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Abstract

This paper addresses the problem of determining staticubdgedback controllers for ensuring
desired upper bounds of the root mean square (RMS) gain dincaus-time switched linear systems
with arbitrary switching. The problem is addressed by deag:for a homogeneous rational Lyapunov
function (HRLF) parameterized rationally by the soughtteolter, and by introducing a polynomial
for quantifying the feasibility of the Lyapunov inequadisi. It is shown that such a controller exists if
and only if a condition built solving three convex optimipet problems with linear matrix inequalities

(LMIs) holds for polynomials of degree sufficiently large.

I. INTRODUCTION

Switched systems are dynamical systems allowed to chanipeting time in a finite family
under the selection of a signal called switching rule. Swatt systems are generally classified
into two main classes: switched systems with dwell time tan#s and switched systems with
arbitrary switching. In the former class, the changes antbegnathematical models can occur
only after a minimum time, called dwell time, which can bechar average. In the latter class,

the changes among the mathematical models can occur &tpifest.
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A fundamental problem in switched systems is stability gsial See for instance the books
[3], [17], [24] and the surveys [10], [18], [19] for generasults. Other works include [4],
[11], [15], [16], [25]. In particular, sufficient linear mat inequality (LMI) conditions have
been proposed in [12] based on quadratic Lyapunov functemms necessary and sufficient LMI
conditions have been proposed in [8], [9] based on homogenealynomial Lyapunov functions
(HPLFs).

Another fundamental problem in switched systems is perémge analysis, in particular
concerning the root mean square (RMS) gain. The RMS gain bas btudied for switched
linear systems in [14], [19], [20] through techniques sushvariational principles and worst-
case control. LMI conditions have been proposed in ordeeterdhine upper bounds of the RMS
gain through convex optimization. In particular, suffididtMI conditions based on quadratic
Lyapunov functions have been proposed in [13], and necessat sufficient LMI conditions
based on homogeneous rational Lyapunov functions (HRLEgg Iheen proposed in [6].

Unfortunately, the synthesis of output feedback contrslfer ensuring desired upper bounds
of the RMS gain of switched systems is still an open problend 8w contributions can be
found, see for instance [1], [2] where sufficient LMI condits have been proposed. Indeed,
by letting the controller be a decision variable in the erggtconditions for establishing upper
bounds of the RMS gain, one obtains nonconvex optimizatimblpms, in general due to the
presence of products between the Lyapunov function andaheatler.

This papet addresses the problem of determining static output feédbantrollers for en-
suring desired upper bounds of the RMS gain of continuaus-switched linear systems with
arbitrary switching. The problem is addressed by searclungn HRLF parameterized rationally
by the sought controller, and by introducing a polynomial uantifying the feasibility of
the Lyapunov inequalities. It is shown that such a contradests if and only if a condition
built solving three convex optimization problems with LMit®Ids for polynomials of degree
sufficiently large. This paper extends our work [7] where $lgathesis of stabilizing controllers

for switched systems is addressed.

This work is supported by Hunan Provincial Natural Sciencairfélation of China under grant 2017JJ3211 and China
Postdoctoral Science Foundation under grant 2017M622606.
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[I. PRELIMINARIES

The notation is as followsN, R: sets of non-negative integers and real numbers. Unless

specified otherwisey; denotes the-th entry of a vector, and.X; ; denotes théi, j)-th entry of

a matrixX. 0, 7: null matrix and identity matrix of size specified by the aexit A’": transpose of

A. he(A): A+ A’ spec(A): set of eigenvalues oll. A® B: Kronecker’s product betwees and

B. A®™: n-th Kronecker powet| A||2, || Al|c @nd||A]| 7ro: 2-norm,co-norm and Frobenius’ norm

of A. [la(-)|lz,: Lo-norm of a(t), i.e., [lallz, = \/ [y la(t)|3dt. a*: ai'al? - - -, wherea and b

are vectorsA > 0 (respectively,A > 0): symmetric positive semidefinite (respectively, definite
matrix A. A functionV : R™*? — R?*" is said to be a matrix polynomial if the entries 6f K)

are polynomials in the entries &f. x: corresponding block in a symmetric matrix. s.t.: subject t

Let us consider the switched system

;

i(t) = Avow(t) + Biowu(t) + Baomw(t)

y(t) = Cioma(t) + Diowu(t) + Daguw(t)

2(t) = Cooma(t) + Dagwyu(t) + Diomw(t)

\ o(-) € D

wheret € R is the time,z(t) € R" is the stateu(t) € R™ is the control inputw(t) € R™ is

(1)

the external inputy(¢) € R is the control outputz(t) € RP? is the external outputy : R —

{1,..., N} is the switching ruleD,,, is the set of arbitrary switching rules
Dy ={0:R—{1,..., N}, the state exisis, (2)

andA,;, ..., Dy, i =1,..., N, are real matrices of suitable sizes. The system (1) olutefmre
o(t) =1 is called thei-th subsystem of the switched system (1).

Definition 1: The RMS gain of (1) is

s = sup WOles 3)
) uC)lle,
J(')eDarb
wherey(t) is the solution in (1) forz(0~) = 0. O

The switched system (1) is controlled by a mode-indepenstatit output feedback controller,
i.e.,

u(t) = Ky(t) (4)
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where K € R™1*P1 has to be determined in the set
K = {K e R™PL: || Ko < p} (5)

wherep € R is a given bound. Let us assume that the map betwéenand y(t) is strictly
proper, i.e.,
Dy, =0, (6)

The closed-loop system is

2(t) = Cow(K)z(t) + Doy (K)w(?) (7)
U() € Darb
where )
Ai(K) = A+ B KOy

(K)
B,(K) = By;+ B1;KDy;
K) (8)

Ci(K) = Cyi+ D3, KCy;

Di(K) = Dy;+ D3;KDy;.
\

Problem 1:DetermineK € K such that the RMS gain of (7) is smaller than a desired value
5. O

Let us observe that, in order for Problem 1 to admit a solytf@pmust admit a static output
feedback controller that stabilizes it with arbitrary sshiing. It is not required to know a priori
such a controller, and it is not required that (1) is stabldarbitrary switching. The dependence
on t of the various quantities will be omitted in the sequel of fheper for ease of notation

unless specified otherwise.

[1l. PROPOSEDMETHODOLOGY

The approach proposed in this paper for solving Problem =sed on the use of Lyapunov
functions in the class of the homogeneous rational funstioa., functions that can be expressed
as the ratio of homogeneous polynomials. Let us start byigirmy some basic definitions.

A functionv : R” — R is said to be a homogeneous polynomial of de@iéed € N, if

v(x) = Z acz’ 9)
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for somea. € R. The set of such functions is denoted by
Pog={v:R"—R: (9) holds . (20)

Homogeneous polynomials can be expressed in several waysafter, we adopt an expression
based on symmetric matrices. Let us denote With,d) a vector whose entries are all the
monomials inz of degreed € N with unitary coefficient without repetition. The length of

b(x,d) is given by
(n+d—1)!

(n—1)la! -

By using the vectob (z, d), a homogeneous polynomialx) of degree2d can be expressed as

c(n,d) = (11)

v(x) = b(x,d) Vb(z,d) (12)

for someV = V' € Retmdxe(nd) The representation (12) is known as Gram matrix method or
square matricial representation (SMR), see for instanfan8 references therein.
A functionv : R” — R is said to be a homogeneous rational function of total degreeN

and relative degree € N, with r > s, if

¢(z)
v\ = —
@)= Y@
¢ € P, (13)
’¢ S ?%75.
The set of such functions is denoted by
Q,.={v:R" =R, (13) holdg . (14)

Lyapunov functions in the class of the homogeneous ratifumaitions, i.e., HRLFs, have been
introduced in [6] to derive upper bounds of the RMS gain oftsied systems. In particular,

these HRLFs are searched for in the €k} 2, and can be expressed as

P(x)
v(r) = —=%
@ = 5@
o) = b(w,d) Bb(z,d) (15)
Y(z) = b(x,d—1)Vb(z,d—1)
where® = @' € Re(mdxc(nd) gnd f = ¢/ ¢ Remd-1)xe(nd-1) 1| ot ys define
b(x,2d —1)
r(z,d,u) = (16)
b(z,2d —2)®u
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and
L= {E =L': r(z,d,u)Lr(z,du) = 0} : (17)

The following result, proposed in [6], provides a necessamg sufficient LMI condition for

establishing upper bounds of the RMS gain of (1).

Theorem 1 ( [6]):Let ¥ > 0 be chosen. The RMS gain of (1) satisfies (for a fixed controller
K)
Yrms <7 (18)

if and only if, for somed, there existb and©,, i = 1,..., N, satisfying the system of LMIs

0 < &
(19)
{O > F(K,®)+Gi(K)+L(©;) Vi=1,...,N

whereL(-) is a linear parametrization a, and F;(K, ®) andG;(K) are linear matrix functions

of ® whose definitions are reported in the Appendix. O

Unfortunately, the condition provided by Theorem 1 cannetused directly for solving
Problem 1 because the second inequality of (19) would beimean in the decision variables
K and .

The first idea for coping with this problem is to introduce a@laclass of Lyapunov functions,
specifically HRLFs depending rationally on the controllEnese functions can be expressed as
b(z,d) ®(K)b(x,d)

v ) = = 1 Wb (. d — 1) 20
with
p(r) = )
®<}(>‘_ C(I() (21)

where ®(K) = ®(K)" and ((K) are matrix polynomials to be determined, afid= ¥’ is a

chosen matrix. Let us define the matrix polynomials

(

Ml(K) = Q)(K)

Ms(K) = ~E (K, (K)) ~ (K)Gi(K) 22
—L(Oi(K)) — £(K)T

My(K) = C(K)—1
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where L(-) is a linear parametrization of, and ¢£(K), ®(K), ©;(K) and ((K) are matrix

polynomials to be determined. The first optimization problee define is

sup h

e es i) em (23)
s.t.

h <1
where M is a set containing the matrix polynomials in (22)]s the set of matrix polynomials

that can be expressed as sums of squares of matrix polyrsyrarad

h = /’C $(K)dK. (24)

The optimization problem (23) aims at maximizing the polyral ¢(K) over the set and,
hence, the positive semidefinitenessidf, (/') over this set. This optimization problem is an
SDP because the cost function is linear and the constraiatequivalent to LMIs, see [5] and

references therein for details.

The next step is to determine a candidate for the soughtatartbased on the solution of
(23). To this end, let*(K) be a maximizer of(K) in (23). Let us define

b(K)=a—¢&(K)— | > (0P = K7 )sii(K) (25)

wherea € R ands; ;(K),i=1,...,m, j =1,...,p, are polynomials to determine. The second

optimization problem we define is

inf a
a,si; (") (26)
s.t. b(K), SiJ(K) €.

The optimization problem (26) is an SDP analogously to (2B aims at determining the
maximum of&*(K') over the setC. Indeed, the maximizer of* (/) over the sefC is the best
candidate for the sought controller sin€g K') quantifies the feasibility of the inequalities of
(19). In order to determine such a maximizer,detands; ;(K) be minimizers ofu ands; ;(K)

in (26), and leth*(K) be b(K) evaluated with such minimizers. Let us define the set
Z={Kek: b'(K)=0, &(K)=ad"}. (27)

The following result provides a necessary and sufficiendaan for solving Problem 1.
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Theorem 2:There existsk that solves Problem 1 if and only if there exigtsS in the setZ
that solves this problem for sufficiently large degrees ef plolynomials introduced.
Proof. The sufficiency is obvious, hence let us consider the nageSsippose there exist&’
that solves Problem 1, and let us indicate such a valu&“sFor the chosenw > 0, letd € N
be such that the LMI feasibility test (19) holds witki = K# (observe that such a value df
does exist from Theorem 1). Let us define the funcfon R — R as

E(K) = sup ¢
§,0,0;
0 < &—p4I
st.{ 0 < —F(K, &) —Gi(K)— L(©;)

—&I Vi=1,...,N

where € R is an auxiliary quantity. Since the LMI feasibility test (18olds with the changes
mentioned above, it follows that (K#) > 0 for some( positive and sufficiently small. Let us
consider such a value df hereafter. SincéC is compact, the matrix functions'(K), ®*(K)
and ©#(K) can be approximated arbitrarily well ovéé through matrix polynomials. Since
£*(K#) > 0, it follows that there exist matrix polynomial§ k), ®(K) and ©;(K) such that
f(K#) > 0 and the following matrix polynomials are positive definite fll K € R™ *P1;

Mi(K) = ®(K)-pI

Mip(K) = —F(K &(K)) - Gi(K)

~L(6:(K)) — £(K)1.

Let us define the polynomigl(K) = (1 + ||K|/%,,)" wheren € N. From [22] it follows that
there exists) such that the matrix polynomials above, multiplied py/«'), are in%. Since the
matrix polynomials in (22) are homogeneous in the set ofabdeis¢(K), ¢(K), ©;(K) and
((K), and sincef(K) — 1 is in ¥ (being sum of powers ofl K ||%,, multiplied by positive
coefficients), one has that the constraints of (23) can bsfigat by choosing

[ (k) = FIOEK)
O(K) = f(K)D(K)
Oi(K) = fK)Oi(K)

| ) = s,

This implies that matrix polynomial§(K), ®(K), ©;(K) and ((K) such thatM(-) € X for
all M(-) e M and{(K) > 0 for someK € K can be obtained by maximizing the integral of
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¢(K) over K under the constraints of (23). Indeed, above we have shoairttiere exist such
matrix polynomials without considering the constrain 1. If this constraint is satisfied by
such matrix polynomials, then they can be considered,&hd > 0 for K = K#. Otherwise,
we redefine$(K) as

E§(K) — E(K) —a

o= () (o)

and this ensures thgt K) is still positive for somek € K (since the integral of (K) over K
is 1) and that the constraints of (23) hold (sinee> 0).

where

Next, let us define

0 = sup £"(K).
KeKk

Let us observe thagt® — K7, >0 foralli=1,...,my andj =1,...,p, ifand only if K € K,
moreover the polynomialg® — KZ]. have even degree and the highest degree forms are zero if
and only if K = 0. From Putinar’'s Positivstellensatz [21], it follows th&y all « > 6, there
exist polynomialss; ;(K') such that the constraints of (26) are satisfied. Hence, fynpmials

s, j(K) with sufficiently large degrees, one gets
a*=40.

Let K* be a maximizer of*(K) over K, i.e.,£*(K*) = 6 = a*. Sinceb(K) is in ¥, it follows

that
0 < b(K™)

= @ =K = D0 (07— (K))s,(K0)

< 0.

Hence,b(K*) = 0 and, thereforeK* € Z. Moreover,£*(K*) > 0 and, thereforeK™* solves the

problem. O

Theorem 2 provides a strategy for solving Problem 1 base®8hdnd (26). This strategy
consists of narrowing the search space for the sought dtemtfoom the original set, i.e., the
setIC, to a reduced one, i.e., the s&t Indeed, the seg contains one element only in non-

degenerate cases, specifically, the maximizef*0f) over the sefC. Once the seg is found,
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one just checks if any of the controllers included in such tasséves Problem 1, for instance
by using the LMI feasibility test (19).

The setZ can be determined from the Gram matrix of the polynomigl) found when
solving (26). Specifically, this determination involve® tbomputation of the null space of this
matrix, pivoting operations, and the computation of thetsoaf a polynomial in one variable.
See [5] and references therein for details.

The second constraint in (23) is introduced in order to emshbat the solution of the opti-
mization problem is bounded. The constdanbn the right hand side of this constraint can be
replaced with any other positive number, and the constrelf is unnecessary in typical cases.

Let us observe that the sufficiency of Theorem 2 is achievedryg degrees of the polynomials
introduced. The necessity, instead, is achieved for seffity large degrees of these polynomials.
Some guidelines for choosing these degrees are as follaves, €hoosed (which defines the
degree of the HRLF), the degree ®f K') (denoted byds) and the degree of (K) (denoted
by d;). Second, set the degrees@ @), ©,(K) and{(K) equal to the degree of; (K, ®(K)).
Third, set the degrees of the polynomials(X’) as the largest degrees for whitf¥) has its
minimum degree. Summarizing, one choogg$; andd, and the other degrees are automatically

selected.

V. EXAMPLE

In this section we present an illustrative example of theppsed methodology. The LMI
problems are solved by using the toolbox SeDuMi [23] for Mlatbn a personal computer with
Windows 10, Intel Core i7, 3.4 GHz, 8 GB RAM. The matrixis simply chosen as the diagonal
matrix such that)(z) = ||z||3%"2. The matrix polynomial®;(K) and¢(K) are chosen of degree

0. For brevity of description, it is assumés} ; = B;;, ', = Cy; andD,; = 0 in (1).
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Let us consider (1) withV = 2 and

;

11

3 7 0 3 4 -2
Ar=| =1 0 =2 |, A -1 -1 =1

0 1 —1 1 0 -2

2 1
By = 0 1, By = 0

0 0

1 00 2 0 —1
C, = C, =

010 01 0

\

The problem is to determin& = (k;, k) in the setk = {K € R? : ||K||. < 10} such that
the RMS gain of (7) is smaller than = 10.
First of all, let us observe that the RMS gain of the open lowjiched system is unbounded.

Indeed, the matriced; and A, are not Hurwitz, since
spec(4;) = {-0.158,1.079 &+ j2.275}
spec(As) =

Let us use the methodology proposed in Section lll. Firstsolge (23). We choose to search

{—2.166,1.083 + j1.587}.

for HRLFs of total degred = 2 with linear dependence in the controller (i.6y; = 1). We
find
E(K) = 1073 (—0.898k? + 0.036k ks — 3.814k,
—0.240k2 — 0.389k, — 3898.461) .
The number of LMI scalar variables &9, and the computational time is less tharsecond.

Second, we solve (26), finding
Z ={(~2.143,-0.972)} .

The number of LMI scalar variables i®), and the computational time is less tharsecond.
Third, we test the LMI feasibility test (19) fokK = K* with K* = (—2.143,—0.972) being
the element ofZ, finding that this test holds. The number of LMI scalar vaeahs3, and the

computational time is less thansecond. Hence, the found controll&r solves the problem.

It is worth remarking that even the simpler problem of findiagstabilizing static output

feedback controller for any of the subsystems in this exampla nonconvex optimization
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problem and, hence, hard to be solved. On the other hand,rdposed approach is able to
find, with convex optimization, a static output feedbackteolier that not only stabilizes all the

subsystems but also ensures a guaranteed RMS gain for albf@oswitching rules.

V. CONCLUSIONS

This paper has addressed the problem of determining statpubfeedback controllers for
ensuring desired upper bounds of the RMS gain of contintiousswitched linear systems with
arbitrary switching. The problem has been addressed bytsegrfor an HRLF parameterized
rationally by the sought controller, and by introducing &pomial for quantifying the feasibility
of the Lyapunov inequalities. It has been shown that suchraraiter exists if and only if a
condition built solving three convex optimization problemith LMIs holds for polynomials of
degree sufficiently large.

Several directions can be investigated in future workshsagthe extension to the presence
of dwell-time constraints on the switching rule, and theeesion to the synthesis of dynamic

output feedback controllers.

APPENDIX

Hereafter we report the definition of the quantities exgldiitn Theorem 1. Let us define
q(z,d,u) =b(x,d—1) @ u,

and let.Jy, ..., Js; be the matrices satisfying

(

b(z,d)@b(zr,d—1) = Jib(z,2d —1)

b(z,d—1) @z = Job(x,2d—1)
b(z,d—1)@ub(zr,d—1) = Jsq(z,2d —1,u)
b(x,d) @b(z,d—=2)®u = Jyq(z,2d —1,u)

b(x,d— 1) @u = Jsq(z,2d —1,u).

\

Fors=0,1, let A, ,(K) and B, ;(K) be the matrices satisfying

db(x,d —s)

I Ai(K)z = A; s(K)b(z,d — s)

and
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Let us define
Ei,1<K7 (I)) — E@Q(K, (I)) *

F (K, ) =
Fz‘,l(K> q))/ - Fz‘,2(K> q))/ —V2Fi,3
where
Ez"l(K, @) = J{ (he (@A%()(K)) & \I/) Jl
E@Q(K, q)) = J{ (Cb®he (QAZJ(K))) J17
and

Fi(K,®) = J(®B,o(K)® W) Js
Fp(K,®) = Ji(PQUB;1(K))Js
Fiy = JL(U@1)Js.

Lastly, let us define

where
i1(K) = J5 (V¥ @ Ci(K)Ci(K)) Jo

G
Gia(K) = J5(U®2 @ Ci(KYDy(K)) Js
Gis(K) = JL (V%2 @ D,(K)D;(K)) Js.
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