary, 2005). In contrast with broad 102 

contemporary definitions of phenology, studies of phenology often reflect the origin and history 103 

of the term by focusing on readily apparent biological events. These are generally aboveground 104 

and accompanied by changes that are readily and reproducibly distinguished with human senses 105 

such as visible changes in color, position, mass and volume. In plants, these include phenomena 106 

such as germination in annual plants, synchronized leaf production (leaf flush) and abscission in 107 

deciduous forests (Murali & Sukumar, 1993; Richardson & O’Keefe, 2009), and the onset of 108 

anthesis (flower opening) (Schwartz, 2013). Some phenological patterns, such as deciduous 109 

forest leaf onset, are also apparent at canopy and larger spatial scales with remote sensing tools 110 

ranging from phenocams to satellites (Badeck et al., 2004; Buitenwerf, Rose, & Higgins, 2015). 111 

Studying the timing and controls of such apparent biological events has contributed to 112 

understanding the evolution of plant traits and strategies in response to cycles in temperature, 113 

precipitation, photoperiod, and other physical variables (Chuine, 2010; Z. Huang, Liu, Bradford, 114 

Huxman, & Venable, 2016; Pau et al., 2011; van Schaik, Terborgh, & Wright, 1993). 115 

Phenological studies have also advanced our understanding of ecology, as many phenological 116 

patterns are coupled to biotic interactions such as intra-annual dynamics of predator or mutualist 117 

populations (Pau et al., 2011; Schwartz, 2013). More recently, some phenological events, such as 118 

date of anthesis or first leaf emergence, have proven useful indicators of biological responses to 119 

climate change (e.g. Parmesan & Yohe, 2003), and the relative ease of observing such events has 120 

enabled citizen science at regional and continental scales (Schwartz, Betancourt, & Weltzin, 121 

2012).  122 

However, many processes in plants are not readily apparent, but are no less cyclic or 123 

seasonal than the more easily observed phenomena that humans have historically monitored. 124 
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These phenologies are what might be called ‘cryptic.’ Some phenological patterns are difficult to 125 

detect because they are hidden, including below-ground activities such as allocation to roots, and 126 

internal processes such as allocation to carbohydrate reserves or cell differentiation. Other 127 

phenological patterns are missed or misinterpreted based on common measurements at typical 128 

scales of examination (e.g. changes in mass, area or volume of plant organs or of biomass pools).  129 

Cryptic phenologies are not as well understood as apparent phenologies, and they have not been 130 

used as indicators of climate change. Yet phenologies, including cryptic phenologies, play 131 

critical roles in ecosystems, and mediate large-scale fluxes of carbon, nutrients, water, and 132 

energy that are essential to consider as Earth’s climate changes (Abramoff & Finzi, 2015; 133 

McCormack, Adams, Smithwick, & Eissenstat, 2014; Noormets, 2009; Richardson, Keenan, et 134 

al., 2013b).  135 

To address the disparity between the narrow scope of apparent phenology and the much 136 

broader scope of cyclic and seasonal plant activities, we first offer a framework with terminology 137 

that identifies the underlying challenges to observing, interpreting, and modeling cryptic 138 

phenologies. Then, focusing on trees, we review specific case studies in which missing cryptic 139 

phenology leads to problems for understanding and modeling seasonal ecosystem processes: 140 

wood allocation in a temperate mixed forest, and leaf phenology in tropical evergreen Amazon 141 

forests. We emphasize that attention to cryptic phenology is timely because many terrestrial 142 

biosphere models (TBMs, the models used to represent vegetation of the land surface in Earth 143 

system models and needed for climate change predictions; Fisher, Huntzinger, Schwalm, & 144 

Sitch, 2014), assume that cryptic phenologies are strongly correlated with apparent phenologies, 145 

and that such assumptions can lead to misattribution of the causes behind observed fluxes of 146 

carbon, water, nutrients, and energy. Although we focus on trees, we argue that cryptic 147 
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phenologies are ubiquitous, and their conceptualization, characterization, and interpretation are 148 

essential for accurate prediction at scales from organisms to ecosystems across the globe. 149 
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Table 1.  Categorization of plant phenologies based on our current capacity for successful measurement, observation, and/or interpretation.  150 

Plant phenology 

category 

Specific examples Frequently 

measured? 

Model representation 

examples 

Examples of current or possible 

use 

Apparent     

 Phases and events 

easily observed by 

humans. 

 Bud burst1  

 Leaf abscission2 

 Anthesis3 

 Fruit maturation4 

Yes, and some records 

extend for decades or 

longer. 

May be prescribed by 

relying directly on 

observations to force the 

model (e.g. remote sensing 

indices), or may be 

simulated based on 

environmental controls 

(e.g. growing degree 

days).5 

 Defining the duration of the 

growing season in seasonally 

dormant systems.6,7 

 Testing capacity of 

hydrothermal models to predict 

events such as germination.8,9 

 Using changes in timing of 

phenological events as 

indicators of climate 

change.10,11,12 

Cryptic: hidden     

 Phases and events 

that are internal or 

obstructed by some 

barrier and thus 

difficult to detect. 

 Below-ground processes 

such as root production.13,14  

 Structural changes within 

cells or tissues such as 

xylem formation.15 

 Remote sensing in cloudy 

regions such as wet tropical 

forests.16 

No, but these blind 

spots are generally 

acknowledged.  

Often assumed to be linked 

to or dependent on 

apparent phenology.17,18 

This assumption is 

generally explicit.  

 Modeling of whole plant carbon 

and water dynamics.19,20 

 Estimating intra-annual cycles 

of biomass gain.15 

 Identifying temporal variation 

in below-ground interactions 

and associations.21,22 

Cryptic: ambiguous     

 Phases and events 

that are missed or 

misinterpreted due 

to summed variables 

or compensatory 

processes in the 

same variable. 

 

 Leaf quantity appears 

constant despite leaf 

turnover because new leaf 

production compensates for 

simultaneous old leaf 

abscission.23 

 Bole diameter can be 

affected by both wood 

formation and water 

status.24  

No, and these blind 

spots are not widely 

acknowledged. 

Measurements are 

needed at fine spatial 

or temporal scales, or 

with specialized tools, 

to capture and/or 

interpret the 

phenological pattern. 

Often assumed to be 

represented by apparent 

phenology and/or assumed 

constant. These 

assumptions are generally 

implicit and often 

unrecognized.  

 Decomposing measurements 

into components that reveal 

phenological strategies.25,26 

 Attributing cycles of ecosystem 

flux to endogenous versus 

exogenous drivers.27,28 

 Resolving lagged responses 

from instantaneous responses 

and their relationship to periods 

of stress.29,30 
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 151 

1 Budburst. (2019). Budburst: An online database of plant observations, a citizen-science project of the  

Chicago Botanic Garden. Glencoe, Illinois. https://budburst.org/plant-groups 
2 (Escudero & Del Arco, 1987) 
3 (Smith-Ramirez, Armesto, & Figueroa, 1998) 
4 (Spellman & Mulder, 2016) 
5 (Huntzinger et al., 2012) 
6 (Churkina, Schimel, Braswell, & Xiao, 2005)} 
7 (Schwartz, 2013) 
8 (Bauer, Meyer, & Allen, 1998) 
9 (Hardegree, 2006) 
10 (Badeck et al., 2004) 
11 (Schwartz, AHAS, & AASA, 2006) 
12 (Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007) 
13 (Steinaker & Wilson, 2008) 
14 (Radville, McCormack, Post, & Eissenstat, 2016) 
15 (Cuny et al., 2015) 
16 (Asner, 2001) 
17 (Delpierre, Berveiller, Granda, & Dufrene, 2015) 
18 (Abramoff & Finzi) 
19 (Hu, Moore, Riveros-Iregui, Burns, & Monson, 2010) 
20 (Michelot et al., 2012) 
21 (Mullen & Schmidt, 1993) 
22 (S. W. Simard et al., 2012) 
23 (Albert et al., 2018) 
24 (Chitra-Tarak et al., 2015) 
25 (Tang & Dubayah, 2017) 
26 (Smith et al. 2019) 
27 (Wu et al., 2016) 
28 (Migliavacca et al., 2015) 
29 (Ogle et al., 2015) 
30 (Guo & Ogle, 2018) 

                                                           



 

11 

2. THE CHALLENGE OF CRYPTIC PHENOLOGY: A FRAMEWORK 152 

As discussed above, we describe apparent phenologies as those that were selected for clear 153 

observation by humans, often with minimal technological support. By contrast, cryptic 154 

phenologies require extensive investigation or validation to capture, and as a consequence have 155 

rarely been measured at the temporal or spatial scale necessary to document and understand 156 

(Table 1). ‘Cryptic’ is a useful term because it implies concealment and ambiguity—two general 157 

challenges to capturing and understanding the full scope of cyclic/recurrent biological events in 158 

plants. To highlight these challenges, here we frame cryptic phenology as ‘hidden’ or 159 

‘ambiguous.’ 160 

Plant phenological patterns are hidden when some physical or technological barrier 161 

obstructs observation (Table 1). Soil conceals below-ground processes such as cycles of root 162 

production and turn-over (Abramoff & Finzi, 2015; Delpierre et al., 2016). Internal plant 163 

structures are (by definition) hidden behind layers of cells, making the timing of recurrent 164 

processes such as secondary xylem (wood) formation difficult to observe in vivo (Chaffey, 1999; 165 

Plomion, Leprovost, & Stokes, 2001). Large-scale phenological processes can also be hidden, as 166 

cloud cover can consistently obstruct satellite observations of vegetation reflectance over humid 167 

regions such as tropical forests (Asner, 2001). In dense forests, the upper canopy leaves partly 168 

obstruct remote sensing observations of mid- and understory leaf area patterns (Tang & 169 

Dubayah, 2017) and vice versa for ground-based observations, (Smith et al., 2019). When 170 

phenological processes are hidden, describing them often requires time-consuming methods, 171 

such as minirhizotrons or soil cores (for roots; Abramoff & Finzi, 2015; Gaudinski et al., 2010), 172 

fixation of tissue samples from multiple time periods (for wood formation; Arend & Fromm, 173 

2007), or ‘ground truth’ observations (for remotely-sensed vegetation greenness indices; 174 
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Chavana-Bryant et al., 2017; Lopes et al., 2016; Richardson et al., 2018; Wu et al., 2017). 175 

Hidden phenological patterns are challenging and/or time-consuming to measure, but the 176 

scientific community frequently acknowledges the scarcity of these measurements, and models 177 

including hidden phenology explicitly define their representation within allocation schemes (e.g. 178 

Abramoff & Finzi, 2015).  179 

Phenological patterns in plants are ambiguous if phases and events are missed or 180 

misinterpreted due to summed variables or compensatory processes in the same variable (Table 181 

1). A measured variable (e.g. plant mass, canopy leaf area, or bole volume) may be a function of 182 

multiple variables that are not synchronized with each other (Fig. 1a), making it difficult to 183 

interpret the temporal changes in the measured variable. For example, determining whether 184 

changes in tree stem diameter are caused by long-term carbon gain (such as xylem wall 185 

thickening), or reversible changes in plant water status (such as stem expansion or shrinkage), is 186 

difficult solely on the basis of stem diameter measurements (Chitra-Tarak et al., 2015; Cuny et 187 

al., 2015; Sheil, 1997). Additional examples of ambiguous phenological patterns arise when, for 188 

a given system, there are inputs and outputs of the same variable that are compensatory, 189 

maintaining the appearance of constancy despite change. For example, compensatory leaf 190 

production and abscission could maintain a constant total quantity of leaves in the canopy, 191 

belying underlying cycles in leaf production and abscission (Albert et al., 2018; Doughty & 192 

Goulden, 2008; Wu et al., 2016). In this example, at least two of the three terms (inputs, outputs, 193 

and total) need to be sufficiently constrained by measurements to determine whether the steady 194 

state of the total is achieved due to constant inputs and outputs (Fig. 1b) versus cyclic, but 195 

compensatory inputs and outputs (Fig. 1c). Whatever the scale of study, measuring multiple 196 
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terms over time requires more effort and/or instrumentation, and this difficulty contributes to the 197 

challenge of recognizing and resolving ambiguous phenology.  198 

Whereas hidden phenological patterns are often acknowledged to exist, but rarely 199 

measured, ambiguous phenological patterns are not frequently acknowledged because 200 

measurements are being made—the challenge lies in interpreting those measurements. For 201 

example, we understand that root phenology is hidden, and difficult to measure, because roots 202 

are underground. By contrast, we may not even realize that leaf production and loss show 203 

seasonal rhythms if the quantity of leaves in a canopy is largely constant (a compensatory 204 

scenario). The distinction between hidden and ambiguous categories is not absolute because 205 

phenology could be both hidden and ambiguous. For example, the mechanism of biomass gain 206 

(xylogenesis) is hidden within stems, and stem diameter represents an integration of cells at 207 

different stages in the sequence of xylogenesis: cell expansion, secondary cell wall thickening, 208 

lignification and dead cells (Cuny et al., 2015; Plomion et al., 2001). Thus changes in stem 209 

diameter emerge from expansion as well as biomass gain (Cuny et al., 2015), resulting in some 210 

ambiguity. 211 

Cryptic phenologies do not follow fundamentally different rules than their more apparent 212 

counterparts. Plant phenologies, in general, are consequences of biology, climatic seasonality, 213 

and their interactions. Yet a focus on cryptic phenology challenges us to explicitly consider our 214 

current observational blind spots. These blind spots may prevent us from gaining a 215 

comprehensive understanding of organismal strategies and limitations in relation to their biology 216 

and physical environment, with consequences for our understanding of population, community, 217 

and ecosystem ecology. Ultimately, our ability to document, understand, and model the 218 

component processes that contribute to large-scale biosphere/atmosphere exchange of CO2 and 219 
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water vapor, impacts our ability to predict responses of natural systems to global change (Getz et 220 

al., 2017; Noormets, 2009; Richardson et al., 2012). 221 

 222 
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 223 
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Figure 1: Examples of ambiguous phenological patterns. In example 1, multiple variables (Y and 224 

Z) contribute to some total that is measured. Variables Y and Z may have different peak timing, 225 

different rates of change, and/or different amplitudes, that become summed for the measured total. 226 

Thus the phenological patterns of individual variables Y and Z are ambiguous. In examples 2 and 227 

3, the total for some biological variable X is the sum of an incoming (new) pool and outgoing (old) 228 

pool. In example 2, the total, the incoming, and the outgoing pools are constant. In example 3, the 229 

total is also constant, but the incoming and outgoing pools are dynamic, with inputs compensating 230 

for losses. Distinguishing between the scenarios represented by examples 2 and 3 is difficult based 231 

solely on measurements of the variable X total, and so phenological patterns of the incoming and 232 

outgoing pools remain ambiguous. 233 

  234 

3. CASE STUDIES IN CRYPTIC PHENOLOGY 235 

In the two case studies below, we draw upon available studies, data, and models to examine the 236 

evidence for, and implications of, cryptic phenology in two different plant processes in distinct 237 

ecosystems: gross primary productivity in tropical evergreen forests, and allocation to wood in 238 

temperate deciduous forests. For each case study we compare observations with simulations 239 

from terrestrial biosphere models (TBMs; models that represent land surface vegetation in the 240 

Earth system models used to simulate current and future global energy, carbon and water budgets 241 

(Fisher et al., 2014; Le Quéré et al., 2015). These model-observation comparisons serve two 242 

purposes. First, comparisons of TBMs with observations offer a test of our current ability to 243 

reproduce the seasonality of biosphere-atmosphere mass exchanges and represent phenological 244 

processes (Richardson et al., 2012) with implications for improving models (Richardson, 245 

Keenan, et al., 2013b). Second, the model-observation comparisons, placed in the context of 246 

current literature examining multiple scales and using multiple tools, allows us to ask whether 247 

cryptic phenology presents obstacles to our ability to test hypotheses about the drivers, 248 

consequences, and even the presence of phenology. Together, these case studies represent 249 

different plant organs and ecosystems, demonstrating how capturing cryptic phenological 250 
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processes can be necessary for correct attribution of cause and effect—and ultimately modeling 251 

ecosystem processes—in many systems. 252 

 253 

3.1 Cryptic phenology of bole growth in temperate forests: implications for the timing of 254 

carbon allocation to wood 255 

A TBM model-data comparison of bole growth at Harvard Forest, a temperate mixed forest site, 256 

reveals the challenge of estimating and modeling the hidden phenology of wood allocation. 257 

Allocation to wood in trees is necessary for estimations of forest carbon stocks (Kellner and 258 

Clark 2012), and important for characterizing fast versus slow growth strategies across species 259 

(Chave et al., 2009; Reich, 2014). The intra-annual timing of wood allocation may show how 260 

carbon gain responds to seasonal climate, and reveal periods of vulnerability or resilience to 261 

stress (Babst et al., 2014; Battipaglia et al., 2010). The process of woody biomass gain (from 262 

xylogenesis) is hidden within boles (Cuny et al. 2015), and tree or plot scale biomass cannot be 263 

directly measured without harvesting trees (Clark & Kellner, 2012). Because of this, the most 264 

common approach of estimating woody biomass change is to measure bole diameter growth 265 

increment for use with taxa-specific allometric equations (Chave et al., 2014; Chojnacky, Heath, 266 

& Jenkins, 2014). This approach is used in both multi-year (e.g. McMahon, Parker, & Miller, 267 

2010) and seasonal studies (e.g. Delpierre et al., 2016).  268 

 We asked whether TBMs captured the phenology of carbon allocation to wood, and the 269 

phenology of carbon allocation to leaves, with equal success. We expected that TBMs would be 270 

challenged to capture the phenology of carbon allocation to wood because it is hidden, whereas 271 

carbon allocation to leaves is more apparent given that this forest contains many deciduous tree 272 

species with spring leaf emergence and autumn senescence. To examine the phenological 273 
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patterns of allocation to wood at Harvard Forest, we estimated the net primary productivity 274 

(NPP) allocated to wood (NPPwood) based on allometric regression equations applied to a bi-275 

weekly time series of high accuracy diameter at breast height (DBH) measurements from 276 

dendrometer bands (McMahon & Parker, 2014) for three tree species (supporting information 277 

appendix S1). We estimated NPP allocated to leaves (NPPleaf, Fig. 2a) at Harvard Forest based 278 

on leaf area index and litterfall time series (J. W. Munger, n.d.; W. Munger & Wofsy, 2018; 279 

Urbanski et al., 2007; supporting information appendix S2). Resulting NPPleaf and NPPwood 280 

reveal that carbon investment in leaves and wood is highest early in the growing season (Fig. 2). 281 

The peaks in simulated NPPleaf were within days of the estimated peak NPPleaf (and close to leaf 282 

budburst, which typically occurs around May 6 (Keenan and Richardson, 2015). By contrast, 283 

simulated phenological patterns in wood-related output variables from three TBMs showed 284 

greater variation (Fig. 2, appendix S3). While the Community Land Model version 4.5 (CLM4.5) 285 

shows a peak close to that seen in the observations (around the time of budburst, at May 5), the 286 

peak for ORCHIDEETRUNK and CLASS are months later (August 1 and August 11 respectively).  287 
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 288 

Figure 2: Seasonality of observed (black ± gray standard deviation) versus model-simulated 289 

(colors) Net Primary Productivity (NPP) allocated to a) leaf biomass (NPPleaf), and b) woody 290 

biomass (NPPwood) at a temperate deciduous forest. NPPleaf observations were calculated as 291 

(dLAI/dt) • LMA + litterfall where LAI is leaf area index and LMA is leaf mass per area. For 292 

models, NPPleaf is calculated as the change in leaf biomass. NPPwood observations were from 293 

allometry using diameter-at-breast-height (DBH) increment measurements compared with outputs 294 

from three land surface models. For models, NPPwood was calculated as (Xi - Xi-1) / (ti - ti-1) where 295 

X is the model output variable most comparable to above-ground woody biomass (in gC m-2 day-
296 

1) for each model (which was vegetation biomass for CLASS, aboveground heartwood plus 297 

sapwood for ORCIDEETRUNK, and wood biomass for CLM4.5) and t is time in days. Temporal 298 

resolution is 16-day averages. The gray shaded area in all panels indicates the growing season, and 299 

the horizontal dotted line indicates zero. NPPleaf simulations were not available for CLASS. Full 300 

NPPwood estimation and model details are available in online supporting information. 301 

In interpreting this model-observation comparison, it is important to remember that using 302 

DBH with allometric scaling equations produces estimates—not direct measurements—of 303 

woody biomass (Clark & Kellner, 2012), and to consider that TBMs differ in how the wood pool 304 

is defined, which is not necessarily identical to above-ground woody biomass (see Table S1 and 305 

S2 for model-specific definitions). In addition, there is some ambiguity in DBH-derived wood 306 

phenology because DBH represents multiple summed variables (Fig. 1a). DBH can be affected 307 
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by changes in plant water status in addition to changes in biomass, and so seasonal changes in 308 

water availability could affect biomass estimations derived from allometry unless a correction is 309 

applied (Chitra-Tarak et al., 2015). The actual biomass gain (from xylogenesis) may also lag 310 

increases in DBH by weeks (Cuny et al., 2015). Explicit recognition of the distinction between 311 

measurable metrics (such as DBH) and the underlying variable we want to characterize or model 312 

(such as carbon biomass gain) motivates investigators to quantify uncertainty, and test for 313 

scenarios when proxies do not work well.  314 

Despite the limitations of the observations and models, the comparison suggests that 315 

some models (like CLM 4.5) align moderately well with DBH-derived NPPwood, while others lag 316 

DBH-derived NPPwood by months. This divergence in model behaviors highlights the importance 317 

of understanding the mechanisms driving both simulated and observed phenologies. The timing 318 

of allocation to biomass and wood-related variables in these TBMs is primarily determined by 319 

the pattern of NPP across seasons. In ORCHIDEE for example, a fraction of NPP is 320 

instantaneously allocated to sapwood, then sapwood biomass is converted into heartwood 321 

biomass based on a one-year time constant (Krinner et al., 2005). Ultimately, model NPP is 322 

controlled by site-specific climate conditions and representations of forest physiology (e.g. plant 323 

functional type), including leaf phenological patterns (e.g. leaf onset/abscission). Thus, in many 324 

TBMs, leaf phenology represents wood phenology by proxy because wood allocation is 325 

determined by a fraction of NPP, and the cycle of NPP is largely determined by leaf phenology 326 

(Delpierre et al., 2016).  327 

In contrast with model representations, physiological and tree-ring studies suggest that 328 

the mechanisms underlying wood phenology include environmental cues (e.g. temperature; 329 

Delpierre et al. 2016), ontogeny of wood cells (Cuny et al., 2015; Plomion et al., 2001), and 330 



 

21 

priorities in allocation through time (e.g. allocation of carbon to wood growth versus storage as 331 

nonstructural carbohydrates; Richardson, Carbone, et al., 2013a). These factors may play a role 332 

in determining when trees are vulnerable or resilient to stress. For example, developing wood 333 

cells expand before their cell walls thicken with carbon-rich polysaccharides and lignins, and late 334 

wood is more dense than early wood in temperate species (Plomion et al., 2001), so trees at 335 

different stages in the sequence of wood development could be more or less sensitive to drought 336 

stress. Testing and developing model frameworks for such hypotheses is currently challenging 337 

because the timing of carbon allocation to wood is hidden in vivo. More direct measurements of 338 

wood formation (e.g. Cuny et al. 2016), and nonstructural carbohydrates (e.g. Newell, Mulkey, 339 

& Wright, 2002), synchronized with frequent measurements of DBH and leaf phenological 340 

patterns, would help us to understand and model controls over wood phenological patterns 341 

(Delpierre et al., 2016; Guillemot et al., 2017), and how the timing of wood allocation relates to 342 

growth strategy, environmental fluctuations, and other plant traits. 343 

 344 

3.2 Amazon evergreen forests: implications of cryptic phenology for seasonality of 345 

ecosystem carbon fluxes  346 

The challenge of cryptic phenology is not confined to a particular plant organ. Amazon 347 

evergreen forests near the equator offer a case study where leaf phenology is ambiguous. Much 348 

of the Amazon basin experiences annual wet and dry seasons (Restrepo-Coupe et al., 2013), and 349 

this regular seasonal variation in cloud cover and precipitation may select for phenological 350 

strategies that match plant activities with resource availability (Doughty et al., 2014; Graham, 351 

Mulkey, Kitajima, Phillips, & Wright, 2003; M. O. Jones, Kimball, & Nemani, 2014; van Schaik 352 

et al., 1993). Most of the Amazon is remote, making ground-based observations of phenology 353 
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difficult, especially given the many observations needed to sample the high diversity of tree 354 

species (Cardoso et al., 2017) and strategies (Reich, 1995). Observations of canopies from 355 

satellites are often obstructed by clouds (Asner, 2001), difficult to interpret (Samanta et al., 356 

2012), and the subject of controversy surrounding technical artifacts and their correction (Huete 357 

et al., 2006; Morton et al., 2014; Saleska et al., 2016). Yet many recent studies offer evidence 358 

that leaf production, leaf abscission, wood production and root production exhibit annual 359 

rhythms in Amazon forests (Doughty et al., 2014; Girardin, Malhi, & Doughty, 2016; Lopes et 360 

al., 2016; Wagner et al., 2016).  361 

Many TBMs seem to be missing these phenological processes (Restrepo-Coupe et al., 362 

2017). Evidence that TBMs are lacking adequate phenological representation comes from a 363 

model inter-comparison for a network of ecosystem flux observations sites (eddy flux towers) in 364 

Amazonia (Restrepo-Coupe, et al., 2017). For illustration, we discuss the contrasting cases of 365 

equatorial versus southern evergreen forest sites in the Amazon basin of Brazil. At the equatorial 366 

site (K67 in the Tapajós National Forest, Brazil), four TBMs showed significant divergence from 367 

the estimated interannual pattern of whole-system photosynthetic fluxes (Fig. 3a, gross primary 368 

productivity, (GPP; gC m-2 d-1) and a metric of photosynthetic capacity, (Pc; gC m-2 d-1) for K67; 369 

(Restrepo-Coupe et al., 2017). The reason for the divergence is that modeled photosynthetic 370 

patterns are driven by environmental variability -- measures of soil water stress in this case 371 

(model calculated soil water stress index ‘FSW’ for K67, Fig. 3b-g) -- which suppresses GPP 372 

during the long dry season. Yet the observed interannual pattern of photosynthesis in this 373 

ecosystem appears to be driven by something beyond instantaneous responses to seasonal 374 

climate fluctuations. 375 
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 Since TBMs already include climatic seasonality, their failure to capture GPP seasonality 376 

suggests that phenological processes operate at the equatorial site that are separate from the 377 

instantaneous physiological responses already represented. Canopy phenological activity could 378 

drive the observed GPP via two mechanisms: 1) dry season increases in quantity of canopy 379 

leaves (quantified as leaf area index, or LAI) and/or 2) dry season increases in canopy 380 

photosynthetic capacity on a per unit area basis (Lopes et al., 2016; Restrepo-Coupe et al., 2017; 381 

Wu et al., 2016). Observations of leaf quantity (LAI) from equatorial Amazon sites show that 382 

LAI varies little across seasons (e.g. Fig. 3c ‘LAI’ shows low seasonality at K67). Leaf turnover, 383 

however, exhibits a dry season pulse (Fig. 3e,f: ‘NPPleaf’ and ‘NPPlitter-fall’), suggesting that LAI 384 

is maintained because leaf production compensates for near-simultaneous leaf fall during the dry 385 

season. As a result, LAI exhibits modest seasonal variation relative to seasonal variation in leaf 386 

litterfall and leaf flush (Fig. 4).  The seasonality of total LAI also fails to represent within-canopy 387 

dynamics, as compensatory leaf area patterns have been identified between the upper and lower 388 

canopy levels at K67 (Smith et al., 2019). Since new (recently expanded) leaves have high rates 389 

of photosynthesis, replacing old leaves with new leaves can increase photosynthetic capacity of 390 

the canopy on a per unit area basis (Albert et al., 2018; Doughty & Goulden, 2008; Niinemets et 391 

al., 2012; Pantin, Simonneau, & Muller, 2012; Wu et al., 2016).392 
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Figure 3: Annual cycles of observed (black ± gray standard deviation) versus model-simulated 394 

(colors) forest metrics in two Amazon forests (an equatorial Amazon forest, K67, and a southern 395 

Amazon forest, RJA), including (panels from top to bottom): daily average ecosystem-scale 396 

photosynthesis (GPP); daily average ecosystem-scale photosynthetic capacity (Pc, GPP at a fixed 397 

PAR range (725-875umol m-2 s-1), vapor pressure deficit, air temperature and light quality 398 

measured as cloudiness index (all time mean ± 1 standard deviation)); leaf area index (LAI); net 399 

primary productivity (NPP) allocated to leaves (leaf production; NPPleaf); NPP going to litterfall 400 

(NPPlitterfall), and NPP allocated to wood (NPPwood); soil water stress metric (FSW), where 1=no 401 

stress (Ju et al., 2006). The light gray shaded box all panels represents the dry season. For K67 402 

LAI data, we use data from the control plot of a close-by drought experiment (Juárez et al. 2007; 403 

Brando et al. 2010). LAI and NPP observations were not available for the RJA site. Lines are 404 

dashed for IBIS NPP to indicate that NPP is allocated only at the end of the year. For further details 405 

on model intercomparison, see Restrepo-Coupe et al. (2017). 406 

The combination of leaf turnover and leaf age-dependent CO2 assimilation capacity creates a 407 

scenario at K67 in which ecosystem photosynthetic capacity varies more than LAI (Fig. 3b,c). 408 

Therefore, the observable canopy total LAI time series does not fully capture phenological 409 

patterns of leaf turnover or the resulting shifts in canopy photosynthetic capacity at this site (Fig. 410 

5) because leaf phenology is compensatory (Fig. 1c).  411 

  In contrast to the equatorial Amazon site, at a southern Amazon forest (Reserva Jarú, 412 

RJA), observations and models coincide, with GPP and Pc declining during the dry season, 413 

consistent with increasing water limitation as the dry season progresses (Fig. 3h,i,n). We lack an 414 

observational time series of LAI and litterfall for the southern site, but remote sensing (GLAS 415 

satellite lidar) suggests that in the southern Amazon, LAI increases early in the dry season and 416 

decreases late in the dry season (Tang & Dubayah, 2017). Thus the equatorial (K67) and 417 

southern (RJA) Amazon sites appear to include trees with different phenological strategies 418 

(Restrepo-Coupe et al., 2013). We hypothesize that many trees in high water availability 419 

equatorial sites may be adapted to optimize light use over time, synchronizing leaf production 420 

with the sunny dry season as a strategy for increasing annual carbon gain (Restrepo-Coupe et al., 421 

2017). The tree communities at southern sites like RJA may experience a weaker peak in dry 422 



 

21 

season sunlight (Restrepo-Coupe et al., 2013), and may shed leaves during dry seasons to protect 423 

plant water status. 424 

 425 

Figure 4: Seasonal canopy dynamics of Leaf Area Index (LAI), leaf litterfall, and leaf production 426 

averaged across five Amazonian sites, showing that large leaf turnover is concealed by near-427 

constant LAI. The pulses of litterfall and leaf production support compensatory leaf phenology 428 

(Fig 1c) rather than constant leaf phenology (Fig 1b). Bars show mean values of annual amplitude 429 

scaled for studies (n=5 sites) of lowland evergreen tropical forests where both LAI and litterfall 430 

have been measured. Seasonal range is the annual amplitude scaled by mean value and is calculated 431 

as the difference between the maximum dry season value and the minimum wet season value, 432 

divided by the mean annual value (%). Error bars show standard deviation of the mean. Studies 433 

included in this figure: Tambopata-Candamo Reserve, south-eastern Peru (Girardin et al. 2016); 434 

Caxiuana, Floresta Nacional de Caxiuana, Pará, Brazil (Girardin et al. 2015); K83 (Doughty & 435 

Goulden 2008) and K67 (Brando et al. 2010 and Malhado et al. 2009) are located in the Tapajós 436 

National Forest, Pará, Brazil. Sites experience a range of mean annual precipitation values (1900 437 

– 2572 mm). 438 

This interpretation is consistent with studies asserting that tropical evergreen forests produce new 439 

leaves during periods of high light if they are not strongly water-limited (Doughty & Goulden, 440 

2008; Graham et al., 2003; Guan et al., 2015; M. O. Jones et al., 2014; Reich & Borchert, 1984; 441 

Restrepo-Coupe et al., 2013; van Schaik et al., 1993; Wu et al., 2016). This continuum between 442 
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precipitation-driven and light-driven tropical evergreen forest phenological strategies is not 443 

included in most TBMs, and therefore might account for some of the divergence in their GPP 444 

projections (Restrepo-Coupe et al., 2017). 445 

 446 

Figure 5: Illustration of how cryptic leaf turnover creates a phenological pattern in canopy 447 

photosynthetic capacity. Top: Individual crowns drop old leaves and produce new leaves with 448 

some degree of synchronization. Middle: the proportion of leaf area index belonging to previous 449 
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year’s growth (old leaves) and new leaf growth (new leaves) changes through the dry season. Here 450 

leaf phenology is difficult to detect because of compensatory inputs and outputs (see Fig 1c). Inset: 451 

leaf photosynthetic capacity depends upon leaf age.  Lower panel: the combination of leaf turnover 452 

and leaf ontogeny increase the canopy photosynthetic capacity, but neither total LAI nor satellite-453 

based proxies for LAI and greenness show this same increase. 454 

 Equatorial Amazon sites such as K67 provide an example where resolving ambiguous 455 

phenology by testing whether leaf phenology is compensatory versus constant, and 456 

acknowledging the age-dependent physiology of leaves, is important for understanding and 457 

modeling a process, such as forest photosynthesis, at a large scale. Some plant functional types 458 

(PFTs) within TBMs allow for photosynthesis to vary with leaf age, but with a focus on 459 

temperate deciduous plants. For example, the Joint UK Land Environment Simulator (JULES) 460 

accounts for damage and senescence accumulation by reducing photosynthesis during the 461 

growing season (Clark et al., 2011), and the Ecosystem Demography model (ED2) decreases the 462 

maximum carboxylation rate of Rubisco (Vcmax) in the autumn as a function of Julian day 463 

utilizing historical MODIS data (Medvigy, Wofsy, Munger, Hollinger, & Moorcroft, 2009). In 464 

these cases, time of year or ‘season’ serves as a proxy for leaf age, which may work well for 465 

some PFTs, but not for tropical evergreen broadleaf forests where the ‘evergreen’ canopy belies 466 

cyclic leaf turnover that the PFT ruleset does not include. This case study suggests that 467 

accounting for cryptic phenology is necessary for correctly detecting, attributing, and modeling 468 

the carbon exchange dynamics of tropical forests (De Weirdt et al., 2012; Y. Kim et al., 2012; 469 

Manoli, Ivanov, & Fatichi, 2018; Restrepo-Coupe et al., 2017). 470 

 471 

4. IMPLICATIONS OF CRYPTIC PHENOLOGY FOR PREDICTION ACROSS 472 

SCALES 473 

Fine-scale processes, integrated over space and time, create large-scale exchanges of mass and 474 

energy between the biosphere and the atmosphere (Monson & Baldocchi, 2014). Here we 475 
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consider some of the fine scale processes associated with cryptic phenology that, scaled up, have 476 

implications for our ability to understand, model, and predict biosphere-atmosphere interactions 477 

under climate change.  478 

  479 

Organ scale 480 

Plant traits can show very high within-species variation due to phenology (Chavana-481 

Bryant et al., 2017), and this variation can surpass interspecific variation for some traits (Fajardo 482 

& Siefert, 2016). Specifically, leaf development and aging is associated with changes in internal 483 

leaf structure (Lim, Kim, & Gil Nam, 2007; Niinemets et al., 2012), concentrations of secondary 484 

metabolites (Z. Liu et al., 1998; Virjamo & Julkunen-Tiitto, 2014), emissions of volatile organic 485 

compounds (Alves, Harley, Goncalves, da Silva Moura, & Jardine, 2014; Niinemets et al., 2010), 486 

and metabolic rates (Albert et al., 2018; Niinemets et al., 2012; Pantin et al., 2012). For the goal 487 

of scaling fluxes from leaves to canopies, these many physiological changes associated with leaf 488 

age suggest that distinguishing between constant leaf phenology and compensatory leaf 489 

phenology is important not only for tropical forests (as we describe in the first case study above), 490 

but for evergreen forests in general.  491 

Similarly, root production is accompanied by physiological changes. There are species-492 

specific relationships between root age and root physiology such as respiration rates and nutrient 493 

uptake capacity (Bouma et al., 2001; Fukuzawa, Dannoura, & Shibata, 2011). Existing studies 494 

that have characterized the hidden phenology of roots have shown evidence of interspecific 495 

differences in cycles of fine root production—single flushes, multiple flushes, or constant 496 

growth—that could represent strategies for responding to seasonal changes in climate or resource 497 

availability (Fukuzawa et al., 2011; McCormack et al., 2014). 498 
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 499 

Organismal scale 500 

Natural selection would be expected to favor coordination in the timing of resource acquisition 501 

with resource storage and allocation (Sala, Woodruff, & Meinzer, 2012). Since selection acts at 502 

the level of individuals, if we want to understand the adaptive value of phenological changes, we 503 

need to understand how all plant organs function together, as a unit, through time. It is very 504 

difficult to study ‘whole’ plants in the wild, especially woody plants. Few (if any) studies have 505 

quantified the phenologies of all plant organs in wild woody plants to gain an integrated 506 

organism-level perspective on phenology (but see Hu et al., (2010) for whole-tree carbon 507 

assimilation during the growing season; see Würth, Peláez-Riedl, Wright, & Korner (2005) for 508 

seasonal variation in non-structural carbohydrate pools by plant organ; and see Doughty et al., 509 

(2014) for an example plot-scale study of  wood, fine root, and canopy phenology). Studies 510 

examining phenologies of two organs suggest that phenology is often asynchronous across 511 

organs (Abramoff & Finzi, 2015; Wagner, Rossi, Stahl, Bonal, & Hérault, 2013). Comparing 512 

phenological patterns of roots and shoots frequently reveals offsets between maximum root 513 

growth and shoot growth, and these offsets vary across biomes (Abramoff & Finzi, 2015). In 514 

tropical forests, leaf and wood production is often asynchronous (Wagner et al., 2013). The onset 515 

and/or termination of growth may also vary; roots in temperate deciduous white oak, for 516 

example, continue to elongate in winter after senescence of leaves (Teskey & Hinckley, 1981). 517 

Nonstructural carbohydrate reserves also show phenological patterns that are species-dependent 518 

(Würth et al., 2005) and affected by phenological patterns of leaves (Palacio, Maestro, & 519 

Montserratmarti, 2007). Rates of carbon use regulate carbon uptake in plants (sink-driven 520 

photosynthesis; (Fatichi, Leuzinger, & Korner, 2014), so phenological changes in carbon 521 
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demand should impact the timing of photosynthetic activity.  522 

These findings show that capturing the patterns and drivers of hidden and ambiguous 523 

phenologies will be needed for a comprehensive understanding of how plants prioritize amongst 524 

competing uses of resources and maintain carbon balance, with implications for modeling plant 525 

resource use. In most TBMs, the temporal patterns of leaf activity (the size of the leaf pool and 526 

the rate of photosynthesis) drive temporal patterns of carbon allocation because carbon allocation 527 

to other plant organs is often modeled as a constant proportion of carbon uptake (Abramoff & 528 

Finzi, 2015; Delpierre et al., 2016; Guillemot et al., 2017). However, if different plant organs 529 

respond to different environmental drivers (Wagner et al., 2016), then models that use leaf 530 

activity to generate interannual patterns of activity in hidden organs may fail to simulate 531 

observed patterns of root or bole activity at seasonal timescales. 532 

How plants prioritize their allocation, through time, to various plant organs or to storage 533 

may have consequences for plant resilience or vulnerability to extreme events, and several 534 

studies already show that plant vulnerability and/or resilience to extreme events varies due to 535 

phenological status and/or season (Craine et al., 2012; M. Huang, Wang, Keenan, & Piao, 2018). 536 

We suggest that the timing of extreme events in relation to plant phenological status may be 537 

necessary for predicting plant community responses to future climate. For example, plant 538 

tolerance to drought or cold could depend on nonstructural carbohydrates (Dietze et al., 2014; 539 

Sala et al., 2012), and nonstructural carbohydrates follow seasonal cycles that could indicate 540 

internal phenology (Richardson, Carbone, et al., 2013a). Tests of such hypotheses are timely, 541 

given that the frequency of extreme climate events is increasing under global climate change 542 

(Bellprat & Doblas-Reyes, 2016; Ummenhofer & Meehl, 2017). 543 

 544 
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Community scale 545 

 As climate changes, many studies have demonstrated that phenological patterns shift, 546 

impacting species interactions (CaraDonna, Iler, & Inouye, 2014; Memmott, Craze, Waser, & 547 

Price, 2007; Miller-Rushing, Hoye, Inouye, & Post, 2010; Polgar & Primack, 2011; Rafferty, 548 

CaraDonna, & Bronstein, 2014; Yang & Rudolf, 2010). Fewer studies have probed how hidden 549 

phenologies shape species interactions, or how those interactions may be changing. To do so 550 

could reveal that phenology mediates impacts of species interactions on plant mortality, 551 

reproduction, and metabolism. For example, the timing of insect outbreaks in relation to 552 

nonstructural carbohydrate reserves (which are affected by the timing of leaf renewal) may 553 

explain interspecific differences in tolerance to defoliation (Chen, Wang, Dai, Wan, & Liu, 554 

2017). Further investigation into how species interactions affect hidden phenologies would help 555 

gain a more complete understanding of the interplay between climate change, whole plant 556 

physiology, and species interactions. 557 

 558 

Ecosystem to global scale 559 

Projections of Earth’s future climate are particularly sensitive to uncertainties in the land 560 

carbon cycle (Friedlingstein et al., 2014). Improving representation of the land carbon cycle in 561 

TBMs requires understanding the drivers of phenology, and the role of phenology in mediating 562 

biosphere-atmosphere exchanges (Richardson, Keenan, et al., 2013b). Recognizing phenological 563 

rhythms at scales from plant organs to communities is prerequisite to identifying their role in 564 

large scale (ecosystem to global) cycling of carbon. For example, investigating the distribution of 565 

root ages at different times of the year could elucidate larger scale autotrophic respiration or soil 566 

resource acquisition processes (because root age affects root respiration and nutrient uptake 567 
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capacity; Bouma et al., 2001). TBMs which are calibrated to match current observations, but that 568 

include inaccurate relationships between drivers and vegetation responses, risk making biased 569 

predictions of forest response to future climate changes because they do not incorporate 570 

underlying biological mechanisms (De Weirdt et al., 2012; Restrepo-Coupe et al., 2017).  571 

 572 

5. RECOMMENDATIONS FOR MEASURING AND MODELING CRYPTIC 573 

PHENOLOGY 574 

5.1 Recommendations for empirical research 575 

To reveal cryptic phenological patterns empirically, we need to consider the target, frequency, 576 

and methods of measurements. We recommend complementing existing studies and 577 

measurements of above-ground, clearly visible phenological changes with measurements of 578 

hidden phenological changes (Table 1). Specifically, we need more time series of development 579 

and growth of roots (e.g. Abramoff and Finzi 2015, McCormack et al 2014), and internal 580 

structures (e.g. Cuny et al. 2015),  to learn when leaf phenology directly fuels the phenological 581 

patterns of other plant organs (and thus can represent them by proxy), and when it does not. 582 

Building upon studies examining synchrony in phenology of multiple plant organs (Bazié et al., 583 

2017; Delpierre et al., 2016; Michelot, Simard, Rathgeber, Dufrene, & Damesin, 2012; Omondi, 584 

Odee, Ongamo, Kanya, & Khasa, 2016; Perrin, Rossi, & Isabel, 2017; Wagner et al., 2013), 585 

whole-plant phenology studies in which all plant organs and their associated processes 586 

(acquisition and allocation of carbon, water, and nutrients) are continuously monitored in the 587 

same individual plants across seasons could elucidate the relationship between the phenology of 588 

plant organs with each other, and with climate, and test the representation of phenology for 589 

various PFTs.  590 
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Revealing cryptic phenological patterns will require more studies explicitly testing 591 

whether compensatory processes (Fig. 1c) mistaken for constancy (Fig. 1b) mislead our 592 

interpretation of mass, area, or volume time series. To this end, sampling schemes need to go 593 

beyond measuring mass, area or volume of plant organs or “pools” (in aggregate) to also 594 

measure rates of inputs and outputs to and from organs/pools across time. (Since mass-balance 595 

equations have three terms—inputs, outputs, and the accumulated pool—at least two must be 596 

measured to obtain a single solution). For example, litterfall time series should be collected to 597 

correspond with total leaf area time series. To examine the metabolic consequences of constant 598 

versus compensating phenology, we need more (1) measurements of plant organ activity as 599 

organs develop and age, and (2) experiments manipulating phenological status to test the 600 

interaction betwee phenology and physiology (including photosynthesis and respiration) under 601 

various treatments (e.g. drought, temperature, and herbivory). When a measured variable (e.g. 602 

mass or volume) is the sum of multiple component variables (Fig 1a) then those components 603 

should be characterized (if possible) in tests for scenarios when the time series of the measured 604 

variable is not aligned with that of the component variable of interest. Fourier analysis is a 605 

promising tool for decomposing phenological cycles (Bush et al., 2016), and should be explored 606 

for revealing phenology that is otherwise ambiguous.  607 

 Phenological events can happen quickly and vary across landscapes. Fine temporal and 608 

spatial resolution will capture patterns that might otherwise be missed (e.g. Smith et al. 2019). 609 

How we measure phenological patterns has moved beyond plant-level measurements to 610 

landscape measurements as technology has evolved, and we need to continue expanding our 611 

capacity for detecting plant phenological activity at multiple spatial scales (e.g. leaves to 612 

canopies to landscapes). Remote sensing technologies offer valuable tools for gathering 613 



 

30 

phenological data on large spatial scales. Chlorophyll fluorescence remote sensing products 614 

promise to test the physiological interpretation of ‘greenness’ from the more traditional MODIS 615 

products (Guan et al., 2015; Lee et al., 2013; Porcar-Castell et al., 2014). Continuous or frequent 616 

high resolution near-surface remote sensing instrumentation such as phenocams (Klosterman et 617 

al., 2014; Lopes et al., 2016; Wu et al., 2016) and lidar (Calders et al., 2015) offer finer spatial 618 

resolution data to complement and potentially validate satellite-based phenology-related 619 

products.  620 

Although satellite-derived products are valuable tool for phenology (e.g. Guan et al 621 

2015), some phenological patterns remain cryptic when relying on remote sensing tools. 622 

Reflectance-based indices from satellites reveal more about the phenological status of upper 623 

canopy leaves and shoots than about the hidden phenological activity of roots, boles, and internal 624 

plant processes. Further development of remote sensing tools may help reveal hidden 625 

phenologies; for example, lidar can be used to estimate the LAI of understory plants, helping 626 

infer leaf phenological patterns for canopy layers that are hidden from other sensors (Tang & 627 

Dubayah, 2017). The development of high-throughput methods for evaluating gene expression 628 

(Kris et al., 2007), together with the growing databases of annotated genomes, offer the 629 

opportunity to complement above-ground measurements with information about regulation of 630 

internal or below-ground activities. We urge more tests to evaluate when remote sensing signals 631 

do, and do not, link to phenology, including time series of comparisons between remote sensing 632 

signals and plant-level measurements (e.g. changes in leaf production or woody biomass).  633 

 634 

5.2 Recommendations for model development 635 
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In TBMs, plant structures (e.g. leaves) are produced or shed, and processes are switched ‘on’ or 636 

‘off’, based on rule sets about temperature, moisture, and photoperiod, or (in about a third of 637 

TBMs), are prescribed based on remotely sensed indices and other derived products instead of 638 

being simulated internally (Fisher et al., 2014; Huntzinger et al., 2012). In either case, the TBM 639 

representation of phenological processes relies heavily on observations that are readily collected 640 

at large scales, such as climate data and satellite-based remote sensing products. We need to 641 

determine when this reliance on apparent phenology limits our ability to make robust long-term 642 

predictions of terrestrial carbon, water, and energy budgets or future boundary shifts of biomes.  643 

A process or parameter in a model is important, in terms of our predictive ability, if it 644 

causes large changes in a response that we want to predict (high sensitivity), and/or if it is highly 645 

uncertain (Dietze, 2017). For TBMs, we need more sensitivity analyses that evaluate the impact 646 

of including or excluding potential phenological schemes, and uncertainty assessments that 647 

quantify sources of uncertainty (e.g. Migliavacca et al., 2012). Specific phenological dynamics 648 

ripe for possible implementation in TBMs include asynchronous allocation to various plant 649 

organs (e.g. through prioritization schemes or time lags), environmental controls over carbon 650 

allocation (Guillemot et al., 2017), and plant organ age-dependency of metabolic capacity (e.g. 651 

photosynthetic capacity as a function of leaf age and root respiration as a function of root age; 652 

(Albert et al., 2018; De Weirdt et al., 2012; Fukuzawa et al., 2011). By examining the sensitivity 653 

of modelled ecosystem-scale fluxes to such processes, modelers can strike a balance between 654 

over-parametrizing versus excluding important processes in TBM models. Knowledge of which 655 

phenological states, processes, and parameters within models show high sensitivity or 656 

uncertainty can also help guide empirical research priorities. 657 
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Evaluations of uncertainty and sensitivity require first having model formulations of 658 

phenology. As we have argued, study efforts are not uniform, and phenological patterns may be 659 

cryptic such that they can only be resolved with multiple measurements (e.g. inputs and outputs 660 

or multiple variables). In these cases, it may be difficult to find enough information to develop 661 

phenology schemes. Model-data comparisons, with observational data coming from multiple 662 

independent sources (and multiple organs) at multiple scales (e.g. eddy covariance time series, 663 

and measurements of allocation in individuals) should help determine if an important 664 

phenological process could be wholly missing from models. Joint model and empirical efforts 665 

can then identify, characterize, model, and evaluate the importance of the excluded phenological 666 

processes.  667 

Finally, we emphasize the value of drawing upon empirical and theoretical ecology, 668 

evolution, and physiology for the development and refinement of phenological models. In 669 

systems where the temporal dynamics of plant acquisition and allocation have been shown to be 670 

under selection to increase fitness within climatic and biological constraints, optimization models 671 

may be useful (e.g. Caldararu, Purves, & Palmer, 2014; Kikuzawa, 1991; 1996), but they should 672 

be expanded to include multiple resources (e.g. moisture and nutrient optimization in addition to 673 

carbon), and trade-offs between multiple purposes, such as growth and reproduction (Iwasa, 674 

2000). However, it is also important to recognize that life history imposes temporal structure 675 

relevant to modelling at the seasonal time scale, such as timelines for recruitment, maturation, 676 

and mortality in annual plants, or timelines for development of the photosynthetic apparatus in 677 

new leaves with different lifespans. Thus, a valuable challenge will be to formalize demographic 678 

and physiological timelines in models and test their impact on model sensitivity and uncertainty.  679 

 680 
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6. CONCLUSION 681 

A growing body of research shows that capturing cryptic phenologies is required for a complete 682 

picture of seasonal resource allocation and acquisition strategies, constraints, and consequences 683 

across many scales. Understanding the full scope of cyclic and recurrent biological events in 684 

plants is critical for advancing our understanding of plant ecology and evolution, and for 685 

predicting responses and feedbacks to climate change. We call for further recognition and 686 

exploration of cryptic phenologies—including compensatory processes, non-structural 687 

carbohydrates dynamics, wood formation, and root production —through new technologies, 688 

TBM development, and time series of intensive plant-scale measurements.  689 
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