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35 Summary

36  Understanding the pronounced seasonal and spatial variation in leaf carboxylation 

37 capacity (Vc,max) is critical for determining terrestrial carbon cycling in tropical forests. 

38 However, an efficient and scalable approach for predicting Vc,max is still lacking. 

39  Here we tested the ability of leaf spectroscopy for rapid estimation of Vc,max. We 

40 estimated Vc,max using traditional gas exchange methods, and measured reflectance 

41 spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. We 

42 used these data to build a model to predict Vc,max from leaf spectra. 

43  Our results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature 

44 leaves in Panamanian tropical forests (R2=0.90). However, this single-age model required 

45 recalibration when applied to broader leaf demographic classes (i.e. immature leaves). 

46 Combined use of spectroscopy models for Vc,max and leaf age enabled construction of 

47 the Vc,max-age relationship solely from leaf spectra, which agreed with field observations. 

48 This suggests that the spectroscopy technique can capture the seasonal variability 

49 in Vc,max, assuming sufficient sampling across diverse species, leaf ages and canopy 

50 environments. 

51  This finding will aid development of remote sensing approaches that can be used to 

52 characterize Vc,max in moist tropical forests and enable an efficient means to parameterize 

53 and evaluate terrestrial biosphere models.

Page 2 of 34New Phytologist



54 Introduction 

55 Projecting the fate of terrestrial ecosystems under a changing climate requires knowledge 

56 of plant physiology and ecology, and representation of that process knowledge in Earth system 

57 models (ESMs). In particular, photosynthesis is a critical process to represent accurately. In the 

58 most widely used model of photosynthesis, the rate of CO2 assimilation is determined by the 

59 maximum carboxylation rate of the enzyme Rubisco (Vc,max), the rate of RuBP regeneration 

60 through electron transport, and in some models, the utilization of triose phosphates (Farquhar et 

61 al., 1980; Sharkey et al., 2007). The Vc,max25, which is Vc,max standardized to a reference 

62 temperature of 25°C (Bernacchi et al., 2013), is a key parameter at the heart of many ESMs, and 

63 variation in this parameter has repeatedly been shown to be the source of a large fraction of 

64 overall model uncertainty (e.g. Bonan et al., 2011; Rogers, 2014; Rogers et al., 2017a; Walker et 

65 al., 2017; Ricuitto et al., 2018). Accurate and comprehensive observations of the biogeography, 

66 ecology and overall distribution of Vc,max25 is thus a critical research need for improving 

67 understanding and model predictions of photosynthesis at local, regional and global scales.

68 Most ESMs currently represent Vc,max25 with a single static value for each plant functional 

69 type (Bonan et al., 2011; Rogers, 2014). This assumption is most questionable for the tropical 

70 forest biome where forests hold enormous plant functional diversity (Condit et al., 2005; Steege 

71 et al., 2013; Asner et al., 2014) that includes diversity in photosynthetic capacity (Norby et al., 

72 2017; Walker et al., 2017). Furthermore, for a given species, Vc,max25 has been shown to vary 

73 greatly with leaf development, growth temperature, and water and nutrient availability (Medlyn 

74 et al., 1999; Wilson et al., 2001; Kenzo et al., 2006; Kattge & Knorr, 2007; Ali et al., 2015; 

75 Norby et al., 2017; Albert et al., 2018; Kumarathunge et al., 2019; Smith et al., 2019). Recently 

76 it was shown that the seasonality of photosynthesis in Amazonian evergreen forests, a ~4 Gt yr-1 

77 fluctuation in CO2 assimilation (estimated using the envelop calculation approach to extend 

78 existing site-level study in Amazon to the entire Amazon basin), is driven by the replacement of 

79 old leaves that have a low Vc,max25 with recently matured leaves that have a higher Vc,max25
  (Wu et 

80 al., 2016; Albert et al., 2018). These studies also demonstrated that it is critical to quantify leaf 

81 age and couple this information with estimates of Vc,max25 to more accurately model leaf CO2 

82 assimilation by tropical forests. This result is likely also applicable to other vegetative biomes 

83 that contain plants with long-lived leaves (e.g. needle-leaf evergreen) or with significant seasonal 

84 variation (Wilson et al., 2001; Han et al., 2008; Muraoka et al., 2010; Niinemets, 2016). 
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85 However, scaleable Vc,max25 data to enable this approach in models is lacking and tedious to 

86 collect in the tropics, which is reflected in the very poor geographical coverage of tropical plants 

87 in plant trait databases (Kattge et al., 2011; Schimel et al., 2015; Diaz et al., 2016).  

88 Typically, leaf-level Vc,max25 is estimated by fitting a model to a photosynthetic CO2 

89 response curve measured using gas exchange in a process that can take over forty-five minutes 

90 for a single measurement (Long & Bernacchi, 2003). Although faster methods of estimating 

91 Vc,max have recently been described (DeKauwe et al., 2016; Stinziano et al., 2017), gas exchange 

92 measurements remain challenging in natural systems such as tropical forests where many species 

93 must be characterized at large scales. Canopy access presents an additional challenge in some 

94 systems, including tropical forests where canopy height can exceed thirty meters, requiring 

95 canopy cranes or tree climbing, which may be prohibitively time-consuming or expensive. 

96 Moreover, reliably tracking leaf age, i.e. using the leaf tagging method with intensive in-situ 

97 revisits and surveys (Reich et al., 2004; Wu et al., 2017), coupled with leaf gas exchange 

98 measurements, adds another level of difficulty. This challenge is particularly acute for moist 

99 tropical forests in which periods of new leaf production can last from a week up to a year, and 

100 different tree species have distinct and often irregular new leaf production patterns both in their 

101 timing and amplitude (Reich et al., 2004; Lopes et al., 2016; Xu et al., 2017). Within this 

102 context, researchers require methods that allow rapid estimation of Vc,max25 and leaf age that can 

103 be applied to tall trees in natural systems, including remote tropical forests. 

104 Recent advances in vegetation spectroscopy offer a promising solution given that this 

105 approach tightly connects leaf optical properties with their chemical composition, cell structure 

106 and physiological properties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). As such, 

107 spectroscopy has been receiving increasing attention from a broader science community, 

108 including those from plant ecophysiology, functional trait ecology, and evolution (Serbin et al., 

109 2012; Asner et al., 2016; Schneider et al., 2017; Schweiger et al., 2018). For example, recent 

110 studies suggest that leaf Vc,max can be estimated accurately and rapidly based on leaf reflectance 

111 spectra (e.g. Doughty et al., 2011; Serbin et al., 2012; Ainsworth et al., 2014; Barnes et al., 2017; 

112 Dechant et al., 2017; Yendrek et al., 2017; Silva-Perez et al., 2018). In addition, two recent 

113 studies have also shown that leaf spectroscopy provides an accurate, rapid means to assess leaf 

114 age at both individual and community scales (Chavana-Bryant et al., 2017; Wu et al., 2017). 

115 Furthermore, some studies also suggest that it is possible that spectroscopy-based models of leaf 
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116 Vc,max25 and age could be extended to the canopy scale by leveraging imaging spectroscopy 

117 instrumentation on tower, unmanned aerial systems, and manned airborne platforms (Serbin et 

118 al., 2015; De Moura et al., 2017). These developments highlight the potential to map changes in 

119 Vc,max25 and leaf age over unprecedented spatial and temporal scales. However, the ability of 

120 spectra to predict the variability in Vc,max25 across these multiple axes of variation (i.e. species, 

121 canopy position, leaf age, and forest sites) has not been tested, and a spectroscopy-based 

122 approach that can account for variation in both leaf age and Vc,max25 has not been developed.

123 In this study we collected leaf gas exchange, reflectance spectroscopy and leaf age data 

124 from three lowland moist tropical forests. Our goal was to develop a single spectroscopic 

125 approach capable of capturing the variation in Vc,max25 among leaves of different ages from a 

126 range of species and canopy environments (i.e. variation in canopy height and sunlit and shaded 

127 environments) in lowland moist tropical forests. We asked two main questions: (1) Can the 

128 spectra-Vc,max25 relationship for mature leaves also be applied to leaves of other leaf demographic 

129 classes (e.g. immature leaves), and if not, can a new spectra-based model of Vc,max25 be developed 

130 that performs well across all leaf ages? (2) Can leaf spectra information alone enable accurate 

131 estimation of the developmental trajectories of Vc,max25, i.e. the Vc,max25–leaf age relationship? By 

132 answering these questions, we hope to understand if the spectroscopy approach can be used to 

133 capture the Vc,max25 variability in moist tropical forests, thereby accelerating current capacity to 

134 parameterize ESMs for improved projection of terrestrial carbon and water fluxes in the context 

135 of a changing climate. 

136

137 Materials and Methods

138 Site descriptions

139 This study used data collected from three lowland seasonal moist tropical forests, 

140 including two crane sites in the Republic of Panama and one site in Brazil. The two sites in 

141 Panama include a seasonally dry forest in the Parque Natural Metropolitano (PNM; 8.9950° N, 

142 79.5431° W) near Panama City and a wet evergreen forest in the San Lorenzo Protected Area 

143 (SLZ; 9.2810° N, 79.9745° W), Colon Province. Both sites are dominated by clay soil (Turner & 

144 Romero, 2009). Mean annual air temperature at both sites is 26 °C (1998–2015), and mean 

145 annual precipitation is 1826 mm yr-1 and 3286 mm yr-1 for PNM and SLZ, respectively, with a 4-

146 month-long dry season (precipitation < 100 mm per month) from January to April each year. At 
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147 each site, the Smithsonian Tropical Research Institute maintains a canopy-access crane that 

148 enables access throughout the canopy of these forests. The site in Brazil (2.8500° S, 54.9667° W) 

149 is located around the K67 eddy covariance site in Tapajos National Forest, near Santarem, Para, 

150 Brazil. Part of the Brazilian Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA; 

151 Davidson et al., 2012), this site sits on a well-drained clay-soil plateau. Multiple-year (2002–

152 2005) mean annual air temperature is 26 °C (Hutyra et al., 2007). Mean annual precipitation 

153 (1998–2013) is 2022 mm yr-1 with a 5-month-long dry season from mid-July to mid-December 

154 each year. Single rope access techniques were used to climb into and access individual crowns of 

155 canopy trees (Albert et al., 2018). For details about forest composition and structure of the sites 

156 in Panama see Wright et al (2003), and of the site in Brazil see Rice et al (2004). For information 

157 about soil fertility of the sites in Panama see Turner & Romero (2009), and of the site in Brazil 

158 see Nepstad et al (2002). 

159

160 Plant materials

161 Sixteen canopy tree species from the two sites in Panama (n=8 for SLZ and n=8 for 

162 PNM) and five canopy tree species from the Brazilian site were selected for intensive field 

163 measurements of leaf gas exchange, reflectance spectra and traits (i.e. leaf mass per area, LMA; 

164 Table S1). Sampled leaves were classified into two main age classes: immature leaves (<2 

165 months; corresponding to the leaves from emergence up to fully-expanded, but not fully green, 

166 thickened, or physiologically matured) or mature leaves (≥2 months old), following the similar 

167 age categories as presented in Coley (1983), Wu et al (2016), and Albert et al (2018). This 

168 classification of leaf age is very similar to the three-age-category (young, mature and old) used in 

169 Wu et al (2016), except that we grouped mature and old age classes together into a single age 

170 class, mature. The reason of doing this is because we didn’t track leaf age as frequently in 

171 Panama as that in Brazil (Wu et al., 2017), and therefore lacked the resolution to differentiate 

172 three age classes. Field measurements in Panama were conducted in the 2016 and 2017 dry 

173 seasons on sunlit upper canopy foliage. In the 2016 field campaigns in mid-February and mid-

174 April we sampled the dominant leaf class(es) from eight trees at each site. In February 2017 the 

175 measurements included both age classes if present within the top meter of a sunlit branch from 

176 four canopy tree species at the SLZ site (Table S1). Field measurements of canopy trees in 

177 Brazil, including leaves of both age classes from sunlit and shaded branches, were conducted 
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178 during the 2012 dry season field campaign from mid-August until early-December and a 2013 

179 dry season campaign in August, using single-rope access techniques. For more details on 

180 surveyed tree species, please refer to our Table S1 & Albert et al (2018).         

181

182 Field measurements

183 (1) Leaf gas exchange. We used six portable gas exchange systems in Panama and two in 

184 Brazil (LI-6400XT, Li-COR Inc., Lincoln, NE, USA). Measurements of the response of net 

185 assimilation rate (A) to intra-cellular CO2 concentration (Ci), commonly known as A-Ci response 

186 curves, were conducted on leaves from cut branches. In Panama, all branches were sampled 

187 before dawn using the canopy cranes. We took steps to avoid inducing xylem embolism when 

188 collecting branches, and when it was possible, the initial cut was made under water by bending 

189 the branch section into a bucket filled with water. Otherwise, the initial cut was made in the air 

190 and then a second cut was made underwater approximately 1 meter from the initial cut. In all 

191 cases, several cuts were made sequentially closer to the branch tip to relax xylem tension, 

192 following the protocol as described by Sperry (2013). Samples were stored in individual buckets 

193 and kept in deep shade until used for measurements, which was normally within four hours after 

194 harvesting. Measurements of A-Ci curves closely followed Rogers et al (2017b), with the 

195 reference CO2 concentration controlled as follows: 400, 325, 250, 175, 100, 65, 40, 400, 400, 

196 400, 475, 575, 675, 800, 1000, 1400 and 1800 μmol mol-1, while holding leaves at 31±2 °C and 

197 83±5% relative humidity under saturated light condition (i.e. 2000 μmol m-2 s-1). In Brazil, 

198 branch samples were collected via tree climbing, and gently lowered to the ground with ropes in 

199 the morning, and re-cut under water within 15 minutes. Samples were stored in individual 

200 buckets and kept in deep shade until used for measurements (typically within four hours after 

201 harvesting). Full details of leaf gas exchange measurements from Brazil are in Albert et al 

202 (2018). In brief, the protocol was similar as that was described above except that in Brazil, the 

203 reference CO2 concentration was controlled as follows: 400, 100, 50, 100, 150, 250, 350, 550, 

204 750 μmol mol-1, and then increased by increments of between 200 to 500 to reach saturation at 

205 around 2000, and leaf temperature was controlled at 31±2 °C and chamber humidity was 

206 controlled at 46±11%. 

207 Prior to curve fitting, quality control procedures for gas exchange measurements from all 

208 sites excluded values associated with instrument error and other known artifacts, such as 

Page 7 of 34 New Phytologist



209 spurious logs and data where leaks were clearly apparent, as described in Rogers et al (2017b) 

210 and Albert et al (2018). Finally, apparent maximum carboxylation capacity standardized to a 

211 reference temperature of 25°C (Vc,max25) was estimated using the kinetic constants and 

212 temperature response functions presented by Bernacchi et al (2013) as described by Rogers et al 

213 (2017b). A total of 186 leaves with estimated Vc,max25 in Panama and 81 leaves in Brazil were 

214 used in this study, with species-specific mean and standard deviation summarized in Table S1.

215 (2) Leaf spectra. Following leaf gas exchange measurements, we kept the branches in 

216 water and within two hours harvested the leaf and immediately measured leaf reflectance spectra 

217 and fresh mass. Leaf reflectance at the Panamanian sites was measured using a Spectra Vista 

218 Corporation (SVC) HR-1024i (SVC, Poughkeepsie, NY, USA; spectral range: 350–2500nm; 

219 spectral resolution: 3.5 nm at 700nm, 9.5 nm at 1500 nm, and 6.5 nm at 2100 nm) together with 

220 the SVC LC-RP-Pro foreoptic. Similarly, leaf reflectance of Brazilian plants was measured using 

221 a FieldSpec® Pro spectrometer (Analytical Spectra Devices, ASD, Boulder, CO, USA; spectral 

222 range: 350–2500nm; spectral resolution: 3 nm at 700nm, 10 nm at 1400 nm, and 10 nm at 2100 

223 nm) together with a ASD leaf clip attached to a plant probe assembly. In both cases, the 

224 reflectance probes contained internal, calibrated light sources to illuminate the samples during 

225 spectral collection. The leaf probe was used together with a black background for leaf reflectance 

226 measurements. To avoid the excessive heat loads while ensuring the reliable spectral collection 

227 we set the ASD integration time to 100 milliseconds per scan and each collected spectra was an 

228 average of 10 scans, while with the SVC we used a 1 second collection time and used the 

229 spectrometer’s automatic integration optimization. This approach matches that of Serbin et al 

230 (2012), which originally highlighted the concerns of the excessive heat loads on the data quality 

231 of leaf spectra collected. For each leaf, reflectance spectra were measured on 1–6 different parts 

232 of the leaf adaxial surface depending on leaf size, and then averaged to determine the mean 

233 optical properties across all wavelengths. 

234 (3) Leaf traits. Leaf mass per area (LMA; g m-2) was also measured to assess the diversity 

235 of plant species that we sampled in terms of the LMA trait space. In Panama, we sampled a 

236 known leaf area using cork borers. The samples were dried to constant mass at 70°C. We then 

237 determined dry mass with a precision balance (Fisher Science Education, Model SLF303, 

238 Hanover Park, IL, USA) to calculate LMA. In Brazil, LMA was derived from area (using a 
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239 Canon LiDE 120 scanner) and dry weight (also using a precision balance from Fisher Science 

240 Education, Model SLF303, Hanover Park, IL, USA) oven-dried at 60°C for over 72 hours. 

241 (4) Leaf age. In Brazil, in field campaigns conducted in August–September 2013, 

242 November 2013, March 2014 and July–August 2014, we selected seven trees of different species 

243 (see Table 1 in Wu et al., 2017) for precise in-situ leaf age monitoring. Leaf age monitoring was 

244 carried out by using metal tags and in-situ photo documentation (e.g. Fig. S1 in Wu et al., 2017). 

245 Monitoring began in August–September 2013, when most sampled trees were flushing new 

246 leaves, and was continued periodically throughout the annual cycle. Through this age-tagging 

247 technique, we accurately tracked leaf age from leaf emergence at budburst (0 day) up to ~400 

248 days old. From those leaves with accurate leaf age monitoring, we then sampled a total of 759 

249 leaves covering the entire annual cycle, and measured leaf reflectance spectra using the same 

250 ASD FieldSpec® Pro spectrometer as described above. These leaves were then used for the 

251 development of the community-level spectra-age model (Wu et al., 2017) and briefly 

252 summarized below. Among these seven trees surveyed for both leaf age monitoring and leaf 

253 reflectance measurements, four were the same canopy trees (including leaf samples from both 

254 sunlit and shaded microenvironments) from which we made gas exchange measurements as 

255 described above (also see Table S1). 

256 In addition to the above-mentioned accurate leaf age monitoring, we also took RGB 

257 photos for all leaves used for leaf reflectance measurements in both Panama and Brazil. These 

258 RGB photos together with other related information, e.g. visual assessment of color, size and 

259 rigidity of the leaves, and relative positions and bud scars (when present) within a 1-meter 

260 branch length, were then used to classify these leaves into two different age categories: immature 

261 and mature leaves. 

262 (5) Spectra-Vc,max25 analysis. For all field-based spectral and gas exchange measurements 

263 in Panama and Brazil, only the plant species with both leaf reflectance spectra and Vc,max25 were 

264 selected (which excluded 25 measurements in Panama and 12 measurements in Brazil with only 

265 leaf gas exchange). Finally, we performed a filtering of outliers of combined spectra-Vc,max25 

266 datasets (which removed ~5% of data). The outlier detection method implemented here was 

267 originally used in Wu et al (2017), which adapted an outlier detection module from “libPLS” 

268 (accessed at http://www.libpls.net/), using the Monte-Carlo sampling method (Xu & Liang, 

269 2001) for automatic outlier detection. After the data filtering, the Panamanian dataset had n=151 
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270 measurements, including 110 mature leaves from all 16 species and 41 immature leaves from 9 

271 of the 16 species, which accounts for 94% of all measurements with both spectral and leaf gas 

272 exchange in Panama. Brazilian dataset had n=65 measurements, including 44 mature leaves and 

273 21 immature leaves from all 5 species, which accounts for 94% of all measurements with both 

274 spectral and leaf gas exchange in Brazil.     

275 All the data sources associated with this study including gas exchange data, leaf spectral 

276 data, leaf trait, and leaf age information were summarized in Table S2. 

277

278 Partial least-squares regression (PLSR) modeling of spectra-Vc,max25 and spectra-age 

279 To relate the variability in Vc,max25 across tree species, leaf age, canopy position, and 

280 forest sites with the variability in leaf reflectance spectra and to infer leaf age from leaf 

281 reflectance spectra, we utilized a PLSR modeling approach (Geladi & Kowalski, 1986; Wolter et 

282 al., 2008) using the “plsregress” function in Matlab (Mathworks, Natick, MA, USA) as described 

283 in De Jong (1993) and Rosipal & Kramer (2006). PLSR is a commonly-used approach in 

284 spectroscopy and chemometric analyses given its ability to handle high predictor collinearity and 

285 a large number of predictor variables that may exceed the number of observations. PLSR 

286 accounts for these challenges by reducing the number of predictor variables down to relatively 

287 few, orthogonal latent variables, each composed of a weighted sum of the original variables 

288 (Geladi & Kowalski, 1986; Wolter et al., 2008). Moreover, PLSR accounts for measurement 

289 error in the predictor variables (i.e. leaf hyperspectral reflectance). 

290 Our PLSR model development has been described previously (Wu et al., 2017) and is 

291 briefly summarized here. We first applied a square root transformation to the Vc,max25 data and 

292 leaf age data to reduce the right skewness distribution of the original data (e.g. Figs. S1a,b and 

293 S2a,b) and satisfy the normal distribution assumption of PLSR analysis. We then performed a 

294 one-time, random, stratified separation of the full dataset into calibration (two thirds) and 

295 independent validation (one third) subsets; stratification insured that each subset included leaf 

296 samples of each age category, of each species, and (when appropriate) of each canopy position. 

297 Next, we randomly selected 70% of the calibration data subset, and fit the PLSR model of 

298 spectra-Vc,max25, with this random selection, repeating this 100 times and for each permutation 

299 applying the model to predict the corresponding independent 30% of the calibration data. To 

300 avoid the potential to over-fit the spectra-based calibration model, we optimized the number of 
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301 PLSR latent variables by choosing the number of latent variables that minimized the root mean 

302 square error (RMSE) from predicting the remaining 30% of the calibration data over the 100 

303 permutations (Chen et al., 2004; e.g. Fig. S1c). Meanwhile, we also determined the mean and 

304 standard deviation of the distribution of PLSR coefficients generated by the 100 PLSR fits 

305 corresponding to the optimal number of latent variables, which were used in the final spectra-

306 Vc,max25 model (e.g. Fig. S1d). 

307 Finally, we quantified the performance of this spectra-Vc,max25 model using the 

308 independent validation dataset. We used three main evaluation metrics: the coefficients of 

309 determination (R2), RMSE, and the regression bias. All model results presented in this study are 

310 shown in the original Vc,max25 units rather than the square root transformed unit that is the initial 

311 output of the PLSR model. The same spectral analytical approach was applied to the Brazilian 

312 spectra-age dataset to derive the community-level spectra-age model (Fig. S2 and Wu et al., 

313 2017). All of the code used for model development and data analysis were developed in Matlab 

314 (Mathworks, Natick, MA, USA).

315

316 Generalizability of spectra-Vc,max25 relationship 

317 We explored whether the spectra-Vc,max25 relationship can be generalized across species, 

318 leaf age and canopy environment through two tests. In the first test, we developed a spectra-

319 based PLSR model using two-thirds of the Panamanian data for mature leaves to train the model 

320 (including all 16 species). We then applied this model to the remaining Panamanian dataset of 

321 mature leaves, as well as to the independent validation dataset of Panamanian immature leaves, 

322 and Brazilian mature and immature leaves. Through this test, it would enable us to assess 

323 whether the spectra-Vc,max25 relationship of mature leaves can also be applied to leaves of 

324 immature age class or leaves of a different forest site in Brazil. In the second test, we developed 

325 a new spectra-based model in which all our datasets (including two-thirds of all leaves from both 

326 Panama and Brazil) were used to train the model. Model performance was evaluated using the 

327 remaining, independent datasets, which are the same as that were used in the first test. Through 

328 this test, it would enable us to assess whether a single spectra-Vc,max25 relationship can be applied 

329 to leaves of both leaf age classes and different forest sites.

330
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331 Spectral-based seasonal variability in Vc,max25, or Vc,max25-age relationship, using a combination 

332 of spectral models of Vc,max25 and leaf ae

333 With the developed spectra-Vc,max25 model and spectra-age model as described above, we 

334 then used these two models in combination to explore whether leaf spectra information alone can 

335 be used to reconstruct the life history variability in leaf Vc,max25 for tropical trees. The spectra-age 

336 dataset in Brazil were used for this test, as the dataset covered the leaf spectra throughout their 

337 life cycles (Wu et al., 2017) while having some ground truth of Vc,max25 derived from gas 

338 exchange measurements (Albert et al., 2018). These two models are both at the community level  

339 and their model regression coefficients are respectively shown in Figs. S1d and S2d. The models 

340 were driven by the input of leaf spectral reflectance only but can predict leaf Vc,max25 and leaf age 

341 respectively (see the provided sample Matlab script). By combining the model output of Vc,max25 

342 and age together, the spectroscopy approach was thus used to estimate the Vc,max25-age 

343 relationship, or the life history variability in leaf Vc,max25 with leaf age. 

344

345 Results

346 As shown in Fig. 1 and Table S1, we found large variability in leaf Vc,max25 for the 

347 surveyed 21 tropical trees from three tropical forest sites: field-measured Vc,max25 ranged from 7-

348 102 µmol CO2 m-2 s-1. These surveyed trees also spanned a very large variation in leaf 

349 morphology, as shown in the observed LMA trait space (i.e. 70-213 g m-2). We also found that 

350 the variation in Vc,max25 is attributable to species (Fig. 1a and Table S1), leaf age (mature vs. 

351 immature; Fig. 1a), canopy environment (sunlit vs. shaded; Fig. 1a), and also forest sites (Fig. 

352 1b). The large intra-specific variation in Vc,max25 is primarily associated with leaf age, and the 

353 large inter-specific variation in Vc,max25 is attributable to both species difference but also the 

354 forest sites. Such large variation in Vc,max25, especially the variation with leaf age, will make the 

355 traditional approaches for measuring this diversity challenging due to the requirement for lots of 

356 measurements. 

357 We examined our first question of whether the spectroscopy approach can be an efficient, 

358 alternative means to help estimate Vc,max25 across species, leaf age, canopy environment and 

359 forest sites through the two tests (see Methods above). In the first test, we found that the model 

360 based solely on Panamanian mature leaves was able to predict the field-observed Vc,max25 of 

361 independent Panamanian mature leaves with very high accuracy (R2=0.90; RMSE=5.9 µmol 
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362 CO2 m-2 s-1; n=36 leaves; Fig. 2a), suggesting a tight covariation in the spectra-Vc,max25 

363 relationship for Panamanian forests across a diverse range of tree species, canopy heights and 

364 leaf traits (Table S1). However, this model did not perform as well when applied to a dataset of 

365 independent, Panamanian immature leaves from a subset of the same trees (n=9 species; Table 

366 S1), with the model fit having a marked deviation from the 1:1 line (between modeled and 

367 observed Vc,max25) and displaying poor predictive ability (R2=0.02; RMSE=20.7 µmol CO2 m-2 s-

368 1; n=14 leaves; Fig. 2b). When the model of Panamanian mature leaves was applied to 

369 independent, Brazilian mature and immature leaves the model performance was also poor 

370 (R2=0.23; RMSE=38.8 µmol CO2 m-2 s-1; n=22 leaves; Fig. 2c). This showed that the model 

371 developed from Panamanian mature leaves could neither be directly applied to immature leaves 

372 of the same trees nor the leaves sampled from other tropical forests without marked reduction in 

373 predictive power (Fig. 2d). 

374 In the second test, we found that the new model trained on the data from all species, leaf 

375 ages, canopy environment, and forest sites performed dramatically better across the whole range 

376 of leaf types—immature leaves in Panama (R2=0.89; RMSE=3.9 µmol CO2 m-2 s-1; n=14 leaves; 

377 Figs. 3 and S3a) and all leaf ages from Brazil (R2=0.68; RMSE=5.9 µmol CO2 m-2 s-1; n=22 

378 leaves; Figs. 3 and S3b)—at the cost of only slightly lower prediction of mature Panamanian 

379 leaves (R2=0.86; RMSE=7.7 µmol CO2 m-2 s-1; n=36 leaves; Figs. 3 and S3c). In addition, 

380 compared with our initial model of Panamanian mature leaves (Fig. 2, first test), the new model 

381 (Fig. 3, second test) also significantly reduced the uncertainty in model predicted Vc,max25, as 

382 indicated by the horizontal error bars shown in Figs. 2 and 3. This analysis demonstrated that 

383 with sufficient leaf samples to train the spectra-Vc,max25 relationship over the full trait space, a 

384 general spectra-based Vc,max25 model can be derived across species, leaf age, canopy 

385 environment, and forest sites.

386 We next examined our second question: whether the spectroscopy approach alone is 

387 sufficient to simulate the life history trajectories of Vc,max25, or the Vc,max25-age relationship. To do 

388 this, we applied two models (i.e. the community-level spectra-Vc,max25 model and spectra-age 

389 model) to the spectra-age dataset in Brazil (see Methods). The results showed that there was 

390 large variability in leaf Vc,max25 across leaf life cycles (i.e. from 15-days old to 400-days old), but 

391 that the spectroscopy approach presented here was able to track leaf age dependent variation in 

392 Vc,max25 (Fig. 4), particularly during the period from emergence to physiological full-maturity 
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393 (from 15 to 150 days). With continued aging and senescence (>150 days), there was larger 

394 deviation between spectra-predicted and field-observed Vc,max25. This might largely be because 

395 our datasets had poor coverage of older leaves (from 150 days to 400 days), and thus the model 

396 for the senescent leaves is not well calibrated.

397

398 Discussion

399 Leaf carboxylation capacity Vc,max25 is central to the estimation of photosynthetic CO2 

400 uptake by tropical forests in ESMs. In this study, we demonstrated that the spectroscopy 

401 approach is able to accurately predict Vc,max25 across species with a large range in LMA trait 

402 space, leaf age, canopy position and height, and forest sites (Fig. 3 and Table S1). We also 

403 showed that the combined application of spectroscopy models of leaf Vc,max25 and age are 

404 sufficient to track life time variation in leaf Vc,max25 (Fig. 4). This represents a significant 

405 breakthrough in our ability to rapidly estimate and potentially map Vc,max25 in high spatial and 

406 temporal resolution in tropical forests.  

407 Consistent with previous studies (Field, 1983; Sobrado, 1994; Wilson et al., 2001; 

408 Kitajima et al., 2002; Kenzo et al., 2006; Pantin et al., 2012; Albert et al., 2018), we found large 

409 variability in leaf Vc,max25 (i.e. 7-102 µmol CO2 m-2 s-1) with species, leaf age and canopy 

410 environment across 21 species sampled from the three lowland moist tropical forests. Such a 

411 wide range of variability in Vc,max25 is comparable with previous studies at the same forest sites 

412 with larger sample size and a focus on mature leaves (i.e. 15-75 µmol CO2 m-2 s-1 from 65 

413 species in Panama, Norby et al., 2017; 10-80 µmol CO2 m-2 s-1 from 38 species in Brazil, 

414 Domingues et al., 2014). It is also comparable with the observations from other moist tropical 

415 forest sites in Brazil (Carswell et al., 2000), Peru (Bahar et al., 2017) and Africa (Domingues et 

416 al., 2010). 

417  These past studies together with our findings also suggest that leaf age is one of the most 

418 important sources of variation in Vc,max25, which is clearly shown in Figs. 1 and 4. Since Vc,max25 

419 can change markedly with leaf age and our observed Vc,max25 variability spanned almost the same 

420 range (13-90 µmol CO2 m-2 s-1) as that used to represent global variation in Vc,max25 in current 

421 ESMs (Rogers, 2014), it further suggests the importance of including such age-dependent Vc,max25 

422 variation in future model formulations. The high Vc,max25 variability associated with leaf age also 

423 highlights the value of our developed spectroscopy approach to enable rapid estimations of 
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424 Vc,max25: the spectroscopy approach only takes a few seconds to estimate Vc,max25, once the model 

425 has been recalibrated, while the conventional approach using leaf gas exchange measurement of 

426 a photosynthetic CO2 response curves takes about an hour (or more). Furthermore, the 

427 conventional approach cannot simultaneously derive leaf age—an important piece of information 

428 needed to improve model representation of photosynthesis, especially in species-rich, evergreen 

429 tropical forests (Kim et al., 2012; Wu et al., 2016). 

430 Here we have demonstrated that leaf spectroscopy offers a tool to rapidly capture 

431 multiple important axes of variation in Vc,max25: A single spectra-based model of leaf Vc,max25 was 

432 able to predict leaf Vc,max25 across tropical tree species with a very large variation in LMA trait 

433 space, leaf age, canopy position and forest sites with high confidence (Fig. 3 and Table S1). This 

434 finding validates pioneering work that demonstrated not only the feasibility of using leaf spectra 

435 to model Vc,max under a narrow range of species and conditions (Doughty et al., 2011; Serbin et 

436 al., 2012), but also dramatically expands our confidence to use the improved spectra-Vc,max25 

437 model across a wide range of species, leaf developmental stages and locations. 

438 So what is the underlying mechanism for such a tight covariation between leaf spectra 

439 and Vc,max25 across the various axes of variation (i.e. species, leaf age, canopy positions and forest 

440 sites) we considered in this study? There are at least two potential hypotheses. 

441 The first is that the tight coordinated variation in leaf Vc,max25 and spectra was entirely 

442 based on their relationships with leaf nitrogen content (e.g. Dechant et al., 2017). The theory 

443 underlying this hypothesis is that leaf Vc,max25 is tightly coupled with the nitrogen content in 

444 Rubisco which comprises the largest fraction of N invested in a single enzyme within a leaf (e.g. 

445 Jacob et al., 1995; Onoda et al., 2004; Dong et al., 2017; Scafaro et al., 2017; Evans & Clark, 

446 2019). This hypothesis seems moderately supported by two previous studies conducted at our 

447 study sites (that focused on mature leaves with larger sample size), including significant, but 

448 only modest correlations of Vc,max25 with leaf nitrogen (R2=0.31; Norby et al., 2017; R2=0.33; 

449 Dominguez et al., 2014). Given that leaf spectra can efficiently capture variation in leaf nitrogen 

450 content (e.g. Asner & Martin, 2008; Serbin et al., 2014; Dechant et al., 2017), it is expected that 

451 leaf spectra can also be used to predict leaf Vc,max25. However, this hypothesis does not stand up 

452 to further scrutiny for several reasons. First, if the correlation with leaf nitrogen content was the 

453 primary driver of our ability to estimate Vc,max25 with spectra, it does not explain why leaf spectra 

454 shows far higher predictive power than using leaf nitrogen content alone (R2=0.89 for leaf 

Page 15 of 34 New Phytologist



455 spectra in this study vs. R2=0.31-0.33 for leaf nitrogen content as shown in Dominguez et al., 

456 2014 and Norby et al., 2017). Furthermore, the Vc,max25-leaf nitrogen relationship does not always 

457 hold up at the site level level (Bahar et al. 2017; Rogers et al., 2017b; Evans & Clark, 2019) and 

458 recent global synthesis have shown that variation in leaf nitrogen can only explain a small 

459 portion of variation in Vc,max (Ali et al., 2015; Smith et al., 2019). Secondarily, many other 

460 studies suggest that in addition to leaf nitrogen content, other leaf traits, e.g. leaf phosphorus 

461 content (e.g. Walker et al., 2014; Norby et al., 2017), leaf chlorophyll content (e.g. Croft et al., 

462 2017), LMA (e.g. Walker et al., 2014), and age (e.g. Albert et al., 2018), are also related with 

463 Vc,max25, and inclusion of more traits as predictive variables can significantly improve the power 

464 of trait based model to predict Vc,max25, compared with the just one trait, leaf nitrogen content (e.g. 

465 Walker et al., 2014). Finally, Serbin et al (2012) showed that in poplar the power of leaf N 

466 content and LMA to predict Vc,max varied with temperature treatments, but the reflectance 

467 spectroscopy approach collapsed this variation into a single model. This suggests that the ability 

468 of the spectroscopy approach to predict Vc,max is not entirely dependent on the ability of 

469 spectroscopy to predict leaf N content and LMA and that other factors are likely contributing to 

470 the success of the approach.

471 Since the correlation with leaf nitrogen might not be the only reason for the derived 

472 spectra-Vc,max25 model, this further leads to our second hypothesis: leaf Vc,max25 is correlated with 

473 multiple leaf traits and processes that determine Rubisco content and activity (e.g. leaf nitrogen 

474 content, leaf phosphorus content, leaf chlorophyll concentrations, LMA, leaf age, and many 

475 others we do not yet understand), and leaf spectra emerge from the ensemble of properties that 

476 define leaf chemical, morphological, and phenological status (e.g. Asner & Martin, 2008; Serbin 

477 et al., 2014; Chavana-Bryant et al., 2017, 2019). As such, leaf spectra can be used to help infer 

478 leaf Vc,max25, and are indeed a better predictor of leaf Vc,max25 (e.g. Serbin et al., 2012) than 

479 alternative trait approaches that leverage well established links between Vc,max25 and just one or a 

480 few individual leaf traits (e.g. Walker et al., 2014). We believe this second hypothesis offers a 

481 more plausible explanation for the power of the spectra-Vc,max25 approach. However, a more 

482 comprehensive study to elucidate the underlying mechanisms that enable the spectra-Vc,max25 

483 model is still needed.       

484 Our finding that the spectra-Vc,max25 model of mature leaves in Panama creates model bias 

485 when applied to Panamanian immature leaves and all Brazilian leaves is also interesting. This 

Page 16 of 34New Phytologist



486 observation could be attributable to different ranges in Vc,max25 for model development and 

487 validation (e.g. 17-102 µmol CO2 m-2 s-1 for the Panamanian mature leaf model; 21-63 µmol CO2 

488 m-2 s-1 for Panamanian immature leaves; 7-46 µmol CO2 m-2 s-1 for all leaves in Brazil). However, 

489 a more likely explanation is that the spectra-trait-Vc,max25 linkages (e.g. regression coefficients) 

490 vary with leaf age (e.g. Field, 1983; Wilson et al., 2001; Chavana-Bryant et al., 2017, 2019; Wu 

491 et al., 2017) and forest sites of different soil types and fertility (e.g. Walker et al., 2014; Norby et 

492 al., 2017). Regardless of these potential reasons, our finding (Fig. 3) suggests that including as 

493 many axes of variation as possible in the training dataset is critical to develop a broadly 

494 applicable spectra-Vc,max25 model. Both leaf spectra and Vc,max25 can vary with vertical canopy 

495 profiles (e.g. various canopy positions including upper canopy, mid-canopy and understory trees; 

496 sunlit and shaded environments), different tropical forests types (e.g. flooded, Caatinga, second 

497 growth, and upland forests) and other leaf habits (e.g. deciduous trees) that are currently either 

498 under or not sampled in this study. Therefore we recognize that further in-depth pan-tropical and 

499 global sampling and analysis are still needed to develop a highly robust spectra-Vc,max25 model 

500 that can be applied with confidence throughout the tropics and ultimately globally. It is also 

501 worth noting that when extending the spectra-Vc,max25 model to entire vertical canopy profiles, the 

502 epiphyll effect is another issue that is needed to be considered, as many old leaves in the shaded 

503 canopy environment develop epiphylls (Sonnleitner et al., 2009), which strongly impacts leaf 

504 spectral reflectance (see Roberts et al., 1998). 

505 We also showed that spectroscopy is able to simulate the life history variability in Vc,max25 

506 with leaf age within and across tropical tree species (Fig. 4). The spectroscopy derived age-

507 dependent Vc,max25 is also comparable with direct measurements by Wu et al (2016) in terms of 

508 both amplitude and the relative trend across three leaf developmental stages: young (1-2 

509 months), mature (3-5 months) and old (6-14 months). This suggests that the spectroscopy 

510 approach can be used to track lifetime trajectories in leaf traits (including but not limited to 

511 Vc,max25 shown here), and is a marked extension of previous studies that demonstrated the 

512 feasibility of linking leaf spectroscopy to model leaf Vc,max25
 (e.g. Serbin et al., 2012) or leaf age 

513 (e.g. Chavana-Bryant et al., 2017). Moreover, the success of spectroscopy-based Vc,max25–age 

514 relationships also highlights that the spectroscopy approach can not only be a novel means to 

515 capture the variability of Vc,max25, particularly associated with leaf age, but also rapidly generate 

516 datasets that enable the exploration of temporal and spatial variability in Vc,max25 within and 
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517 across species, an important piece of process knowledge that greatly needs to be incorporated in 

518 future ESMs (e.g. Xu et al., 2017). 

519 Finally, our finding that there exists a tight relationship among leaf-level spectra, Vc,max25 

520 and leaf age can likely be extended to canopy and ecosystem scales. As shown by many previous 

521 theoretical and empirical studies (Asner, 1998; Asner & Martin, 2008; Ollinger, 2011; Singh et 

522 al., 2015), the fundamental changes in leaf optical properties with underlying variation in leaf 

523 traits is not scale-dependent; that is leaf-level or canopy-scale spectra changes in concert with 

524 leaf traits. Meanwhile, Serbin et al (2015) demonstrated that the imaging spectroscopy technique 

525 could be effectively used to infer leaf Vc,max25 from canopy-scale hyperspectral reflectance for 

526 managed agricultural sites. Given our predictive success at the leaf level, it is possible that our 

527 findings could help enable predictions at the canopy level in tropical forest ecosystems. 

528 Additionally, Wu et al (2018) connected leaf scale optical properties (i.e. reflectance and 

529 transmittance) with canopy radiative transfer models to simulate the leaf age effect on canopy 

530 reflectance in tropical forest ecosystems. The simulated canopy reflectance from this analysis 

531 showed a good agreement with observations from high resolution WorldView-2 imagery, further 

532 suggesting a potential way to scale up leaf-scale spectra-Vc,max25 relationship explored here to the 

533 canopy scale. Collectively, these recent studies, together with our current findings (Figs. 3 and 

534 4), help build the foundation towards the possibility of monitoring Vc,max25-age relationships at 

535 canopy and ecosystem scales using state-of-the-art remote sensing technology: e.g. leveraging 

536 imaging spectroscopy from unmanned aerial systems (UASs; Adão et al., 2017), aircraft (e.g. 

537 AVIRIS, Serbin et al., 2015), and the suite of current and planned space-borne platforms (e.g. 

538 EnMAP, Guanter et al., 2015; HISUI, Stavros et al., 2017; Surface Biology and Geology 

539 mission, National Academies of Sciences E, Medicine, 2018). Imaging spectroscopy, if 

540 successful in capturing Vc,max25–age relationships at canopy scales, will greatly advance our 

541 capability to monitor and mechanistically understand Vc,max25 variability across both space and 

542 time, providing critically important datasets to parameterize and evaluate ESMs.   

543

544

545

546 Acknowledgements

Page 18 of 34New Phytologist



547 This work was supported by the Next-Generation Ecosystem Experiments–Tropics project 

548 supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research 

549 and through contract #DE-SC0012704 to Brookhaven National Laboratory. L.P.A. was 

550 supported by Voss postdoctoral research funding at Brown University. The field work in Brazil 

551 was supported by US National Science Foundation (NSF, OISE-0730305). We also acknowledge 

552 Mick Eltringham for canopy access assistance in Brazil. 

553

554 Author Contributions

555 JW, AR, LPA, SRS and SPS designed the study. KE, SPS, AR, BTW and JW collected the field 

556 data in Panama. LPA, NP, RCO and JW collected the field data in Brazil. JW performed the data 

557 quality control and analysis. JW drafted the manuscript, and all authors contributed to the final 

558 version.  

559

560 Competing Interests

561 The authors declare no competing interests. 

562   

563

Page 19 of 34 New Phytologist



564 References 

565 Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ. 2017. Hyperspectral 

566 imaging: A review on UAV-based sensors, data processing and applications for 

567 agriculture and forestry. Remote Sensing 9, https://doi.org/10.3390/rs9111110.

568 Albert LP, Wu J, Prohaska N, Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, 

569 Oliveira RS, Garcia S, Smith MN et al. 2018. Age‐dependent leaf physiology and 

570 consequences for crown‐scale carbon uptake during the dry season in an Amazon 

571 evergreen forest. New Phytologist 219: 870-884.

572 Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA, Wullschleger SD, Reich 

573 PB, Vrugt JA, Bauerle WL et al. 2015. Global‐scale environmental control of plant 

574 photosynthetic capacity. Ecological Applications 25: 2349-2365.

575 Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. 2014. Using leaf optical properties 

576 to detect ozone effects on foliar biochemistry. Photosynthesis Research 119: 65-76.

577 Asner GP. 1998. Biophysical and biochemical sources of variability in canopy 

578 reflectance. Remote Sensing of Environment 64: 234-253.

579 Asner GP, Martin RE. 2008. Spectral and chemical analysis of tropical forests: Scaling from 

580 leaf to canopy levels. Remote Sensing of Environment 112: 3958-3970.

581 Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, 

582 Martinez P. 2014. Amazonian functional diversity from forest canopy chemical 

583 assembly. Proceedings of the National Academy of Sciences 111: 5604-5609.

584 Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE. 2016. 

585 Progressive forest canopy water loss during the 2012–2015 California 

586 drought. Proceedings of the National Academy of Sciences 113: E249-E255.

587 Bahar NH, Ishida FY, Weerasinghe LK, Guerrieri R, O'Sullivan OS, Bloomfield KJ, Asner 

588 GP, Martin RE, Lloyd J, Malhi Y et al. 2017. Leaf‐level photosynthetic capacity in 

589 lowland Amazonian and high‐elevation Andean tropical moist forests of Peru. New 

590 Phytologist 214: 1002-1018.

591 Barnes ML, Breshears DD, Law DJ, van Leeuwen WJ, Monson RK, Fojtik AC, Barron-

592 Gafford GA, Moore DJ. 2017. Beyond greenness: Detecting temporal changes in 

593 photosynthetic capacity with hyperspectral reflectance data. PLoS ONE 12, 

594 https://doi.org/10.1371/journal.pone. 0189539.

Page 20 of 34New Phytologist



595 Bernacchi CJ, Bagley JE, Serbin SP, RUIZ‐VERA UM, Rosenthal DM, Van Loocke A. 

596 2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant, Cell & 

597 Environment 36: 1641-1657.

598 Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, 

599 Swenson SC. 2011. Improving canopy processes in the Community Land Model version 

600 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of 

601 Geophysical Research: Biogeosciences 116, https://doi.org/10.1029/2010JG001593.

602 Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, 

603 Grace J, Jarvis PG. 2000. Photosynthetic capacity in a central Amazonian rain 

604 forest. Tree Physiology 20: 179-186.

605 Chavana‐Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, Enquist BJ, Caravasi C, Eric 

606 G, Doughty CE, Saleska SR et al. 2017. Leaf aging of Amazonian canopy trees as 

607 revealed by spectral and physiochemical measurements. New Phytologist 214: 1049-

608 1063.

609 Chavana-Bryant C, Malhi Y, Anastasiou A, Enquist BJ, Cosio EG, Keenan TF, Gerard FF. 

610 2019. Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy 

611 trees. Science of the Total Environment 666: 1301-1315.

612 Chen S, Hong X, Harris CJ, Sharkey PM. 2004. Spare modeling using orthogonal forest 

613 regression with PRESS statistic and regularization. IEEE Transaction on Systems, Man 

614 and Cybernetics 34: 898-911.

615 Coley PD. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical 

616 forest. Ecological Monographs 53: 209-234.

617 Condit RS, Ashton MS, Balslev H, Brokaw NVL, Bunyavejchewin S, Chuyong GB, Co L, 

618 Dattaraja HS, Davies SJ, Esufali S et al. 2005. Tropical tree a-diversity: results from a 

619 worldwide network of large plots. Biologike Skrifer 55: 565-582.

620 Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM. 2017. Leaf chlorophyll content 

621 as a proxy for leaf photosynthetic capacity. Global Change Biology 23: 3513-3524.

622  Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30: 271-

623 278.

Page 21 of 34 New Phytologist



624 Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe MT, 

625 DeFries RS, Keller M, Longo M et al. 2012. The Amazon basin in 

626 transition. Nature 481: 321-328.

627 Dechant B, Cuntz M, Vohland M, Schulz E, Doktor D. 2017. Estimation of photosynthesis 

628 traits from leaf reflectance spectra: correlation to nitrogen content as the dominant 

629 mechanism. Remote Sensing of Environment 196: 279-292.

630 De Jong S. 1993. SIMPLS: an alternative approach to partial least squares 

631 regression. Chemometrics and Intelligent Laboratory Systems 18: 251-263.

632 De Kauwe MG, Lin YS, Wright IJ, Medlyn BE, Crous KY, Ellsworth DS, Maire V, 

633 Prentice IC, Atkin OK, Rogers A et al. 2016. A test of the ‘one‐point method’ for 

634 estimating maximum carboxylation capacity from field‐measured, light‐saturated 

635 photosynthesis. New Phytologist 210: 1130-1144.

636 De Moura YM, Galvão LS, Hilker T, Wu J, Saleska S, do Amaral CH, Nelson BW, Lopes 

637 AP, Wiedeman KK, Prohaska N et al. 2017. Spectral analysis of amazon canopy 

638 phenology during the dry season using a tower hyperspectral camera and modis 

639 observations. ISPRS Journal of Photogrammetry and Remote Sensing 131: 52-64.

640 Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, 

641 Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 

642 167-171.

643 Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Hien 

644 F, Compaore H, Aiallo A et al. 2010. Co‐limitation of photosynthetic capacity by 

645 nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment 33: 959-

646 980.

647 Domingues TF, Martinelli LA, Ehleringer JR. 2014. Seasonal patterns of leaf-level 

648 photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology & 

649 Diversity 7: 189-203.

650 Dong N, Prentice IC, Evans BJ, Caddy-Retalic S, Lowe AJ, Wright IJ. 2017. Leaf nitrogen 

651 from first principles: field evidence for adaptive variation with climate. Biogeosciences 

652 14: 481–495.

653 Doughty CE, Asner GP, Martin RE. 2011. Predicting tropical plant physiology from leaf and 

654 canopy spectroscopy. Oecologia 165: 289-299.

Page 22 of 34New Phytologist



655 Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant 

656 materials. International Journal of Remote Sensing 11: 1775-1795.

657 Evans JR, Clark VC. 2019. The nitrogen cost of photosynthesis. Journal of Experimental 

658 Botany 70: 7-15.

659 Farquhar GV, von Caemmerer SV, Berry JA. 1980. A biochemical model of photosynthetic 

660 CO2 assimilation in leaves of C3 species. Planta 149: 78-90.

661 Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control 

662 on the allocation program. Oecologia 56: 341-347.

663 Geladi P, Kowalski BR. 1986. Partial least-squares regression: a tutorial. Analytica Chimica 

664 Acta 185: 1-17.

665 Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein 

666 A, Rossner G, Chlebek C, et al. 2015. The EnMAP spaceborne imaging spectroscopy 

667 mission for earth observation. Remote Sensing 7: 8830-8857.

668 Han Q, Kawasaki T, Nakano T, Chiba Y. 2008. Leaf-age effects on seasonal variability in 

669 photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen 

670 concentration within a Pinus densiflora crown. Tree Physiology 28: 551-558.

671 Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, de 

672 Camargo PB, Wofsy SC. 2007. Seasonal controls on the exchange of carbon and water 

673 in an Amazonian rain forest. Journal of Geophysical Research: Biogeosciences 112: 

674 G03008, https://doi.org/10.1029/2006JG000365.

675 Jacob J, Greitner C, Drake BG. 1995. Acclimation of photosynthesis in relation to Rubisco 

676 and non‐structural carbohydrate contents and in situ carboxylase activity in Scirpus 

677 olneyi grown at elevated CO2 in the field. Plant, Cell & Environment 18: 875-884.

678 Kattge J, Knorr W. 2007. Temperature acclimation in a biochemical model of photosynthesis: a 

679 reanalysis of data from 36 species. Plant, Cell & Environment 30: 1176-1190.

680 Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, 

681 Reich PB, Wright IJ et al. 2011. TRY–a global database of plant traits. Global Change 

682 Biology 17: 2905-2935.

683 Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T. 2006. Changes in 

684 photosynthesis and leaf characteristics with tree height in five dipterocarp species in a 

685 tropical rain forest. Tree Physiology 26: 865-873.

Page 23 of 34 New Phytologist



686 Kim Y, Knox RG, Longo M, Medvigy D, Hutyra LR, Pyle EH, Wofsy SC, Bras RL, 

687 Moorcroft, PR. 2012. Seasonal carbon dynamics and water fluxes in an Amazon 

688 rainforest. Global Change Biology 18: 1322-1334.

689 Kitajima K, Mulkey SS, Samaniego M, Wright J.S. 2002. Decline of photosynthetic capacity 

690 with leaf age and position in two tropical pioneer tree species. American Journal of 

691 Botany 89: 1925-1932.

692 Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009. Characterizing canopy 

693 biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote 

694 Sensing of Environment 113: S78-S91.

695 Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, 

696 Cano FJ, Carter KR, Cavaleri MA, Cernusak LA, Chamber JQ, Crous KY et al. 

697 2019. Acclimation and adaptation components of the temperature dependence of plant 

698 photosynthesis at the global scale. New Phytologist 222: 768-784.

699 Long SP, Bernacchi CJ. 2003. Gas exchange measurements, what can they tell us about the 

700 underlying limitations to photosynthesis? Procedures and sources of error. Journal of 

701 Experimental Botany 54: 2393-2401.

702 Lopes AP, Nelson BW, Wu J, de Alencastro GPML, Tavares JV, Prohaska N, Martins GA, 

703 Saleska SR. 2016. Leaf flush drives dry season green-up of the central Amazon. Remote 

704 Sensing of Environment 182: 90-98.

705 Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De 

706 Angelis P, Forstreuter M, Jach ME, Kellomäki S et al. 1999. Effects of elevated [CO2] 

707 on photosynthesis in European forest species: a meta‐analysis of model 

708 parameters. Plant, Cell & Environment 22: 1475-1495.

709 Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama 

710 S, Koizumi H. 2010. Effects of seasonal and interannual variations in leaf photosynthesis 

711 and canopy leaf area index on gross primary production of a cool-temperate deciduous 

712 broadleaf forest in Takayama, Japan. Journal of Plant Research 123: 563-576.

713 National Academies of Sciences E, Medicine. 2018. Thriving on Our Changing Planet: A 

714 Decadal Strategy for Earth Observation from Space. Washington, DC: The National 

715 Academies Press.

Page 24 of 34New Phytologist



716 Nepstad DC, Moutinho P, Dias‐Filho MB, Davidson E, Cardinot G, Markewitz D, 

717 Figueiredo R, Vianna N, Chambers J, Ray D et al. 2002. The effects of partial 

718 throughfall exclusion on canopy processes, aboveground production, and 

719 biogeochemistry of an Amazon forest. Journal of Geophysical Research: 

720 Atmospheres 107: https://doi.org/10.1029/2001JD000360.

721 Niinemets, U. 2016. Leaf age dependent changes in within-canopy variation in leaf functional 

722 traits: a meta-analysis. Journal of Plant Research 129: 313–338.

723 Norby RJ, Gu L, Haworth IC, Jensen AM, Turner BL, Walker AP, Warren JM, Weston 

724 DJ, Xu C, Winter K. 2017. Informing models through empirical relationships between 

725 foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical 

726 forests of Panama. New Phytologist 215: 1425-1437.

727 Ollinger SV. 2011. Sources of variability in canopy reflectance and the convergent properties of 

728 plants. New Phytologist 189: 375-394.

729 Onoda Y, Hikosaka K, Hirose T. 2004. Seasonal change in the balance between capacities of 

730 RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in 

731 Polygonum cuspidatum. Journal of Experimental Botany 56: 755-763.

732 Pantin F, Simonneau T, Muller B. 2012. Coming of leaf age: control of growth by hydraulics 

733 and metabolics during leaf ontogeny. New Phytologist 196: 349-366.

734 Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS. 2004. Leaf demography and 

735 phenology in Amazonian rain forest: a census of 40000 leaves of 23 tree 

736 species. Ecological Monographs 74: 3-23.

737 Ricciuto D, Sargsyan K, Thornton P. 2018. The impact of parametric uncertainties on 

738 biogeochemistry in the E3SM land model. Journal of Advances in Modeling Earth 

739 Systems 10: 297-319.

740 Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, De Camargo PB, Portilho K, 

741 Marques DF, Wofsy SC. 2004. Carbon balance and vegetation dynamics in an 

742 old‐growth Amazonian forest. Ecological Applications 14: 55-71.

743 Roberts DA, Nelson BW, Adams JB, Palmer F. 1998. Spectral changes with leaf aging in 

744 Amazon caatinga. Trees 12: 315-325.

745 Rogers A. 2014. The use and misuse of Vc,max in Earth System Models. Photosynthesis 

746 Research 119: 15-29.

Page 25 of 34 New Phytologist



747 Rogers A, Medlyn BE, Dukes JS, Bonan G, Caemmerer S, Dietze MC, Kattge J, Leakey 

748 AD, Mercado LM, Niinemets Ü et al. 2017a. A roadmap for improving the 

749 representation of photosynthesis in Earth system models. New Phytologist 213: 22-42.

750 Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD. 2017b. Terrestrial biosphere 

751 models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New 

752 Phytologist 216: 1090-1103.

753 Rosipal R, Krämer N. 2006. Overview and recent advances in partial least squares. 

754 In Saunders, C., Grobelink, M., Gunn, S., & Shawe-Taylor, J. (Eds.), Subspace, Latent 

755 Structure and Feature Selection. Berlin: Springer, 34-51.

756 Scafaro AP, Xiang S, Long BM, Bahar NH, Weerasinghe LK, Creek D, Evans JR, Reich 

757 PB, Atkin OK. 2017. Strong thermal acclimation of photosynthesis in tropical and 

758 temperate wet-forest tree species: the importance of altered Rubisco content. Global 

759 Change Biology 23: 2783-2800.

760 Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C, Frankenberg 

761 C, Hibbard K, Cox P. 2015. Observing terrestrial ecosystems and the carbon cycle from 

762 space. Global Change Biology 21: 1762-1776.

763 Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman ME. 

764 2017. Mapping functional diversity from remotely sensed morphological and 

765 physiological forest traits.  Nature Communications 8: 1441-1441, 

766 https://doi.org/10.1038/s41467-017-01530-3.

767 Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD, Wang R, 

768 Tilman D, Gamon J A. 2018. Plant spectral diversity integrates functional and 

769 phylogenetic components of biodiversity and predicts ecosystem function. Nature 

770 Ecology & Evolution 2: 976-982.

771 Serbin SP, Dillaway DN, Kruger EL, Townsend PA. 2012. Leaf optical properties reflect 

772 variation in photosynthetic metabolism and its sensitivity to temperature. Journal of 

773 Experimental Botany 63: 489-502.

774 Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. 2014. Spectroscopic 

775 determination of leaf morphological and biochemical traits for northern temperate and 

776 boreal tree species. Ecological Applications 24: 1651-1669.

Page 26 of 34New Phytologist

https://doi.org/10.1038/s41467-017-01530-3


777 Serbin SP, Singh A, Desai AR, Dubois SG, Jablonski AD, Kingdon CC, Kruger EL, 

778 Townsend PA. 2015. Remotely estimating photosynthetic capacity, and its response to 

779 temperature, in vegetation canopies using imaging spectroscopy. Remote Sensing of 

780 Environment 167: 78-87.

781 Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon 

782 dioxide response curves for C3 leaves. Plant, Cell & Environment 30: 1035-1040.

783 Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR. 

784 2018. Hyperspectral reflectance as a tool to measure biochemical and physiological traits 

785 in wheat. Journal of Experimental Botany 3: 483-496. 

786 Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA. 2015. Imaging spectroscopy 

787 algorithms for mapping canopy foliar chemical and morphological traits and their 

788 uncertainties. Ecological Applications 25: 2180-2197.

789 Smith NJ, Keenan TF, Prentice IC, Wang H, Wright IJ, Niinemets U, Crous KY, 

790 Domingues TF, Guerrieri R, Ishida FY et al. 2019. Global photosynthetic capacity is 

791 optimized to the environment. Ecology Letters 22: 506-517. 

792 Sobrado MA. 1994. Leaf age effects on photosynthetic rate, transpiration rate and nitrogen 

793 content in a tropical dry forest. Physiologia Plantarum 90: 210-215.

794 Sonnleitner M, Dullinger S, Wanek W, Zechmeister H. 2009. Microclimatic patterns correlate 

795 with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa 

796 Rica. Journal of Tropical Ecology 25: 321-330.

797 Sperry J. 2013. Cutting‐edge research or cutting‐edge artefact? An overdue control experiment 

798 complicates the xylem refilling story. Plant, Cell & Environment 36: 1916-1918.

799 Stavros EN, Schimel D, Pavlick R, Serbin S, Swann A, Duncanson L, Fisher JB, Fassnacht 

800 F, Ustin S, Dubayah R et al. 2017. ISS observations offer insights into plant 

801 function. Nature Ecology and Evolution 1: 0194.

802 Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, 

803 Castilho CV, Magnusson WE, Molino JF et al. 2013. Hyperdominance in the 

804 Amazonian tree flora. Science 342: 1243092.

805 Stinziano JR, Morgan PB, Lynch DJ, Saathoff AJ, McDermitt DK, Hanson DT. 2017. The 

806 rapid A–Ci response: photosynthesis in the phenomic era. Plant, Cell & Environment 40: 

807 1256-1262.

Page 27 of 34 New Phytologist



808 Turner BL, Romero TE. 2009. Short-term changes in extractable inorganic nutrients during 

809 storage of tropical rain forest soils. Soil Science Society of America Journal 73: 1972-

810 1979.

811 Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF, Scales JC, 

812 Wohlfahrt G, Wullschleger SD, Woodward FI. 2014. The relationship of leaf 

813 photosynthetic traits– Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf 

814 area: a meta‐analysis and modeling study. Ecology and Evolution 4: 3218-3235.

815 Walker AP, Quaife T, Bodegom PM, De Kauwe MG, Keenan TF, Joiner J, Lomas MR, 

816 MacBean N, Xu C, Yang X et al. 2017. The impact of alternative trait‐scaling 

817 hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross 

818 primary production. New Phytologist 215: 1370-1386.

819 Wilson KB, Baldocchi DD, Hanson PJ. 2001. Leaf age affects the seasonal pattern of 

820 photosynthetic capacity and net ecosystem exchange of carbon in a deciduous 

821 forest. Plant, Cell & Environment 24: 571-583.

822 Wolter PT, Townsend PA, Sturtevant BR, Kingdon CC. 2008. Remote sensing of the 

823 distribution and abundance of host species for spruce budworm in Northern Minnesota 

824 and Ontario. Remote Sensing of Environment 112: 3971-3982.

825 Wright SJ, Horlyck V, Basset Y, Barrios H, Bethancourt A, Bohlman SA, Gilbert GS, 

826 Goldstein G, Graham EA, Kitajima K et al. 2003. Tropical canopy biology program, 

827 Republic of Panama. Studying forest canopies from above: the International Canopy 

828 Crane Network, eds Basset, Y., Horlyck, V., & Wright, S.J. (Smithsonian Tropical 

829 Research Institute and the United Nations Environmental Programme, Panama City, 

830 Panama), 137-155.

831 Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark 

832 SC, Christoffersen B, Prohaska N et al. 2016. Leaf development and demography 

833 explain photosynthetic seasonality in Amazon evergreen forests. Science 351: 972-976.

834 Wu J, Chavana‐Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, Leeuwen 

835 WJ, Garnello AJ, Martins G et al. 2017. Convergence in relationships between leaf 

836 traits, spectra and age across diverse canopy environments and two contrasting tropical 

837 forests. New Phytologist 214: 1033-1048.

Page 28 of 34New Phytologist



838 Wu J, Kobayashi H, Stark SC, Meng R, Guan K, Tran NN, Gao S, Yang W, 

839 Restrepo‐Coupe N, Miura T et al. 2018. Biological processes dominate seasonality of 

840 remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist 217: 

841 1507-1520.

842 Xu QS, Liang YZ. 2001. Monte Carlo cross validation. Chemometrics and Intelligent 

843 Laboratory Systems 56: 1-11.

844 Xu X, Medvigy D, Wright JS, Kitajima K, Wu J, Albert LP, Martins GA, Saleska SR, 

845 Pacala SW. 2017. Variations of leaf longevity in tropical moist forests predicted by a 

846 trait‐driven carbon optimality model. Ecology Letters 20: 1097-1106.

847 Yendrek C, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre L, Leakey A, 

848 Ainsworth E. 2017. High-throughput phenotyping of maize leaf physiology and 

849 biochemistry using hyperspectral reflectance. Plant Physiology 173: 614-626.

850

Page 29 of 34 New Phytologist



851 Figure legends

852 Figure 1. Large variation in leaf Vc,max25 (a) within individual trees and (b) across tropical 

853 forests. The data were from the Tapajos K67 site in Brazil, the San Lorenzo crane site (SLZ) and 

854 the Parque Natural Metropolitano crane site (PNM) in The Republic of Panama. At the 

855 individual tree level (panel a), Vc,max25 is primarily associated with leaf development (orange for 

856 variation in mature leaves, and blue for variation in immature leaves; see Methods) and canopy 

857 position (circles for the leaves sampled from the sunlit canopy environment, and triangles for the 

858 leaves sampled from the shaded canopy environment). Across tropical forests (panel b), the 

859 spread of tree specific (sunlit canopy, mature leaves) mean Vc,max25 of each forest site is displayed 

860 with a boxplot, in which the central mark is the median, the edges are the 25th and 75th 

861 percentiles, and the whiskers are the 5th and 95th percentiles.

862 Figure 2. A spectra-Vc,max25 model was trained using two thirds of the dataset from mature leaves 

863 measured in Panama, and then evaluated using the independent validation dataset collected in (a) 

864 Panamanian mature leaves, (b) Panamanian immature leaves, (c) Brazilian mature and immature 

865 leaves, and (d) all leaf classes collected in Panama and Brazil. Error bars denote the 95% 

866 confidence intervals for each predicted value based on the ensemble PLSR models (i.e. each 

867 PLSR model is represented by a set of PLSR fitted spectral coefficients, and in total includes 100 

868 Monte-Carol model runs; see Methods); the gray line shows the ordinary least square regression 

869 fit, and the black line shows the 1:1 line.  

870 Figure 3. The final spectra-Vc,max25 model was trained using two thirds of our entire dataset, and 

871 then applied to the remaining, independent validation dataset. Error bars denote the 95% 

872 confidence intervals for each predicted value based on the ensemble PLSR models, the gray line 

873 shows the ordinary least square regression fit, and the black line shows the 1:1 line.  

874 Figure 4. The combination of our final spectral model for Vc,max25 (Fig. 3) and the leaf age model 

875 (see Wu et al., 2017; also see Methods) enables the prediction of the life history trajectories of 

876 leaf Vc,max25 (grey circles) in an independent spectra-age dataset collected in Brazil (see 

877 Methods). Here we show that for a given leaf age (determined by the spectra model) we can 

878 capture the dynamics of field observed Vc,max25 (red circles). See Table S1 for the full species 

879 names, error bars denote the 95% confidence interval of spectral predictions.

Page 30 of 34New Phytologist



 

Figure 1. Large variation in leaf Vc,max25 (a) within individual trees and (b) across tropical forests. The 
data were from the Tapajos K67 site in Brazil, the San Lorenzo crane site (SLZ) and the Parque Natural 

Metropolitano crane site (PNM) in The Republic of Panama. At the individual tree level (panel a), Vc,max25 
is primarily associated with leaf development (orange for variation in mature leaves, and blue for variation 

in immature leaves; see Methods) and canopy position (circles for the leaves sampled from the sunlit canopy 
environment, and triangles for the leaves sampled from the shaded canopy environment). Across tropical 
forests (panel b), the spread of tree specific (sunlit canopy, mature leaves) mean Vc,max25 of each forest 
site is displayed with a boxplot, in which the central mark is the median, the edges are the 25th and 75th 

percentiles, and the whiskers are the 5th and 95th percentiles. 
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Figure 2. A spectra-Vc,max25 model was trained using two thirds of the dataset from mature leaves 
measured in Panama, and then evaluated using the independent validation dataset collected in (a) 

Panamanian mature leaves, (b) Panamanian immature leaves, (c) Brazilian mature and immature leaves, 
and (d) all leaf classes collected in Panama and Brazil. Error bars denote the 95% confidence intervals for 
each predicted value based on the ensemble PLSR models (i.e. each PLSR model is represented by a set of 
PLSR fitted spectral coefficients, and in total includes 100 Monte-Carol model runs; see Methods); the gray 

line shows the ordinary least square regression fit, and the black line shows the 1:1 line.   
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Figure 3. The final spectra-Vc,max25 model was trained using two thirds of our entire dataset, and then 
applied to the remaining, independent validation dataset. Error bars denote the 95% confidence intervals for 

each predicted value based on the ensemble PLSR models, the gray line shows the ordinary least square 
regression fit, and the black line shows the 1:1 line.   
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Figure 4. The combination of our final spectral model for Vc,max25 (Fig. 3) and the leaf age model (see Wu 
et al., 2017; also see Methods)  enables the prediction of the life history trajectories of leaf Vc,max25 (grey 

circles) in an independent spectra-age dataset collected in Brazil (see Methods). Here we show that for a 
given leaf age (determined by the spectra model) we can capture the dynamics of field observed Vc,max25 

(red circles). See Table S1 for the full species names, error bars denote the 95% confidence interval of 
spectral predictions. 
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