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Abstract

Reinsurance is available for a reinsurance premium that is determined accord-
ing to a convex premium principle H. The first insurer selects the reinsurance
coverage that maximizes its expected utility. No conditions are imposed on the
reinsurer’s payment. The optimality condition involves the gradient of H. For sev-
eral combinations of H and the first insurer’s utility function, closed form formulas
for the optimal reinsurance are given. If H is a zero utility principle (for exam-
ple, an exponential principle or an expectile principle), it is shown, by means of
Borch’s Theorem, that the optimal reinsurer’s payment is a function of the total
claim amount and that this function satisfies the so-called 1-Lipschitz condition.
Frequently, authors impose these two conclusions as hypotheses at the outset.

Keywords: Optimal reinsurance; expected utility; convex premium principle; Borch’s
theorem; Pareto-optimal risk exchange; constraint-free approach.

1 Introduction

Since the pioneering work by Borch (1960a, b, c, 1962) and Arrow (1963), there has been
much research on optimal reinsurance. Almost all papers assume from the outset that
there is an indemnity function (also called ceded loss function or coverage function). That
is, there exists a function f such that if x is the realized loss, f(x) is the indemnity paid
by the reinsurer (many papers use the symbol I(x) for this function). Some impose the
restriction that 0 ≤ f(x) ≤ x. Others assume that f(0) = 0 and

0 ≤ f(x)− f(y) ≤ x− y for x ≥ y ≥ 0. (1.1)

These constraints are imposed to avoid moral hazards. For example, if the second in-
equality sign in (1.1) were “greater than” for some x and y, x > y ≥ 0, then the first
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insurer would have an incentive to create an incremental loss, x − y, and, as a result, it
could receive f(x)− f(y).

Although these constraints are natural requirements, they can complicate the search
for the optimal reinsurance. As one learns in calculus, unconstrained optimization is
easier than constrained optimization. In this paper, we do not impose such assumptions a
priori. A goal of this largely self-contained paper is to show, in a reader-friendly manner,
that if the first insurer maximizes its expected utility and if the reinsurance premium is
determined by a zero utility principle, the following conclusion is reached: There exists a
function f such that if x is the realized loss, f(x) is the optimal indemnity. Because the
derivative of f is bounded between 0 and 1, constraint (1.1) is satisfied. See Section 5.

We should note that in certain papers, these assumptions are not made explicitly. See,
for example, Moffet (1979) and Aase (2004b). They consider only reinsurance treaties
that are equivalent to Pareto optimal risk exchanges (for which these assumptions are
always satisfied). Also, under the assumption that the premium is determined by Wang’s
premium principle, Young (1999) has derived (1.1).

Buying reinsurance involves a compromise between safety and profitability. A rational
reinsurance policy increases the safety of the first insurer at the expense of its profitability.
There are two popular ways to reach a decision under these two conflicting objectives.
One is to formulate a criterion for each objective, perhaps in the form of a score. Then,
the first insurer would fix one score and maximize (or minimize) the other. The other is
to measure the quality of reinsurance by means of expected utility, which combines safety
and profitability in a single function. The first insurer would seek a reinsurance policy to
maximize its expected utility. This is the approach considered in this paper.

In a classical paper, Arrow (1963) proved that stop loss is optimal under the criterion
of maximizing the expected utility of the end-of-period wealth of the first insurer when
the expected value principle is used to calculate the reinsurance premium. The ideas of
Arrow (1963) have been extended in various directions. For example, Young (1999) has
generalized Arrow’s result to the situation where the premium is determined by Wang’s
premium principle. In each reinsurance contract, there are two parties, the first insurer
and the reinsurer. As the two parties have conflicting interests, Borch (1969, p. 295)
suggested that “the optimal contract must then appear as a reasonable compromise be-
tween these interests.” Thus we incorporate the preferences of both the first insurer and
the reinsurer in the optimization problem formulation. Earlier work in this direction
includes Borch (1960c) and Gerber (1978); for recent studies, see Golubin (2008) and
D’Ortona and Marcarelli (2017) and the references therein. For this class of problems,
the Pareto-optimality setup seems natural. See also Asimit and Boonen (2018), Asimit et
al. (2018), Cai et al. (2017), and Lo and Tang (2018). A brief review of Pareto-optimal
risk exchanges can be found at the beginning of Section 5.

The literature on reinsurance in general, and optimal reinsurance in particular, has
grown phenomenally in recent years. The latest book on reinsurance (Albrecher et al.,
2017) has a list of 812 references. Although not every entry on the list is about reinsurance
or optimal reinsurance, flipping through these 37 pages of titles is indeed a mind-expanding
experience. The authors are to be commended for such an impressive book.
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The heart of this paper is in Sections 4 and 5. Sections 2 serves as a preparation in
an attempt to make the paper largely self-contained. Premium principles are explained,
in particular the expectile principle, which can be derived as a zero utility principle. It
is noted that the underlying risk aversion function is a multiple of Dirac’s delta function.
Subsection 2.3 reviews an important tool for optimization, the “gradient” of a functional.
Section 3 presents a result of independent interest: a new characterization of the expectile
principle.

In Section 4, the objective is to maximize the expected utility of a first insurer, when
the reinsurance premium is determined from a zero utility principle. The model can be
considered as an extension of that in Arrow (1963), as it includes both insurer’s utility
function and the reinsurer’s utility function. A general optimality criterion has been
obtained in Deprez and Gerber (1985) under this setup. In four particular cases, closed-
form expressions for the optimal reinsurer’s payment and the reinsurer’s premium are
obtained.

Section 5 provides additional insight for an optimal reinsurance contract. Any rein-
surance contract can be considered as a risk exchange between first insurer and reinsurer.
An optimal reinsurance contract satisfies the optimality condition given in Deprez and
Gerber (1985). But this is precisely the condition of Borch’s Theorem. It follows that
an optimal reinsurance contract is one particular Pareto-optimal risk exchange. Then we
show that there exists a function f , with 0 ≤ f(s) ≤ s and 0 ≤ f ′(s) ≤ 1, such that
the optimal reinsurer’s payment is the image, under f , of the total claim amount. Thus,
what many authors postulate as constraints are now obtained as a result of unconstrained
optimization.

2 Preliminaries

2.1 Premium principles

Premium principles were originally introduced by Bühlmann (1970) under the term prin-
ciples of premium calculation. A premium principle is a functional H that assigns a
premium P to any risk X (a random variable with a known distribution), P = H(X).
The following three examples are popular.

1. Variance principle:

P = E[X] + αVar(X), (α > 0).

The loading P − E[X] is proportional to the variance of the risk.

2. Standard deviation principle:

P = E[X] + β
√

Var(X), (β > 0).

The loading is proportional to the standard deviation.
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3. Principles of zero utility: Let u(x) be a utility function, that is, a function that is
strictly increasing and concave. Then P is determined as the solution of the equation

E[u(P −X)] = u(0). (2.1)

This is the condition that the expected utility with the new contract is the same as u(0),
the utility without the new contract. A prominent special case is where

u(x) =
1

a
(1− e−ax), (a > 0). (2.2)

Then (2.1) can be solved explicitly and we find that

P =
1

a
ln E[eaX ]. (2.3)

This is known as the exponential principle. Another prominent special case will be dis-
cussed in the next section.

The risk aversion function associated to a utility function u(x) is defined as

r(x) = −d lnu′(x)

dx
. (2.4)

We note that the risk aversion function of (2.2) is r(x) = a, constant.

Remark 2.1: Families of premium principles and some of their properties are pre-
sented in Goovaerts et al. (1984), Young (2004) and Goovaerts et al. (2010). For the
convex premium principles, see Deprez and Gerber (1985), and for the role of convexity
in the context of mathematical finance, see Föllmer and Schied (2002, 2016).

2.2 The expectile principle

Let

u(x) =

{
(1 + θ)x if x < 0,
x if x ≥ 0.

(2.5)

This is a “refracted” linear function. The parameter θ is positive. Condition (2.1) can
now be written as

E[(P −X)+] = (1 + θ)E[(X − P )+], (2.6)

which has an appealing interpretation: The expected gain of the contract should be a
multiple (1 + θ) of the expected loss of the contract. Condition (2.6) can be rewritten as

P = E[X] + θE[(X − P )+]. (2.7)

Thus the loading is proportional to the expected loss and the parameter θ has the role
of a loading factor. We might call this principle the expected loss principle. However, we
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prefer the name expectile principle for reasons that are explained in Remark 2.2 below.
Furthermore, condition (2.6) can also be rewritten as

P = E[X] +
θ

1 + θ
E[(P −X)+]. (2.8)

In this sense, the principle could also be called the expected gain principle. We note that
u(x) in (2.5) is also x − θx− and (1 + θ)x − θx+. Upon substitution in (2.1), (2.7) and
(2.8) are obtained.

What can be said about the risk aversion function r(x)? For b < c and any utility
function u(x), we have ∫ c

b

r(x)dx = − lnu′(c) + ln u′(b). (2.9)

Let u(x) as in (2.5) and suppose that b < 0 < c. Then∫ c

b

r(x)dx = ln(1 + θ). (2.10)

This shows that

r(x) = ln(1 + θ)δ(x), (2.11)

where δ(x) is the Dirac delta function.

Remark 2.2: Let 0 < α < 1/2. The α-percentile is the number z that minimizes

αE[(z −X)+] + (1− α)E[(X − z)+].

Similarly, the α-expectile is the number z that minimizes

αE[(z −X)2+] + (1− α)E[(X − z)2+].

If we set the derivative equal to 0 we obtain (2.6) with P = z and 1 + θ = 1−α
α

. An early
reference for this asymmetric least square value is Newey and Powell (1987).

Remark 2.3: Formula (2.7) reminds us of the Dutch premium principle, where how-
ever the loading is proportional to E[(X − αE[X])+] for some α ≥ 1. See Young (2004).
For α = 1, the Dutch principle has been generalized by Fischer (2003). See McNeil et al.
(2015, page 77). Similarly, the expectile principle can be generalized such that (2.7) is
replaced by

P = E[X] + θ1E[(X − P )p+]
1/p, (2.12)

or (2.8) by

P = E[X] + θ2E[(P −X)p+]
1/p. (2.13)

Note that (2.12) and (2.13) are not equivalent unless p = 1.
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Remark 2.4: For a general utility function u(x), condition (2.1) can be written in
the spirit of (2.6). Assume u(0) = 0. We set

w(x) =
u(x)

x
. (2.14)

Then (2.1) can be written as

E[(P −X)w(P −X)] = 0. (2.15)

Note that w(x) is the slope of the chord connecting the origin with the point (x, u(x)).
Hence w(x) is a positive and decreasing function. It can be interpreted as a weight
function.

Remark 2.5: One might be tempted to start with any positive and decreasing func-
tion w(x) and define P from (2.15). But, unless w(x) is derived from a utility function as
in (2.14), the resulting premium principle might have some undesirable properties. For
example, if w(x) = e−ax, a > 0, we obtain

P =
E[XeaX ]

E[eaX ]
, (2.16)

the Esscher premium with parameter a, which has been criticized for some of its properties.
See Gerber (1981).

2.3 Directional derivatives of a premium principle

The “gradient” tells us how the premium reacts to small variations of the risk. It is a
useful tool to analyze certain optimization problems. Let H(X) be a premium principle.
Let H ′(X) denote its gradient, if it exists. This random variable has the property that

d

dt
H(X + tV ) |t=0= E[H ′(X)V ]. (2.17)

Let us revisit the three examples of Section 2. For the variance principle we have

H(X + tV ) = E[X + tV ] + αVar[X + tV ]. (2.18)

Because

Var[X + tV ] = Var[X] + 2tCov(X, V ) + t2Var[V ] (2.19)

and

Cov(X, V ) = E[(X − E[X])V ], (2.20)

we find that

d

dt
H(X + tV ) |t=0 = E[V ] + 2αE[(X − E[X])V ]. (2.21)
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This shows that

H ′(X) = 1 + 2α(X − E[X]). (2.22)

Similarly, the gradient of the standard deviation principle turns out to be

H ′(X) = 1 + β
X − E[X]√

Var[X]
. (2.23)

For a principle of zero utility, we find that

H ′(X) =
u′(P −X)

E[u′(P −X)]
. (2.24)

Thus the gradient of the exponential principle is

H ′(X) =
eaX

E[eaX ]
, (2.25)

and the gradient of the expectile principle assumes only two values,

H ′(X) =

{
(1 + θ)/E[u′(P −X)] if P < X,
1/E[u′(P −X)] if P > X,

(2.26)

with a discontinuity at P = X.

For further discussion, see Promislow and Young (2005), especially Sections 4 and 5.
The approach in their paper is mathematically rigorous and comprehensive.

3 A characterization of the expectile principle

We recall four properties that a premium principle might have.

(i) translation invariance: H(X + c) = H(X) + c,

(ii) monotonicity: X ≤ Y implies H(X) ≤ H(Y ),

(iii) positive homogeneity: H(aX) = aH(X) if a > 0,

(iv) subadditivity: H(X + Y ) ≤ H(X) +H(Y ).

If a principle satisfies all four properties, it is called coherent (Artzner et al., 1999).

Theorem: For each zero utility principle, the following three statements are equiva-
lent.

(a) It is an expectile principle.

(b) It is coherent.

(c) It is positively homogeneous.
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Proof: (b) ⇒ (c) is obvious.

To show (a) ⇒ (b), we note that properties (i) and (ii) are satisfied by any zero utility
principle, and that property (iii) is obvious from (2.6). To show property (iv), consider
the functional

ϕ(X, x) = E[X] + θE[(X − x)+]− x, (3.1)

withX being a risk, x a number, and θ > 0. From the inequality (a1)++(a2)+ ≥ (a1+a2)+,
it follows that for any pair of risks X1 and X2 and any pair of numbers x1 and x2,

ϕ(X1, x1) + ϕ(X2, x2) ≥ ϕ(X1 +X2, x1 + x2). (3.2)

Let H be the expectile principle with parameter θ. Then

ϕ(X,H(X)) = 0 (3.3)

for every X. Hence,

ϕ(X1 +X2, H(X1 +X2)) = ϕ(X1, H(X1)) + ϕ(X2, H(X2))

≥ ϕ(X1 +X2, H(X1) +H(X2)) (3.4)

by (3.2). Because ϕ(X, x) is a decreasing function of x, we have property (iv),

H(X1 +X2) ≤ H(X1) +H(X2).

To show that (c) ⇒ (a), we assume that u(x) is a utility function such that the
corresponding zero utility principle is positively homogeneous. Without loss of generality
we assume u(0) = 0. The concavity of u(x) is the condition that

u(x1)− 2u(x̄) + u(x2) ≤ 0 (3.5)

for all x1, x2, where x̄ = (x1 + x2)/2. Now consider a Bernoulli risk X with

Pr(X = 1) = p, Pr(X = 0) = q, (3.6)

(p+ q = 1). Then P = H(X) is the solution of

pu(P − 1) + qu(P ) = 0. (3.7)

Note that 0 < P < 1. From the positive homogeneity property it follows that

pu(aP − a) + qu(aP ) = 0 (3.8)

for all a > 0. We use this for a = a1, a = a2, and a = ā = (a1 + a2)/2 to see that

p{u(a1P − a1)− 2u(āP − ā) + u(a2P − a2)}
+q{u(a1P )− 2u(āP ) + u(a2P )} = 0. (3.9)

Because of (3.5), both expressions within the braces must vanish.This shows that u(x) is
linear in x for x < 0 and x > 0. From u(0) = 0, the monotonicity and concavity of u(x)
it follows that

u(x) =

{
c1x if x < 0, (3.10)

c2x if x ≥ 0, (3.11)
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with 0 < c2 ≤ c1. This leads to the expectile principle with θ = (c1 − c2)/c2.

Remark 3.1: For another derivation of (a) ⇒ (b), see Proposition 8.25 on page 292
of McNeil et al. (2015).

Remark 3.2: Cheung et al. (2015a) and Goovaerts et al. (1984, page 135) charac-
terize zero utility principles by the positive homogeneity property for the case where the
utility function is not assumed to be concave.

Remark 3.3: One might argue that the expectile principle is a member of the family of
disappointment aversion premium principles that were proposed by Cheung et al. (2015a)

4 Optimal purchase of reinsurance

We now turn to reinsurance. We shall not use the symbol X to denote risk. We consider
a one-period model. The first insurer has to pay the total claim amount S (a positive
random variable with a known distribution) at the end of the period. Of course it has
received premiums for this obligation. However, the premiums will not play an explicit
role in the following analysis, and we shall not introduce a symbol for them.

The first insurer can buy a payment R (a random variable) from a reinsurer. The
reinsurer’s payment is made at the end of the period. Typically, it is a function of S;
however, we do not make this assumption a priori. For any R, the reinsurance premium
P is determined according to a (re)insurance premium principle H, P = H(R), that is
known to the first insurer. For choosing R, the first insurer uses a utility function u(x).
Thus the problem is

max
R

E[u(−S −H(R) +R)]. (4.1)

We assume that H has a gradient and is translation invariant. Thus the quantity of
interest is really R −H(R), and a budget constraint on the reinsurance premium would
not make sense in this context. It is natural to require that R = 0 if S = 0.

Let R∗ be a solution of (4.1). Theorem 9 in Deprez and Gerber (1985) provides the
following optimality criterion in terms of the gradient of H:

H ′(R∗) =
u′(−S −H(R∗) +R∗)

E[u′(−S −H(R∗) +R∗)]
. (4.2)

We shall use the symbol P ∗ for H(R∗). For a generalization of (4.2), see Corollary 2.4 in
Kiesel and Rüschendorf (2013).

Remark 4.1: In calculus, the unconstrained extrema of a differentiable function of
several real variables can be found by the first-order condition: Equate the gradient of
the function with the zero vector, and solve. By an analogous procedure, problem (4.1)
can be treated. The functional to be maximized is

U(R) = E[u(−S −H(R) +R)]. (4.3)
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To determine its gradient U ′(R), we note that, by (2.17),

d

dt
U(R + tV )|t=0 = E[u′(−S −H(R) +R)(−E[H ′(R)V ] + V )]. (4.4)

(For a rigorous derivation, see the paragraph around (4.4) in Promislow and Young
(2005).) This shows that

U ′(R) = −E[u′(−S −H(R) +R)]H ′(R) + u′(−S −H(R) +R). (4.5)

Setting U ′(R) equal to zero, we indeed obtain (4.2).

Remark 4.2: Note that the reinsurance premium P = H(R) depends only on the
distribution of R. This is different, if R is bought in the market, not necessarily from a
particular reinsurer. See Section 10 in Gerber and Pafumi (1998). There, the assumption
is that

P = H(R) = E[ΨR] = E[R] + Cov(R,Ψ), (4.6)

where the price density Ψ is a positive random variable with E[Ψ] = 1. Note that the opti-
mality condition (141) in Gerber and Pafumi (1998) is similar to (4.2) because H ′(R) = Ψ
in (4.6).

For the remainder of this section we consider four special cases. In each, we find a
closed-form expression for R∗, the optimal reinsurer’s payment. The graphs of R∗, as a
function of S, are depicted in Figure 1.

For Case 1, we assume that u(x) is the exponential utility function with parameter
a > 0. Then the optimality condition reduces to

H ′(R∗) =
ea(S−R∗)

E[ea(S−R∗)]
. (4.7)

We assume that the reinsurance premium is calculated according to the exponential prin-
ciple with parameter b > 0,

P =
1

b
ln E[ebR]. (4.8)

Then the optimality condition is

ebR
∗

E[ebR∗ ]
=

ea(S−R∗)

E[ea(S−R∗)]
, (4.9)

showing that R∗ = a
a+b

S + c, where the constant c is the value of R∗ when S = 0. Thus
c = 0. Then

R∗ =
a

a+ b
S, (4.10)

P ∗ =
1

b
ln E[e

ab
a+b

S]. (4.11)

Hence, the optimal reinsurer’s payment is a fixed fraction of S.
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For Case 2, we continue to assume that the first insurer’s utility function is exponential
with parameter a, but now assume that the reinsurer uses the zero utility principle with

ure(x) =

{ 1
b1
(1− e−b1x) if x < 0,

1
b2
(1− e−b2x) if x > 0.

(4.12)

Here the risk aversion function is the constant b1 if x < 0 and b2 if x > 0. Hence, we
assume that 0 < b2 < b1. The optimality condition tells us that u′

re(P
∗ − R∗) has to be

proportional to u′(−S − P ∗ + R∗) where u′(x) = e−ax. From this and the requirement
that R∗ = 0 if S = 0, we find that

R∗ =

{ a
a+b2

S if S < a+b2
a

P ∗,
a

a+b1
S + b1−b2

a+b1
P ∗ if S > a+b2

a
P ∗.

(4.13)

Finally P ∗ is determined as the solution of E[ure(P
∗−R∗)] = 0. Two limits are of interest,

b1 = b2, which is Case 1, and b2 = 0, where ure(x) = x if x > 0.

It is instructive to write (4.13) in the form

R∗ − P ∗ =
a

a+ b1
(S − a+ b2

a
P ∗)+ − a

a+ b2
(
a+ b2

a
P ∗ − S)+. (4.14)

This has the following interpretation: The optimal reinsurance contract provides a pay-
ment that is the fraction a

a+b1
of that of a stop-loss contract with deductible a+b2

a
P ∗, for

the stochastic “premium” (P ∗ − a
a+b2

S)+, which is known only at the end of the period.

For Case 3, we assume that u′′(x) < 0 so that u′(x) is strictly decreasing. We assume
that the reinsurance premium is determined according to the expectile principle with
loading factor θ > 0. Because of (2.26), the random variable on the RHS of (4.2) has one
constant value if P ∗ −R∗ > 0 and another constant value if P ∗ −R∗ < 0. From this and
the requirement that R∗ = 0 if S = 0, we find that

S −R∗ = 0 if P ∗ −R∗ > 0,

S −R∗ = c if P ∗ −R∗ < 0. (4.15)

Here c is obtained from the condition that

u′(−c)

u′(0)
= 1 + θ. (4.16)

From (4.15) it follows that

R∗ =


S if S < P ∗,
P ∗ if P ∗ < S < P ∗ + c,
S − c if S > P ∗ + c.

(4.17)

Finally, the value of the junction P ∗ is determined from the condition that

(1 + θ)E[(S − P ∗ − c)+] = E[(P ∗ − S)+]. (4.18)

Let us write (4.17) in the form

R∗ − P ∗ = (S − P ∗ − c)+ − (P ∗ − S)+. (4.19)
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In this sense, the optimal reinsurance contract provides the same payment as a stop-loss
contract with deductible P ∗ + c. However, the “premium” (P ∗ − S)+ is stochastic as in
(4.14).

This merits a numerical example. We assume an exponential utility function with
parameter a > 0. Then (4.16) yields

c =
ln(1 + θ)

a
. (4.20)

Furthermore, we assume that S is exponentially distributed with mean one. Then (4.18)
is the condition that

(1 + θ)e−(P ∗+c) = P ∗ − 1 + e−P ∗
. (4.21)

Because of (4.20), the LHS is

(1 + θ)1+ae−P ∗
. (4.22)

The resulting equation is solved for P ∗. Table 1 shows the values of the junctions P ∗ and
P ∗+c for various values of θ and a. We note that when the loading factor θ increases, the
reinsurance premium P ∗ also increases; this is intuitively obvious. When θ is small, an
increase of a will lead to an increase of P ∗. However, when θ is large, this is not always
true. This can be explained as follows: when θ is small (the reinsurance is relatively
inexpensive), a risk-averse first insurer is willing to have a reinsurance contract which
covers more loss, even if the premium will be larger. When θ is large enough, a risk-
averse first insurer may not be always willing to buy a reinsurance contract covering more
loss due to the cost of the reinsurance premium.
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Table 1: Values of the junctions: P ∗ and P ∗ + c
a = 0.1 a = 0.2 a = 0.3 a = 0.5 a = 0.7 a = 0.9

θ = 0.01 1.0040 1.0044 1.0048 1.0055 1.0062 1.0070
1.1035 1.0542 1.0380 1.0254 1.0204 1.0181

θ = 0.05 1.0199 1.0217 1.0235 1.0272 1.0309 1.0345
1.5078 1.2657 1.1861 1.1248 1.1006 1.0887

θ = 0.1 1.0391 1.0427 1.0463 1.0536 1.0609 1.0682
1.9921 1.5193 1.3640 1.2442 1.1971 1.1741

θ = 0.2 1.0757 1.0828 1.0899 1.1043 1.1187 1.1333
2.8989 1.9944 1.6976 1.4689 1.3792 1.3359

θ = 0.3 1.1102 1.1207 1.1312 1.1523 1.1738 1.1955
3.7338 2.4325 2.0057 1.6770 1.5486 1.4870

θ = 0.4 1.1428 1.1565 1.1703 1.1981 1.2264 1.2552
4.5102 2.8389 2.2919 1.8710 1.7071 1.6291

θ = 0.5 1.1738 1.1906 1.2075 1.2418 1.2768 1.3124
5.2285 3.2179 2.5591 2.0527 1.8550 1.7629

θ = 0.6 1.2033 1.2230 1.2430 1.2836 1.3251 1.3675
5.9033 3.5730 2.8097 2.2236 1.9965 1.8897

θ = 0.8 1.2583 1.2838 1.3096 1.3623 1.4164 1.4717
7.1362 4.2227 3.2689 2.5379 2.2561 2.1248

θ = 1.0 1.3089 1.3398 1.3712 1.4353 1.5012 1.5690
8.2404 4.8055 3.6817 2.8216 2.4914 2.3392

θ = 2.0 1.5158 1.5697 1.6247 1.7389 1.8567 1.9776
12.5019 7.0628 5.2867 3.9352 3.4262 3.1983

θ = 10 2.3006 2.4488 2.6012 2.9179 3.2489 3.5927
26.2796 14.4383 10.5942 7.7137 6.6745 6.2570

For Case 4, we make the opposite assumptions in some sense. We assume that the
reinsurer determines its premium using the zero utility principle according to a utility
function ure(x) such that u′

re(x) is strictly decreasing. The first insurer’s utility function
is the refracted linear function

u(x) =

{
(1 + θ)(x+ κ) if x < −κ,
x+ κ if x > −κ.

(4.23)

Here θ > 0; κ is the amount that has been set aside to meet the obligation. From the
optimality condition we see that u′

re(P
∗ − R∗) must be a multiple of u′(−S − P ∗ + R∗).

Thus P ∗ −R∗ has one constant value if −S −P ∗ +R∗ > −κ, and another constant value
if −S − P ∗ + R∗ < −κ. From this and the requirement that R∗ = 0 when S = 0, we
conclude that

R∗ =


0 if S < κ− P ∗,
S − (κ− P ∗) if κ− P ∗ < S < κ+ c,
c+ P ∗ if S > κ+ c.

(4.24)

Here c and P ∗ must satisfy the two conditions

u′
re(−c)

u′
re(P

∗)
= 1 + θ (4.25)
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Figure 1.  R* in the four special cases 
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and

E[ure(P
∗ −R∗)] = 0. (4.26)

Thus we find that it is now optimal to obtain full coverage for the layer between κ− P ∗

and κ + c. Here a stop-loss payment with deductible κ − P ∗ is capped at the level
c + P ∗. Therefore, such a contract might be called a trimmed stop-loss contract, or, in
the language of Kaluszka and Okolewski (2008), a limited stop-loss contract.

We illustrate this with a numerical example. We assume that ure(x) is the exponential
utility function with parameter b > 0. Then (4.25) is the condition that

P ∗ + c =
ln(1 + θ)

b
. (4.27)

Again, we assume that S is exponentially distributed with mean one. Then (4.26) is the
condition that

ebP
∗
= 1− e−A +

e−A

1− b
[1− e−(1−b)(B−A)] + e−B+b(B−A), (4.28)
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where A = κ− P ∗, B = κ+ c. By (4.27), this condition becomes

ebP
∗
= 1 +

b

1− b
[1− (1 + θ)(b−1)/b]e−κ+P ∗

. (4.29)

Table 2 (for κ = 1.1) and Table 3 (for κ = 1.5) show the values of P ∗ and of the junctions,
A = κ − P ∗ and B = κ + c, for various values of b and θ. Note that, similar to that in
Table 1, when θ increases, P ∗ increases. In this example, the reinsurer has a constant risk
aversion function that takes the value b. For small θ, when b increases, a risk aversion
reinsurer would like to have a contract which covers less loss, so the premium is smaller.
For large θ this may not be the case. In the large θ case, the first insurer is more risk-
averse, so he may be willing to pay higher premium. The reinsurer may be willing to
accept a contract which covers more loss.

Table 2: Values of P ∗, κ− P ∗ and κ+ c when κ = 1.1
θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 1

b = 0.05 0.4581 0.6231 0.6664 0.6765 0.6789 0.6798
0.6419 0.4769 0.4336 0.4235 0.4211 0.4202
2.5481 4.1233 5.6809 7.1529 8.5304 14.2831

b = 0.1 0.2772 0.4628 0.5825 0.6566 0.7010 0.7589
0.8228 0.6372 0.5175 0.4434 0.3990 0.3411
1.7759 2.4604 3.1411 3.8981 4.4537 7.2726

b = 0.2 0.1511 0.2762 0.3809 0.4694 0.5451 0.8019
0.9489 0.8238 0.7191 0.6306 0.5549 0.2981
1.4255 1.7354 2.0309 2.3130 2.5822 3.7638

b = 0.5 0.0635 0.1215 0.1751 0.2251 0.2719 0.4738
1.0365 0.9785 0.9249 0.8749 0.8281 0.6262
1.2271 1.3431 1.4496 1.5478 1.6390 2.0125

Table 3: Values of P ∗, κ− P ∗ and κ+ c when κ = 1.5
θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 1

b = 0.05 0.2509 0.3069 0.3181 0.3205 0.3211 0.3213
1.2491 1.1931 1.1819 1.1795 1.1789 1.1787
3.1553 4.8395 6.4292 7.9089 9.2882 15.0416

b = 0.1 0.1674 0.2545 0.2980 0.3196 0.3305 0.3426
1.3326 1.2455 1.2020 1.1804 1.1695 1.1574
2.2857 3.0687 3.8259 4.5451 5.2242 8.0889

b = 0.2 0.0964 0.1680 0.2212 0.2609 0.2907 0.3622
1.4036 1.3320 1.2788 1.2391 1.2093 1.1378
1.8802 2.2436 2.5906 2.9215 3.2366 4.6036

b = 0.5 0.0419 0.0789 0.1120 0.1418 0.1688 0.2738
1.4581 1.4211 1.3880 1.3582 1.3312 1.2262
1.6487 1.7857 1.9127 2.0311 2.1421 2.6125

Remark 4.3: Case 4 might be compared with the development in Cai and Weng
(2016). There, the first insurer’s goal is to minimize the expectile used as a risk measure.
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This is done under a set of constraints and the mathematics is substantially more com-
plicated. Yet, in some cases it is also found that the optimal reinsurer’s payment, R∗, is
of a single layer type, just as in (4.24).

Remark 4.4: Case 4 should also be compared with Cheung et al. (2015b). In
this paper, the premium is a convex combination of the E[R] and the supremum of R.
Using optimality criteria that are motivated by disappointment theory, and additional
assumptions, it is shown that single layer reinsurance payments are optimal.

5 Optimal reinsurance as a Pareto-optimal risk ex-

change

As preparation, we begin with a review of the theory of risk exchanges that was developed
by Karl Borch. Consider n companies with a combined wealth W (a random variable) at
the end of the period. As a result of a risk exchange, company i will have wealth Wi at the
end of the period (W1+ ...+Wn = W ). Company i uses a risk-averse utility function ui(x)
and hence is interested in E[ui(Wi)]. The set of all points (E[u1(W1)], ...,E[un(Wn)]) is a
convex set in the n-dimensional Euclidean space; for n = 2 see Figure 2. A risk exchange is
Pareto-optimal, if the corresponding point is on the efficient boundary. Borch’s Theorem
states that a risk exchange is Pareto-optimal if and only if there are constants ki > 0
such that kiu

′
i(Wi) is the same random variable for all i. (Note that the vector (k1, ..., kn)

is orthogonal to the tangent plane of the efficient boundary). For a Pareto-optimal risk
exchange, let dWi denote the infinitesimal increment of company i’s wealth that is implied
by an infinitesimal increment dW of combined wealth. It is known that dWi is inversely
proportional to the risk aversion function of company i; see, for example, formula (101)
in Gerber and Pafumi (1998).

Now suppose that the reinsurer uses a zero utility principle, say, according to a utility
function ure(x). Then the optimality condition (4.2) becomes

u′
re(P

∗ −R∗)

E[u′
re(P

∗ −R∗)]
=

u′(−S − P ∗ +R∗)

E[u′(−S − P ∗ +R∗)]
. (5.1)

Thus the condition of Borch’s Theorem is satisfied. Here, the combined “wealth” W
is −S. We conclude that the optimal reinsurance contract must be the result of one
particular Pareto-optimal risk exchange between reinsurer and first insurer. The ge-
ometric interpretation of these findings is as follows. See Figure 2. Consider a risk
exchange W1, W2 (W1 + W2 = −S), where W1 is the wealth of the first insurer and
W2 the wealth of the reinsurer after the exchange. Each risk exchange is represented
by a point (E[u(W1)],E[ure(W2)]). The Pareto-optimal risk exchanges correspond to
points on the north-east boundary, the efficient boundary. Only risk exchanges with
E[ure(W2)] = E[ure(H(R) − R)] = ure(0) are permissible because the reinsurer uses a
zero utility principle; these are represented by the horizontal line in the middle of Figure
3. Thus it is clear that first insurer will choose the risk exchange represented by the
point furthest to the right on this horizontal line. That is, the optimal reinsurance is a
Pareto-optimal risk exchange.
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Figure 2. Pareto-optimal risk exchanges

E[ ( )]

  E[ ( )]

efficient boundary

Furthermore, dW2 must be inversely proportional to the reinsurer’s risk aversion func-
tion rre(x),

dW2 =
r(−S − P ∗ +R∗)

r(−S − P ∗ +R∗) + rre(P ∗ −R∗)
dW, (5.2)

or

dR∗ =
r(−S − P ∗ +R∗)

r(−S − P ∗ +R∗) + rre(P ∗ −R∗)
dS. (5.3)

From (5.3) it follows that R∗ = f(S) for some function f(s) with 0 ≤ f ′(s) ≤ 1. From this
and f(0) = 0, we see that 0 ≤ f(s) ≤ s. The function f is usually called an indemnity
function. It is also known as a coverage function (Raviv 1979) and a ceded loss function
(Cai and Weng 2016; Lo 2017). Many papers only consider reinsurance payments R of
this type; this can complicate the search for the optimum. In this paper we did not impose
this restriction a priori.

Let us revisit the four special cases in Section 4. In Case 1, the risk aversion functions
are constant, and

dR∗ =
a

a+ b
dS (5.4)
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Figure 3.  Optimal reinsurance
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optimaloptimaloptimal
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by (5.3), which leads directly to (4.10). Similarly, in Case 2,

dR∗ =

{ a
a+b2

dS if P ∗ −R∗ > 0,
a

a+b1
dS if P ∗ −R∗ < 0,

(5.5)

which explains (4.13).

In Cases 3 and 4, one of the risk aversion functions is a multiple of the Dirac delta
function or its translation. As a consequence, the factor in front of dS in (5.3) is either 0
or 1. In Case 3, rre(x) is a multiple of the Dirac delta function. Hence,

dR∗ =

{
0 if P ∗ −R∗ = 0,
dS if P ∗ −R∗ ̸= 0.

(5.6)

This explains (4.17). In Case 4, r(x+ κ) is a multiple of the Dirac delta function. Hence

dR∗ =

{
dS if − S − P ∗ +R∗ + κ = 0,
0 if − S − P ∗ +R∗ + κ ̸= 0.

(5.7)

This explains (4.24)

Remark 5.1: Formula (5.3) resembles formula (10), with c = 0, in Raviv (1979).
They are different for two reasons: The premium P in (10) is fixed, and (10) results from
constrained optimization.

Remark 5.2: Formula (5.3) should also be compared with Theorem 3 in Aase (2004b),
which is credited to Moffet (1979). Consider any Pareto-optimal risk exchange between
reinsurer and first insurer, whereby the reinsurer receives p and pays R = f(S). Then

f ′(s) =
r(−s− p+ f(s))

r(−s− p+ f(s)) + rre(p− f(s))
. (5.8)
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Note that the premium p has the role of a side payment and is not determined in this
context. The efficient boundary in Figures 2 and 3 can be parameterized by p.

Remark 5.3: A priori, the concept of Pareto-optimality makes sense for risk ex-
changes between two (or more) cooperative insurers, but not so much for risk exchanges
between a first insurer and a reinsurer, who have different roles.

6 Conclusion

We study an optimal reinsurance problem in which the first insurer maximizes its expected
utility and the premium principle used by the reinsurer is known. We do not, a priori,
assume that there is an indemnity function f . Natural constraints such as (1.1) are not
imposed. A key tool is (4.2), an optimality condition from Deprez and Gerber (1985).

With the reinsurance premium being determined by a zero utility principle, we study
four cases and obtain closed-form expressions for the optimal reinsurance payment R∗ and
the reinsurance premium P ∗. Figure 1 exhibits R∗ as a function of the total claim amount
S. In Case 1, both the first insurer and the reinsurer use an exponential utility function.
Then R∗ is proportional to S. In Case 2, the reinsurer’s utility function is generalized to
(4.12); hence the reinsurer’s risk aversion function is a constant for x < 0 and another
constant for x > 0. This translates to a discontinuity of the slope of R∗. In Case 3, the
reinsurance premium is determined according to the expectile principle. It is interesting
to note that the resulting optimal reinsurance contract can be interpreted as a stop-loss
contract, where however the “premium” is stochastic. In Case 4, the first insurer’s utility
function is given by (4.23). The resulting contract might be called a trimmed or limited
stop-loss contract.

We further investigated the problem from the viewpoint of a risk exchange between
first insurer and reinsurer. It follows from (4.2) and Borch’s Theorem that an optimal
reinsurance contract is one particular Pareto-optimal risk exchange. From this, we see
that there exists a function f(s) with R∗ = f(S), 0 ≤ f(s) ≤ s and 0 ≤ f ′(s) ≤ 1. Thus,
what many authors postulate as constraints are now obtained as a result of unconstrained
optimization.

A referee has noted out that Cases 3 and 4 have an optimal indemnity function f with
f ′(s) = 1 for some s and that some practitioners have criticized such indemnity functions
because they may provoke moral hazard for the reinsurer. Perhaps a solution is to impose
the constraint,

0 ≤ f(s) ≤ c < 1,

for some constant c. Alternatively, we assume that the reinsurer has a risk aversion
function that is strictly positive everywhere. Then the quotient in (5.3) is less than one.

Aase (2004a) pointed out that Karl Borch’s “pioneering work on Pareto-optimal risk
exchanges in reinsurance opened a new area of actuarial science, which has been in con-
tinuous growth. This research field offers a deeper understanding of the preferences and
behavior of the parties in an insurance markets.” It seems fitting to end this paper with
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Borch’s (1969) words: “[T]here are two parties to a reinsurance contract, and that these
parties have conflicting interests. The optimal contract must then appear as a reasonable
compromise between these interests. To me the most promising line of research seems
to be the study of contracts, which in different ways can be said to be optimal from the
point of view of both parties.”
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