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Abstract 

1. Flow of terrestrial carbon though aquatic ecosystems (allochthony) is an important but 

underestimated component of the global carbon cycle. A lack of clear consensus about the 

importance of allochtonous (terrestrial) organic carbon is sometimes attributed to 

uncertainties associated with conventional ‘bulk’ isotope data, the most widely used 

ecological tracer. 

2. Amino acid-specific isotope analysis is an emerging research method promising to address 

existing limitations of bulk C and N isotope analyses. We tested the efficacy of amino acid 

δ13C data as a generalisable measure of allochthony by analysing an aggregated dataset 

(n=168) of primary and secondary data of carbon sources from disparate geographical 

locations across the globe.  

3. We found the δ13C fingerprints amino acids to be consistently distinct between 

allochthonous (terrestrial) and autochthonous (aquatic) carbon sources. We also found that 

our approach is most effective when we use only essential amino acid tracers (i.e., 

isoleucine, leucine, phenylalanine, threonine, and valine). Predictive trends in δ13C 

fingerprints appear to be largely compatible across studies and/or laboratories. 

4. As a case study, we used this approach to quantify the contribution of terrestrial carbon to 

an endemic cave fish, Cryptotora thamicola, and found that its biomass was comprised 

largely of autochthonous carbon (~75%). 

 

Introduction 

Allochthonous flow of terrestrial carbon into aquatic food webs (allochthony) is thought to be an 

underestimated component of the global carbon cycle (Boyero et al. 2011; Hanson et al. 2014). 

Allochthony is commonly studied using naturally occurring carbon and nitrogen isotopes (Jardine et 

al. 2017; Brett et al. 2017; Tanentzap et al. 2017), yet methodological constraints have thus far 
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hindered the formulation of a clear consensus about the role of terrestrial organic carbon in aquatic 

ecosystems (Brett et al. 2017). 

A major limitation of conventional ‘bulk tissue’ stable isotope analysis (non-specific, whole-tissue 

analysis of all organic compounds in an organism) is that nitrogen and carbon isotope profiles of 

aquatic and terrestrial plants often overlap (Finlay 2001). Moreover, bulk isotope signals are 

susceptible to fluctuating rates of trophic discrimination—i.e., the difference in carbon isotope ratios 

(δ13C) of predators relative to their prey (Caut et al. 2009; Ohkouchi et al. 2015). This can differ 

between taxonomic groups (Vander Zanden & Rasmussen 2001) as well as across the spectrum of 

predator-prey biochemical compatibility (Bastos et al. 2017; Brett et al. 2017). Consequently, bulk 

isotope approaches are difficult to up-scale spatially and temporally because time- and location-

specific sampling of primary producers are needed to account for uncertainties in primary producer 

δ13C (Hadwen et al. 2010; Bowes & Thorp 2015). Relevant primary producers, however, can be 

difficult to collect (e.g., unidentifiable source of terrestrial detritus in cave rivers), isolate (e.g., 

biofilm mixed with fine substrate and microorganisms), or even find (e.g., time-appropriate 

producers in longitudinal studies using museum-preserved consumer specimens (Thorp & Bowes 

(2017)).  

Uncertainty in bulk isotope data are sometimes attributed to differences in the biosynthetic 

pathways of the various biochemical compounds (e.g., protein, carbohydrate, lipid) comprising a 

heterotrophic organism’s diet and tissue (McMahon et al. 2010; Ohkouchi et al. 2015). Advances in 

mass spectrometry offer a logical solution to this problem—increase data specificity by profiling 

individual biochemical compounds separately (compound specific isotope analysis or CSIA) (Larsen 

et al. 2009). Candidate compounds include fatty acids and amino acids, but interpretation of the 

former can be complicated by the yet unresolved unpredictability in trophic discrimination (Nielson 

et al. 2018). Moreover, pioneering publications show that amino acid δ13C patterns are useful 

identifiers of potential carbon sources (Scott et al. 2006; Larsen et al. 2009; 2013). Since then, 
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variations of this approach have been successfully applied in terrestrial (Gomez et al. 2018), marine 

(Arthur et al. 2014; McMahon et al. 2015), and freshwater ecosystems (Thorp & Bowes 2017). 

However, amino acid-specific δ13C analysis has not been widely adopted, possibly because of the 

high analytical costs involved and the presently inadequate understanding of its ecological 

applications (Nielson et al. 2018). 

In this paper, we use a comprehensive amino acid δ13C dataset comprising both primary and 

secondary data to explore a new, widely-generalisable approach to tracing terrestrial organic carbon 

in aquatic food webs. While amino acid δ13C patterns of terrestrial plants are conserved across space 

(Larsen et al. 2012), data from marine predatory fish suggest that amino acid δ13C may be more 

variable in aquatic primary producers (Wang et al. 2018). Therefore, we asked if amino acid δ13C 

profiles can consistently identify terrestrial (allochthonous) and aquatic (autochthonous) organic 

carbon sources across disparate geographical regions. As a case study, we quantified the 

contribution of terrestrial carbon to the biomass of the endemic waterfall-climbing cave angel fish, 

Cryptotora thamicola (Kottelat 1989). Cave river ecosystems are often inaccessible to researchers, 

and unsurprisingly, published data are scarce and sometimes conflicting (see Simon et al. (2003) and 

Venarsky et al. (2014)). Considering its potential for generalised applications, amino acid δ13C data 

may be well-suited for quantifying the degree of allochthony in cave river systems where carbon 

sources are not always apparent. Here, we test the assumption that subterranean food webs are 

largely supported by allochthonous organic carbon subsidies (Culver 1982; Polis et al. 1997).  

 

Methods 

Data collection 

We collected a total of 47 primary carbon source data points (Appendix A; Supplementary Data) by 

sampling producers from tropical forest stream ecosystems and associated riparian zones in 
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Singapore (1º N, 103 E), Peninsular Malaysia (5º N, 103º E), and north-western Thailand (19º N, 99º 

E). These comprised periphyton (autochthonous, n=9), macrophytes (autochthonous, n=5), peat 

(allochthonous, n=3), C3 plants (allochthonous, n=18), and C4 grasses (allochthonous, n=12). All 

producer samples were preserved in salt (Arrington & Winemiller 2002) before subsequent 

processing in the laboratory. Samples were dried at 70ºC for 48 hours and homogenized. 

Approximately 20mg worth of ground samples were packed in 12 ml Borosilicate Extainer Vials and 

shipped to the University of California, Davis (UC Davis) Stable Isotope Facility for amino acid δ13C 

isotope analysis (details of protocol in Appendix B). 

We compiled secondary data via a systematic literature search on Web of Science (search 

term=[(“compound specific isotope analysis” OR “stable isotope analysis” OR “stable isotope” OR 

“isotope analysis”) AND ("amino acid”) AND (“carbon” OR “d13C’ OR “carbon-13”)]). We examined 

returned studies to ascertain suitability and extracted all δ13C data associated with strictly 

autotrophic taxa (photoautotrophs and chemolitotrophs) through which inorganic carbon (e.g., CO2) 

enters biological systems. Using this search protocol, we aggregated 121 data points (Appendix A; 

Supplementary Data) comprising 78 allochthonous carbon sources (Fogel & Tuross 2003; Larsen et 

al. 2013; Paolini et al. 2015; Jarman et al. 2017; Thorp & Bowes 2017) and 43 autochthonous carbon 

sources (Scott et al. 2006; Larsen et al. 2013; Thorp & Bowes 2017). Geographically, origins of non-

cultured producer samples include Africa [i.e., Nigeria (9 N, 9º E)], Australia (25º S, 133º E), 

continental USA [i.e., Alaska (61º N, 156º W), Kansas (39º N, 98º W), and Maryland (39º N, 77º W)], 

the Caribbean [i.e., Puerto Rico (18 N, 67º E)], Europe [i.e., Denmark (56º N, 10º E); Germany (51º N, 

10º E); Italy (42º N, 13º E); Spain (40º N, 94 W)], South America [i.e., Ecuador (2º N, 78º E)], and 

South Asia [i.e., Sri Lanka (8º N, 81º E)].  
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Study design 

We consolidated both primary and secondary data for subsequent analyses (Liew et al. 2019). The 

combined dataset comprised δ13C values of 12 amino acids (AA) (isoleucine, leucine, phenylalanine, 

threonine, valine, alanine, aspartate, glutamate, glycine, methionine, proline, and tyrosine) from 168 

primary producers from locations listed above. However, measurements for less abundant AA (e.g., 

methionine) often fell below detection limits. We excluded lysine in consideration of potential co-

elution with tyrosine (McMahon et al. 2010). 

Amino acid selection can influence the effectiveness of δ13C data in quantifying assimilated 

terrestrial carbon. The selection process should seek a balance between maximising the number of 

tracers (i.e., AAs) and maximising replication, the latter necessitating exclusion of AAs with missing 

data. Further, tracer selection should also consider the potential confounding impacts of trophic 

discrimination sometimes observed in AAs which are non-essential to vertebrates (e.g., alanine, 

glutamate) (McMahon et al. 2010). Therefore, we tested four selection strategies: 

1. “All AAs”—maximise retention of tracers (12 amino acids, n=47); 

2. “Abundant AAs”—increase replication by excluding AAs with more than 5% missing value 

(i.e., methionine, proline, tyrosine, and threonine) (8 amino acids, n=162);  

3. “All essential AAs”—maximise essential AA retention (5 amino acids, n=156); and  

4. “Abundant essential AAs”—maximise replication by excluding essential AAs with missing 

values (4 amino acids, n=168). 

We were interested in relative carbon isotope fractionation between AAs, rather than absolute δ13C, 

so our data were normalized to corresponding sample means using the following formula: 

                 
       
 
   

 
 ……………(1), 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

where δ13Cn,ij represents normalized δ13C of the i-th AA of the j-th data point, while δ13Cij represents 

the raw δ13C value of the i-th AA of the j-th data point, and P represents the number of AAs retained 

for analyses under strategies 1–4 listed above, respectively. 

Statistical analyses 

We visualized potential differences in δ13Cn profile (henceforth referred to as δ13C fingerprints (sensu 

Larsen et al. 2013)) between allochthonous and autochthonous carbon sources by running Principal 

Components Analyses (PCA) for each set of AAs corresponding to respective selection strategies.  

We assessed the cogency of δ13C fingerprints in predicting probability of terrestrial origin for all AAs 

using Bayesian logistic regressions on the rjags*4.6 statistical package (Plummer 2006). This was 

chosen over a frequentist approach to maintain philosophical consistency with subsequent Bayesian 

mixing models (see Case study) commonly used for isotopic diet quantification (Parnell et al. 2013). 

We analysed our data with a combination of multivariate and univariate approaches. In our 

multivariate approach, we tested the relationship between our binary response variable (i.e., 

allochthonous or autochthonous) and two continuous predictor variables (i.e., PC1 and PC2) by 

parameterising the posterior distributions of model coefficients with 100,000 iterations of the 

following model (burn-in = 5,000) on four parallel chains (thinning interval = 1):  

    
 

   
    

 
  

 
       

 
      …………… (2), 

where p represents the probability that a carbon source is allochthonous, while PC1 and PC2 

represent the first two principal components from PCA outputs corresponding to the respective 

selection strategies. Priors for all parameters were weakly informative. Here, non-zero  1 and/or  2 

coefficients (95% credible interval does not overlap with zero) suggest that a set of δ13Cn profiles 

(derived with the respective selection strategy) are distinct between allochthonous and 

autochthonous carbon sources and vice versa.  
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In our univariate approach, we parameterised the posterior distributions of model coefficients 

describing the relationship between our binary response variable (i.e., allochthonous or 

autochthonous) and continuous predictor variables (i.e., δ13Cn values) with the following model using 

the same procedure as in equation (2):  

    
  

    
    

 
  

 
          …………… (3). 

Here, pi represents the probability that a carbon source is allochthonous given a set of normalized 

δ13C values of the i-th AA, while δ13Cn,i represents normalized δ13C of the i-th AA. Non-zero  3 

coefficients suggest that the respective set of δ13C fingerprints associated with the i-th AA are 

predictive of the probability that a carbon source is allochthonous. 

Both multivariate and univariate analyses were repeated for each selection strategy because δ13C 

fingerprints of respective AAs may fluctuate with differing δ13C means calculated for corresponding 

AA pools. For example, the δ13C mean across twelve AAs in Strategy 1 is likely to differ from the δ13C 

mean across five AAs in Strategy 3.  

We also compared AA selection strategies quantitatively using outputs from Linear Discriminant 

Analyses (LDA) of δ13C fingerprints. Here, data subsets from each selection strategy were randomly 

allocated for model training (75%) and validation (25%). We then estimated model performance in 

distinguishing between allochthonous and autochthonous carbon sources by computing AUC (Area 

Under the Curve) scores. An AUC score of 1.0 reflects a perfectly predictive model, while a score of 

0.5 suggests that model predictions are not statistically different from chance classifications. We 

repeated this over 1,000 iterations. 
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Inter-laboratory data compatibility 

The utility of our approach as a generalisable measure of allochthonous carbon assumes that AA 

δ13C data are compatible across laboratories. However differences in CSIA methodology (e.g., 

derivatization protocol) can produce measurement discrepancies which are difficult to control for, 

given the scarcity of pairwise inter-laboratory comparisons (Roberts et al. 2018). We checked that 

our results are robust to potential inter-laboratory measurement discrepancies using two separate 

tests. 

First, we assessed the generalisability of predictive relationship (determined via equation (3)) across 

studies (or laboratories) by introducing an interaction term with study as a covariate (where study is 

a categorical variable with three levels: i) Liew et al. (present study, i.e., primary data from this 

study); ii) Larsen et al. (2013); and iii) Thorp & Bowes (2017)). We excluded data from Fogel & Tuross 

(2003), Paolini et al. (2015) and Jarman et al. (2017) because autochthonous carbon source data 

were not reported, while Scott et al. (2006) was excluded because allochthonous carbon source data 

were lacking. We fit one multivariate model (modified from equation 2) and one univariate model 

(modified from equation 3) to our data:  

    
  

    
    

 
  

 
       

 
       

 
          

 
                

 
 
                …………… (4); 

    
   

     
    

 
  

 
           

 
          

    
                 ……………(5). 

Here, pk and pik represents the probability that a carbon source is allochthonous, PC1 and PC2 are 

principal components of PCAs conducted for each selection strategy, δ13Cn,i represents normalized 

δ13C of the i-th AA, and studyk represents studies 1–3 listed above. We were interested in the 

coefficients describing the interaction terms (i.e.,  5–7) because if these were not statistically 

different from zero, differences in δ13C fingerprints between allochthonous and autochthonous 
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carbon sources (described by coefficients  1–3) can be generalised between studies. Conversely, we 

were not interested in the main effect of study because a non-zero  4 would simply suggests that 

the likelihood of a carbon source being allochthonous differ between studies/datasets. This would 

imply that the proportion of allochthonous data points were greater in some studies/datasets than 

in others. We fit the model in equation (5) and (6) to data subsets in every selection strategy, except 

Strategy 1 where only one dataset (from the present study) was retained given the selection criteria. 

Second, we generated 1,000 simulated datasets in which random error in both directions (i.e., 

positive and negative) were added to our data. Simulated random error were specific to each AA and 

was drawn from a uniform distribution bounded by ± mean inter-laboratory discrepancy reported by 

Arthur et al (2014) and Gomez et al. (2018), respectively (Appendix H). Here, we reduce the accuracy 

of measurements by increasing the difference between simulated and measured values. We fit 

Bayesian logistic regressions of the statistical model described in equation (3) to each of our 1,000 

simulated datasets. Resulting coefficient estimates (i.e., 1,000 mean  3 values) were then compared 

to those derived from observed data. In view of the computation demands and data availability 

(Arthur et al. (2014) only compared essential AAs), we restricted error simulation to Strategy 3.  

 

Case study 

Study site  

We tested our approach to quantifying allochthony in an oligotrophic cave river ecosystem in Tham 

Susa of the Maehongsorn region of northwest Thailand (19°28’N; 98°08’E). The endemic, highly 

threatened (possibly critically endangered (Vidthayanon 2011)) cave fish, Cryptotora thamicola 

(Family Balitoridae), is a rheophile that has only been recorded from a single series of rapids 

(spanning a 50 metre reach) within this cave (Trajano et al. 2002). To date, nothing is known about 

the feeding ecology of C. thamicola. While other cave fishes are presumed generalists (Trajano et al. 
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2002), surface-dwelling confamilials of C. thamicola subsist primarily on biofilm (Yang & Dudgeon 

2010; Sheldon 2011). The only other metazoa known to occur in the Tham Susa cave system are 

terrestrial cockroaches and small, unidentified flying insects.  

As with many subterranean communities, little is known about the carbon sources supporting the 

food web at our study site (Trajano et al. 2002). This system is well-suited for testing our approach 

because there are two main sources of organic carbon: particulate organic matter from terrestrial C3 

and/or C4 plants outside the cave (allochthonous) and biofilm growing on submerged cave walls 

(autochthonous) and instream rock surfaces (Trajano et al. 2002). In cave ecosystems, strict 

definitions of allochthonous input would include organic matter from aquatic producers (e.g., 

periphyton) outside the cave. However, we do not make a distinction between surface- and cave-

aquatic carbon sources because we were mainly interested in identifying terrestrial primary 

production. For convenience, all aquatic (or submerged) primary producers will henceforth be 

equivalently referred to as “autochthonous” carbon sources. 

 

Data collection and analyses 

We collected one adult C. thamicola (standard length ca. 25 mm) from the downstream face of 

boulders at the rapids in the Tham Susa cave system. Greater sample sizes for AA δ13C analysis were 

unavailable given the species’ relative scarcity, low population size (possibly 102–103 individuals) and 

highly restricted distribution (Trajano et al. 2002). This specimen, which constituted one of three 

individuals of the species ever collected (two are in museum collections), was salt-preserved 

(Arrington & Winemiller 2002) for subsequent processing. We visualised the δ13C fingerprints of C. 

thamicola in relation to allochthonous and autochthonous producers using a PCA. 

Relative carbon contributions from allocthonous and autochthonous carbon were estimated using 

Bayesian mixing models on the simmr*0.3 (Parnell 2016) statistical package on the R statistical 
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platform. We ran 100,000 iterations (burn-in = 5,000) of a two-source (i.e., allochthonous and 

autochthonous) mixing model on four parallel chains (thinning interval = 1). We did this with twelve, 

eight, five, and four tracers (corresponding to AA selection strategies 1–4), respectively. Source 

information (allochthonous and autochthonous δ13Cn mean and standard deviation) were derived 

from data subsets associated with each AA selection strategy. We conducted all analyses on the 

R*3.4.1 statistical platform (R Core Team 2017). 

Results 

Ordination outputs (PCA and LDA) of different combinations of AAs across all our four selection 

strategies suggest that δ13C fingerprints are consistently distinct between allochthonous and 

autochthonous carbon sources (Fig. 1) (Table 1). Strategy 3, where we all essential AAs were 

retained, accounted for the greatest proportion of variance in the data between its two major 

principal components (60% by PC1 and 26% by PC2). Strategy 3 also returned the joint-highest mean 

AUC score of 0.89 (Table 1).  

Multivariate and univariate logistic regression output show that Strategy 3 produced generally 

(Table 1) and individually (Table 2) (Appendix E) predictive δ13C fingerprints. In contrast, Strategy 1 

was relatively inefficient, in that only five of its twelve AAs (Table 2) were predictive of allochthony. 

Direction of predictions were generally consistent across selection strategies. For example, δ13C 

fingerprints of leucine and valine were mostly lower in allochthonous carbon sources while the 

opposite was true for phenylalanine. 

Inter-laboratory data compatibility 

Overall, δ13C fingerprints produced by Strategy 2 and Strategy 3 were generalisable across studies 

(Table 1). Selection strategy 3 also produced δ13C fingerprints which were mostly generalisable—

phenylalanine δ13C being the only exception. However, in all selection strategies, at least one AA was 

associated with a non-zero interaction term ( 7) when analysed individually (Table 1). Moreover, we 
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found that δ13C fingerprints retained their predictive efficacy after statistically controlling for 

discrepancies in measurements between studies (Appendix C;D). 

Bayesian logistic regression of 1,000 simulated datasets produced mean  3 coefficient ranges which 

overlap with the mean  3 coefficients estimated from observed data (Fig. 2). This was true for all five 

essential AAs, suggesting that differences in δ13C fingerprints between allochthonous and 

autochthonous carbon sources were not significantly confounded by the artificial introduction of 

additional uncertainty in the accuracy of isotope measurements. 

Case study 

The δ13C fingerprint of C. thamicola overlapped with allochthonous producers in ordination space for 

selection strategies 1 and 2, where non-essential AAs were retained as source tracers (Fig 1; Fig S2). 

Conversely, autochthonous signals were clear when we retained only essential AAs (Strategies 3 and 

4) (Fig 1; Fig S2). This trend is mostly conserved in our mixing model output, with one notable 

exception—only Strategy 1 produced a source contribution estimate indicative of allochthonous 

carbon dominance (~95%) (Fig. 3). Source contribution estimates from Strategies 2, 3, and 4 suggest 

autochthonous carbon dominance, ranging from ~74% to ~81%. We also modified Strategy 3 by 

selecting only AAs with statistically generalisable trends in δ13C fingerprints (isoleucine, leucine, 

threonine, valine (Table 1)) as source tracers. This had little effect on source contribution estimates 

(Fig. 3).  

 

Discussion 

We show in this paper that amino acid δ13C fingerprints are consistently distinct between 

allochthonous and autochthonous carbon sources collected globally, making them reliable tracers of 

terrestrial organic carbon assimilation in freshwater food webs (Fig. 1; Table 1; Appendix I). It is 

important to note, however, that this is contingent upon AA selection. When analyses were 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

restricted to essential AAs (Strategy 3), all associated δ13C fingerprints were cogent predictors of 

organic carbon source. Moreover, differences in δ13C fingerprints between carbon sources were also 

mostly generalisable across studies (or laboratories). 

When non-essential AAs were retained (e.g., Strategy 1), mixing model output presented a skewed 

perception of allochthonous carbon contribution (Fig. 1; Fig 3; Appendix I). These erroneous 

observations were consistent with our understanding of trophic discrimination patterns (see 

McMahon et al. 2010). For example, C. thamicola δ13C fingerprints derived using selection strategy 1 

would likely be placed in an ordination space associated with autochthonous carbon sources if its 

data point was shifted in a direction which ‘corrects’ for known trophic discrimination values—i.e., 

by inflating alanine, glutamate, and glycine δ13C (higher on both x- and y-axes on Fig. 1) (McMahon 

et al. 2010). Notably, the confounding influence of trophic-discrimination was minimised (Fig. 3) 

when source tracers used in mixing models comprised a reduced proportion of non-essential AAs 

(i.e., Strategy 2). 

With the right combination of AA tracers (i.e., Strategy 3), our approach to quantifying allochthony 

addresses two common shortfalls associated with conventional bulk isotope approaches. First, 

consistent differences in δ13C fingerprints between allochthonous and autochthonous carbon 

sources contrasts the unpredictable fluctuations in bulk tissue δ13C data Bowes & Thorp 2015). 

Second, the availability of non-fractionating tracers (i.e., essential AAs) (McMahon et al. 2010) 

eliminates the need for explicit knowledge about the exact number of trophic steps between 

consumers and relevant primary producers at the base of the food web. This will be particularly 

useful in complex food webs with near ubiquitous omnivory (e.g., tropical lake food webs (Liew et al. 

2018)) where consumer trophic levels may be difficult to determine. Moreover, δ13C fingerprints are 

mostly invariant across different growing conditions (Larsen et al. 2015)—strengthening allochthony 

estimates. 
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When studying rare/endangered taxa, ecologists commonly work with small sample sizes. Without 

adequate replication, mixing models using bulk isotope data can fail to resolve source contribution 

(Phillips et al. 2014). Issues with source identification are further exacerbated when source isotope 

profiles overlap (Brett 2014), especially if analyses are reliant on the small number of tracers 

available with bulk tissue approaches (Fry 2006; Fry 2013). By using five tracers (i.e., Strategy 3), we 

show that carbon source contributions can be resolved despite sample size limitations. Moreover, 

the exclusion of AAs with non-generalisable patterns in δ13C fingerprints did not appear to impact 

the efficacy of carbon source resolution (Fig. 3). 

A major strength of this approach is the ability to measure allochthonous input using an aggregated 

source dataset in lieu of collecting time- and site-specific primary producer data. This, however, 

assumes cross-laboratory data compatibility. Using two independent lines of evidence, our findings 

support the assumption of data compatibility when using our recommended AA selection strategy. 

First, we show that the differences in δ13C fingerprints between allochthonous and autochthonous 

carbon sources were mostly generalisable across datasets produced by two different labs (Table 1,2; 

Appendix G)—the UC Davis Stable Isotope Facility (i.e., primary data for this paper and Thorp & 

Bowes (2017)) and the Liebniz Laboratory for Radiometric Dating and Stable Isotope Research (i.e., 

Larsen et al., 2013). Second, we also found that parameters estimated from our logistic regressions 

remained consistent, even with the introduction of simulated measurement errors (Fig. 2). These 

suggest that δ13C fingerprints of essential AA are reliable tracers of carbon source despite possible 

measurement discrepancies in multi-laboratory datasets. 

Another observation of note was that δ13C fingerprints were more conserved in some functional 

groups than in others (Appendix F). For example, C3 and C4 terrestrial plant δ13C were less dispersed 

in ordination space than autotrophic bacteria. We postulate that these trends may be attributable to 

lower phylogenetic diversity in terrestrial plants relative to autotrophic bacteria (Hug et al. 2016), 

where the latter comprise taxa ranging from photoautotrophic cyanobacteria to chemolithotrophic 
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bacteria (e.g., Aquifax sp.). This is congruent with documented links between primary metabolic 

pathways (e.g., functional groups involved, number of reaction steps) and the relative isotopic 

enrichment/depletion between AAs (Macko et al. 1987; Ohkuichi et al. 2015) which determine δ13C 

fingerprints. 

Case study 

Our findings suggest that carbon in C. thamicola biomass is mostly derived from autochthonous (i.e., 

internal aquatic) sources. As cave fishes are often apex predators in the subterranean river 

ecosystem they occupy (Parzefall & Trajano 2010), the autochthonous dominance we observed in C. 

thamicola is likely applicable to the entire food web as apex predators reflect overall assimilation of 

energy from all trophic pathways (Rooney et al. 2008; Wolkovich et al. 2014).  

Cave river ecosystems were thought to be dependent on allochthonous organic carbon subsidies 

(Culver 1982; Polis et al. 1997). However, recent data from studies using ecological tracers (e.g., 

stable isotopes) show that the contribution of autochthonous production have been hitherto 

underestimated (Simon et al. 2003; Caroll et al. 2016)—as substantiated by our findings. In our case 

study, autochthonous organic carbon sources are likely derived from epilithic biofilm. Given the 

absence of light sources, chemoautotrophy is a potential biochemical pathway (Sarbu et al. 1996; 

Dattagupta et al. 2009). Alternatively, the cave food web may be supported by aquatic production in 

upstream surface habitats, although we are not able to distinguish them from subterranean 

autochthonous production. 

Recommendations and conclusions 

We show here that δ13C profiles of five essential AAs (Strategy 3)—isoleucine, leucine, 

phenylalanine, threonine, and leucine—normalised to the mean (δ13C fingerprints), are generalisable 

tracers of allochthonous carbon in aquatic food webs across trophic levels. This addresses one of the 

major gaps in our understanding of CSIA (Whiteman et al. 2019), at least when used to answer broad 
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ecological questions. In the absence of contextual data from site-specific producers, we propose the 

use of aggregated source information in mixing models (Table 2). If a more conservative approach is 

preferred, non-generalisable AAs (i.e., phenylalanine) can be removed from mixing models without 

significantly impacting carbon source estimates (Fig. 3). With greater adoption, amino acid δ13C 

fingerprints may contribute to the resolution of debates about the importance of allochthonous 

carbon in fresh waters (Brett et al. 2017) and facilitate assessments of its place in the global carbon 

cycle. 
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List of Tables 

Table 1 Summary of posterior distributions of coefficients describing the multivariate relationship between amino acid δ
13

C fingerprints 

(represented by PC1 and PC2) and the probability that a carbon source is allochthonous across four selection strategies. Posterior distributions of 

interaction coefficients indicative of the predictive generalisability of a set of δ
13

C fingerprints across studies/data sources are also summarised. 

Asterisks denote all coefficients which are statistically different from zero, that is, the coefficients’ 95% credible intervals do not overlap with 

zero. 

Selection strategy 

Mean  1 coefficient 
( 1 95% Credible 

Interval lower limit, 
upper limit) 

Mean  2 coefficient 
( 2 95% Credible 

Interval lower limit, 
upper limit) 

PC1 generalisable across 
studies ( 5 95% Credible 

Interval lower limit, 
upper limit) 

PC2 generalisable across 
studies ( 6 95% Credible 

Interval lower limit, 
upper limit) 

Mean AUC for LDA 
predictions (± 

Standard Deviation) 

Selection Strategy 1  
(7 non-essential amino acids, 
5 essential amino acids) 

−0.58 
(−1.01, −0.26)* 

−0.17 
(−0.44, 0.04) 

NA NA 0.89 (±0.11) 

Selection Strategy 2  
(4 non-essential amino acids, 
4 essential amino acids) 

−0.10 
(−0.18, −0.03)* 

0.40 
(0.27, 0.55)* 

Yes 
(−0.05, 0.04) 

Yes 
(−0.01, 0.13) 

0.89 (±0.05) 

Selection Strategy 3  
(5 essential amino acids) 

−0.35 
(−0.52, −0.21)* 

0.65 
(0.44, 0.88)* 

Yes 
(−0.13, 0.07) 

Yes 
(−0.12, 0.23) 

0.89 (±0.05) 

Selection Strategy 4  
(4 essential amino acids) 

−0.57 
(−0.77, −0.39)* 

−0.41 
(−0.69, −0.15)* 

No 
(0.04, 0.32) 

No 
(0.14, 0.94) 

0.85 (±0.06) 
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Table 2 Summary of posterior distributions of coefficients describing the univariate 

relationship between amino acid δ
13

C fingerprints and the probability that a carbon source is 

allochthonous across four selection strategies. Posterior distributions of interaction 

coefficients indicative of the predictive generalisability of a set of δ
13

C fingerprints across 

studies/data sources are also summarised. Mean effect sizes represent the odds that a carbon 

source is allochthonous for every unit increase in δ
13

Cn. Here an odds-ratio value of 1 

suggests no difference in δ
13

C fingerprints between carbon sources, while odds-ratio>1 

suggests that δ
13

Cn is more enriched in allochthonous carbon sources and vice versa. 

Asterisks denote all coefficients which are statistically different from zero, that is, the 

coefficients’ 95% credible intervals do not overlap with zero. Essential amino acids are 

marked with the E superscript. 

Amino acid 
Mean  3 coefficient 

( 3 95% Credible Interval lower 
limit, upper limit) 

Mean effect size 
(odds-ratio) 

Generalisable across studies 
( 7 95% Credible Interval lower 

limit, upper limit) 

Selection Strategy 1 (7 non-essential amino acids, 5 essential amino acids) 

Alanine 
−1.28 

(−2.20, −0.57)* 
0.28 NA 

Aspartate 
−0.08 

(−0.37, 0.16) 
0.92 NA 

Glutamate 
−0.48 

(−1.33, 0.05) 
0.62 NA 

Glycine 
−0.07 

(−0.30, 0.12) 
0.93 NA 

Isoleucine
E
 

1.06 
(0.18, 1.98)* 

2.89 NA 

Leucine
E
 

−0.24 
(−0.68, 0.07) 

0.79 NA 

Methionine 
−0.12 

(−0.36, 0.06) 
0.89 NA 

Phenylalanine
E
 

0.41 
(0.04, 0.83)* 

1.51 NA 

Proline 
0.84 

(0.21, 1.61)* 
2.32 NA 

Threonine
E
 

0.41 
(0.14, 0.74)* 

1.51 NA 

Tyrosine 
−0.14 

(−0.61, 0.19) 
0.87 NA 

Valine
E
 

−0.14 
(−0.62, 0.19) 

0.87 NA 

Selection Strategy 2 (4 non-essential amino acids, 4 essential amino acids) 

Alanine 
−0.80 

(−1.07, −0.55)* 
0.45 

No 
(0.07, 0.33)* 

Aspartate 
−0.18 

(−0.29, −0.07)* 
0.84 

Yes 
(−0.13, 0.01) 

Glutamate 
−0.01  

(−0.14, 0.12) 
0.99 

Yes 
(−0.12, 0.03) 

Glycine 
0.12 

(0.04, 0.20)* 
1.13 

Yes 
(−0.03, 0.03) 
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Isoleucine
E 0.11 

(−0.04, 0.28) 
1.12 

No 
(0.04, 0.52)* 

Leucine
E
 

−0.35 
(−0.56, −0.15)* 

0.70 
Yes 

(−0.08, 0.02) 

Phenylalanine
E
 

0.54 
(0.36, 0.73)* 

1.72 
No 

(−0.33, −0.08)* 

Valine
E
 

−0.06 
(−0.23, 0.08) 

0.94 
Yes 

(−0.04, 0.13) 

Selection Strategy 3 (5 essential amino acids) 

Isoleucine
E
 

−0.29 
(−0.56, −0.04)* 

0.75 
Yes 

(−0.05, 0.19) 

Leucine
E
 

−0.93 
(−1.21, −0.61)* 

0.39 
Yes 

(−0.46, ~0) 

Phenylalanine
E
 

0.34 
(0.17, 0.51)* 

1.40 
No 

(−0.29, −0.06)* 

Threonine
E
 

0.26 
(0.14, 0.40)* 

1.30 
Yes 

(−0.02, 0.05) 

Valine
E
 

−0.85 
(−1.19, − 0.53)* 

0.43 
Yes 

(−0.12, 0.24) 

Selection Strategy 4 (4 essential amino acids) 

Isoleucine
E −0.01 

(−0.21, 0.18) 
0.99 

No 
(0.04, 0.37)* 

Leucine
E
 

−0.92 
(−1.27, −0.59)* 

0.40 
Yes 

(−0.27, 0.02) 

Phenylalanine
E
 

0.61 
(0.41, 0.83)* 

1.84 
No 

(−0.37, −0.11)* 

Valine
E
 

−0.41 
(−0.70, −0.14)* 

0.66 
No 

(0.18, 0.62)* 
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Table 3 Summary of aggregated source information calculated by normalising isoleucine, leucine, 

phenylalanine, threonine, and valine δ13C to the mean of all five essential amino acids (i.e., δ13C 

fingerprints sensu Larsen et al. (2013)).  

 

  

Tracer Autochthonous carbon source 

(mean ± std. dev.) 

Allochthonous carbon source 

(mean ± std. dev.) 

Isoleucine 1.03 (±1.54) 0.35 (±1.30) 

Leucine −5.15 (±2.01) −7.46 (±1.22) 

Phenylalanine −2.86 (±2.08) −1.13 (±2.24) 

Threonine 10.00 (±3.00) 12.72 (±3.25) 

Valine −3.02 (±1.06) −4.49 (±1.37) 
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List of Figures 

Figure 1 Ordination plot of δ
13

C fingerprints associated with allochthonous and 

autochthonous carbon sources and C. thamicola across four selection strategies (top-left: 

Strategy 1; top-right: Strategy 2; bottom-left: Strategy 3; bottom-right: Strategy 4). Arrows 

represent the direction and magnitude of eigenvectors associated with each amino acid, while 

values in parentheses reflect percentage of variance accounted for by PC1 (x-axis) and PC2 

(y-axis), respectively. 

Figure 2 Posterior distribution of source contributions from allochthonous and autochthonous 

carbon sources to C. thamicola using δ13C fingerprints derived across four selection strategies (and 

one modified strategy) as source tracers. Numbers in parentheses correspond to selection strategies 

while asterisks denote strategy modification involving the removal of phenylalanine from mixing 

models. 

Figure 3 Density curves of mean β3 coefficients estimated from Bayesian logistic regression of 

simulated datasets in which random measurement errors were introduced. Vertical dashed lines 

represent mean β3 values estimated from Bayesian logistic regression of observed data.  
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