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Abstract: This paper extends the univariate zero-and-one inflated Poisson (ZOIP) distri-

bution (Melkersson & Olsson, 1999; Zhang et al., 2016) to its multivariate version, which can

be used to model correlated multivariate count data with large proportions of zeros and ones

marginally. More importantly, this new multivariate ZOIP distribution possesses a flexible

dependency structure; i.e., the correlation coefficient between any two random components

could be either positive or negative depending on the values of the parameters. The im-

portant distributional properties are explored and some useful statistical inference methods

without and with covariates are developed. Simulation studies are conducted to evaluate

the performance of the proposed methods. Finally, two real data sets on healthcare and

insurance are used to illustrate the proposed methods.

Keywords: Expectation–maximization (EM) algorithm; Multivariate zero-and-one inflated

Poisson; Univariate zero-and-one inflated Poisson; Zero-inflated Poisson.
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1. Introduction

Count data on the number of sex partners among the young within a fixed period, on

motor vehicle crashes among young drivers in one year and on occupational safety involving

accidents or injuries in a half year exhibit the characteristics of excessive zero and excessive

one observations (Lee et al., 2002; Carrivick et al., 2003). The traditional Poisson and zero-

inflated Poisson (ZIP; Lambert, 1992) are no longer appropriate distributions to model such

count data. Motivated by the data set on Swedish visits to a dentist with higher proportions

of zeros and ones and one-visit observations being even much more frequent than zero-

visits, Melkersson & Olsson (1999) proposed a so-called zero-and-one inflated Poisson (ZOIP)

distribution as a generalization of the univariate ZIP to seize the feature of such count data.

Their main objective is to fit the dentist visiting data with covariates in Sweden. Later, Saito

& Rodrigues (2005) presented a Bayesian analysis of the same dentist visiting data without

considering covariates by the data augmentation algorithm. Recently, Zhang et al. (2016)

defined the univariate ZOIP distribution, denoted by Y ∼ ZOIP(ϕ0, ϕ1;λ), via the following

stochastic representation (SR):

Y = Z0 · 0 + Z1 · 1 + Z2X = Z1 + Z2X =


0, with probability ϕ0,

1, with probability ϕ1,

X, with probability ϕ2,

(1.1)

where z = (Z0, Z1, Z2)
⊤ ∼ Multinomial (1;ϕ0, ϕ1, ϕ2), X ∼ Poisson (λ), and z, X are inde-

pendent (symbolized as z ⊥⊥ X). The corresponding probability mass function (pmf) is

f(y|ϕ0, ϕ1;λ) = (ϕ0 + ϕ2e
−λ)I(y = 0) + (ϕ1 + ϕ2λ e

−λ)I(y = 1) +

(
ϕ2

λye−λ

y!

)
I(y > 2),

where I(·) denotes the indicator function. Liu, Tang & Xu (2018) further discussed the

Bayesian estimation of the ZOIP model. Tang et al. (2017) compared the maximum likeli-

hood estimation with the Bayesian estimation for the ZOIP model parameters.

Extra zeros and extra ones in multivariate count data also appear frequently in practice.

For instance, there exist different types of defects in manufacturing process, there are various

types of injuries in accident events and so on. Sometimes, both types of defects or injuries
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rarely occur (in other words, there are too many (0, 0)⊤ observations) due to excellent safety

precautions; sometimes, one type of defect/injury often occurs once (i.e., there are extra

(1, 0)⊤ and/or (0, 1)⊤ observations) because some specific defects/injuries are prone to happen

and hard to be prevented; sometimes, both types of defects/injuries could simultaneously

occur (namely, there are excessive (1, 1)⊤ observations) if they are intrinsically correlated.

This kind of multivariate count data share a common characteristic; i.e., each component

marginally follows a univariate ZOIP distribution.

To model multivariate correlated count data, the multivariate Poisson distribution was

constructed (e.g., Johnson et al., 1997, p.139) by adding a common Poisson variable X∗
0 ∼

Poisson (λ0) to each X∗
i ∼ Poisson (λi) to form the new components Xi = X∗

0 +X∗
i , where

the correlations among {Xi} come from the common X∗
0 while the i-th component Xi is

still a Poisson variable. Li et al. (1999) proposed a multivariate ZIP distribution to model

manufacturing data with extra zeros while each marginal is a univariate ZIP distribution.

Liu & Tian (2015) used the stochastic representation to construct a multivariate ZIP dis-

tribution and Tian et al. (2018) extended it to a multivariate zero-adjusted Poisson (ZAP)

distribution. Later, Liu et al. (2018) proposed a more flexible multivariate ZAP model for

multivariate count data analyses. Diallo et al. (2018) proposed a zero-inflated regression

model for multinomial counts with joint zero-inflation.

In addition, considerable work has been concentrated on the bivariate case. For example,

Walhin (2001) proposed three new bivariate ZIP models and used two real data sets to il-

lustrate the proposed methods. Wang et al. (2003) applied a bivariate ZIP regression model

with covariates to analyze occupational injuries data. Karlis & Ntzoufras (2005) extended

the bivariate Poisson distribution by incorporating the diagonal inflation into the model to

fit data with higher probabilities in diagonal elements. Deshmukh & Kasture (2002) even in-

vestigated the bivariate distribution problem with truncated Poisson marginal distributions.

These researches are not available when the dimension is larger than or equal to 3. More

importantly, these models can only produce zero-inflated or zero-truncated Poisson marginal

distribution (except for Karlis & Ntzoufras, 2005); in other words, all above models cannot

capture the characteristic of ZOIP marginal distributions. Therefore, the major objective
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of this article is to propose a multivariate Poisson distribution with ZOIP margins by de-

veloping its important distributional properties and the useful statistical inference methods

without and with covariates. It is expected that this new multivariate model can provide a

better fit especially for those correlated count data with large proportions of zeros and ones

marginally.

The rest of the paper is organized as follows. In Section 2, the multivariate ZOIP dis-

tribution constructed by SR is proposed and its joint pmf is derived. In Section 3, the

likelihood-based methods are developed for the general and related reduced models, includ-

ing the maximum likelihood estimation, bootstrap confidence interval construction, hypoth-

esis testing and a regression model analysis. In Sections 4, Bayesian methods are further

considered. Simulations are conducted to evaluate the performance of the proposed methods

in Section 5. Two real examples are used to illustrate the proposed methods in Section 6.

A discussion is presented in Section 7 and some technical details are put into the Appendix.

2. Multivariate ZOIP distribution

Let {X∗
i }mi=0

ind∼ Poisson (λi) and Xi = X∗
0 + X∗

i , i = 1, . . . ,m. Then, the discrete ran-

dom vector x = (X1, . . . , Xm)
⊤ is said to follow an m-dimensional Poisson distribution with

parameters λ0 > 0 and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ , denoted by x ∼ MP(λ0, λ1, . . . , λm) or

x ∼ MPm(λ0,λ), accordingly. The joint pmf of x is

Pr(x = x) = e−λ0−λ+

min(x)∑
k=0

λk
0

k!

m∏
i=1

λxi−k
i

(xi − k)!
, (2.1)

where x = (x1, . . . , xm)
⊤, {xi}mi=1 are the corresponding realizations of {Xi}mi=1, λ+ =̂

∑m
i=1 λi,

and min(x) =̂ min(x1, . . . , xm).

Let a discrete random vector y = (Y1, . . . , Ym)
⊤ have the following mixture distribution:

y ∼ (0, 0, . . . , 0︸ ︷︷ ︸
m

)⊤ =̂ 00m with probability ϕ0,

∼ (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

)⊤ =̂ e
(i)
m with probability ϕi, 1 6 i 6 m,

∼ (1, 1, . . . , 1︸ ︷︷ ︸
m

)⊤ =̂ 11m with probability ϕm+1,

∼ MPm(λ0,λ) with probability ϕm+2,
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where
∑m+2

k=0 ϕk = 1. The joint pmf of y is given by (2.3), which is very complicated. To

extensively explore the distributional properties and develop efficient statistical methods

such as the expectation–maximization (EM) algorithm and the data augmentation (DA)

algorithm, we then employ the tractable SR rather than the intractable joint pmf to define

the above mixture distribution.

Definition 1 A discrete random vector y = (Y1, . . . , Ym)
⊤ is said to have a multivariate

ZOIP distribution with parameters (ϕ0,ϕ, ϕm+1, λ0,λ), where ϕ = (ϕ1, . . . , ϕm)
⊤, ϕk ∈ [0, 1)

for k = 0, 1, . . . ,m + 1, ϕm+2 =̂ 1 −
∑m+1

k=0 ϕk ∈ (0, 1] and λ0 > 0, λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ ,

denoted by y ∼ ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ), if y has the following SR:

y =



00m, with probability ϕ0,

e
(i)
m , with probability ϕi, 1 6 i 6 m,

11m, with probability ϕm+1,

x, with probability ϕm+2,

d
= Z0ξ0 +

m∑
i=1

Ziξ
(i) + Zm+1ξ1 + Zm+2x

= (Z1, . . . , Zm)
⊤+ Zm+1ξ1 + Zm+2x, (2.2)

where z = (Z0, Z1, . . . , Zm+2)
⊤ ∼ Multinomial (1;ϕ0,ϕ, ϕm+1, ϕm+2), ξ0 ∼ Degenerate (00m),

ξ(i) ∼ Degenerate (e
(i)
m ) for i = 1, . . . ,m, ξ1 ∼ Degenerate (11m), x = (X1, . . . , Xm)

⊤ ∼

MPm(λ0,λ) and z ⊥⊥ x. In particular, when ϕ0 = 0, it reduces to the one-inflated Poisson

distribution. ¶

We discuss several special cases of (2.2):

(1) If ϕi = 0 (i = 1, . . . ,m + 1), then y has the Type II multivariate ZIP distribution,

denoted by y ∼ ZIP(II)
m (ϕ0;λ0,λ), see Appendix C.

(2) If ϕi = 0 (i = 1, . . . ,m + 1) and λ0 = 0, then y has the Type I multivariate ZIP

distribution (Liu & Tian, 2015), denoted by y ∼ ZIP(I)
m (ϕ0;λ), see Appendix B.
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(3) If ϕi = 0 (i = 0, 1, . . . ,m+1), then y follows the multivariate Poisson distribution; that

is y ∼ MPm(λ0,λ).

(4) If ϕi = 0 (i = 0, 1, . . . ,m+ 1) and λ0 = 0, then Yi
ind∼ Poisson (λi) for i = 1, . . . ,m.

2.1 Joint probability mass function and mixed moments

In Appendix A.1, we show that the joint pmf of y ∼ ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ) is given by

f(y|ϕ0,ϕ, ϕm+1, λ0,λ) = Pr(Y1 = y1, . . . , Ym = ym)

= a0I(y = 00m) +
m∑
i=1

aiI(y = e(i)
m ) + am+1I(y = 11m)

+

[
ϕm+2e

−λ0−λ+

min(y)∑
k=0

λk
0

k!

m∏
i=1

λyi−k
i

(yi − k)!

]
I(y /∈ Y01) (2.3)

= ϕ0 Pr(ξ0 = y) +
m∑
i=1

ϕi Pr(ξ
(i) = y) + ϕm+1 Pr(ξ1 = y) + ϕm+2 Pr(x = y),

where

a0 = ϕ0 + ϕm+2e
−λ0−λ+ , ai = ϕi + ϕm+2λie

−λ0−λ+ , 1 6 i 6 m,

am+1 = ϕm+1 + ϕm+2 (λ0 +
∏m

i=1 λi) e
−λ0−λ+ ,

(2.4)

and Y01 =̂
{
00m, e

(1)
m , . . . , e

(m)
m ,11m

}
, ξ0, {ξ(i)}mi=1, ξ1 are defined in Definition 1.

If y ∼ ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ), according to (2.2), we have the i-th component

Yi = Zi + Zm+1 + Zm+2Xi ∼ ZOIP
(
ϕ0 +

∑m
k=1,k ̸=i ϕk, ϕi + ϕm+1;λ0 + λi

)
. (2.5)

From (2.5), we can see that the marginal distributions are not necessarily identical with each

other; i.e., each Yi follows a ZOIP distribution with different zero inflation, one inflation and

Poisson mean parameters.
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Moreover, we have

E(y) = ϕ+ ϕm+1 · 11+ ϕm+2(λ0 · 11+ λ) =̂ µ,

E(yy⊤) = diag(ϕ) + ϕm+1 · 1111⊤

+ ϕm+2

[
(λ0 · 11+ λ)(λ0 · 11+ λ)⊤+ λ0 · 1111⊤+ diag(λ)

]
,

Var(y) = diag(ϕ) + ϕm+1 · 1111⊤

+ ϕm+2

[
(λ0 · 11+ λ)(λ0 · 11+ λ)⊤+ λ0 · 1111⊤+ diag(λ)

]
− µµ⊤,

where 11 = 11m. The correlation coefficient between Yi and Yj for i ̸= j is

Corr(Yi, Yj) =
ϕm+1 + ϕm+2[(λ0 + λi)(λ0 + λj) + λ0]− µiµj√[

µi − µ2
i +

(µi − ϕi − ϕm+1)
2

ϕm+2

] [
µj − µ2

j +
(µj − ϕj − ϕm+1)

2

ϕm+2

] , (2.6)

where µi = ϕi+ϕm+1+ϕm+2(λ0+λi). From (2.6), the correlation coefficient between Yi and

Yj could be either positive or negative depending on the values of those parameters.

3. Likelihood-based methods for the general

multivariate ZOIP distribution/regression model

Suppose that {y1, . . . ,yn} is a random sample of size n from the ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ)

distribution, where yj = (Y1j, . . . , Ymj)
⊤ for j = 1, . . . , n. Let yj = (y1j, . . . ,ymj)

⊤ denote the

realization of the random vector yj and Yobs = {yj}nj=1 be the observed data. Furthermore,

we define

J0 = {j|yj = 00m, j = 1, . . . , n}, n0 =̂#{J0} =
n∑

j=1

I(yj = 00m),

Ji = {j|yj = e(i)
m , j = 1, . . . , n}, ni =̂#{Ji} =

n∑
j=1

I(yj = e(i)
m ), 1 6 i 6 m,

Jm+1 = {j|yj = 11m, j = 1, . . . , n}, nm+1 =̂#{Jm+1} =
n∑

j=1

I(yj = 11m),

Jm+2 = {j|yj /∈ Y01, j = 1, . . . , n}, nm+2 =̂#{Jm+2} = n−
m+1∑
k=0

nk.
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The observed-data likelihood function of θ =
(
ϕ0,ϕ

⊤, ϕm+1, λ0,λ
⊤)⊤ is given by

L(θ|Yobs) =

(m+1∏
k=0

ank
k

)(
ϕm+2e

−λ0−λ+
)nm+2

∏
j∈Jm+2

min(yj)∑
kj=0

λ
kj
0

kj!

m∏
i=1

λ
yij−kj
i

(yij − kj)!
,

so that the log-likelihood function is

ℓ(θ|Yobs) =
m+1∑
k=0

nk log ak + nm+2(log ϕm+2 − λ0 − λ+)

+
∑

j∈Jm+2

log

[min(yj)∑
kj=0

λ
kj
0

kj!

m∏
i=1

λ
yij−kj
i

(yij − kj)!

]
, (3.1)

where {ak}m+1
k=0 are defined in (2.4).

3.1 Maximum likelihood estimation

3.1.1 MLEs via the EM algorithm

To obtain the maximum likelihood estimates (MLEs) of parameters, we employ the EM

algorithm. We first augment Yobs with latent variables {Uk}mk=0 that split nk into (Uk, nk−Uk),

and (W1,W2,W3) that split nm+1 into (W1,W2,W3) where W3 =̂nm+1 −W1 −W2, and for

each yj = (y1j, . . . , ymj)
⊤ where j ∈ Jm+2, we introduce latent variables X∗

0j
ind∼ Poisson (λ0),

X∗
ij

ind∼ Poisson (λi) for 1 6 i 6 m and X∗
0j ⊥⊥ X∗

ij, such that

(x∗
0j + x∗

1j, . . . , x
∗
0j + x∗

mj)
⊤= yj, j ∈ Jm+2,

where x∗
ij denotes the realization of X∗

ij. The complete data is composed of

Ycom =
{
y1, . . . ,yn, u0, u1, . . . , um, w1, w2, w3, {x∗

0j, x
∗
1j, . . . , x

∗
mj}j∈Jm+2

}
=

{
{yj}nj=1, {uk}mk=0, w1, w2, w3, {x∗

0j}j∈Jm+2

}
since x∗

ij = yij − x∗
0j when j ∈ Jm+2 for 1 6 i 6 m. Therefore, the resultant conditional

predictive distributions of {Uk}mk=0 and {Wk}3k=1 given (Yobs,θ) are obtained as

Uk|(Yobs,θ) ∼ Binomial

(
nk,

ϕk

ak

)
, 0 6 k 6 m, (3.2)

(W1,W2,W3)
⊤|(Yobs,θ) ∼ Multinomial

(
nm+1;

am+1,1

am+1

,
am+1,2

am+1

,
am+1,3

am+1

)
, (3.3)
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where

am+1,1 = ϕm+1, am+1,2 = ϕm+2λ0 e
−λ0−λ+ , am+1,3 = ϕm+2

(
m∏
i=1

λi

)
e−λ0−λ+ .

Thus, the complete-data likelihood function is proportional to

L(θ|Ycom)

∝ ϕu0
0

(
ϕm+2e

−λ0−λ+
)n0−u0

[
m∏
i=1

ϕui
i

(
ϕm+2λie

−λ0−λ+
)ni−ui

]
ϕw1
m+1(ϕm+2λ0e

−λ0−λ+)w2

×
[
ϕm+2(

∏m
i=1 λi)e

−λ0−λ+
]w3 (ϕm+2e

−λ0−λ+)nm+2

∏
j∈Jm+2

λ
x∗
0j

0

m∏
i=1

λ
yij−x∗

0j

i

= (
∏m

k=0 ϕ
uk
k )ϕw1

m+1ϕ
n−

∑m
k=0 uk−w1

m+2 exp [−(n−
∑m

k=0 uk − w1)(λ0 + λ+)]

× λw2+N0
0

m∏
i=1

λw3+ni−ui+Ni−N0
i ,

where N0 =
∑

j∈Jm+2
x∗
0j, Ni =

∑
j∈Jm+2

yij =
∑n

j=1 yij − ni − nm+1 for i = 1, . . . ,m. Thus,

the M-step is to find the complete-data MLEs
ϕ̂k =

uk

n
, 0 6 k 6 m, ϕ̂m+1 =

w1

n
,

λ̂0 =
w2 +N0

n−
∑m

k=0 uk − w1

, λ̂i =
w3 + ni − ui +Ni −N0

n−
∑m

k=0 uk − w1

, 1 6 i 6 m.
(3.4)

The E-step is to replace {uk}mk=0, {wk}3k=1 and {x∗
0j}j∈Jm+2 in (3.4) by their conditional

expectations, which are given by

E(Uk|Yobs,θ)
(3.2)
=

nkϕk

ak
, 0 6 k 6 m,

E(Wk|Yobs,θ)
(3.3)
=

nm+1am+1,k

am+1

, k = 1, 2, 3,

E(X∗
0j|Yobs,θ)

(A.5)
=

min(yj)∑
kj=1

λ
kj
0

(kj − 1)!

m∏
i=1

λ
yij−kj
i

(yij − kj)!

min(yj)∑
lj=0

λ
lj
0

lj!

m∏
i=1

λ
yij−lj
i

(yij − lj)!

, j ∈ Jm+2.

(3.5)

The detail for deriving (3.5) is given in Appendix A.2.
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3.1.2 MLEs via the Fisher scoring algorithm

For the special case of λ0 = 0, all {λi}mi=1 in the last term of (3.1) are multiplicatively

separable which makes the calculations of the Hessian matrix (so as the Fisher information

matrix) feasible, thus the Fisher scoring algorithm can also be applied to obtain the MLEs of

the parameter vector θ =
(
ϕ0,ϕ

⊤, ϕm+1, λ0,λ
⊤)⊤ except for λ0, denoted by θ−λ0 . Specifically,

the log-likelihood function now becomes ℓ(θ−λ0 |Yobs) obtained by replacing λ0 with zero

value in (3.1). Then the score vector and the Hessian matrix are given by

∇ℓ(θ−λ0 |Yobs) =
∂ℓ(θ−λ0 |Yobs)

∂θ−λ0

and ∇2ℓ(θ−λ0 |Yobs) =
∂2ℓ(θ−λ0 |Yobs)

∂θ−λ0∂θ
⊤
−λ0

,

respectively. Thus, the (2m+ 2)× (2m+ 2) Fisher information matrix is

J(θ−λ0) = E
[
−∇2ℓ(θ−λ0 |Yobs)

]
. (3.6)

Let θ
(0)
−λ0

be the initial value and θ
(t)
−λ0

denote the t-th approximation of θ̂−λ0 , then the

(t+ 1)-th approximation can be obtained by

θ
(t+1)
−λ0

= θ
(t)
−λ0

+ J−1(θ
(t)
−λ0

)∇ℓ(θ
(t)
−λ0

|Yobs). (3.7)

As a by-product, the standard errors of the MLEs θ̂−λ0 are the square roots of the diagonal

elements Jkk of the inverse Fisher information matrix J−1(θ̂−λ0). Thus, the 100(1 − α)%

asymptotic Wald confidence intervals (CIs) of each component in θ−λ0 are given by

[ϕ̂k−1 − zα/2
√
Jkk, ϕ̂k−1 + zα/2

√
Jkk ], 1 6 k 6 m+ 2, and

[λ̂i − zα/2
√
Jm+2+i,m+2+i, λ̂i + zα/2

√
Jm+2+i,m+2+i ], 1 6 i 6 m,

(3.8)

respectively, where zα denotes the α-th upper quantile of the standard normal distribution.

3.2 Bootstrap confidence intervals

First, for the general log-likelihood function (3.1) associated with the proposed distribution

(2.3), the calculation of the Hessian matrix or the Fisher information matrix seems to be too

complicated, thus the standard errors of the estimators cannot be easily obtained. Second,

even when they are obtainable, the resulting asymptotic CIs for parameters ϕk’s or λi’s
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are reliable only for large sample size and may become useless if either boundary for ϕk is

beyond [0, 1] or the lower bound for λi is less than 0. Thus, under the current situation,

the bootstrap method is a useful tool to find a bootstrap CI for an arbitrary function of

θ = (ϕ0,ϕ
⊤, ϕm+1, λ0,λ

⊤)⊤, say, ϑ = h(θ). Let ϑ̂ = h(θ̂) denote the MLE of ϑ, where

θ̂ represent the MLEs of θ calculated by the EM algorithm (3.4)–(3.5). Based on the

obtained MLEs θ̂, by using (2.2) we can generate y∗
1, . . . ,y

∗
n

iid∼ ZOIPm(ϕ̂0, ϕ̂, ϕ̂m+1; λ̂0, λ̂).

Having obtained Y ∗
obs = {y∗

1, . . . ,y
∗
n}, we can calculate the bootstrap replications θ̂

∗
and get

ϑ̂∗ = h(θ̂
∗
). Independently repeat this process G times, we obtain G bootstrap replications

{ϑ̂∗
g}Gg=1. Consequently, the standard error, se(ϑ̂), of ϑ̂ can be estimated by the sample

standard deviation of the G replications, i.e.,

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
G)/G]2

}1/2

. (3.9)

The 100(1− α)% bootstrap CI for ϑ is given by

[ϑ̂
L
, ϑ̂

U
], (3.10)

where ϑ̂
L
and ϑ̂

U
are the 100(α/2) and 100(1− α/2) percentiles of {ϑ̂∗

g}Gg=1, respectively.

3.3 Testing hypotheses for large sample sizes

Since fitting the multivariate count data with the full model specified by (2.3) strictly depends

on the proportions of the data category, we first consider some reduced models. For example,

we could test whether ϕm+1 or λ0 is equal to 0.

3.3.1 Likelihood ratio test for testing ϕm+1 = 0

Suppose that we want to test

H0: ϕm+1 = 0 against H1: ϕm+1 > 0. (3.11)

Under H0, the likelihood ratio test (LRT) statistic

T1 = −2
{
ℓ(ϕ̂0,H0 , ϕ̂H0

, 0, λ̂0,H0 , λ̂H0 |Yobs)− ℓ(ϕ̂0, ϕ̂, ϕ̂m+1, λ̂0, λ̂|Yobs)
}
, (3.12)
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where (ϕ̂0,H0 , ϕ̂H0
, 0, λ̂0,H0 , λ̂H0) denote the constrained MLEs of (ϕ0,ϕ, ϕm+1, λ0,λ) under

H0 and (ϕ̂0, ϕ̂, ϕ̂m+1, λ̂0, λ̂) denote the unconstrained MLEs of (ϕ0,ϕ, ϕm+1, λ0,λ). Since the

null hypothesis in (3.11) corresponds to ϕm+1 being on the boundary of the parameter space

and the appropriate null distribution is a mixture of χ2(0) (i.e., Degenerate(0)) and χ2(1)

with equal weights (Self & Liang, 1987). Thus the corresponding p-value is

pv1 = Pr(T1 > t1|H0) =
1

2
Pr(χ2(1) > t1),

where t1 is the observed value of T1.

3.3.2 Likelihood ratio test for testing λ0 = 0

Suppose that we want to test

H0: λ0 = 0 against H1: λ0 > 0. (3.13)

Under H0, the LRT statistic

T2 = −2
{
ℓ(ϕ̂0,H0 , ϕ̂H0

, ϕ̂m+1,H0 , 0, λ̂H0 |Yobs)− ℓ(ϕ̂0, ϕ̂, ϕ̂m+1, λ̂0, λ̂|Yobs)
}
, (3.14)

where (ϕ̂0,H0 , ϕ̂H0
, ϕ̂m+1,H0 , 0, λ̂H0) denote the constrained MLEs of (ϕ0,ϕ, ϕm+1, λ0,λ) un-

der H0 and (ϕ̂0, ϕ̂, ϕ̂m+1, λ̂0, λ̂) denote the unconstrained MLEs of (ϕ0,ϕ, ϕm+1, λ0,λ). The

corresponding p-value is given by

pv2 = Pr(T2 > t2|H0) =
1

2
Pr(χ2(1) > t2),

where t2 is the observed value of T2.

3.4 Multivariate ZOIP regression model

In this subsection, we extend the proposed distribution by incorporating covariates into the

data analysis. Considering that the full model is rarely satisfied and for simplicity of model

formulation, we focus on the case with λ0 = 0. We use the multinomial logistic regression to

link (ϕ0, ϕ1, . . . , ϕm+2) with the covariates via the logit transformation. Moreover, the Poisson

12



parameters λ can be modeled by the ordinary log-linear regression. Thus, we consider the

following multivariate ZOIP regression model:

yj
ind∼ ZOIPm(ϕ0j,ϕj, ϕm+1,j; 0,λj), 1 6 j 6 n,

ϕkj =
exp(w⊤

jγk)

1 +
∑m+1

i=0 exp(w⊤
jγi)

, 0 6 k 6 m+ 1,

ϕm+2,j =
1

1 +
∑m+1

i=0 exp(w⊤
jγi)

,

λij = exp(x⊤jβi), 1 6 i 6 m,

where yj = (Y1j, . . . , Ymj)
⊤ is the response vector of the subject j, ϕj = (ϕ1j, . . . , ϕmj)

⊤,

λj = (λ1j, . . . , λmj)
⊤, wj = (1, w1j, . . . , wpj)

⊤ and xj = (1, x1j, . . . , xqj)
⊤ are not necessarily

identical covariate vectors associated with the subject j, γk = (γk0, γk1, . . . , γkp)
⊤ and βi =

(βi0, βi1, . . . , βiq)
⊤ are vectors of regression coefficients, respectively. Note that the component

ϕm+2,j is taken as the baseline for the multinomial logit model. Thus, the logarithm for other

components relative to ϕm+2,j is

log

(
ϕkj

ϕm+2,j

)
= w⊤

jγk, 0 6 k 6 m+ 1.

First, we define I0j =̂ I(yj = 00m), Iij =̂ I(yj = e
(i)
m ) for 1 6 i 6 m, Im+1,j =̂ I(yj =

11m) and Im+2,j =̂ I(yj /∈ Y01). Let γ = (γ⊤0,γ
⊤
1, . . . ,γ

⊤
m+1)

⊤, β = (β⊤
1, . . . ,β

⊤
m)

⊤, Yobs =

{yj,wj,xj}nj=1. Then, the observed-data likelihood function is

L′
1(γ,β|Yobs) =

n∏
j=1

[(
m+1∏
i=0

b
Iij
ij

)(
ϕm+2,je

−λ+j

m∏
i=1

λ
yij
ij

yij!

)Im+2,j
]
,

where

b0j = ϕ0j + ϕm+2,je
−λ+j , bij = ϕij + ϕm+2,jλije

−λ+j , 1 6 i 6 m,

bm+1,j = ϕm+1,j + ϕm+2,je
−λ+j

m∏
i=1

λij,

and λ+j =
∑m

i=1 λij. Similarly, we augment Yobs with (m + 2)× n latent variables Ukj’s for

k = 0, 1, . . . ,m+1 and j = 1, . . . , n. The conditional predictive distributions of {Ukj} given
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(Yobs,γ,β) are

Ukj|(Yobs,γ,β) ∼ Bernoulli

(
ϕkj

bkj

)
, 0 6 k 6 m+ 1,

Denote the missing data by Ymis = {{ukj}m+1
k=0 }nj=1, Ycom = {Yobs, Ymis}, then the complete-

data likelihood function is

L′
1(γ,β|Ycom) ∝

n∏
j=1

[
ϕ
u0jI0j
0j

(
ϕm+2,je

−λ+j
)(1−u0j)I0j

m∏
i=1

ϕ
uijIij
ij

(
ϕm+2,jλije

−λ+j
)(1−uij)Iij

× ϕ
um+1,jIm+1,j

m+1,j

(
ϕm+2,je

−λ+j
∏m

i=1 λij

)(1−um+1,j)Im+1,j

×
(
ϕm+2,je

−λ+j
∏m

i=1 λ
yij
ij

)Im+2,j

]
,

and the complete-data log-likelihood is

ℓ′1(γ,β|Ycom) =
n∑

j=1

[m+1∑
k=0

ukjIkj log ϕkj +
m+1∑
k=0

(1− ukj)Ikj log ϕm+2,j + Im+2,j log ϕm+2,j

−
m+1∑
k=0

(1− ukj)Ikjλ+j − Im+2,jλ+j +
m∑
i=1

(1− uij)Iij log λij

+
m∑
i=1

(1− um+1,j)Im+1,j log λij +
m∑
i=1

Im+2,jyij log λij

]
=̂ ℓ11(γ|Ycom) + ℓ12(β|Ycom),

where

ℓ11 = ℓ11(γ|Ycom)

=
n∑

j=1

[m+1∑
k=0

ukjIkj log ϕkj +
m+1∑
k=0

(1− ukj)Ikj log ϕm+2,j + Im+2,j log ϕm+2,j

]
,

ℓ12 = ℓ12(β|Ycom) = −
n∑

j=1

[m+1∑
k=0

(1− ukj)Ikjλ+j + Im+2,jλ+j −
m∑
i=1

(1− uij)Iij log λij

−
m∑
i=1

(1− um+1,j)Im+1,j log λij −
m∑
i=1

yijIm+2,j log λij

]
,

which only involves ϕij’s and λij’s, respectively. For convenience, we define a new operator

“◦” by u ◦ yi = (u1yi1, . . . , unyin)
⊤. Then we have
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∂ℓ11
∂γk

=
n∑

j=1

(ukjIkjwj − ϕkjwj) = W⊤(u(k) ◦ i(k) − ϕ(k)

)
, 0 6 k 6 m+ 1,

∂ℓ12
∂βi

= −
n∑

j=1

[
λijxj −

m+1∑
k=0

ukjIkjλijxj − (1− uij)Iijxj

− (1− um+1,j)Im+1,jxj − Im+2,jyijxj

]

= −X⊤
[
λ(i) −

m+1∑
k=0

(
u(k) ◦ i(k)

)
◦ λ(i) −

(
11− u(i)

)
◦ i(i)

−
(
11− u(m+1)

)
◦ i(m+1) − y(i) ◦ i(m+2)

]
, 1 6 i 6 m,

∂2ℓ11
∂γk∂γ

⊤
k

= −
n∑

j=1

ϕkj(1− ϕkj)wjw
⊤
j = −W⊤diag

[
ϕ(k) ◦

(
11− ϕ(k)

)]
W,

∂2ℓ11
∂γk∂γ

⊤
k′

=
n∑

j=1

ϕkjϕk′jwjw
⊤
j = W⊤diag

(
ϕ(k) ◦ ϕ(k′)

)
W, k ̸= k′,

∂2ℓ12

∂βi∂β
⊤
i

= −
n∑

j=1

(
λijxjx

⊤
j −

m+1∑
k=0

ukjIkjλijxjx
⊤
j

)

= − X⊤diag

[
λ(i) −

m+1∑
k=0

(
u(k) ◦ i(k)

)
◦ λ(i)

]
X,

∂2ℓ12

∂βi∂β
⊤
i′

= 00, i ̸= i′,

where

W = (w1, . . . ,wn)
⊤, u(k) = (uk1, . . . , ukn)

⊤,

i(l) = (Il1, . . . , Iln)
⊤, ϕ(k) = (ϕk1, . . . , ϕkn)

⊤,

X = (x1, . . . ,xn)
⊤, λ(i) = (λi1, . . . , λin)

⊤,

y(i) = (yi1, . . . , yin)
⊤,

and l = 0, 1, . . . ,m+ 2. The M-step is to embed the Newton–Raphson algorithm to update

each iteration and E-step is to replace all ukj’s by their conditional expectations.

After we obtained the MLEs of (γk,βi), denoted by (γ̂k, β̂i), we are interested in finding
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the standard errors of (γ̂k, β̂i). Therefore, we need to derive the observed information matrix.

Let θ be the parameters of interest. According to Louis (1982), the observed information

matrix can be calculated as

I(θ̂|Yobs) =
{
E[−∇ℓ2(θ|Ycom)|Yobs,θ]− E{[∇ℓ(θ|Ycom)]

⊗
2|Yobs,θ}

}∣∣∣
θ=θ̂

, (3.15)

where a
⊗

2 = aa⊤, ∇ℓ2(θ|Ycom) and ∇ℓ(θ|Ycom) are the Hessian matrix and the gradient

vector of the complete-data log-likelihood function. Note that the key point in (3.15) is the

computation of the expectations of the terms involving the latent variables Ukj’s. Since Ukj

for j = 1, . . . , n independently follows the Bernoulli distribution, thus we have

E(U2
kj) = E(Ukj) and E(UkjUk′j′) = E(Ukj)E(Uk′j′)

for j ̸= j′ and k, k′ = 0, 1, . . . ,m+ 1. The estimated standard errors are the square roots of

the diagonal elements of the inverse observed information matrix I−1(θ̂|Yobs).

Alternatively, we use the square roots of the diagonal elements of the inversed complete

information matrix, i.e., I−1(θ̂|Ycom), to approximate the estimated errors which is

I(θ̂|Ycom) = E[−∇ℓ2(θ|Ycom)|Yobs,θ]|θ=θ̂. (3.16)

4. Bayesian methods

For the reduced model with λ0 = 0, we could consider Bayesian methods to compute the

posterior modes and generate posterior samples from which we see that all results have

explicit expressions.

4.1 Posterior modes via the EM algorithm

To derive the posterior modes of θ−λ0 =
(
ϕ0,ϕ

⊤, ϕm+1,λ
⊤)⊤, we employ the EM algorithm

again. Similar to the way of introducing latent variables in Section 3.1.1, in the current

case we introduce {Uk}m+1
k=0 to split nk into Uk and nk − Uk, respectively. The conditional

predictive distributions of {Uk}m+1
k=0 are given by

Uk|(Yobs,θ−λ0) ∼ Binomial

(
nk,

ϕk

bk

)
, 0 6 k 6 m+ 1. (4.1)
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To assign priors for the parameters, a Dirichlet(δ0, δ1, . . . , δm+2) is adopted as the prior

distribution of (ϕ0, ϕ1, . . . , ϕm+2)
⊤, a Gamma(αi, βi) is adopted as the prior distribution of

λi for 1 6 i 6 m, and they are mutually independent. Then, the complete-data posterior

distributions are given by

(ϕ0, . . . , ϕm+2)
⊤|Ycom ∼ Dirichlet (u0 + δ0, u1 + δ1, . . . , um+1 + δm+1, n

′ + δm+2),

λi|Ycom ∼ Gamma (ni − ui + nm+1 − um+1 +Ni + αi, n
′ + βi),

(4.2)

for i = 1, . . . ,m, where n′ = n −
∑m+1

k=0 uk. The M-step is to calculate the complete-data

posterior modes of (ϕ0, ϕ1, . . . , ϕm+2) and λ, which are given by

ϕk =
uk + δk − 1

n+ δ+ −m− 3
, 0 6 k 6 m+ 1,

ϕm+2 =
n′ + δm+2 − 1

n+ δ+ −m− 3
,

λi =
Ni + nm+1 − um+1 + ni − ui + αi − 1

n′ + βi

, 1 6 i 6 m,

(4.3)

where δ+ =
∑m+2

k=0 δk, and the E-step is to replace {uk}m+1
k=0 by their conditional expectations,

i.e., nkϕk/bk, directly derived from (4.1).

4.2 Generation of posterior samples via the DA algorithm

To make a full Bayesian inference on the parameters θ−λ0 , we need to generate posterior

samples from the observed posterior distribution f(θ−λ0 |Yobs) by using the data augmentation

(DA) algorithm (Tanner & Wong, 1987). The I-step of the DA algorithm is to draw the

missing values of {Uk = uk}m+1
k=0 for given (Yobs,θ−λ0) from (4.1), and the P-step is to draw

θ−λ0 from (4.2) for given (Yobs, u0, u1 . . . , um+1).

5. Simulations studies

To assess the performance of the proposed methods in Section 3 for the multivariate ZOIP

distribution, we first concern the accuracy of the point estimators and the interval estimators,

and then investigate the performance of the proposed LRTs in Section 3.3 by calculating

their levels and powers via simulations.
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5.1 Accuracy of the point and interval estimators

To evaluate the accuracy of the point and interval estimators of parameters, we consider two

cases for the dimension: m = 2 and m = 3. Four combinations of parameter configurations

are set as follows:

(1) Case I: When m = 2, ϕ0 = 0.3, (ϕ1, ϕ2) = (0.2, 0.2), ϕ3 = 0.1, λ0 = 2, (λ1, λ2) = (2, 3);

(2) Case II: When m = 2, ϕ0 = 0.65, (ϕ1, ϕ2) = (0.05, 0.08), ϕ3 = 0.07, λ0 = 6, (λ1, λ2) =

(2, 3);

(3) Case III: When m = 3, ϕ0 = 0.3, (ϕ1, ϕ2, ϕ3) = (0.2, 0.1, 0.1), ϕ4 = 0.1, λ0 = 1,

(λ1, λ2, λ3) = (2, 1, 3);

(4) Case IV: When m = 3, ϕ0 = 0.5, (ϕ1, ϕ2, ϕ3) = (0.08, 0.06, 0.05), ϕ4 = 0.06, λ0 = 6,

(λ1, λ2, λ3) = (4, 2, 3).

The sample size n is set to be 200 and 800. For each scenario and a given sample size n, we

first generate {yj}nj=1
iid∼ ZOIPm(ϕ0, ϕ, ϕm+1;λ0,λ) and then use the EM algorithm specified

by (3.4)–(3.5) to calculate the MLEs of the parameters. With the MLEs, by generating

G = 500 bootstrap samples we obtain the 95% bootstrap CI specified by (3.10) for each

parameter based on these bootstrap replications. Independently repeat this process 500

times. Finally, based on 500 repetitions, the resultant mean of the MLEs (denoted by MLE),

the mean squared error (denoted by MSE, equals to the sum of the variance and the squared

bias of the estimator) of the estimators, the coverage probability (denoted by CP) and the

average width (denoted by Width) of bootstrap CIs under each parameter configuration are

reported in Tables 1-4, respectively.

The results reveal that under different parameter configurations, all MLEs of parameters

are close to their true values and the corresponding coverage probabilities of the interval

estimators are quite satisfactory for both small and large sample size situations. More

specifically, as the sample size increases, the MLEs are more accurate since the differences

between estimated values and their true values become smaller and the corresponding MSEs
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also drop significantly. The interval estimators are more precise as the average widths become

more narrow when the sample size is increased.

Table 1: Simulation results on accuracy of MLEs and interval estimators for Case I

n = 200 n = 800

Parameter True MLE MSE CP Width MLE MSE CP Width

ϕ0 0.3 0.299473 0.001182 0.932 0.126431 0.300089 0.000249 0.946 0.063291

ϕ1 0.2 0.200015 0.000867 0.934 0.110085 0.199680 0.000209 0.938 0.055277

ϕ2 0.2 0.200885 0.000864 0.936 0.110769 0.199475 0.000200 0.946 0.055263

ϕ3 0.1 0.100587 0.000459 0.936 0.083341 0.098490 0.000108 0.942 0.041514

λ0 2 2.077578 0.291295 0.946 2.005189 2.013730 0.082810 0.938 1.085131

λ1 2 1.906087 0.286596 0.928 1.999224 1.972283 0.081504 0.934 1.103672

λ2 3 2.908938 0.326888 0.944 2.116052 2.988352 0.090192 0.944 1.153983

Table 2: Simulation results on accuracy of MLEs and interval estimators for Case II

n = 200 n = 800

Parameter True MLE MSE CP Width MLE MSE CP Width

ϕ0 0.65 0.648977 0.001066 0.942 0.131677 0.649747 0.000298 0.930 0.066018

ϕ1 0.05 0.051314 0.000235 0.930 0.059572 0.050105 0.000063 0.946 0.030122

ϕ2 0.08 0.080211 0.000339 0.940 0.074213 0.079644 0.000084 0.940 0.037331

ϕ3 0.07 0.069743 0.000345 0.926 0.069246 0.069702 0.000078 0.948 0.035186

λ0 6 6.033782 0.709480 0.940 3.016558 6.008797 0.135546 0.952 1.496788

λ1 2 1.982282 0.505431 0.912 2.554871 1.984519 0.096169 0.954 1.301682

λ2 3 3.000144 0.554380 0.934 2.669882 2.970556 0.103760 0.954 1.350646

5.2 Performance of the LRT

In Section 3.3, the LRT is developed for testing H0: ϕm+1 = 0 in (3.11) and H0: λ0 = 0 in

(3.13). To evaluate the performance of the proposed LRT, we calculate the levels and powers

for different sample sizes via simulations. We only consider m = 2 with sample sizes set to

be n = 100(50)500.
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Table 3: Simulation results on accuracy of MLEs and interval estimators or Case III

n = 200 n = 800

Parameter True MLE MSE CP Width MLE MSE CP Width

ϕ0 0.3 0.298799 0.001074 0.942 0.126305 0.300315 0.000247 0.962 0.063417

ϕ1 0.2 0.201679 0.000868 0.938 0.110736 0.200352 0.000190 0.960 0.055456

ϕ2 0.1 0.099344 0.000444 0.942 0.081668 0.099730 0.000108 0.950 0.041447

ϕ3 0.1 0.100098 0.000502 0.932 0.082638 0.099765 0.000113 0.946 0.041415

ϕ4 0.1 0.100359 0.000465 0.944 0.082945 0.100536 0.000118 0.932 0.041820

λ0 1 1.028665 0.087442 0.918 1.066990 1.008615 0.018221 0.946 0.536210

λ1 2 1.976059 0.109587 0.940 1.255372 2.009634 0.023395 0.956 0.631360

λ2 1 0.978098 0.084634 0.910 1.060033 0.993418 0.019133 0.938 0.539105

λ3 3 2.932917 0.145493 0.934 1.413747 2.992506 0.034368 0.952 0.711005

Table 4: Simulation results on accuracy of MLEs and interval estimators for Case IV

n = 200 n = 800

Parameter True MLE MSE CP Width MLE MSE CP Width

ϕ0 0.5 0.502220 0.001212 0.960 0.137620 0.501070 0.000307 0.940 0.069106

ϕ1 0.08 0.079400 0.000387 0.912 0.073645 0.079600 0.000097 0.932 0.037270

ϕ2 0.06 0.060160 0.000295 0.940 0.064190 0.060487 0.000071 0.938 0.032821

ϕ3 0.05 0.048940 0.000225 0.932 0.058270 0.049827 0.000054 0.944 0.029955

ϕ4 0.06 0.060277 0.000278 0.930 0.064636 0.059833 0.000072 0.948 0.032663

λ0 6 6.033335 0.268890 0.954 1.992526 6.012531 0.069173 0.948 0.985235

λ1 4 3.964745 0.211920 0.934 1.804585 3.974121 0.052280 0.946 0.901372

λ2 2 1.965569 0.175774 0.928 1.615118 1.985290 0.041220 0.958 0.810607

λ3 3 2.958785 0.199463 0.940 1.712874 2.987533 0.047092 0.944 0.858310

First, we investigate the type I error rates (with H0: ϕm+1 = 0) and powers (with

H1: ϕm+1 > 0), where the values of ϕm+1 in H1 are chosen to be 0.01, 0.05, 0.1. For a

given combination of
(
n, ϕ0 = 0.3,ϕ⊤= (0.2, 0.2), ϕm+1, λ0 = 2,λ⊤= (2, 3)

)
, we first gener-

ate y
(l)
1 , . . . ,y

(l)
n

iid∼ ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ) for l = 1, . . . , L (L = 500). For each group of

samples {y(l)
j }nj=1, we conduct the testing hypothesis. Let r1 denote the number of rejecting

the null hypothesis H0: ϕm+1 = 0 by the test statistic T1 given by (3.12). Then the empirical
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level can be estimated by r1/L with ϕm+1 = 0 and the power of the test statistic T1 can be

estimated by r1/L with ϕm+1 > 0.

Next, we investigate the type I error rates (with H0: λ0 = 0) and powers (with H1: λ0 >

0), where the values of λ0 in H1 are chosen to be 1, 3, 5. For a given combination

of
(
n, ϕ0 = 0.3,ϕ⊤= (0.2, 0.2), ϕm+1 = 0.1, λ0,λ

⊤= (2, 3)
)
, we first generate y

(l)
1 , . . . ,y

(l)
n

iid∼

ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ) for l = 1, . . . , L (L = 500). For each group of samples {y(l)
j }nj=1,

we conduct the testing hypothesis. Let r2 denote the number of rejecting the null hypothesis

H0: λ0 = 0 by the test statistic T2 given by (3.14). Then the empirical level can be estimated

by r2/L with λ0 = 0 and the power of the test statistic T2 can be estimated by r2/L with

λ0 > 0.

The empirical levels/powers of the LRT statistics T1 and T2 are summarized in Table

5. Figure 1 displays the type I error rates and powers of the LRT in testing H0: ϕm+1 = 0

against H1: ϕm+1 > 0 with three different values of ϕm+1 > 0 for various sample sizes. Figure

2 displays the type I error rates and the powers of the LRT in testing H0: λ0 = 0 against

H1: λ0 > 0 with three different values of λ0 > 0 for various sample sizes. From both of the

two figures, we can see that the lines for levels of LRT in two tests fluctuate near the line of

α = 0.05, indicating that they perform well in controlling the type I error rates around the

pre-chosen nominal level. Besides, the LRT in all of six scenarios tend to be more powerful

as the sample size n turns larger.

[Insert Figures 1 and 2 here]

6. Applications

6.1 Health care utilization data

Cameron & Trivedi (2013) reported data concerning the demand for Health Care in Australia

which refers to the Australian Health survey for 1977-1978. Let Y1 denote the number of

consultations with a doctor or a specialist and Y2 denote the total number of prescribed

medications used in past two days. The data are given in Table 6.
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Table 5: Empirical levels/powers of the LRT statistics T1 and T2 based on 500 replications

Sample Empirical Empirical power Empirical Empirical power

size ϕ3 λ0

(n) level 0.01 0.05 0.10 level 1 3 5

100 0.038 0.326 0.970 1.000 0.061 0.396 0.840 0.962

150 0.040 0.512 0.988 1.000 0.050 0.504 0.946 0.994

200 0.048 0.532 0.996 1.000 0.048 0.570 0.982 1.000

250 0.056 0.660 1.000 1.000 0.054 0.600 0.994 1.000

300 0.036 0.694 1.000 1.000 0.050 0.674 1.000 1.000

350 0.030 0.742 1.000 1.000 0.052 0.712 1.000 1.000

400 0.048 0.812 1.000 1.000 0.046 0.828 1.000 1.000

450 0.060 0.842 1.000 1.000 0.050 0.844 1.000 1.000

500 0.036 0.892 1.000 1.000 0.048 0.892 1.000 1.000

Table 6: Cross tabulation of the health care utilization data in the Australian Health Survey
for 1977-1978 (Cameron & Trivedi, 2013)

Y1\Y2 0 1 2 3 4 5 6 7 8 Total

0 2789 726 307 171 76 32 16 15 9 4141

1 224 212 149 85 50 35 13 5 9 782

2 49 34 38 11 23 7 5 3 4 174

3 8 10 6 2 1 1 2 0 0 30

4 8 8 2 2 3 1 0 0 0 24

5 3 3 2 0 1 0 0 0 0 9

6 2 0 1 3 1 2 2 0 1 12

7 1 0 3 2 1 2 1 0 2 12

8 1 1 1 0 1 0 1 0 0 5

9 0 0 0 0 0 0 0 0 1 1

Total 3085 994 509 276 157 80 40 23 26 5190

6.1.1 Likelihood-based inferences without covariates

Through some endeavor of trying the models proposed in Section 2, the model ZOIPm(ϕ0,ϕ,

ϕm+1; 0,λ) works well in fitting this data. The procedure of model selection is listed in Table
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9. To find the MLEs of (ϕ0, ϕ1, ϕ2, ϕ3, λ1, λ2), we choose (ϕ
(0)
0 , ϕ

(0)
1 , ϕ

(0)
2 , ϕ

(0)
3 , λ

(0)
1 , λ

(0)
2 ) =

(0.2, 0.1, 0.1, 0.1, 2, 2) as their initial values. The MLEs converged to the values shown in

the second column of Table 7 in 31 iterations for the Fisher scoring algorithm (3.7) and in

72 iterations for the EM algorithm (3.4)–(3.5), while the Newton–Raphson method is not

available because the observed information matrix is nearly singular. The standard errors

of the estimators are given in the third column and 95% asymptotic Wald CIs (specified by

(3.8)) of the six parameters are listed in the fourth column of Table 7. With G = 6, 000

bootstrap replications, the corresponding standard deviations and 95% bootstrap CIs are

presented in last two columns of Table 7.

Table 7: MLEs and CIs of parameters for the Australian health survey data without
covariates

Parameter MLE stdF 95% Wald CI stdB 95% bootstrap CI

ϕ0 0.5214 0.0081 [0.5056, 0.5372] 0.0072 [0.5073, 0.5354]

ϕ1 0.0307 0.0030 [0.0249, 0.0366] 0.0030 [0.0250, 0.0365]

ϕ2 0.1039 0.0061 [0.0921, 0.1158] 0.0055 [0.0931, 0.1145]

ϕ3 0.0128 0.0031 [0.0067, 0.0189] 0.0031 [0.0067, 0.0188]

λ1 0.7798 0.0236 [0.7336, 0.8260] 0.0237 [0.7341, 0.8258]

λ2 2.2526 0.0494 [2.1558, 2.3493] 0.0499 [2.1539, 2.3498]

stdF: Square roots of the diagonal elements of the inverse Fisher information matrix, c.f. (3.6);
stdB: The sample standard deviation of the bootstrap samples, c.f. (3.9); bootstrap CI: c.f.
(3.10).

6.1.2 Bayesian methods

In the setting of Bayesian analysis, we adopt Dirichlet (1, 1, 1, 1, 1) as the prior distribution

of (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4)
⊤ and independent Gamma (1, 1) as the prior distributions of both λ1

and λ2. Using (ϕ
(0)
0 , ϕ

(0)
1 , ϕ

(0)
2 , ϕ

(0)
3 ) = (0.2, 0.1, 0.1, 0.1) and (λ

(0)
1 , λ

(0)
2 ) = (2, 2) as the initial

values, the EM algorithm specified by (4.3) converged to the posterior modes in 68 iterations

which are presented in the second column of Table 8.

To calculate the Bayesian credible intervals of (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, λ1, λ2), we use the DA

algorithm to generate L = 60, 000 posterior samples for each of these parameters based on
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(4.1) and (4.2). By discarding the first half of the samples, we can calculate the posterior

means, the posterior standard deviations and the 95% Bayesian credible intervals of them,

which are given in Table 8.

Table 8: Posterior estimates of parameters for the Australian health survey data

Posterior Posterior Posterior 95% Bayesian

Parameter mode mean std credible interval

ϕ0 0.5213 0.5193 0.0073 [0.5049, 0.5336]

ϕ1 0.0307 0.0296 0.0030 [0.0239, 0.0356]

ϕ2 0.1038 0.1004 0.0055 [0.0898, 0.1111]

ϕ3 0.0128 0.0106 0.0029 [0.0051, 0.0166]

ϕ4 0.3314 0.3401 0.0094 [0.3220, 0.3590]

λ1 0.7790 0.7698 0.0234 [0.7252, 0.8164]

λ2 2.2498 2.2092 0.0478 [2.1164, 2.3037]

6.1.3 Model selection and comparison

In model selection, we begin with the full model ZOIPm(ϕ0,ϕ, ϕm+1;λ0,λ), but it does not

converge. To remove insignificant parameters step by step in the model, we start with

models of λ0 = 0 and ϕ3 = 0, respectively. Based on the LRT results in Table 9, the

null hypothesis H0: λ0 = 0 cannot be rejected, the null hypothesis H0: ϕ3 = 0 should be

rejected at 5% significance level, and no parameter can be removed any more, so we select

the ZOIP (ϕ0, ϕ1, ϕ2, ϕ3; 0, λ1, λ2) model.

Table 9: Likelihood ratio test in model selection

Null hypothesis Alternative model LRT statistic p-value

H0: λ0 = 0 ZOIP (ϕ0, ϕ1, ϕ2, 0;λ0, λ1, λ2) 1.1298 0.1439

H0: ϕ3 = 0 ZOIP (ϕ0, ϕ1, ϕ2, ϕ3; 0, λ1, λ2) 18.7925 < 0.001

H0: ϕ1 = 0 ZOIP (ϕ0, ϕ1, ϕ2, ϕ3; 0, λ1, λ2) 152.2099 < 0.001

H0: ϕ1 = ϕ2 = 0 ZOIP (ϕ0, ϕ1, ϕ2, ϕ3; 0, λ1, λ2) 506.6042 < 0.001

H0: ϕ1 = ϕ2 = ϕ3 = 0 ZOIP (ϕ0, ϕ1, ϕ2, ϕ3; 0, λ1, λ2) 398.2568 < 0.001
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We choose the Akaike information criterion (AIC; Akaike, 1974) and Bayesian infor-

mation criterion (BIC; Schwarz, 1978) to compare models. Karlis & Ntzoufras (2005)

used the bivariate Poisson (BP) and diagonal inflated bivariate Poisson (DIBP) model-

s with covariates to fit the data set. To illustrate the fit of models, we just concentrate

on the original models without covariates. Liu & Tian (2015) proposed a new Type I

multivariate ZIP distribution to fit the data. The MLEs of parameters in BP model are

estimated by λ̂0 = 0.1256, λ̂1 = 0.1761, λ̂2 = 0.7370. The fitted DIBP model led to

zero-inflated model with only (0,0) inflated and the MLEs of parameters are estimated by

ϕ̂0 = 0.4763, λ̂1 = 0.5017, λ̂2 = 1.5727, λ̂0 = 0.0745. The MLEs of parameters in Type I ZIP

model are ϕ̂ = 0.4830, λ̂1 = 0.5836, λ̂2 = 1.6685. The values of AIC and BIC for the BP

model, DIBP model, Type I ZIP model and bivariate ZOIP model are summarized in Table

10. The bivariate ZOIP model is selected by both AIC and BIC.

Table 10: Comparison by AIC and BIC of the four models

Criterion

Model AIC BIC

BP model 22542.71 22562.38

DIBP model 20529.92 20556.14

Type I bivariate ZIP model 20565.82 20585.48

Bivariate ZOIP model 20173.56 20212.89

BP: see Karlis & Ntzoufras (2005); DIBP: see Karlis & Ntzoufras (2005); Type I bivariate ZIP:
see Liu & Tian (2015).

6.1.4 Marginal analysis

The sample correlation coefficient in the health survey data is r = 0.307779. By performing

the correlation test on the correlation coefficient between Y1 and Y2, the corresponding

p-value is far less than 0.05, indicating a positive correlation between Y1 and Y2. Therefore,

it is not appropriate to fit the data by two independent ZOIP distributions. The bivariate

ZOIP distribution gives an estimated value ρ̂ = 0.388162.

To evaluate the performance of the proposed model from the view of marginal fitting,

we compare the theoretical marginal distribution with univariate ZOIP distribution. From
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Table 7, we know that (Y1, Y2)
⊤ follows the bivariate ZOIP distribution with ϕ̂0 = 0.5214,

(ϕ̂1, ϕ̂2) = (0.0307, 0.1039), ϕ̂3 = 0.0128 and (λ̂1, λ̂2) = (0.7798, 2.2526). According to (2.5),

we have the marginal distribution for each component of the multivariate ZOIP is Yi ∼

ZOIP (ϕ0 +
∑m

k=1,k ̸=i ϕk, ϕi +ϕm+1;λ0 + λi), then the corresponding marginal distribution of

Y1 and Y2 are estimated to be ZOIP (ϕ̂0 = 0.6253, ϕ̂1 = 0.0435; λ̂1 = 0.7798) and ZOIP (ϕ̂0 =

0.5521, ϕ̂1 = 0.1167; λ̂2 = 2.2526), respectively. If we fit Y1 and Y2 with univariate ZOIP

distributions, the estimates are given as ZOIP (ϕ̂M
0 = 0.7869, ϕ̂M

1 = 0.1282; λ̂M
1 = 2.0425) and

ZOIP (ϕ̂M
0 = 0.5651, ϕ̂M

1 = 0.1221, λ̂M
2 = 2.3676). Both results show that Y1 and Y2 follow the

ZOIP distributions with different zero inflation, one inflation and Poisson mean parameters.

6.1.5 Likelihood-based inferences with covariates

We choose the following covariates. Let V1 denote the gender, where V1 = 1 if female and

V1 = 0 if male. Let V2 denote the age in years divided by 100. let V3 denote the annual income

in Australian dollars divided by 1000, which measured as midpoint of coded ranges: 200—

1000, 1001—2000, 2001—3000, 3001—4000, 4001—5000, 5001—6000, 6001—7000, 7001—

8000, 8001—10000, 10001—12000, 12001—14000, with 14001+ treated as 15000. Let w =

(1, V1)
⊤ and x = (1, V1, V2, V3)

⊤. By adopting the model of special case 1 that incorporated

with covariates to fit the data, the MLEs and corresponding confidence intervals of the

regression coefficients for parameters are listed in Table 11.

6.2 Automobile third party liability insurance data

The data are claims of a large automobile portfolio in France which including 181038 liability

policies in 1989 provided by Vernic (1997). The corresponding claim frequencies were divided

into material damage only (type I) denoted by Y1 and bodily injury (type II) claims denoted

by Y2, as shown in Table 12. Note that the three categories (0,0), (1,0) and (0,1) have

comparative frequencies than the other cells, our model should be considered in the first

place.
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Table 11: MLEs and estimated errors of parameters for the Australian health survey data
with covariates

Parameter Coefficients MLE stdF
1 stdF

2

log(ϕ0/ϕ4)
Constant 0.819103 0.090515 0.045131

Sex (Female) −1.482019 0.108103 0.062272

log(ϕ1/ϕ4)
Constant −2.702688 0.303373 0.150015

Sex (Female) −1.661920 0.545856 0.268987

log(ϕ2/ϕ4)
Constant −1.786845 0.209480 0.099266

Sex (Female) −0.033092 0.238233 0.119766

log(ϕ3/ϕ4)
Constant −4.261099 1.092479 0.318782

Sex (Female) −2.154864 4.824744 0.696513

λ1

Constant −0.249535 0.123691 0.096908

Sex (Female) −0.308786 0.071620 0.056172

Age 0.365522 0.150968 0.130522

Income −0.294971 0.090352 0.082081

λ2

Constant −0.680362 0.096899 0.072440

Sex (Female) 0.088192 0.055689 0.037419

Age 2.427721 0.107850 0.090117

Income −0.099109 0.060352 0.053422

stdF1 : Square roots of the diagonal elements of I−1(θ̂|Yobs), c.f. (3.15); stdF2 : Square roots of the

diagonal elements of I−1(θ̂|Ycom), c.f. (3.16).

Table 12: Cross tabulation of the automobile third party liability insurance data (Vernic,
1997)

Y1\Y2 0 1 2 and above Total

0 171345 918 2 172265

1 8273 73 0 8346

2 389 5 0 394

3 31 1 0 32

4 and above 1 0 0 1

6.2.1 Likelihood-based inferences

As the data are characterized by the first three highest frequencies locating at categories (0,0),

(1,0) and (0,1), the model ZOIPm(ϕ0,ϕ, 0; 0,λ) is the most appropriate after some calcula-
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tions and comparisons which are shown in Section 6.2.2. We choose (ϕ
(0)
0 , ϕ

(0)
1 , ϕ

(0)
2 , λ

(0)
1 , λ

(0)
2 ) =

(0.2, 0.1, 0.1, 1, 1) as their initial values and the MLEs converged to the results shown in the

second column of Table 13 in 9 iterations for the Fisher scoring algorithm (3.7), while the

EM algorithm (3.4)–(3.5) does not work well for the really slow speed of convergence and

the Newton–Raphson method is not available either due to the singularity of the observed

information matrix. The standard errors of the estimators and 95% asymptotic Wald CIs

(specified by (3.8)) are given in the third and fourth columns of Table 13. With G = 6, 000

bootstrap replications, the corresponding standard deviations and 95% bootstrap CIs are

reported in last two columns of Table 13. Since the EM algorithm does not work well in

parameters convergence, we do not consider the Bayesian methods in parameters estimation

for this data set.

The sample correlation coefficient in the insurance data is r = 0.011191 and the corre-

lation test suggests to reject the independency between Y1 and Y2. Thus, Y1 and Y2 has

a positive and low correlation. While the estimated value given by the above model is

ρ̂ = 0.011022, which is very close to that from the samples.

Table 13: MLEs and CIs of parameters (ϕ0, ϕ1, ϕ2, λ1, λ2) for the automobile third party
liability insurance data

Parameter MLE stdF 95% Wald CI stdB 95% bootstrap CI

ϕ0 0.8496 0.0316 [0.7877, 0.9115] 0.0386 [0.7476, 0.8927]

ϕ1 0.0251 0.0036 [0.0181, 0.0322] 0.0039 [0.0158, 0.0308]

ϕ2 0.0033 0.0004 [0.0025, 0.0041] 0.0004 [0.0023, 0.0040]

λ1 0.2118 0.0329 [0.1473, 0.2763] 0.0331 [0.1498, 0.2792]

λ2 0.0183 0.0034 [0.0116, 0.0250] 0.0034 [0.0122, 0.0255]

stdF: Square roots of the diagonal elements of the inverse Fisher information matrix; stdB: The
sample standard deviation of the bootstrap samples, c.f. (3.9); bootstrap CI: c.f. (3.10).

6.2.2 Model selection and comparison

In model selection, we begin with the full model ZOIPm (ϕ0,ϕ, ϕm+1;λ0,λ), but it does not

converge. We first restrict λ0 to be zero. Based on the LRT results in Table 14, the null

hypothesis H0: ϕ3 = 0 cannot be rejected at 5% significance level and no parameter can be
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removed any more, so we select the ZOIP (ϕ0, ϕ1, ϕ2, 0; 0, λ1, λ2) model.

Table 14: Likelihood ratio test in model selection

Null hypothesis Null model Alternative model LRT statistic p-value

H0: ϕ3 = 0 ZOIP (ϕ0, ϕ1, ϕ2;λ1, λ2) ZOIP (ϕ0, ϕ1, ϕ2, ϕ3;λ1, λ2) 1.8555 0.0866

H0: ϕ1 = 0 ZOIP (ϕ0, ϕ2;λ1, λ2) ZOIP (ϕ0, ϕ1, ϕ2;λ1, λ2) 17.6799 < 0.001

H0: ϕ1 = ϕ2 = 0 ZOIP (ϕ0;λ1, λ2) ZOIP (ϕ0, ϕ1, ϕ2;λ1, λ2) 23.2810 < 0.001

We evaluate models by AIC and BIC. For purpose of comparison, from Vernic (1997),

bivariate generalized Poisson distribution (BGPD) was adopted to fit the data. The MLEs

of parameters in BGPD model are estimated by λ̂1 = 0.0495, λ̂2 = 0.0054, λ̂3 = 0.0002 and

θ̂1 = 0.0270, θ̂2 = −0.0027, θ̂3 = 0.0498. The values of AIC and BIC are summarized in

Table 15. As suggested from AIC and BIC, the bivariate ZOIP model gives a better fit.

Table 15: Comparison by AIC and BIC of the two models

Criterion

Model AIC BIC

BGPD model 86309.19 86369.83

Bivariate ZOIP 86286.63 86337.16

BGPD: see Vernic (1997).

7. Discussion

This paper extends the univariate zero-and-one inflated Poisson distribution to a multivariate

version by considering inflation at several categories simultaneously. This new multivariate

ZOIP distribution has a flexible dependency structure; i.e., the correlation coefficient between

any two random components could be either positive or negative depending on the values of

the parameters, as shown in (2.6). The marginal distributions are not necessarily identical

with each other; i.e., each random component follows a ZOIP distribution with different zero

inflation, one inflation and Poisson mean parameters as shown in (2.5). The distributional

theories are explored profoundly and statistical inference methods are provided explicitly.
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The multivariate regression model with covariates is also investigated in Section 3.4 and

the estimates of those regression coefficients are obtained through an EM algorithm embed-

ded with the Newton–Raphson algorithm. However, in our real examples, the bootstrap

method is not available for calculating the standard errors of the coefficient estimates due

to the singularity of the observed information matrix. Instead, we calculate the observed

information matrix using the method of Louis (1982) by subtracting the missing information

from the complete information. Because of the complexity of Louis’s method, sometimes we

may calculate the complete information and use it to approximate the observed information.

Appendix A: Some technical derivations

A.1 Derivation of the joint probability mass function (2.3)

If y = 00m, we have

Pr(y = 00m) = Pr(Z0 = 1) + Pr(Zm+2 = 1, X1 = 0, . . . , Xm = 0)

(2.1)
= ϕ0 + ϕm+2e

−λ0−λ+ . (A.1)

If y = e
(i)
m , we obtain

Pr(y = e(i)
m ) = Pr(Zi = 1) + Pr(Zm+2 = 1, X1 = 0, . . . , Xi = 1, . . . , Xm = 0)

(2.1)
= ϕi + ϕm+2λie

−λ0−λ+ , i = 1, . . . ,m. (A.2)

If y = 11m, we have

Pr(y = 11m) = Pr(Zm+1 = 1) + Pr(Zm+2 = 1, X1 = 1, . . . , Xm = 1)

(2.1)
= ϕm+1 + ϕm+2 (λ0 +

∏m
i=1 λi) e

−λ0−λ+ . (A.3)

If y /∈
{
00m, e

(1)
m , . . . , e

(m)
m ,11m

}
, then we have

Pr(y = y) = Pr(Zm+2 = 1, X1 = y1, . . . , Xm = ym)

= ϕm+2e
−λ0−λ+

min(y)∑
k=0

λk
0

k!

m∏
i=1

λyi−k
i

(yi − k)!
. (A.4)

By combining (A.1)–(A.4), we obtain (2.3).
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A.2 Derivation of the conditional expectation (3.5)

To derive the fourth formula in (3.5), we have if y /∈ Y01, then

Pr(X∗
0 = l|y = y /∈ Y01) =

Pr(X∗
0 = l,y = y)

Pr(y = y)

=
Pr(Zm+2 = 1, X∗

0 = l, X∗
1 = y1 − l, . . . , X∗

m = ym − l)

Pr(Zm+2 = 1,x = y)

=

λl
0

l!

m∏
i=1

λyi−l
i

(yi − l)!

min(y)∑
k=0

λk
0

k!

m∏
i=1

λyi−k
i

(yi − k)!

=̂ ql(y, λ0,λ), (A.5)

for l = 0, 1, . . . ,min(y), which implying1

X∗
0 |(y = y /∈ Y01) ∼ Finite (l, ql(y, λ0,λ); l = 0, 1, . . . ,min(y)).

Appendix B: Definition of Type I multivariate ZIP dis-

tribution

Definition 2 An m-dimensional discrete random vector y = (Y1, . . . , Ym)
⊤ is said to have

a Type I multivariate zero-inflated Poisson distribution (Liu & Tian, 2015) with parameters

ϕ ∈ [0, 1) and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ if

y
d
= Z x =

{
00, with probability ϕ,

x, with probability 1− ϕ,

where Z ∼ Bernoulli (1 − ϕ), x = (X1, . . . , Xm)
⊤, Xi ∼ Poisson (λi) for i = 1, . . . ,m, and

(Z,X1, . . . , Xm) are mutually independent. We will write y ∼ ZIP(I)
m (ϕ;λ). ¶

Appendix C: Definition of Type II multivariate ZIP dis-

tribution

Definition 3 An m-dimensional discrete random vector y = (Y1, . . . , Ym)
⊤ is said to have

a Type II multivariate zero-inflated Poisson distribution with parameters ϕ ∈ [0, 1), λ0 > 0

1A discrete random variable X is said to have the general finite distribution, denoted by X ∼
Finite (xk, pk; k = 0, 1, . . . ,K), if Pr(X = xk) = pk ∈ [0, 1] and

∑K
k=1 pk = 1.
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and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ if

y
d
= Z x =

{
00, with probability ϕ,

x, with probability 1− ϕ,

where Z ∼ Bernoulli (1 − ϕ), x = (X1, . . . , Xm)
⊤ ∼ MP(λ0,λ), Xi = X∗

0 + X∗
i for i =

1, . . . ,m, {X∗
i }mi=0 ∼ Poisson (λi) and Z ⊥⊥ x. We will write y ∼ ZIP(II)

m (ϕ;λ0,λ). ¶
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Figure 1 (a) The type I error rates for testing H0: ϕm+1 = 0 against H1: ϕm+1 > 0 in the
multivariate ZOIP model and the dashed line is set as the predetermined significance level of
α = 0.05; (b) the powers when ϕm+1 = 0.01 in H1; (c) the powers when ϕm+1 = 0.05 in H1; (d)
the powers when ϕm+1 = 0.10 in H1.
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Figure 2 (a) The type I error rates for testing H0: λ0 = 0 against H1: λ0 > 0 in the multivariate
ZOIP model and the dashed line is set as the predetermined significance level of α = 0.05; (b) the
powers when λ0 = 1 in H1; (c) the powers when λ0 = 3 in H1; (d) the powers when λ0 = 5 in H1.
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