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Abstract

This paper addresses the problem of establishing staloifityD mixed continuous-discrete-time
systems. A novel linear matrix inequality (LMI) conditioa proposed based on the introduction of a
complex linear fractional representation (LFR) of the syst and on the use of complex Lyapunov
functions depending rationally on a parameter. Promisasylts are obtained in terms of computational
burden. Indeed, as shown by various examples with smallaagd Himensions, the computational burden

of the proposed LMI condition may be rather smaller than tfatther existing LMI conditions.

. INTRODUCTION

It is well known that 2D systems play an important role in emgring. These systems are
dynamical systems characterized by the presence of sigratlgvolve in two dimensions (e.g.,
space and time) through dynamics that mutually influencé edlcer. These dynamics can be
homogenous (i.e., both continuous-time or both discriete)t or mixed (i.e., one continuous-
time and the other discrete-time). See for instance [1]], [[LR], [15], [16], [18], [20], [24] and
references therein. This paper considers the latter case2D mixed continuous-discrete-time
systems.

2D mixed continuous-discrete-time systems have varioysdicgtions, including irrigation
channels [5], metal rolling processes [19], and vehicleégalas [14]. It is useful to mention that
2D mixed continuous-discrete-time systems are also knowthe literature with other names,
such as differential repetitive processes (where “difieed’ refers to the continuous dynamics,
and “repetitive” refers to the discrete dynamics) and hyRiD systems (where “hybrid” is used

to indicate the presence of inhomogeneous dynamics).
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Like in any other class of dynamical systems, establishiagikty represents a fundamental
problem in 2D mixed continuous-discrete-time systemssTgroblem has received a number
of contributions, based on techniques of various naturee ©ihthe first contributions was
proposed in [21] based on the eigenvalues of a matrix oldaime®ugh the Kronecker product.
In order to provide conditions that could be possibly usedniore general situations (e.g.,
presence of uncertainties, controller design, etc), Ibtsflorts have been spent by researchers
for deriving conditions checkable with linear matrix inedjties (LMIs). These LMI conditions
can be classified into two main groups. The first group expliojapunov functions, in the time
domain as done in the pioneering work [13], or in the freqyeshmmain as done in [3], [4], [9],
[10]. The second group does not use Lyapunov functions lsiéau eigenvalues combinations,
see for instance [8], [9].

Unfortunately, the computational burden of the existingILddnditions may be quite large.
Indeed, this is the case of the LMI conditions that exploiajhynov functions, where the degree
required by these functions for establishing stability mstability may be quite large. And this
is the case of the LMI conditions that exploit eigenvaluesbmations, where polynomials are
constructed with Kronecker products or similar strategee®l the degree of these polynomials
quickly grows with the dimensions of the systems.

This paper proposes a possible solution for this issue. ifsgadly, the paper addresses the
problem of establishing stability of 2D mixed continuousedete-time systems. A novel LMI
condition is proposed based on the introduction of a comptesar fractional representation
(LFR) of the systems and on the use of complex Lyapunov fanstdepending rationally on a
parameter. Promising results are obtained in terms of ctatipnal burden. Indeed, as shown
by various examples with small and large dimensions, thepcwational burden of the proposed
LMI condition may be rather smaller than that of other exigtLMI conditions.

The paper is organized as follows. Section Il introducesnibi@tion and the problem formu-
lation. Section Ill describes the proposed approach. &edW presents the examples. Lastly,

Section V reports the conclusions and future works.

Il. PROBLEM FORMULATION

The notation adopted in the paper is as follows. The natwatbers set (including zero),
the real numbers set and the complex numbers set are denotédb and C. The imaginary

unit is denoted byj. The symbols) and / denote null matrices and identity matrices of size
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specified by the context. The notatioRs(-), Im(-) and| - | denote the real part, imaginary part
and magnitude. The Euclidean norm is denoted| byj,. The determinant is denoted layt(-).
The notationA ® B denotes the Kronecker product df and B. The complex conjugate, the
transpose and the complex conjugate transposé afe denoted byl, A” and A”. A matrix A

is said 1) Hermitian ifA” = A, 2) Hurwitz if all its eigenvalues have negative real pant 8)
Schur if all its eigenvalues have magnitude less than one.symbolx denotes a corresponding
block in Hermitian matrices. The notatioh > 0 (respectively,A > 0) denotes a Hermitian
positive definite (respectively, semidefinite) matrdx The abbreviation “s.t.” denotes “subject

to”.

In this paper we consider the 2D mixed continuous-disdiete-system described by

d
%xc(t,k) = Azt k) + Acazalt, k) o

xa(t,k+1) = Agxc(t, k) + Agaza(t, k)
wheret € R andk € R are independent variables, € R" andz,; € R™ are the continuous
state and the discrete state, aftg € R"<*", A, € R**"a A, € R"*" gand A,y € R4
are given matrices. Hereafter we introduce the definitiorstability commonly considered in
the literature for this system, see [2], [13], [17], [20]2]Zor more information and for other

types of stability.

Definition 1: The system (1) is saidtableif, for all (s,z) € C x C: Re(s) >0, |z| > 1,

one has )
0 # det(A. —sly,)

0 7é det(/4dd-—-zlﬁd)
/4a3_’5]ﬁc f4ai

2)
0 # det

Ade Aga — 21, ng

The problem addressed in this paper is as follows.

Problem 1:Establish whether the system (1) is stable according to Diefinl. O
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1. PROPOSED APPROACH

Let us start by recalling an important result in the literajuwhich provides an equivalent
reformulation of the property of stability introduced in fidation 1 in terms of stability of a

constant real matrix and of a parameter-dependent compdsxm

Theorem 1 (see [20] and references thereifjie system (1) is stable if and only if the

following sub-conditions hold:
1) A.. is Hurwitz;
2) F(jw) is Schur for allw € R, where

F(S) = Adc(SI - Acc)_lAcd + Add' (3)

In order to present the proposed approach, let us introduedallowing classes of matrix

functions.

Definition 2: A matrix function M : R — C™*" is said to beHermitian if

M(w) = M(w)® YweR. (4)

Definition 3: A matrix function M : R — C"*"2 s said to beevenif

M(w) = M(~w). (5)

Definition 4: A matrix polynomialM : R — C"™*" is said to be asum of squares of matrix

polynomials (SOSIf there exist matrix polynomiald/; : R — C™*", i =1,..., k, such that

M(w) = ZMZ(W>HMZ(W) (6)
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For a matrixVV € C*«*"d with V' Hermitian, let us define

G(V) = ( 0o ) —~D'VD )
* V

where

D= Aw Au ). 8)
Also, let us define and

H(w) = E(jw)" E(jw) (9)

where
B(s) = (s~ Aw —Aw ) (10)

The approach proposed in this paper is as follows.

Theorem 2:Assume without loss of generality that.. is Hurwitz and Ay, is Schur. The
system (1) is stable if there exiSty € R and a matrix polynomial’ : R — C™<*"< Hermitian,

even, and of degre2h, h € N, such that

V(w) —~(1+w?)"I is SOS

W(w) —v(1 +w?)®T is SOS (11)
>0
where
W(w) = (1+w)2G(V(w) + B(1 +w?) ™ H (w) (12)
and

d1 = max{l, h}
dy = max{0,1— h} (13)
d; = max{0,h—1}.

Proof. Let us suppose that the condition (11) holds for sgine € R and for a matrix polynomial
V : R — C"e*me Hermitian, even, and of degréé, i € N. This implies thal/ (w) —v(1+w?)"I

DRAFT



and W (w) — (1 + w?)® I are positive semidefinite for all € R. For a(k), (k) € C* and

Z(k) € C" let us define the auxiliary system
Tk+1) = Awui(k)+ Agu(k)
) = Act(k) + Acct(k) (14)
u(k) = y(k).
Since A.. is Hurwitz, it follows thatF'(jw) in (3) does exist for allv € R, and
T(k+1) = F(jw)z(k). (15)

Let us define the candidate parameter-dependent quadsatpuhov function

0(#(k),w) = F(k)"V (w)T(k) (16)
where
TN A ()
V(w) = m (17)

SinceV (w) — v(1 +w?)"I > 0 and~ > 0, it follows that

3(2(k),w) >0 Vi(k) #0 Vw € R, (18)

3 u(k)
zZ(k) = ) (19)
()

Let us pre- and post-multiply¥ (w) — (1 + w?)? I times z2(k)" and z(k), respectively. Since
W(w) —v(1 +w?)®T >0, it follows that

Let us define

0 < Z(k)? (W(w)—~y(1+w?)hT) z(k)
= (14 w?)% " (@(Ek),w) — 0@k +1),w)) (20)
+H(L+ W) | E(jw)Z(k)[l; — (1 +w?) " |[Z(k)]5.
Let us observe that, along the trajectories of (14), one has
E(jw)z(k) = 0. (22)
This implies
0 < (14w (o(z(k),w)—0(@(k+1),w))

(1 +w?) " 2R3

(22)
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Sincey > 0 and since(1 + w?)~" and (1 + w?)" are positive for allv € R, it follows that
57k +1),0) < 5(@(k),w) VE(k) £ 0 Yw € R. (23)

Therefore,o(z(k),w) is a Lyapunov function for (14) for alb € R, which implies from (15)

that F'(jw) is Schur for allw € R. From Theorem 1 it follows that the system (1) is stallé.

Theorem 2 provides a novel condition for establishing wlethe system (1) is stable. This
condition is based on the introduction of a complex LFR of sgstem (1), obtained through
the auxiliary system (14), and on the use of a complex Lyapdaoction candidate depending
rationally on a parameter, obtained through the matrix patyial 1 (w) and given by (17). Let
us observe thatl.. and A;; can be assumed to be Hurwitz and Schur without loss of getyeral
due to Definition 1.

The condition provided by Theorem 2 requires to establighetkistence of the scalars v
and of the complex matrix polynomiadf(w) (Hermitian, even, and of degre&) such that the
condition (11) holds. Let us observe that these decisioiabias are defined up to a positive scale
factor. Also, let us observe that the condition (11) reqit@ establish whether two complex
matrix polynomials depending affine linearly on the decisrariables are SOS. This means that
the condition (11) is equivalent to a system of LMIs.

Indeed, as explained in [9], these LMIs can be built as fafloet P : R — C™" be a
complex matrix polynomial satisfying’(w) = P(w)¥, deg(P(w)) < 2¢, q € N. Let us define

Re(P(w)) Im(P(w)) |
* Re(P(w))

O(P(w)) = ( (24)

Let b(w) be a vector whose entries are all the monomials of degree not greater than and
let S = ST be a matrix that satisfies
D(P(w)) = (bw) @ )" S (b(w) @ 1). (25)
Let L(«) be a linear parametrization of the linear set
L={L=1L": (bw)oD)"L(bw) oI)=0} (26)

where« is a free vector with length equal to the dimensionfofThen, P(w) is SOS if and

only if there existsy that satisfies the LMI

S+ L(a) > 0. (27)
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Also, wheneverP(w) is even, one may reduce the number of LMI scalar variables, (ihe
length of the vectory in this case) as explained in [10]. The reader is also redetog6], [7]

and references therein for more information about SOS rmptiiynomials.

IV. EXAMPLES

In this section we present some numerical examples. Theitcmmgbroposed in Theorem 2

is compared with two existing LMI conditions based on the at&yapunov functions:

« the first existing LMI condition is our previous one proposed10], which improves the
one in [9];

« the second existing LMI condition is the one proposed in y@)ch improves the one in
[4]. It should be noticed that this condition allows one tal@ss more general problems
than Problem 1, indeed, it can be used for 2D systems with dnidkgamics as well as
for 2D systems with non-mixed dynamics (i.e., continuoastmuous or discrete-discrete).
The results reported for this condition in this paper areetiasn our implementation of the

condition.

The toolbox SeDuMi [23] for Matlab is adopted to test all thentioned LMI conditions on a
standard computer with Windows 10, Intel Core i7, 3.4 GHz, B RAM.

In these examples, we report the number of independent LMasuariables. For the condition
proposed in Theorem 2, this number2igfor 5 and~), plus the number of independent scalar
coefficients ofV (w), plus the number of the entries in the vectats,, needed to convert the
SOS conditions into LMI conditions as done in (27), minugsince all these variables are
defined up to a positive scale factor).

Before proceeding, it is useful to remark that there exisb &IMI conditions not based on the
use of Lyapunov functions, such as [8], [9] which exploitezigalues combinations. These LMI
conditions present a larger computational burden (medsaréerms of number of LMI scalar
variables) in the examples considered in this paper whexeptbblem is to establish stability.
However, these LMI conditions not based on the use of Lyapduaoctions may be useful for
establishing instability.
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A. Example 1

The first example is borrowed from [9], [10]. Let us considez system (1) with the matrices

(

0 1 0
1400 - 0 0 1
1 -2 -2
0 05 0
Ay = —05 1.5 1
05 0 ¢
02 0 04
Aie = 0 —03 0
0 0 0.3
—04 0 0
Aw = 0.2 0 0.3
0 —04 —0.2

\

whered € R is a parameter. It turns out that, fdr= 1, the system is stable. This can be verified
using the condition proposed in Theorem 2. Indeed, this itiondholds with s = 1, and the

number of independent LMI scalar variablesis The foundV (w) is

0.817w? 4+ 0.507 —0.111w? — 0.224 — 50.033w
V(w) = * 0.266w? + 0.494

* *

—0.57w? — 0.235 — j0.261w
0.001w? + 0.139 — j0.196w
0.607w? + 0.242

For comparison, let us consider our previous method in [EOL. establishing stability in this
case, the number of independent LMI scalar variableg9igwhich corresponds to the choice
d = 2 in [10], whered denotes the degree of the complex matrix Lyapunov functsedy

Also, we consider the method in [3]. For establishing sigbih this case, the number of
independent LMI scalar variables 69 (which corresponds to the choice= 1 in [3], wherea

denotes the degree of the complex matrix Lyapunov functeedy
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B. Example 2

In this second example let us consider the system (1) witmtagices

(

\

-2 —-13 1.7
A, = —-09 -2 —0.8
-0.3 —-0.3 -3
1 06 0.7
A —-02 0 03
0 1 —1.2
03 0 0.5
Age 0 —-02 0
0.8 —1 —0.7
05 0 04
Ada —0.4 09 03
0.7 03 —0.4

It turns out that the system is stable. For establishing ghoperty, the number of independent

LMI scalar variables is:

« 43 in the condition proposed in Theorem 2 (corresponding tocti@ceh = 1);
« 99 in our previous method in [10] (corresponding to the chaice 2);

« 168 in the method in [3] (corresponding to the choice= 2).
The foundV (w) in the condition proposed in Theorem 2 is
0.137w? + 0.227 —0.108w? — 0.339 — 50.202w
V(w) = * 0.193w? + 0.785

* *

—0.004w? — 0.031 — 50.031w
0.003w? 4+ 0.075 + 50.056w
0.022w? 4 0.008

C. Example 3

In this third example we consider two systems analogousdayistem considered in Example

2 but having matrices with larger size. Specifically, #t, A.;, A4 and Ay, be defined as in
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Example 2, and let us redefine them as

P

B @Df4cc
B ® A

&
Ll

B ® Age

A — B® Ay

\

where B is an identity matrix. Let us consider the following two case

1) B is the identity matrix2 x 2: in this case, the matriced.., A.q, Aq. and Ay have
size6 x 6. It turns out that the system is stable. For establishing pnoperty, the number of
independent LMI scalar variables is:

« 157 in the condition proposed in Theorem 2 (corresponding tocti@ceh = 1);

« 981 in our previous method in [10] (corresponding to the chaice 2);

« 651 in the method in [3] (corresponding to the choice= 2).

2) B is the identity matrix3 x 3: in this case, the matriced.., A.;, A4 and Ay, have
size9 x 9. It turns out that the system is stable. For establishing pnoperty, the number of
independent LMI scalar variables is:

« 343 in the condition proposed in Theorem 2 (corresponding tocti@ceh = 1);

« 4266 in our previous method in [10] (corresponding to the chaice 2);

o 1449 in the method in [3] (corresponding to the choiee= 2).

V. CONCLUSIONS

This paper has addressed the problem of establishingistaifiPD mixed continuous-discrete-
time systems. A novel LMI condition has been proposed basdti® introduction of a complex
LFR of the systems and on the use of complex Lyapunov funstaepending rationally on a
parameter. Promising results have been obtained in ternesraputational burden. Indeed, as
shown by various examples with small and large dimensidrescomputational burden of the
proposed LMI condition may be rather smaller than that oeo#xisting LMI conditions.

Several directions can be considered in future works. Fstaimce, one direction could be the
extension of the proposed condition to the case of 2D mixedimaous-discrete-time systems

affected by uncertainties in order to establish robustilgtab
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