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SUMMARY

This paper novelly transforms lack-of-fit tests for parametric quantile regres-

sion models into checking the equality of two conditional distributions of covari-

ates. We then can borrow these successful test statistics from the rich literature

of two-sample problems, and this gives us much flexibility in constructing a suit-

able lack-of-fit test according to our experiences on covariates. This finding is first

demonstrated for the low dimensional data by using a practical two-sample test,

which has a sound power for the case with a moderate dimension. We then apply

it to the high dimensional data, and a lack-of-fit test for linear quantile regression

models is thus constructed via combining two-sample test statistics in the litera-

ture. The asymptotic distribution of the test statistic under the null hypothesis

has an explicit form, and we hence can calculate the critical values or p-values

directly. The usefulness of these tests are illustrated by simulation experiments,

and the real analysis gives further support.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has become

an effective alternative to mean regression in many fields such as finance, economics, and

geology; see Koenker (2005) for its literature review. For a response Y and covariates X,

instead of the conditional mean E(Y | X) in mean regression, quantile regression aims

to the τth quantile of Y conditional on X,

Qτ (Y | X) = mτ (X),

where 0 < τ < 1, and random vector X consists of p covariates with a fixed p. The

function mτ (·) is unknown and depends on τ , and it is flexible to use a nonparametric

approach to estimate it. However, this method usually has a bad performance even

when p is moderate, and it is also well known to be lack of interpretation (Koenker,

2005; Fan and Gijbels, 1996). As a result, the parametric method is still routinely used

in quantile regression as well as in other scenarios, and specifically a parametric form will

be assumed to the function of mτ (·), i.e. mτ (X) = mτ (X,β) is known up to a parameter

vector β. In the meanwhile, it is an important task to perform a lack-of-fit test to check

whether the parametric form is misspecified. Zheng (1998) first considered a kernel-based

test for a general parametric quantile regression model. He and Zhu (2003) extended

the approach in Stute (1997), and proposed a test based on a weighted cusum process

of the residuals; see also Horowitz and Spokoiny (2002), Whang (2006), Otsu (2008),

Escanciano and Velasco (2010) and Escanciano and Goh (2014) for more lack-of-fit tests

based on cusum processes. The above tests are all nonparametric, and they can detect

the departures at all directions when the sample size tends to infinity. As a cost, the

number of covariates p is limited to a small value, say one or two, in real applications.

Conde-Amboage, Sanchez-Sellero, and Gonzalez-Manteiga (2015) suggested to project

the covariates X into a random variable first, and then applied He and Zhu’s method to

form a lack-of-fit test. It works well for a larger p < n.

Denote by β0 the true parameter vector, and let ε = Y −mτ (X,β0). It then holds

that P{Qτ (Y |X) = mτ (X,β0)} = 1 if and only if

E{I(ε < 0) | X} = τ with probability one, (1)
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where I(·) is the indicator function. The aforementioned lack-of-fit tests are all based

on the fact at (1), while they do not pay attention to, or do not need, another fact that

the random variable I(ε < 0) only takes two possible values. Consider the distribution

functions of X conditional on I(ε < 0) and I(ε > 0), respectively. We can show that

equation (1) holds if and only if these two conditional distributions are equal; see Lemma

1 for details. This makes it possible to check whether the parametric form mτ (X,β) is

correctly specified via solving a two-sample problem. For example, it will lead to He

and Zhu’s (2003) lack-of-fit test if the Cramér-von Mises test is applied to check the

equality of the two conditional distributions of X; see Section 2 for details. There is

a rich literature of two-sample tests, and we can always find a suitable test statistic in

this literature to form the corresponding lack-of-fit test according to our experiences on

covariates. To demonstrate the idea here, we first consider the two-sample test statistic

in Baringhaus and Franz (2004), which has a sound power even for the case with a

moderate dimension, in Section 3.

Quantile regression has recently attracted more and more attentions in the literature

of high dimensional data, where the number of covariates p may greatly exceed that of

observations, the linear model is usually assumed, i.e.

Qτ (Y | X) = mτ (X,β) = X∗>β with X∗ = (1,X>)>, (2)

and almost all researches in this area concentrate on the variable selection; see Belloni

and Chernozhukov (2011), He et al. (2013), Zheng et al. (2015), Ma et al. (2017) and

references therein. Shah and Buhlmann (2018) first introduced the concept of lack-of-

fit, or goodness-of-fit, for high dimensional linear mean models, and it can be adopted

to quantile regression models. When the number of covariates p is larger than that of

observations, it usually reaches the exact fit of the data, and this leaves no room for

the discussion of lack-of-fit. While the situation is different if model (2) is a sparse

model. For a certain data generating process, if there is no good sparse approximation

of X∗>β to mτ (X,β), then a sparse nonlinear model may be more suitable than a

sparse linear one. Moreover, the lack-of-fit in this paper also refers to the case that some

important covariates are missed in searching for the good sparse approximation of X∗>β.
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To construct a lack-of-fit test for the high dimensional linear quantile regression model

at (2), we may first consider the residual prediction method in Shah and Buhlmann

(2018), however, it heavily depends on the ordinary least squares estimation, and cannot

be extended to the quantile regression model. Section 4 alternatively gets use of the

relationship between lack-of-fit tests and two-sample problems, and then introduces a

test by applying two high dimensional two-sample tests in Cai et al. (2013) and Cai

et al. (2014) together. More importantly, the asymptotic distribution of the test statistic

under the null hypothesis has an explicit form, and we can calculate the critical values

or p-values directly.

The proofs of all lemmas and theorems are given in a separated supplementary file,

and all datasets and codes used in the paper can by downloaded at the website https://

bb9.sufe.edu.cn/webapps/cmsmain/webui/users/2011000070/LoF/CodesAndDatasets.

zip.

2 Relationship between lack-of-fit tests and two-sample

problems

Suppose that the τth quantile of Y conditional on X has a parametric form of

Qτ (Y | X) = mτ (X,β), (3)

where mτ (·, ·) is a known function, X = (X1, . . . , Xp)
> consists of p covariates, and β is

the parameter vector. Denote by β0 the true parameter vector. Let ε = Y −mτ (X,β0),

and g(X) = E{I(ε < 0) | X}. To check whether the parametric form of model (3) is

correctly specified, we can summarize the hypotheses below,

H0 : P{g(X) = τ} = 1 vs H1 : P{g(X) = τ} < 1.

Denote the observed data by {(Yi,X>i )>, i = 1, ..., n}, which are independent and

identically distributed (i.i.d.) random vectors, where Xi = (X1i, · · · , Xpi)
>, and n is the

number of observations. Denote S = {1 ≤ i ≤ n : εi < 0} and Sc = {1 ≤ i ≤ n : εi ≥ 0},

where εi = Yi−mτ (Xi,β0). We then can separate the observed covariates {Xi, 1 ≤ i ≤ n}
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into two samples, {Xi, i ∈ S} and {Xi, i ∈ Sc}, and they have the distributions of

FS(x) = P (X < x | ε < 0) and FSc(x) = P (X < x | ε ≥ 0), respectively.

Lemma 1. It holds that

FS(x)− FSc(x) =
1

τ(1− τ)

∫ x

−∞
{g(s)− τ}dFX(s),

where FX(·) is the distribution function of Xi.

It is implied by the above lemma that P{g(Xi) = τ} = 1 if and only if FS(·) = FSc(·).

As a result, in order to check whether model (3) is correctly specified, we can equivalently

test for the hypotheses,

H0 : FS(·) = FSc(·) vs H1 : FS(·) 6= FSc(·). (4)

Note that the true parameter vector β0 is unknown, and we may estimate it by

β̂n = argmin
n∑
i=1

ρτ{Yi −mτ (Xi,β)},

where ρτ (u) = u{τ − I(u < 0)}; see Koenker (2005) for references. Let ε̂i = Yi −

mτ (Xi, β̂n), Ŝ = {1 ≤ i ≤ n : ε̂i < 0}, and Ŝc = {1 ≤ i ≤ n : ε̂i ≥ 0}. We next consider

the Cramér-von Mises test (Anderson, 1962) to check the equality of the distributions of

samples {Xi, i ∈ Ŝ} and {Xi, i ∈ Ŝc}.

Let κn =
∑

i∈S 1 and κ̂n =
∑

i∈Ŝ 1 be the number of elements in the sets S and Ŝ,

respectively. When the function mτ (·, ·) at model (3) has a linear form, it holds that

κn = nτ + op(n) and κ̂n = nτ + op(n); see Theorem 2.2 of Koenker (2005) for details.

The weighted empirical distributions of FS(·) and FSc(·) then have the forms of

F̂Ŝ(x) =
1

nτ

∑
i∈Ŝ

ω(Xi)I(Xi ≤ x) and F̂Ŝc(x) =
1

n(1− τ)

∑
i∈Ŝc

ω(Xi)I(Xi ≤ x),

respectively, where ω(·) is the weight function. Let ψτ (u) = τ − I(u < 0), and we can

verify that

F̂Ŝ(x)− F̂Ŝc(x) =
1

nτ

n∑
i=1

ω(Xi)I(Xi ≤ x)I{Yi −mτ (Xi, β̂n) < 0}

− 1

n(1− τ)

n∑
i=1

ω(Xi)I(Xi ≤ x)I{Yi −mτ (Xi, β̂n) ≥ 0}

= − 1

τ(1− τ)
√
n
·Rn(x),
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where

Rn(x) =
1√
n

n∑
i=1

ω(Xi)I(Xi ≤ x)ψτ{Yi −mτ (Xi, β̂n)}

is just the weighted cusum process of residuals in He and Zhu (2003), and their lack-of-fit

test statistic is defined as the largest eigenvalue of n−1
∑n

i=1Rn(Xi)R
>
n (Xi). As a result,

we reach He and Zhu’s (2003) test.

For the two-sample problem at (4), there are a huge number of tests for the equality

of two distributions in the literature, and we can always find a suitable one according to

our experiences on covariates Xi. For example, we may also consider the Kolmogorov-

Smirnov test. However, these nonparametric tests, and hence the resulting lack-of-fit

ones, work well only for the case with a small number of covariates p, say one or two, in

real applications.

The idea here is first demonstrated in the next section to form a practical lack-of-fit

test for low dimensional data, and is then used again in Section 4 for high dimensional

data. For simplicity, we focus on a linear form of mτ (·, ·), i.e.

Qτ (Yi | Xi) = mτ (Xi,β) = X∗>i β, (5)

where X∗i = (1,X>i )>, β is the (p + 1)-dimensional vector, and β0 is its true value. All

results in this paper can be readily extended to the other parametric forms.

3 Lack-of-fit test for low dimensional data

3.1 Test statistic

Consider two samples {Ui} and {Vi} with distribution functions FU(·) and FV(·), re-

spectively. It holds that

E
(
‖U1 −V1‖

)
− 0.5E

(
‖U1 −U2‖

)
− 0.5E

(
‖V1 −V2‖

)
≥ 0, (6)

where ‖ · ‖ is the Euclidean norm, and the equality holds if and only if FU(·) = FV(·).

This leads to a test statistic for the equality of FU(·) and FV(·) in Baringhaus and Franz

(2004), which has a reasonable power even for a moderate dimension of random vectors

Ui and Vi; see also Székely and Rizzo (2005) for testing multivariate normality.
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By applying Baringhaus and Franz’s (2004) test to hypotheses (4), we have the test

statistic,

T1n =
1

n2τ(1− τ)

∑
i∈S,j∈Sc

‖Xi−Xj‖−
0.5

n2τ 2

∑
i,j∈S

‖Xi−Xj‖−
0.5

n2(1− τ)2

∑
i,j∈Sc

‖Xi−Xj‖,

(7)

where εi = Yi − X∗>i β0, and S and Sc are defined as in the previous section. Denote

the unit sphere in Rp by Sp−1 = {b ∈ Rp : ‖b‖ = 1}, and let F̂S,b(·), F̂Sc,b(·) and F̂b(·)

be the empirical distributions of {X>i b, i ∈ S}, {X>i b, i ∈ Sc} and {X>i b, 1 ≤ i ≤ n},

respectively. We then can verify that

T1n = γp

∫
Sp−1

∫ +∞

−∞

{
F̂S,b(x)− F̂Sc,b(x)

}2

dxdµ(b) + op(n
−1),

where µ is the uniform distribution on Sp−1 and γp is a constant depending on p only,

and it actually is a Cramér-type statistic. It is of interest to define its Cramér-von Mises

version, ∫
Sp−1

∫ +∞

−∞

{
F̂S,b(x)− F̂Sc,b(x)

}2

dF̂b(x)dµ(b),

which is equivalent to the test statistic in Conde-Amboage et al. (2015). This paper will

focus on the Cramér-type statistic T1n since the Cramér test is usually more powerful than

Cramér-von Mises one (Baringhaus and Franz, 2004), and it is also easier to calculate

the value of T1n.

To estimate the parameter vector, we may consider

β̂n = argmin
n∑
i=1

ρτ{Yi −X∗>i β}.

Let ε̂i = Yi−X∗>i β̂n, and Ŝ and Ŝc are defined as in the previous section. Together with

(7), we can define the lack-of-fit test statistic as

T̂1n =
1

n2τ(1− τ)

∑
i∈Ŝ,j∈Ŝc

‖Xi−Xj‖−
0.5

n2τ 2

∑
i,j∈Ŝ

‖Xi−Xj‖−
0.5

n2(1− τ)2

∑
i,j∈Ŝc

‖Xi−Xj‖,

where S and Sc in T1n are replaced by Ŝ and Ŝc, respectively.
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3.2 Asymptotic results

Denote by fε|X(·) the conditional density function of ε given the covariate X. Let Σ0 =

E(X∗X∗>), Σ1 = E{fε|X(0)X∗X∗>}, and

cτ =
1

2τ(1− τ)
E
(
‖X1 −X2‖{fε1|X1(0)X∗>1 Σ−11 X∗1 + fε2|X2(0)X∗>2 Σ−11 X∗2}

)
.

Theorem 1. Suppose that Assumptions 1 and 2 at the Appendix hold. If the quan-

tile regression model at (5) is correctly specified, then nT̂1n →d cτ + %1, where %1 =

3
∑∞

j=1 λj(χ
2
1j − 1), {λi} are eigenvalues associated with the kernel κ0, which is defined

as in (11) at the Appendix, and {χ2
1j} are independent Chi-square random variables with

one degree of freedom.

For model (5), since the measurement units of covariates may vary at different sce-

narios, it is common in real applications to standardize all or even some covariates

before performing the corresponding estimation, while the fitted conditional quanitles

Q̂τ (Yi | Xi) are invariant. However, it may result in a different value of T̂1n, although

the partition of Ŝ and Ŝc is still unchanged, i.e. the proposed test T̂1n may be domi-

nated by some covariates which have much larger variances than the others. As a result,

we may standardize all covariates first, i.e. the test is performed on the scaled covari-

ates, {(Xki − µ̂k)/σ̂
1/2
kk , i = 1, . . . , n} for 1 ≤ k ≤ p, where µ̂k = n−1

∑n
i=1Xki and

σ̂kk = n−1
∑n

i=1(Xki− µ̂k)2. Note that µ̂k’s and σ̂kk’s are all consistent and, by a method

similar to the proof of Theorem 1, we then can readily derive the null distribution of the

resulting test statistic accordingly.

To evaluate the asymptotic power of T̂1n, we consider the local alternatives

Qτ (Yi | Xi) = X∗>i β + n−1/2h(Xi), (8)

where h(·) is a nonlinear function satisfying minb supX{h(X)−X>b}2 > 0 (He and Zhu,

2003). Let cβ = Σ−11 E{fε|X(0)X∗h(X)}. We then can obtain the Bahadur representation

under the above local alternatives,
√
n(β̂n−β0) = Σ−11 ·n−1/2

∑n
i=1 ψτ (εi)X

∗
i +cβ+op(1),

while it has the form of
√
n(β̂n−β0) = Σ−11 ·n−1/2

∑n
i=1 ψτ (εi)X

∗
i + op(1) under the null

hypothesis of (5).
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Theorem 2. Under the local alternatives (8), if Assumptions 1 and 2 at the Appendix

hold, then nT̂1n →d cτ + %1 + %2, where %2 is a Gaussian random variable with mean zero

and variance {τ(1− τ)}−3E{E(‖X1−X2‖ | X1)fε1|X1(0)[X∗>1 cβ − h(X1)]}2, and cτ and

%1 are defined as in Theorem 1.

The above theorem shows that the test T̂1n has nontrivial power under the local

alternatives (8).

3.3 Bootstrapping approximation

The asymptotic distribution in Theorem 1 has a complicated form since it is usually

difficult to derive those eigenvalues {λi}. By adopting the wild bootstrap method in

Feng et al. (2011), we suggest the following procedure to approximate this distribution.

(S1) Generate i.i.d. random weights {wi} with the distribution function satisfying As-

sumption 3 at the Appendix.

(S2) Generate the bootstrapped sample {Y ∗i } with Y ∗i = X∗>i β̂n + wi|ε̂i|, and calculate

the bootstrapped estimator by

β̂
∗
n = argmin

n∑
i=1

ρτ (Y
∗
i −X∗>i β).

(S3) Let ε̂∗i = Y ∗i − (1,X>i )β̂
∗
n, Ŝ∗ = {1 ≤ i ≤ n : ε̂∗i < 0} and Ŝ∗c = {1 ≤ i ≤ n : ε̂∗i ≥

0}. Calculate the statistic T̂ ∗1n(1) by replacing Ŝ and Ŝc in the test statistic T̂1n

with Ŝ∗ and Ŝ∗c, respectively.

(S4) Repeat Steps (S1)–(S3) B − 1 times. We then can use the empirical distribution

of {T̂ ∗1n(1), ..., T̂ ∗1n(B)} to approximate the distribution of test statistic T̂1n.

Theorem 3. Suppose that the conditions in Theorem 1 hold. If Assumption 3 at the

Appendix is further satisfied, then

sup
x∈R

∣∣∣P ∗ (nT̂ ∗n ≤ x
)
− P

(
nT̂n ≤ x

)∣∣∣→ 0

holds in probability as n → ∞, where P ∗ is the probability measure in the bootstrapped

space.
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The above theorem makes sure that the proposed procedure can be used to calculate

critical values or p-values. For the random weights {wi}, there are many distribution

functions satisfying Assumption 3, while they may lead to a similar result; see simulation

results in Feng et al. (2011).

4 Lack-of-fit test for high dimensional data

4.1 Test statistic

Consider the high dimensional linear quantile regression model (5) with the number of

covariates p being larger than the sample size n. A sparse structure is hence assumed,

and this section applies the finding at Section 2 to construct a lack-of-fit test to check

whether there exists a good sparse approximation of X∗>β to Qτ (Y | X) = mτ (X,β)

and/or whether some important covariates are missed by X∗>β.

We first consider a `1 penalized quantile regression estimator for model (5),

β̃n = argmin
n∑
i=1

ρτ{Yi −X∗>i β}+ λτ(1− τ)

p∑
j=1

σ̃j|βj|,

where σ̃j = n−1
∑n

k=1X
2
jk; see Belloni and Chernozhukov (2011). Let D = {1 ≤ j ≤

p : β0j 6= 0} and D̂ = {1 ≤ j ≤ p : β̃jn 6= 0} be the set of truly active covariates and

its estimated version, respectively, where β0 = (β00, β01, ..., β0p)
> is the true parameter

vector, and β̃n = (β̃0n, β̃1n, . . . , β̃pn)>. Denote by q =
∑

j∈D 1 and q̂ =
∑

j∈D̂ 1 the

cardinalities of D and D̂, respectively. Without loss of generality, we rearrange the p

covariates such that D̂ = {0, 1, ..., q̂}. The probability structure of β̃n will be involved

in constructing the test statistic, while it is well known to be biased. As a result, we

further assume that X is independent of ε = Y −X∗>β0, and then consider a de-biased

estimator,

β̂n = β̃n + n−1f̂−1(0)Ω̂
q

0

n∑
k=1

X∗kψτ (ε̃k),

where f̂(·) is an estimated density function of ε, Ω̂
q

0 is a fitted precision matrix with the

last p − q̂ rows replaced by zeros, and ε̃k = Yk −X∗>k β̃n; see Bradic and Kolar (2017).

Note that β̂jn = β̃jn = 0 for q̂ + 1 ≤ j ≤ p, where β̂n = (β̂0n, β̂1n, . . . , β̂pn)>.
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We next consider a statistic to check whether the distributions of two samples {Xi, i ∈

Ŝ} and {Xi, i ∈ Ŝc} are equal, where ε̂i = Yi −X∗>i β̂n, and Ŝ and Ŝc are defined as in

Section 2. Note that this is a high dimensional two-sample problem and, in the literature,

the equality of moments, rather than distribution functions, has been checked; see Bai

and Saranadasa (1996), Schott (2007), Chen and Qin (2010), Srivastava and Yanagihara

(2010), Li and Chen (2012) and reference therein.

Cai et al. (2014) and Cai et al. (2013) proposed two-sample tests for the equality

of the means and variances, respectively, and they are especially designed for the case

with a sparse structure. Let X = (X>D,X
>
Dc)>, where XD and XDc consist of active and

inactive covariates, respectively. We can verify that the distributions of XDc conditional

on I(ε < 0) and I(ε ≥ 0) are equal regardless of the null or alternative hypothesis. Thus,

for model (5) with a sparse structure, the corresponding two-sample problem also has

a sparse structure. As a result, this section uses the test statistics in Cai et al. (2014)

and Cai et al. (2013) to check for the equality of the means and variances of samples

{Xi, i ∈ Ŝ} and {Xi, i ∈ Ŝc}, respectively.

We first adopt the method in Cai et al. (2013) to check for the equality of variances

matrices. Denote the sample means by

µ̂Ŝ =
1

nτ

∑
k∈Ŝ

Xk and µ̂Ŝc =
1

n(1− τ)

∑
k∈Ŝc

Xk,

and the sample variances by

Σ̂Ŝ =
1

nτ

∑
k∈Ŝ

(Xk− µ̂Ŝ)(Xk− µ̂Ŝ)> and Σ̂Ŝc =
1

n(1− τ)

∑
k∈Ŝc

(Xk− µ̂Ŝc)(Xk− µ̂Ŝc)
>.

Let

γ̂ij(Ŝ) =
1

nτ

∑
k∈Ŝ

[
{Xik − µ̂i(Ŝ)}{Xjk − µ̂j(Ŝ)} − σ̂ij(Ŝ)

]2
and

γ̂ij(Ŝc) =
1

n(1− τ)

∑
k∈Ŝc

[
{Xik − µ̂i(Ŝc)}{Xjk − µ̂i(Ŝc)} − σ̂ij(Ŝc)

]2
,

where µ̂Ŝ =
(
µ̂1(Ŝ), ..., µ̂p(Ŝ)

)>
, µ̂Ŝc =

(
µ̂1(Ŝc), ..., µ̂p(Ŝc)

)>
, Σ̂Ŝ =

(
σ̂ij(Ŝ)

)
p×p

and

Σ̂Ŝc =
(
σ̂ij(Ŝc)

)
p×p

. The test statistic can be given below:

M̂Σ = max
1≤i≤j≤p

{σ̂ij(Ŝ)− σ̂ij(Ŝc)}2

(nτ)−1γ̂ij(Ŝ) + {n(1− τ)}−1γ̂ij(Ŝc)
.
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The method in Cai et al. (2014) is then applied to check the equality of the means

while the variance matrices are assumed to be equal. Denote the pooled sample covari-

ance matrix by Σ̂ = τΣ̂Ŝ+(1−τ)Σ̂Ŝc , and we then can calculate its adaptive thresholding

estimator by Σ̂ATE = (σ̂ijI{|σ̂ij| ≥ δ
√
λij log(p)/n})p×p, where

λij =
1

n

∑
k∈Ŝc

[
{Xik − µ̂i(Ŝc)}{Xjk − µ̂i(Ŝc)} − σ̂ij

]2
+

1

n

∑
k∈Ŝ

[
{Xik − µ̂i(Ŝ)}{Xjk − µ̂j(Ŝ)} − σ̂ij

]2
,

Σ̂ = (σ̂ij)p×p, δ is a tuning parameter which can be set to δ = 2, or can be selected

through cross-validation empirically. As a result, the precision matrix can be estimated

by Ω̂ = Σ̂
−1
ATE, and then the test statistic is given below:

M̂µ =
κn(n− κn)

n
max
1≤i≤p

D̂2
i

b̂ii
, (9)

where (D̂1, · · · , D̂p)
> = Ω̂(µ̂Ŝ − µ̂Ŝc), and b̂ii is the ith diagonal element of the matrix

Ω̂Σ̂Ω̂. By combining M̂µ and M̂Σ, we then can define the lack-of-fit test statistic below:

T̂2n = max
{
M̂µ − 2 log p+ log log p, M̂Σ − 4 log p+ log log p

}
.

4.2 Asymptotic results

Theorem 4. Suppose that Assumptions 1 and 4-8 at the Appendix hold. If q3 log5(p ∨

n) = o(n), then

P
(
T̂2n ≤ u

)
→ exp

(
−
{
π−1/2 + (8π)−1/2

}
exp(−u/2)

)
, (10)

as min(n, p)→∞ under the null hypothesis that model (5) is correctly specified.

From the proof of Theorem 4, we have that
√
n(µ̂Ŝ − µ̂Ŝc) =

√
n(µ̂S − µ̂Sc) −

Ψ1

√
n(β̂n − β0) + op(1) and

√
n{vec(Σ̂Ŝ) − vec(Σ̂Ŝc)} =

√
n{vec(Σ̂S) − vec(Σ̂Sc)} −

Ψ2

√
n(β̂n − β0) + op(1), where Ψ1 = f(0)E(XkX

∗>
k ), Ψ2 = f(0)E{(Xk ⊗ Xk)X

∗>
k },

and the partitions of S and Ŝ are based on the true parameter vector β0 and the es-

timator β̂n, respectively. These two equations still hold when β̂n is replaced by β̃n.

Under some local alternatives, we may expect that
√
n(β̂n − β0) or

√
n(β̃n − β0) has
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a deterministic shift cβ as in the low dimensional case in the previous section. From

Cai et al. (2013) and Cai et al. (2014), the test statistic T̂2n will have the power when

cβ = O(
√

log(p)/n). However, it may be difficult to derive the asymptotic behavior of

β̂n or β̃n under alternative hypothesis, and we leave it for future research.

Moreover, let µS = E(X|ε < 0), ΣS = var(X|ε < 0), µSc = E(X|ε ≥ 0) and

ΣSc = var(X|ε ≥ 0). The proposed test T̂2n is to check whether µS = µSc and ΣS = ΣSc

rather than to check whether FS(·) = FSc(·) as in the previous two sections. As a result,

the proposed test statistic T̂2n may have a lower power for some situations, and this may

be the necessary cost when the number of covariates p is much larger.

When all covariates X are discretely distributed, i.e. the distribution function has fi-

nite number of parameters, we may figure out a more powerful lack-of-fit test by checking

the equality of conditional distribution functions rather than their first two moments.

5 Simulation studies

This section conducts two simulation experiments to assess the finite-sample performance

of the proposed tests, T̂1n and T̂2n, for the cases with Gaussian and heavy-tailed covari-

ates, respectively. For the sake of comparison, we also conduct another two tests: the

one in Conde-Amboage, Sanchez-Sellero, and Gonzalez-Manteiga (2015), hence denoted

by CSG, and an oracle test, which refers to T̂2n with the sparsity structure being known

in advance.

For the test statistic T̂1n, from the Bahadur representation of β̂n at Section 3, if εi is

further assumed to be independent of Xi, then we have that

ε̂i = εi − {f(0)}−1X∗>i

(
n∑
j=1

X∗jX
∗>
j

)−1
X∗iψτ (εi) + op(n

−1/2),

where f(·) := fε|X(·) is the density function of εi. As in Feng et al. (2011), we use

the corrected residuals ε̂i + {f̂(0)}−1X∗>i (
∑n

j=1 X∗jX
∗>
j )−1X∗iψτ (ε̂i) in the bootstrapping

procedure, where ε̂i = Yi−X∗>i β̂n, and f̂(·) can be estimated from the residuals {ε̂i} by

the kernel method in Portnoy and Koenker (1989). Moreover, the following two-point

13



mass distribution is employed for the random weights {wi}:

wi =


2(1− τ) with probability 1− τ

−2τ with probability τ

.

The first experiment is for the case with Gaussian design, and the covariates X are

generated from the multivariate normal distribution with mean zeros and covariance

matrix Σ = (2−|i−j|)p×p. The data generating process is,

Yi = 1 +

p∑
j=1

βjXji + α(Xi) + εi, i = 1, . . . , n,

where Xi = (X1i, ..., Xpi)
>, {εi} and {Xi} are two i.i.d. sequences, and are indepen-

dent of each other. We consider four distributions for the error term εi: the standard

normal distribution, the exponential distribution with rate one, the Chi-squared distri-

bution with four degrees of freedom, and the Students-t distribution with three degrees

of freedom, which correspond to the symmetric, asymmetric, leptokurtic and platykurtic

cases, respectively. The coefficient vector is set to βi = 1 for 1 ≤ i ≤ q and βj = 0 for

q+1 ≤ j ≤ p with the cardinality of truly nonzero coefficients being q = 5. The function

α(·) is set to zero for evaluating the size, and two alternatives are considered:

(M1) α(Xi) = 0.5
(∑

1≤j≤qXji

)2
; and

(M2) α(Xi) = 4 exp
(
−0.5

(
1 +

∑p
j=1 βjXji

))
.

To estimate the quantile regression model, we use the post-`1 penalized method in Belloni

and Chernozhukov (2011) along with the suggesting tuning parameters in T̂2n, while a

quantile regression estimation is performed to all covariates in T̂1n and CSG, and only

to the truly active covariates, i.e. the first q covariates, in the oracle test. As a result,

the tests T̂1n and CSG are not applicable when n < p, and the oracle test will not be

affected when p increases and n is fixed.

We consider three quantile levels, τ = 0.25, 0.5 and 0.75, and four combinations for

sample size n and the number of covariates p: (n, p) = (100, 20), (100, 40), (200, 400)

and (200, 1000), where the first two combinations refer to the case with n > p, while the

last two are for the case with n < p. The number of replications is set to 500, and we
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use B = 500 for bootstrapping approximation in T̂2n and CSG. The significance level is

10%.

Table 3 presents the rejection rates of all four tests for the case with n > p, where

the sample size is fixed at n = 100. It can be seen that, when p = 20, the proposed test

T̂2n has a similar performance to its oracle counterpart, and actually the partitions of

datasets due to I(ε̂i < 0) are roughly the same in these two tests. When there are more

covariates, i.e. p = 40, T̂2n becomes less powerful, but it is still comparable with the

oracle test. For both tests T̂1n and CSG, the powers drop dramatically as the number of

covariate increases from p = 20 to 40, and actually they are not applicable when p > n.

Roughly speaking, all tests have acceptable sizes, while the two low dimensional tests,

T̂1n and CSG, can control the size better. In the meanwhile, T̂2n is slightly more sensitive

at the quantile levels τ = 0.25 and 0.75, while it is more conservative at τ = 0.5. To

provide a more insightful comparison, we further draw the ROC curves of these tests in

Figures 1 and 2, respectively for p = 20 and 40, where the alternative model (M1) is

used. The proposed test T̂2n dominates the two low dimensional tests, and has a more

obvious advantage when the number of covariates increases from p = 20 to 40. Actually

it is even as good as the oracle test, especially at the lower quantile levels. Moreover,

the proposed low dimensional test T̂1n outperforms CSG for most cases, and they have

a similar performance when p is larger.

Table 4 gives the rejection rates of T̂2n and the oracle test for the case with n < p,

where the sample size is n = 200. The proposed test T̂2n has a comparable power with

its oracle counterpart when the number of covariates is as large as p = 400, and still

provides a comparable power even for much larger p. Figures 3 and 4 presents their

ROC curves under alternative model (M1), and T̂2n is almost as good as the oracle test

even for p = 1000, especially at lower quantile levels. The ROC curves under alternative

model (M2) are also calculated for both cases of n > p and n < p, and similar findings

can be observed.

The second experiment is to evaluate our tests for the case with non-Gaussian co-

variates, and we here consider a heavy-tailed designs. Specifically, the covariate X is

generated from the multivariate Student’s t distribution t(µ,Σ, ν), where µ and Σ are
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the same as in the first experiment, and the degrees of freedom is set to ν = 6. All the

other settings are the same as in the previous experiment.

Table 5 presents the rejection rates of all four tests for the case with n > p. The two

high dimensional tests have a relatively lower power than that in the first experiment,

which is under expectation since t(µ,Σ, 6) is much more heavy-tailed than the Gaussian

distribution. Moreover, the low dimensional test T̂1n surprisingly has a even better

performance at higher quantile levels, and this is further confirmed by the observations on

Figures 5 and 6, which gives the ROC curves of all four tests under the alternative model

(M1) with p = 20 and 40, respectively. This may be due to the compromise between

two facts: (1) T̂2n is designed especially for the high dimensional data; however, (2) it

aims to checking the equality of first two moments rather than that of two conditional

distributions as in T̂1n. Table 6 lists the rejection rates of T̂2n and the oracle test for the

case with n < p, while Figures 7 and 8 presents their ROC curves under the alternative

model (M1) with p = 400 and 1000, respectively. The findings are similar to those in

the first experiment.

In sum, the proposed tests T̂1n and T̂2n can provide a reliable lack-of-fit check for low

dimensional and high dimensional data, respectively.

6 Empirical Analysis

6.1 Sales data

This subsection attempts to study how the sale of a company can be affected by other

factors. Note that the values of sales may vary at a very large range across different

companies, and hence a quantile regression model may be more suitable here.

The data is sampled from Forbes 500 companies. The variables include the amount of

sales in millions (Yi), the amount of assets in millions (X1i), profits in millions (X2i), the

number of employees in thousands (X3i), the type of market the company is associated

with (X4i), the market value of the company in millions (X5i), and the cash flow in mil-

lions (X6i). All values are for the year of 1986, and there are 79 companies included. The
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dataset is downloaded from the website http://lib.stat.cmu.edu/DASL/Datafiles/

Companies.html.

The high correlations can be observed among profits (X2i), market values (X5i), and

the cash flow (X6i), and we then involve profits (X2i) in the model only. To assess the

linearity assumption on relationship between sales (Yi) and four covariate variables at

different quantiles, we consider the following model,

Qτ (Yi | Xi) = β0 +
4∑
j=1

βjXji, i = 1, · · · , 79,

where Xi = (X1i, ..., X4i)
>.

We apply our test T̂1n to check the lack-of-fit for the above model, and the boot-

strapping procedure at Section 3 is employed to approximate the null distribution with

B = 5, 000 bootstrapped samples. The estimated p-values are 0.87, 4× 10−4 and 0.0 at

three quantile levels τ = 0.25, 0.5 and 0.75, respectively. This implies that the linear

regression model may fit data well for those companies with low sales, while contribu-

tions to sales from asset, profit and employee sizes may no longer linearly increases for

companies with relatively high sales.

To further explore the relationship between the response and covariates at τ =

0.25, 0.5 and, 0.75. We first take logarithm transformation on the data, i.e. let Ỹi =

log(Yi) and X̃ji = log(Xji) with 1 ≤ j ≤ 4, and then fit a linear quantile model,

Qτ (Ỹi | X∗i ) = β0 +
4∑
j=1

βjX̃ji, i = 1, · · · , 79.

The estimated p-values of our test T̂n are 0.99, 0.81 and 0.43 at quantile levels τ =

0.25, 0.5 and 0.75, respectively, and this confirms the existence of nonlinearity in the

model. We also perform the lack-of-fit test in He and Zhu (2003). However, all p-values

are close to one, and it fails to distinguish the above two models.

6.2 GDP growth rate data

This subsection attempts to analyze the dataset in Barro and Lee (2013). The original

dataset contains the economic development’s statistics from 138 different countries, and
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they were collected quinquennially from 1950 to 2010 or averaged of five-year period over

1950-2010. The profile of a country’s economic growth can be depicted by using measure-

ments such as national accounts of people’s income, education status, population and

fertility, government expenditures, PPP deflators, political variables and trade policies.

All economic features have been recorded in details and more extensive information can

be found on http://www.barrolee.com. A subset of the original dataset is given in

R package hdm, manufactured by Chernozhukov, Hansen, and Spindler (2016), and it

consists of n = 90 complete observations with p = 61 variables. We will use this subset

data to demonstrate the usefulness of our proposed test T̂2n.

In the literature, many researchers also care about the effect of lagged level of GDP

per capita on the current one. For example, in the classical Solow-Swan-Ramsey growth

model, there is a hypothesis of convergence in one country’s economic development, and

it is said that poorer countries should see faster economic growth than richer countries,

i.e. the estimated coefficient of the lagged level of GDP should be negative. As a result,

we choose the current GDP growth rates per capita as response (Y ), and the lagged

GDP growth rates per capita together with other economic features such as black market

premium, free trade openness and the other 58 characteristics are set to covariates. We

then consider the following quantile regression model,

Qτ (Yi | Xi) = β0 +
61∑
j=1

βjXji, i = 1, · · · , 90,

where Xi = (X1i, X2i, . . . , X61i). Since some covariates are skewed and/or heavy-tailed,

the logarithm and cube-root transformations are conducted accordingly.

The `1-penalized quantile regression with the same settings as in the previous section

is used to fit the model, and the proposed test T̂2n is conducted to check the lack of

fit at three quantile levels τ = 0.25, 0.5 and 0.75. We also compute the test in Conde-

Amboage et al. (2015), denoted by CSG, for the sake of comparison, and the p-values are

summarized into Table 1. It can be seen that all p-values of T̂2n are smaller than 5%, and

then the fitted model fails to provide a good fit to the data. Belloni and Chernozhukov

(2011) also mentioned that `1-penalized quantile regression doesn’t pick any features at

first, and we have to shrink the penalty parameter such that some economic features
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can be selected accordingly. We may believe that there are some important covariates

missed by the fitted model. However, the CSG fails to detect the problem, and it may

be due to the fact that p is close to n here.

Table 1: p-values of T̂2n and CSG.

Quantile levels T̂2n CSG

τ = 0.25 0.015 0.442

τ = 0.5 0.000 0.594

τ = 0.75 0.011 0.796

As a matter of fact, variable selection has been an important issue in this study

since the number of observations is comparable to that of covariates. Belloni and

Chernozhukov (2011) proposed using `1-penalized quantile regression with an adaptive

method in choosing penalty parameter λ to select the working model. According to the

suggested relaxation of λ, several covariates are chosen: lagged GDP growth rate X1,

black market premium X2, political instability X3, measure of tariff restriction X4, in-

fant mortality rate X5, ratio of government “consumption” net of defense and education

X6, exchange rate X7, “higher school complete” percentage in female population X8,

“secondary school complete” percentage in male population X9, female gross enrollment

ratio for higher education X10, percentage of non-education in male population X11, pop-

ulation proportion over 65 X12, average years of secondary schooling in male population

X13. We treat the above covariates to be the truly active ones, and it then forms a low

dimensional model,

Qτ (Yi | Xi) = β0 +
13∑
j=1

βjXji, i = 1, · · · , 90,

where Xi = (X1i, X2i, . . . , X13i). We conduct the CSG and the oracle tests again, and

their p-values are listed in Table 2, where the oracle test refers to T̂2n with the sparse

structure being know in advance; see also Section 5.

It can be seen that the hypothesis of using linear model to describe the latent rela-

tionship among current GDP growth rate and lagged GDP growth rate as well as other

economic features are rejected by proposed test at quantile levels τ = 0.25, 0.75 at the
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Table 2: p-values of CSG and oracle tests.

Quantile levels Oracle CSG

τ = 0.25 0.058 0.502

τ = 0.5 0.346 0.570

τ = 0.75 0.007 0.786

significance levle of 10%. It is consistent with the intuition that low or high GDP growth

rates may be related to much complicated social or political reasons, while a simple linear

regression model may not be able to excavate enough information from the true under-

lying correspondence. In the meanwhile, we can try to use a median linear regression

model to provide some insights in interpreting a country’s economic features’ effects on

its GDP growth rate.

7 Conclusion and discussion

The main contribution of this paper is to transform lack-of-fit tests for parametric quan-

tile regression models into checking the equality of two conditional distributions. This

makes it possible to construct a reliable test according to our experiences on covariates

such as the number of covariates, sample sizes, types of data (discrete or continuous co-

variates) etc. As an illustration, this paper gives two lack-of-fit tests for low dimensional

and high dimensional data, respectively.

The tests proposed in this paper is for a fixed τ , and can be easily extended to the

case with finite quantile levels. Recently more and more researches in quantile regression

have been developed on an interval belonging to (0, 1) (Koenker and Machado, 1999;

Koenker and Xiao, 2002; Angrist et al., 2006; Escanciano and Goh, 2014; Zheng et al.,

2015). It is also interesting to extend the result in this paper to this scenario, and we

leave it for possible future research.
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Appendix A: Technical conditions

A.1. Assumptions for low dimensional data

Assumption 1. It holds that, uniformly for Xi = X ∈ Rp, fε|X(u)− fε|X(0) = O(|u|1/2)

as u → 0, and fε|X(0) and its derivative f ′ε|X(0) are bounded away from both zero and

infinity.

Assumption 2. E(‖Xi‖3) <∞, and matrices Σ0 and Σ1 are positive definite.

Assumption 3. The τ th quantile of Fw is zero,
∫ +∞
0

x−1dFw(x) = −
∫ 0

−∞ x
−1dFw(x) =

0.5,
∫ +∞
−∞ |x|dFw(x) < ∞, and there exist two positive constant c1 and c2 such that

c1 = − supx∈(−∞,0] Fw(x) and c2 = infx∈[0,+∞) Fw(x), where Fw(·) is the distribution

function of wi.

Assumption 1 restricts the conditional density of the error term εi, and it is com-

monly used in the literature of quantile regression. Assumptions 1 and 2 are similar to

Conditions A1 and A2 in section 4.2 of Koenker (2005), and they make sure the existence

of Bahadur representation of β̂n. Assumption 3 is just Conditions (Q3)–(Q5) of Feng,

He, and Hu (2011).

Let zi = I(εi < 0), Zi = (X>i , zi)
>, φτ (zk) = τ − zk and

κ(Zi,Zj,Zk) = ‖Xi−Xj‖{ξij + (τ − zk)[ζifεi|Xi
(0)X∗>i Σ−11 X∗k + ζjfεj |Xj

(0)X∗>j Σ−11 X∗k]}.

21



Denote

κ0(Zi,Zj,Zk) =
1

3!

∑
p

κ(Zi1 ,Zi2 ,Zi3), (11)

where
∑

p is the permutation of three distinct elements {i, j, k}. It is then the kernel of

the U -statistic

U1n =

 n

3

−1 ∑
1≤i<j<k≤n

κ0(Zi,Zj,Zk),

which is used to derive the asymptotic distribution in Theorems 1 and 2.

A.2. Assumptions for high dimensional data

Assumption 4. λ = C1

√
log(p)/n for some C1 > 0, ‖β̃n−β0‖ = Op(

√
q log(p ∨ n)/n),

card(β̃n) = Op(q), max1≤i≤p
∑p

i=1 |bij| ≤ C2 for C2 > 0 with Ω = (bij), and the density of

ε is three times continuously differentiable at origin with the derivative f ′′′(0) is bounded

by a constant.

Assumption 5. There exist C3 > 0 and 0 < C4 < 1 such that C−13 ≤ λmin(Σ) ≤

λmax(Σ) ≤ C3 and max1≤i<j≤p |ri,j| ≤ C4 < 1, where Σ and R = (ri,j) are the covariance

and correlation matrices of covariate X, respectively.

Assumption 6. Suppose that there exists a subset Υ ⊂ {1, 2, . . . , p} with card(Υ ) =

o(p) and a constant α0 > 0 such that, for all γ > 0,max1≤j≤p,j /∈Υ sj(α0) = o(pγ) with

sj(α0) := card{i : |rij| ≥ (log p)−1−α0}. Moreover, there exist some constant r < 1 and a

sequence of number Λp,r such that card(Λ(r)) ≤ Λp,r = o(p).

Assumption 7. Suppose the covariates X satisfies either of the following conditions

(i.) Sub-Gaussian-type tails: Given log p = o(n1/5), there exist some constants η > 0

and K > 0 such that

E{exp(η(Xik − µi)2/σii)} ≤ K, 1 ≤ i ≤ p.

(ii.) Polynomial-type tails: Given some constants γ0, c1 > 0, p ≤ c1n
γ0 and for some

constants ε > 0 and K > 0 such that

E|(Xik − µi)/σ1/2
ii |4γ0+4+ε ≤ K, 1 ≤ i ≤ p.
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Furthermore, we assume that for a constant τ > 0,

min
1≤i≤j≤p

γij
σiiσjj

≤ τ

holds, where γij = var{(Xik − µi)(Xjk − µj)}.

Assumption 8. Suppose there exist κ ≥ 1/3 such that for any i, j, l,m ∈ {1, 2, . . . , p},

E{(Xik − µi)(Xjk − µj)(Xmk − µm)(Xlk − µl)} = κ(σijσml + σimσjl + σilσjm).

Assumption 4 is needed for the `1 penalized estimator β̃n and its de-biased version

β̂n; see Bradic and Kolar (2017). Assumption 5 consists of common assumptions in

the high dimensional setting; see Cai et al. (2013). Assumption 6 further restricts the

correlation matrix, while Assumption 8 is used to control the fourth moment; see Cai

et al. (2014). Assumption 7 specifies sub-Gaussian and polynomial-type distributions,

and those families include many commonly used distributions, such as the normal and

Student’s t distributions; see Cai et al. (2013) and Cai et al. (2014).
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Table 3: Rejection rates of T̂2n, the oracle test, T̂1n and CSG for the case with Gaussian

covariates and n > p. The nominal significance level is 10%.

Size Power

(M1) (M2)

ε τ T̂2n Oracle T̂1n CSG T̂2n Oracle T̂1n CSG T̂2n Oracle T̂1n CSG

(n, p) = (100, 20)

N(0,1) 0.25 0.106 0.124 0.092 0.100 0.956 0.948 0.404 0.106 0.906 0.906 0.316 0.072

0.50 0.074 0.052 0.100 0.108 0.976 0.994 0.700 0.972 0.924 0.998 0.664 0.958

0.75 0.102 0.120 0.112 0.088 0.958 0.978 0.762 0.982 0.942 0.986 0.776 0.930

Exp(1) 0.25 0.116 0.138 0.114 0.068 0.960 0.972 0.406 0.080 0.914 0.958 0.388 0.088

0.50 0.086 0.064 0.100 0.102 0.980 0.986 0.712 0.988 0.966 0.994 0.702 0.960

0.75 0.104 0.118 0.120 0.078 0.916 0.978 0.776 0.990 0.962 0.986 0.788 0.982

χ2
4 0.25 0.112 0.132 0.108 0.092 0.874 0.882 0.376 0.120 0.764 0.870 0.298 0.110

0.50 0.070 0.072 0.114 0.108 0.910 0.956 0.658 0.920 0.688 0.920 0.598 0.836

0.75 0.102 0.114 0.086 0.090 0.870 0.914 0.768 0.958 0.844 0.876 0.704 0.926

t3 0.25 0.114 0.150 0.084 0.086 0.912 0.952 0.376 0.102 0.790 0.864 0.326 0.070

0.50 0.076 0.068 0.100 0.080 0.946 0.990 0.694 0.966 0.876 0.970 0.674 0.960

0.75 0.114 0.112 0.094 0.072 0.940 0.978 0.784 0.984 0.930 0.968 0.734 0.972

(n, p) = (100, 40)

N(0,1) 0.25 0.122 0.168 0.086 0.106 0.830 0.836 0.162 0.062 0.744 0.830 0.150 0.098

0.50 0.096 0.074 0.102 0.094 0.890 0.950 0.310 0.104 0.776 0.940 0.296 0.118

0.75 0.114 0.134 0.076 0.076 0.716 0.930 0.212 0.118 0.858 0.936 0.200 0.116

Exp(1) 0.25 0.122 0.164 0.122 0.086 0.828 0.898 0.146 0.096 0.806 0.874 0.162 0.086

0.50 0.060 0.082 0.106 0.088 0.866 0.974 0.332 0.104 0.850 0.938 0.284 0.076

0.75 0.132 0.136 0.088 0.122 0.716 0.926 0.208 0.102 0.858 0.914 0.194 0.136

χ2
4 0.25 0.122 0.172 0.086 0.096 0.700 0.772 0.130 0.082 0.614 0.698 0.126 0.098

0.50 0.072 0.102 0.086 0.082 0.720 0.860 0.256 0.112 0.504 0.762 0.254 0.096

0.75 0.132 0.148 0.094 0.116 0.606 0.848 0.234 0.104 0.746 0.782 0.208 0.124

t3 0.25 0.110 0.136 0.076 0.098 0.788 0.806 0.138 0.098 0.680 0.740 0.148 0.066

0.50 0.080 0.092 0.092 0.092 0.838 0.952 0.288 0.096 0.758 0.928 0.280 0.094

0.75 0.142 0.146 0.104 0.084 0.696 0.906 0.236 0.120 0.878 0.930 0.204 0.104
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Table 4: Rejection rates of T̂2n and the oracle test for the case with Gaussian covariates

and n < p. The nominal significance level is 10%.

Size Power

(M1) (M2)

ε τ T̂2n Oracle T̂2n Oracle T̂2n Oracle

(n, p) = (200, 400)

N(0,1) 0.25 0.130 0.112 0.946 0.956 0.864 0.928

0.50 0.084 0.068 0.986 1.000 0.936 0.998

0.75 0.138 0.092 0.834 0.996 0.994 0.998

Exp(1) 0.25 0.128 0.110 0.938 0.976 0.954 0.968

0.50 0.124 0.058 0.984 1.000 0.942 0.996

0.75 0.150 0.092 0.862 0.998 0.984 0.996

χ2
4 0.25 0.130 0.098 0.874 0.894 0.686 0.796

0.50 0.120 0.060 0.906 0.986 0.632 0.958

0.75 0.138 0.084 0.796 0.974 0.888 0.942

t3 0.25 0.146 0.098 0.920 0.922 0.768 0.858

0.50 0.126 0.062 0.978 0.998 0.872 0.992

0.75 0.112 0.090 0.844 0.998 0.948 0.990

(n, p) = (200, 1000)

N(0,1) 0.25 0.144 0.132 0.790 0.892 0.610 0.816

0.50 0.068 0.096 0.906 0.990 0.792 0.992

0.75 0.128 0.102 0.676 0.976 0.948 0.980

Exp(1) 0.25 0.192 0.134 0.836 0.914 0.776 0.890

0.50 0.054 0.082 0.900 0.998 0.810 0.980

0.75 0.154 0.086 0.672 0.986 0.940 0.980

χ2
4 0.25 0.154 0.080 0.668 0.736 0.462 0.610

0.50 0.090 0.072 0.742 0.934 0.356 0.834

0.75 0.142 0.114 0.538 0.926 0.786 0.864

t3 0.25 0.148 0.104 0.686 0.826 0.540 0.730

0.50 0.074 0.074 0.892 0.992 0.804 0.968

0.75 0.130 0.126 0.676 0.978 0.930 0.970

28



Table 5: Rejection rates of T̂2n, the oracle test, T̂1n and CSG for the case with heavy-

tailed covariates and n > p. The nominal significance level is 10%.

Size Power

(M1) (M2)

ε τ T̂2n Oracle T̂1n CSG T̂2n Oracle T̂1n CSG T̂2n Oracle T̂1n CSG

(n, p) = (100, 20)

N(0,1) 0.25 0.110 0.100 0.112 0.062 0.716 0.774 0.358 0.028 0.618 0.716 0.358 0.038

0.50 0.056 0.060 0.094 0.130 0.712 0.840 0.766 0.858 0.624 0.792 0.730 0.804

0.75 0.092 0.086 0.102 0.090 0.624 0.772 0.890 0.924 0.668 0.762 0.886 0.910

Exp(1) 0.25 0.108 0.094 0.092 0.072 0.744 0.812 0.372 0.024 0.748 0.782 0.370 0.032

0.50 0.072 0.038 0.126 0.090 0.704 0.812 0.768 0.862 0.656 0.782 0.752 0.814

0.75 0.100 0.078 0.110 0.074 0.636 0.762 0.894 0.940 0.688 0.726 0.852 0.886

χ2
4 0.25 0.128 0.076 0.116 0.062 0.664 0.674 0.356 0.022 0.496 0.642 0.326 0.026

0.50 0.072 0.070 0.086 0.092 0.600 0.690 0.688 0.734 0.354 0.592 0.632 0.644

0.75 0.100 0.090 0.094 0.076 0.636 0.642 0.844 0.884 0.502 0.606 0.856 0.850

t3 0.25 0.114 0.090 0.076 0.086 0.696 0.736 0.366 0.030 0.618 0.644 0.294 0.026

0.50 0.070 0.036 0.094 0.096 0.702 0.818 0.740 0.846 0.578 0.712 0.722 0.756

0.75 0.118 0.080 0.092 0.074 0.618 0.746 0.904 0.920 0.654 0.682 0.868 0.882

(n, p) = (100, 40)

N(0,1) 0.25 0.096 0.120 0.066 0.054 0.534 0.598 0.176 0.040 0.450 0.532 0.130 0.056

0.50 0.074 0.078 0.108 0.084 0.532 0.670 0.510 0.088 0.430 0.616 0.482 0.092

0.75 0.138 0.106 0.088 0.072 0.498 0.624 0.540 0.138 0.574 0.624 0.502 0.128

Exp(1) 0.25 0.116 0.108 0.118 0.068 0.606 0.604 0.178 0.036 0.544 0.626 0.158 0.060

0.50 0.078 0.082 0.088 0.100 0.538 0.670 0.506 0.096 0.432 0.626 0.462 0.054

0.75 0.120 0.080 0.086 0.082 0.480 0.660 0.576 0.134 0.564 0.674 0.476 0.136

χ2
4 0.25 0.108 0.102 0.098 0.062 0.476 0.546 0.162 0.040 0.356 0.480 0.126 0.048

0.50 0.108 0.092 0.102 0.078 0.394 0.502 0.448 0.066 0.190 0.410 0.440 0.096

0.75 0.122 0.104 0.082 0.068 0.480 0.494 0.494 0.104 0.382 0.480 0.458 0.136

t3 0.25 0.126 0.114 0.120 0.074 0.504 0.576 0.148 0.048 0.382 0.492 0.162 0.064

0.50 0.088 0.088 0.090 0.088 0.514 0.630 0.500 0.078 0.348 0.558 0.446 0.090

0.75 0.142 0.112 0.076 0.080 0.442 0.636 0.524 0.124 0.518 0.610 0.508 0.148
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Table 6: Rejection rates of T̂2n and the oracle test for the case with heavy-tailed

covariates and n < p. The nominal significance level is 10%.

Size Power

(M1) (M2)

ε τ T̂2n Oracle T̂2n Oracle T̂2n Oracle

(n, p) = (200, 400)

N(0,1) 0.25 0.098 0.104 0.534 0.666 0.406 0.542

0.50 0.086 0.078 0.574 0.798 0.432 0.670

0.75 0.104 0.102 0.584 0.762 0.676 0.772

Exp(1) 0.25 0.084 0.100 0.578 0.684 0.592 0.658

0.50 0.094 0.074 0.620 0.762 0.476 0.748

0.75 0.080 0.096 0.538 0.780 0.696 0.742

χ2
4 0.25 0.094 0.090 0.448 0.542 0.330 0.426

0.50 0.084 0.086 0.362 0.550 0.188 0.414

0.75 0.100 0.092 0.390 0.596 0.470 0.556

t3 0.25 0.078 0.078 0.508 0.592 0.396 0.450

0.50 0.082 0.080 0.582 0.732 0.382 0.644

0.75 0.116 0.094 0.512 0.724 0.644 0.726

(n, p) = (200, 1000)

N(0,1) 0.25 0.110 0.110 0.456 0.422 0.316 0.396

0.50 0.082 0.108 0.388 0.572 0.252 0.500

0.75 0.128 0.096 0.440 0.652 0.572 0.642

Exp(1) 0.25 0.146 0.078 0.528 0.538 0.484 0.500

0.50 0.080 0.068 0.376 0.614 0.286 0.540

0.75 0.110 0.116 0.486 0.690 0.600 0.656

χ2
4 0.25 0.120 0.092 0.394 0.364 0.230 0.292

0.50 0.084 0.106 0.208 0.404 0.142 0.302

0.75 0.114 0.088 0.352 0.550 0.436 0.482

t3 0.25 0.098 0.116 0.352 0.398 0.284 0.302

0.50 0.070 0.100 0.350 0.572 0.180 0.454

0.75 0.110 0.130 0.440 0.666 0.580 0.640

30



0.25 0.5 0.75

chisq(4)
exp(1)

norm
(0,1)

t(3)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

False negative rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curves with n=100, p=20

Figure 1: ROC curves of T̂2n (solid lines), the oracle test (dotted lines), T̂1n (dashed lines)

and CSG (dot-dashed lines) under the alternative model (M1) with Gaussian covariates

and (n, p) = (100, 20).
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Figure 2: ROC curves of T̂2n (solid lines), the oracle test (dotted lines), T̂1n (dashed lines)

and CSG (dot-dashed lines) under the alternative model (M1) with Gaussian covariates

and (n, p) = (100, 40).
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Figure 3: ROC curves of T̂2n (solid lines) and the oracle test (dotted lines) under the

alternative model (M1) with Gaussian covariates and (n, p) = (200, 400).

0.25 0.5 0.75

chisq(4)
exp(1)

norm
(0,1)

t(3)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

False negative rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curves with n=200, p=1000

Figure 4: ROC curves of T̂2n (solid lines) and the oracle test (dotted lines) under the

alternative model (M1) with Gaussian covariates and (n, p) = (200, 1000).
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Figure 5: ROC curves of T̂2n (solid lines), the oracle test (dotted lines), T̂1n (dashed lines)

and CSG (dot-dashed lines) under alternative model (M1) with heavy-tailed covariates

and (n, p) = (100, 20).
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Figure 6: ROC curves of T̂2n (solid lines), the oracle test (dotted lines), T̂1n (dashed lines)

and CSG (dot-dashed lines) under alternative model (M1) with heavy-tailed covariates

and (n, p) = (100, 40).
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Figure 7: ROC curves of T̂2n (solid lines) and the oracle test (dotted lines) under the

alternative model (M1) with heavy-tailed covariate and (n, p) = (200, 400).
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Figure 8: ROC curves of T̂2n (solid lines) and the oracle test (dotted lines) under the

alternative model (M1) with heavy-tailed covariate and (n, p) = (200, 1000).
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