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Abstract

This paper addresses the problem of determining static output feedback controllers for ensuring

desired upper bounds of the root mean square (RMS) gain of continuous-time switched linear systems

with arbitrary switching. The problem is addressed by searching for a homogeneous rational Lyapunov

function (HRLF) parameterized rationally by the sought controller, and by introducing a polynomial

for quantifying the feasibility of the Lyapunov inequalities. It is shown that such a controller exists if

and only if a condition built solving three convex optimization problems with linear matrix inequalities

(LMIs) holds for polynomials of degree sufficiently large.

I. INTRODUCTION

Switched systems are dynamical systems allowed to change with the time in a finite family

under the selection of a signal called switching rule. Switched systems are generally classified

into two main classes: switched systems with dwell time constraints and switched systems with

arbitrary switching. In the former class, the changes amongthe mathematical models can occur

only after a minimum time, called dwell time, which can be hard or average. In the latter class,

the changes among the mathematical models can occur arbitrarily fast.
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A fundamental problem in switched systems is stability analysis. See for instance the books

[3], [17], [24] and the surveys [10], [18], [19] for general results. Other works include [4],

[11], [15], [16], [25]. In particular, sufficient linear matrix inequality (LMI) conditions have

been proposed in [12] based on quadratic Lyapunov functions, and necessary and sufficient LMI

conditions have been proposed in [8], [9] based on homogeneous polynomial Lyapunov functions

(HPLFs).

Another fundamental problem in switched systems is performance analysis, in particular

concerning the root mean square (RMS) gain. The RMS gain has been studied for switched

linear systems in [14], [19], [20] through techniques such as variational principles and worst-

case control. LMI conditions have been proposed in order to determine upper bounds of the RMS

gain through convex optimization. In particular, sufficient LMI conditions based on quadratic

Lyapunov functions have been proposed in [13], and necessary and sufficient LMI conditions

based on homogeneous rational Lyapunov functions (HRLFs) have been proposed in [6].

Unfortunately, the synthesis of output feedback controllers for ensuring desired upper bounds

of the RMS gain of switched systems is still an open problem, and few contributions can be

found, see for instance [1], [2] where sufficient LMI conditions have been proposed. Indeed,

by letting the controller be a decision variable in the existing conditions for establishing upper

bounds of the RMS gain, one obtains nonconvex optimization problems, in general due to the

presence of products between the Lyapunov function and the controller.

This paper1 addresses the problem of determining static output feedback controllers for en-

suring desired upper bounds of the RMS gain of continuous-time switched linear systems with

arbitrary switching. The problem is addressed by searchingfor an HRLF parameterized rationally

by the sought controller, and by introducing a polynomial for quantifying the feasibility of

the Lyapunov inequalities. It is shown that such a controller exists if and only if a condition

built solving three convex optimization problems with LMIsholds for polynomials of degree

sufficiently large. This paper extends our work [7] where thesynthesis of stabilizing controllers

for switched systems is addressed.

1This work is supported by Hunan Provincial Natural Science Foundation of China under grant 2017JJ3211 and China

Postdoctoral Science Foundation under grant 2017M622606.
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II. PRELIMINARIES

The notation is as follows.N, R: sets of non-negative integers and real numbers. Unless

specified otherwise,xi denotes thei-th entry of a vectorx, andXi,j denotes the(i, j)-th entry of

a matrixX. 0, I: null matrix and identity matrix of size specified by the context.A′: transpose of

A. he(A): A+A′. spec(A): set of eigenvalues ofA. A⊗B: Kronecker’s product betweenA and

B. A⊗n: n-th Kronecker power.‖A‖2, ‖A‖∞ and‖A‖Fro: 2-norm,∞-norm and Frobenius’ norm

of A. ‖a(·)‖L2
: L2-norm of a(t), i.e., ‖a‖L2

=
√

∫∞

0
‖a(t)‖22dt. a

b: ab11 a
b2
2 · · · , wherea and b

are vectors.A ≥ 0 (respectively,A > 0): symmetric positive semidefinite (respectively, definite)

matrixA. A functionV : Rm×p → R
q×r is said to be a matrix polynomial if the entries ofV (K)

are polynomials in the entries ofK. ⋆: corresponding block in a symmetric matrix. s.t.: subject to.

Let us consider the switched system


































ẋ(t) = A1,σ(t)x(t) +B1,σ(t)u(t) +B2,σ(t)w(t)

y(t) = C1,σ(t)x(t) +D1,σ(t)u(t) +D2,σ(t)w(t)

z(t) = C2,σ(t)x(t) +D3,σ(t)u(t) +D4,σ(t)w(t)

σ(·) ∈ Darb

(1)

wheret ∈ R is the time,x(t) ∈ R
n is the state,u(t) ∈ R

m1 is the control input,w(t) ∈ R
m2 is

the external input,y(t) ∈ R
p1 is the control output,z(t) ∈ R

p2 is the external output,σ : R →

{1, . . . , N} is the switching rule,Darb is the set of arbitrary switching rules

Darb = {σ : R → {1, . . . , N}, the state exists} , (2)

andA1,i, ...,D4,i, i = 1, . . . , N , are real matrices of suitable sizes. The system (1) obtained for

σ(t) = i is called thei-th subsystem of the switched system (1).

Definition 1: The RMS gain of (1) is

γRMS = sup
u(·)

σ(·)∈Darb

‖y(·)‖L2

‖u(·)‖L2

(3)

wherey(t) is the solution in (1) forx(0−) = 0. �

The switched system (1) is controlled by a mode-independentstatic output feedback controller,

i.e.,

u(t) = Ky(t) (4)
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whereK ∈ R
m1×p1 has to be determined in the set

K =
{

K ∈ R
m1×p1 : ‖K‖∞ ≤ ρ

}

(5)

whereρ ∈ R is a given bound. Let us assume that the map betweenu(t) and y(t) is strictly

proper, i.e.,

D1,i = 0. (6)

The closed-loop system is


















ẋ(t) = Aσ(t)(K)x(t) +Bσ(t)(K)w(t)

z(t) = Cσ(t)(K)x(t) +Dσ(t)(K)w(t)

σ(·) ∈ Darb

(7)

where 

































Ai(K) = A1,i +B1,iKC1,i

Bi(K) = B2,i +B1,iKD2,i

Ci(K) = C2,i +D3,iKC1,i

Di(K) = D4,i +D3,iKD2,i.

(8)

Problem 1:DetermineK ∈ K such that the RMS gain of (7) is smaller than a desired value

γ. �

Let us observe that, in order for Problem 1 to admit a solution, (1) must admit a static output

feedback controller that stabilizes it with arbitrary switching. It is not required to know a priori

such a controller, and it is not required that (1) is stable with arbitrary switching. The dependence

on t of the various quantities will be omitted in the sequel of thepaper for ease of notation

unless specified otherwise.

III. PROPOSEDMETHODOLOGY

The approach proposed in this paper for solving Problem 1 is based on the use of Lyapunov

functions in the class of the homogeneous rational functions, i.e., functions that can be expressed

as the ratio of homogeneous polynomials. Let us start by providing some basic definitions.

A function v : Rn → R is said to be a homogeneous polynomial of degree2d, d ∈ N, if

v(x) =
∑

c∈Nn

c1+...+cn=2d

acx
c (9)
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for someac ∈ R. The set of such functions is denoted by

P2d = {v : Rn → R : (9) holds} . (10)

Homogeneous polynomials can be expressed in several ways. Hereafter, we adopt an expression

based on symmetric matrices. Let us denote withb (x, d) a vector whose entries are all the

monomials inx of degreed ∈ N with unitary coefficient without repetition. The length of

b (x, d) is given by

c(n, d) =
(n+ d− 1)!

(n− 1)!d!
. (11)

By using the vectorb (x, d), a homogeneous polynomialv(x) of degree2d can be expressed as

v(x) = b (x, d)′ V b (x, d) (12)

for someV = V ′ ∈ R
c(n,d)×c(n,d). The representation (12) is known as Gram matrix method or

square matricial representation (SMR), see for instance [5] and references therein.

A function v : Rn → R is said to be a homogeneous rational function of total degreer ∈ N

and relative degrees ∈ N, with r ≥ s, if






















v(x) =
φ(x)

ψ(x)

φ ∈ Pr

ψ ∈ Pr−s.

(13)

The set of such functions is denoted by

Qr,s = {v : Rn → R, (13) holds} . (14)

Lyapunov functions in the class of the homogeneous rationalfunctions, i.e., HRLFs, have been

introduced in [6] to derive upper bounds of the RMS gain of switched systems. In particular,

these HRLFs are searched for in the setQ2d,2, and can be expressed as






















v(x) =
φ(x)

ψ(x)

φ(x) = b (x, d)′ Φb (x, d)

ψ(x) = b (x, d− 1)′Ψb (x, d− 1)

(15)

whereΦ = Φ′ ∈ R
c(n,d)×c(n,d) andΨ = Ψ′ ∈ R

c(n,d−1)×c(n,d−1). Let us define

r(x, d, u) =





b (x, 2d− 1)

b (x, 2d− 2)⊗ u



 (16)
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and

L̄ =
{

L̃ = L̃′ : r(x, d, u)′L̃r(x, d, u) = 0
}

. (17)

The following result, proposed in [6], provides a necessaryand sufficient LMI condition for

establishing upper bounds of the RMS gain of (1).

Theorem 1 ( [6]):Let Ψ > 0 be chosen. The RMS gain of (1) satisfies (for a fixed controller

K)

γRMS < γ (18)

if and only if, for somed, there existΦ andΘi, i = 1, . . . , N , satisfying the system of LMIs






0 < Φ

0 > Fi(K,Φ) +Gi(K) + L(Θi) ∀i = 1, . . . , N
(19)

whereL(·) is a linear parametrization of̄L, andFi(K,Φ) andGi(K) are linear matrix functions

of Φ whose definitions are reported in the Appendix. �

Unfortunately, the condition provided by Theorem 1 cannot be used directly for solving

Problem 1 because the second inequality of (19) would be nonlinear in the decision variables

K andΦ.

The first idea for coping with this problem is to introduce a novel class of Lyapunov functions,

specifically HRLFs depending rationally on the controller.These functions can be expressed as

v(x,K) =
b (x, d)′ Φ̄(K)b (x, d)

b (x, d− 1)′ Ψb (x, d− 1)
(20)

with

Φ̄(K) =
Φ(K)

ζ(K)
(21)

whereΦ(K) = Φ(K)′ and ζ(K) are matrix polynomials to be determined, andΨ = Ψ′ is a

chosen matrix. Let us define the matrix polynomials


































M1(K) = Φ(K)

Mi,2(K) = −Fi(K,Φ(K))− ζ(K)Gi(K)

−L(Θi(K))− ξ(K)I

M3(K) = ζ(K)− 1

(22)
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whereL(·) is a linear parametrization of̄L, and ξ(K), Φ(K), Θi(K) and ζ(K) are matrix

polynomials to be determined. The first optimization problem we define is

sup
ξ(·),Φ(·),Θi(·),ζ(·)

h

s.t.







M(·) ∈ Σ ∀M(·) ∈ M

h ≤ 1

(23)

whereM is a set containing the matrix polynomials in (22),Σ is the set of matrix polynomials

that can be expressed as sums of squares of matrix polynomials, and

h =

∫

K

ξ(K)dK. (24)

The optimization problem (23) aims at maximizing the polynomial ξ(K) over the setK and,

hence, the positive semidefiniteness ofMi,2(K) over this set. This optimization problem is an

SDP because the cost function is linear and the constraints are equivalent to LMIs, see [5] and

references therein for details.

The next step is to determine a candidate for the sought controller based on the solution of

(23). To this end, letξ∗(K) be a maximizer ofξ(K) in (23). Let us define

b(K) = a− ξ∗(K)−
∑

i=1,...,m1

j=1,...,p1

(ρ2 −K2
i,j)si,j(K) (25)

wherea ∈ R andsi,j(K), i = 1, . . . , m, j = 1, . . . , p, are polynomials to determine. The second

optimization problem we define is

inf
a,si,j(·)

a

s.t. b(K), si,j(K) ∈ Σ.

(26)

The optimization problem (26) is an SDP analogously to (23),and aims at determining the

maximum ofξ∗(K) over the setK. Indeed, the maximizer ofξ∗(K) over the setK is the best

candidate for the sought controller sinceξ∗(K) quantifies the feasibility of the inequalities of

(19). In order to determine such a maximizer, leta∗ ands∗i,j(K) be minimizers ofa andsi,j(K)

in (26), and letb∗(K) be b(K) evaluated with such minimizers. Let us define the set

Z = {K ∈ K : b∗(K) = 0, ξ∗(K) = a∗} . (27)

The following result provides a necessary and sufficient condition for solving Problem 1.
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Theorem 2:There existsK that solves Problem 1 if and only if there existsK∗ in the setZ

that solves this problem for sufficiently large degrees of the polynomials introduced.

Proof. The sufficiency is obvious, hence let us consider the necessity. Suppose there existsK

that solves Problem 1, and let us indicate such a value asK#. For the chosenΨ > 0, let d ∈ N

be such that the LMI feasibility test (19) holds withK = K# (observe that such a value ofd

does exist from Theorem 1). Let us define the functionξ̃∗ : Rm×p → R as

ξ̃∗(K) = sup
ξ̃,Φ̃,Θ̃i

ξ̃

s.t.



















0 ≤ Φ̃− βI

0 ≤ −Fi(K, Φ̃)−Gi(K)− L(Θ̃i)

−ξ̃I ∀i = 1, . . . , N

whereβ ∈ R is an auxiliary quantity. Since the LMI feasibility test (19) holds with the changes

mentioned above, it follows that̃ξ∗(K#) > 0 for someβ positive and sufficiently small. Let us

consider such a value ofβ hereafter. SinceK is compact, the matrix functions̃ξ∗(K), Φ̃∗(K)

and Θ̃∗
i (K) can be approximated arbitrarily well overK through matrix polynomials. Since

ξ̃∗(K#) > 0, it follows that there exist matrix polynomialŝξ(K), Φ̂(K) and Θ̂i(K) such that

ξ̂(K#) > 0 and the following matrix polynomials are positive definite for all K ∈ R
m1×p1:



















M̂1(K) = Φ̂(K)− βI

M̂i,2(K) = −Fi(K, Φ̂(K))−Gi(K)

−L(Θ̂i(K))− ξ̂(K)I.

Let us define the polynomialf(K) = (1 + ‖K‖2Fro)
η whereη ∈ N. From [22] it follows that

there existsη such that the matrix polynomials above, multiplied byf(K), are inΣ. Since the

matrix polynomials in (22) are homogeneous in the set of variablesξ(K), Φ(K), Θi(K) and

ζ(K), and sincef(K) − 1 is in Σ (being sum of powers of‖K‖2Fro multiplied by positive

coefficients), one has that the constraints of (23) can be satisfied by choosing


































ξ(K) = f(K)ξ̂(K)

Φ(K) = f(K)Φ̂(K)

Θi(K) = f(K)Θ̂i(K)

ζ(K) = f(K).

This implies that matrix polynomialsξ(K), Φ(K), Θi(K) and ζ(K) such thatM(·) ∈ Σ for

all M(·) ∈ M and ξ(K) > 0 for someK ∈ K can be obtained by maximizing the integral of

DRAFT



9

ξ(K) overK under the constraints of (23). Indeed, above we have shown that there exist such

matrix polynomials without considering the constrainth ≤ 1. If this constraint is satisfied by

such matrix polynomials, then they can be considered, andξ(K) > 0 for K = K#. Otherwise,

we redefineξ(K) as

ξ(K) → ξ(K)− α

where

α =

(
∫

K

dK

)−1(∫

K

ξ(K)dK − 1

)

,

and this ensures thatξ(K) is still positive for someK ∈ K (since the integral ofξ(K) overK

is 1) and that the constraints of (23) hold (sinceα > 0).

Next, let us define

θ = sup
K∈K

ξ∗(K).

Let us observe thatρ2 −K2
i,j ≥ 0 for all i = 1, . . . , m1 andj = 1, . . . , p1 if and only if K ∈ K,

moreover the polynomialsρ2 −K2
i,j have even degree and the highest degree forms are zero if

and only ifK = 0. From Putinar’s Positivstellensatz [21], it follows that,for all a > θ, there

exist polynomialssi,j(K) such that the constraints of (26) are satisfied. Hence, for polynomials

si,j(K) with sufficiently large degrees, one gets

a∗ = θ.

Let K∗ be a maximizer ofξ∗(K) overK, i.e., ξ∗(K∗) = θ = a∗. Sinceb(K) is in Σ, it follows

that
0 ≤ b(K∗)

= a∗ − ξ∗(K∗)−
∑

i=1,...,m1

j=1,...,p1

(ρ2 − (K∗
i,j)

2)s∗i,j(K
∗)

≤ 0.

Hence,b(K∗) = 0 and, therefore,K∗ ∈ Z. Moreover,ξ∗(K∗) > 0 and, therefore,K∗ solves the

problem. �

Theorem 2 provides a strategy for solving Problem 1 based on (23) and (26). This strategy

consists of narrowing the search space for the sought controller from the original set, i.e., the

setK, to a reduced one, i.e., the setZ. Indeed, the setZ contains one element only in non-

degenerate cases, specifically, the maximizer ofξ∗(K) over the setK. Once the setZ is found,
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one just checks if any of the controllers included in such a set solves Problem 1, for instance

by using the LMI feasibility test (19).

The setZ can be determined from the Gram matrix of the polynomialb∗(K) found when

solving (26). Specifically, this determination involves the computation of the null space of this

matrix, pivoting operations, and the computation of the roots of a polynomial in one variable.

See [5] and references therein for details.

The second constraint in (23) is introduced in order to ensure that the solution of the opti-

mization problem is bounded. The constant1 on the right hand side of this constraint can be

replaced with any other positive number, and the constraintitself is unnecessary in typical cases.

Let us observe that the sufficiency of Theorem 2 is achieved for any degrees of the polynomials

introduced. The necessity, instead, is achieved for sufficiently large degrees of these polynomials.

Some guidelines for choosing these degrees are as follows. First, choosed (which defines the

degree of the HRLF), the degree ofΦ(K) (denoted bydΦ) and the degree ofζ(K) (denoted

by dζ). Second, set the degrees ofζ(K), Θi(K) andξ(K) equal to the degree ofFi(K,Φ(K)).

Third, set the degrees of the polynomialssi,j(K) as the largest degrees for whichb(K) has its

minimum degree. Summarizing, one choosesd, dΦ anddζ , and the other degrees are automatically

selected.

IV. EXAMPLE

In this section we present an illustrative example of the proposed methodology. The LMI

problems are solved by using the toolbox SeDuMi [23] for Matlab on a personal computer with

Windows 10, Intel Core i7, 3.4 GHz, 8 GB RAM. The matrixΨ is simply chosen as the diagonal

matrix such thatψ(x) = ‖x‖2d−2
2 . The matrix polynomialsΘi(K) andζ(K) are chosen of degree

0. For brevity of description, it is assumedB1,i = B2,i, C1,i = C2,i andDj,i = 0 in (1).
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Let us consider (1) withN = 2 and


















































































A1 =











3 7 0

−1 0 −2

0 1 −1











, A2 =











3 4 −2

−1 −1 −1

1 0 −2











B1 =











2

0

0











, B2 =











1

0

0











C1 =





1 0 0

0 1 0



, C2 =





2 0 −1

0 1 0



 .

The problem is to determineK = (k1, k2) in the setK = {K ∈ R
2 : ‖K‖∞ ≤ 10} such that

the RMS gain of (7) is smaller thanγ = 10.

First of all, let us observe that the RMS gain of the open loop switched system is unbounded.

Indeed, the matricesA1 andA2 are not Hurwitz, since






spec(A1) = {−0.158, 1.079± j2.275}

spec(A2) = {−2.166, 1.083± j1.587}.

Let us use the methodology proposed in Section III. First, wesolve (23). We choose to search

for HRLFs of total degree2d = 2 with linear dependence in the controller (i.e.,dV = 1). We

find
ξ∗(K) = 10−3 (−0.898k21 + 0.036k1k2 − 3.814k1

−0.240k22 − 0.389k2 − 3898.461) .

The number of LMI scalar variables is69, and the computational time is less than1 second.

Second, we solve (26), finding

Z = {(−2.143,−0.972)} .

The number of LMI scalar variables is19, and the computational time is less than1 second.

Third, we test the LMI feasibility test (19) forK = K∗ with K∗ = (−2.143,−0.972) being

the element ofZ, finding that this test holds. The number of LMI scalar variables is3, and the

computational time is less than1 second. Hence, the found controllerK∗ solves the problem.

It is worth remarking that even the simpler problem of findinga stabilizing static output

feedback controller for any of the subsystems in this example is a nonconvex optimization
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problem and, hence, hard to be solved. On the other hand, the proposed approach is able to

find, with convex optimization, a static output feedback controller that not only stabilizes all the

subsystems but also ensures a guaranteed RMS gain for all possible switching rules.

V. CONCLUSIONS

This paper has addressed the problem of determining static output feedback controllers for

ensuring desired upper bounds of the RMS gain of continuous-time switched linear systems with

arbitrary switching. The problem has been addressed by searching for an HRLF parameterized

rationally by the sought controller, and by introducing a polynomial for quantifying the feasibility

of the Lyapunov inequalities. It has been shown that such a controller exists if and only if a

condition built solving three convex optimization problems with LMIs holds for polynomials of

degree sufficiently large.

Several directions can be investigated in future works, such as the extension to the presence

of dwell-time constraints on the switching rule, and the extension to the synthesis of dynamic

output feedback controllers.

APPENDIX

Hereafter we report the definition of the quantities exploited in Theorem 1. Let us define

q(x, d, u) = b (x, d− 1)⊗ u,

and letJ1, . . . , J5 be the matrices satisfying














































b (x, d)⊗ b (x, d− 1) = J1b (x, 2d− 1)

b (x, d− 1)⊗2 ⊗ x = J2b (x, 2d− 1)

b (x, d− 1)⊗ u⊗ b (x, d− 1) = J3q(x, 2d− 1, u)

b (x, d)⊗ b (x, d− 2)⊗ u = J4q(x, 2d− 1, u)

b (x, d− 1)⊗2 ⊗ u = J5q(x, 2d− 1, u).

For s = 0, 1, let Ai,s(K) andBi,s(K) be the matrices satisfying

db (x, d− s)

dx
Ai(K)x = Ai,s(K)b (x, d− s)

and
db (x, d− s)

dx
Bi(K)u = Bi,s(K)q(x, d− s, u).
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Let us define

Fi(K,Φ) =





Ei,1(K,Φ)−Ei,2(K,Φ) ⋆

Fi,1(K,Φ)
′ − Fi,2(K,Φ)

′ −γ2Fi,3





where






Ei,1(K,Φ) = J ′
1 (he (ΦAi,0(K))⊗Ψ)J1

Ei,2(K,Φ) = J ′
1 (Φ⊗ he (ΨAi,1(K)))J1,

and


















Fi,1(K,Φ) = J ′
1 (ΦBi,0(K)⊗Ψ)J3

Fi,2(K,Φ) = J ′
1 (Φ⊗ΨBi,1(K)) J4

Fi,3 = J ′
5 (Ψ

⊗2 ⊗ I)J5.

Lastly, let us define

Gi(K) =





Gi,1(K) Gi,2(K)

⋆ Gi,3(K)





where


















Gi,1(K) = J ′
2 (Ψ

⊗2 ⊗ Ci(K)′Ci(K)) J2

Gi,2(K) = J ′
2 (Ψ

⊗2 ⊗ Ci(K)′Di(K)) J5

Gi,3(K) = J ′
5 (Ψ

⊗2 ⊗Di(K)′Di(K))J5.
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