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Abstract 

Linear data projection is widely used for unbiased traffic data estimation. 
Nevertheless, recent studies have proven that direct model estimation based on linearly 
projected data that ignores the scaling factor variability may lead to systematically biased 
parameters. Adjustment factors were derived for a generalised multivariate polynomial (GMP) 
function with fixed exponents to remove such biases. However, the methods have not been 
extended to generic nonlinear transport models necessitating nonlinear regressions. This 
paper scrutinises the mechanism of systematic data point distortion resulting from linear data 
projection and identifies the practical difficulties of the adjustment factor approach to other 
nonlinear models. To reduce such biases in nonlinear transport models, a generic mean value 
restoration (MVR) method, requiring only the first two moments of the scaling factor, and an 
extended MVR (EMVR) method, further incorporating higher order moments by assuming a 
scaling factor distribution, are proposed. Simulation studies are conducted for both GMP 
functions with relaxed exponents and multivariate exponential decay functions, which are the 
most commonly adopted nonlinear functions for modeling traffic flow, to examine the 
effectiveness and robustness of the proposed methods for recovering the assumed true model 
parameters. Results reveal that the EMVR method generally can achieve higher level of 
accuracy.  

Keywords: Big data era; Linear data projection; Systematic bias; Nonlinear transport models; traffic flow 
models 

1. Introduction 

Accurate and reliable transport models are of crucial importance in transportation 
studies because they help researchers and practitioners develop a better understanding of the 
interaction between transportation infrastructure, vehicles and road users. Moreover, accurate 
models are also necessary to ensure the effective and appropriate implementation of urban 
transport planning, traffic management and control measures. 

Accurate transport model estimations require accurate traffic data. With the advent of 
various high-tech devices, the accuracy and efficiency of traffic data collection has been 
substantially improved over the past several decades. Nevertheless, various limitations of 
these detectors and sensors make it impractical to collect data from the entire network. On-
road fixed detectors, such as inductive loop detectors, can collect traffic data at an acceptable 
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level of accuracy, but their high installation and maintenance costs impede their ubiquitous 
deployment (Herrera and Bayen 2010; Herrera et al. 2010). Thus, their coverage is usually 
limited to a subset of links (Caceres et al. 2012). A vehicle re-identification system can 
measure the travel time of a vehicle across a link by matching the vehicle’s signature as it 
passes sensors at the two ends of that link (Kwong et al. 2009). Any available technological 
utilities that can determine vehicle identities, such as radio frequency identification 
transponders (Wright and Dahlgren 2001; Ban et al. 2010), licence plate recognition systems 
(Herrera et al. 2010) and wireless magnetic sensors (Kwong et al. 2009) can be readily 
adopted for such schemes. However, in addition to the high installation and implementation 
costs, the risk of compromising privacy issues is a major obstacle to deploying these schemes 
over an entire network. The cellular systems introduced a decade ago (Bolla and Davoli 2000; 
Ygnace and Drane 2001; Zhao 2000) provide a potential solution to the cost and coverage 
problems (Herrera et al. 2010). Nonetheless, their application is discouraged or even 
prohibited in many countries, because using mobile phones while driving disrupts drivers’ 
attention (Liang, Reyes, and Lee 2007). The advancement of global positioning systems 
(GPSs) offers another promising means of traffic data collection using probe vehicles 
covering almost the entire network at a relatively low cost (Miwa et al. 2013). However, GPS 
data retrieved from vehicle fleets (e.g., FedEx, UPS, or taxis) (Moore et al. 2001; Bertini and 
Tantiyanugulchai 2004; Schwarzenegger et al. 2009; Wong et al. 2014) could possibly pose 
bias problems due to their unique operational or travel patterns. Furthermore, the extra capital 
and installation costs of GPS trackers coupled with the potential privacy issues hinder the 
application of such systems on a global scale.  

With the aim of overcoming the practical issues obstructing direct and accurate traffic 
data measurement, mathematical techniques such as data scaling, filtering and sampling 
methods have been developed and leveraged for accurate traffic data estimations. Linear data 
projection is a ubiquitous and highly transferrable data scaling method that infers 
unobservable traffic data by projecting observable traffic data using the mean of a set of 
sampled scaling factors, which are the ratios bridging the unobservable and observable data. 
We foresee that in the big data era, more and more connected vehicle (or probe vehicle) data 
will be available and we will often need such a data scaling method to scale up observable 
traffic data. Moreover, because many transport models heavily rely on a variety of sources of 
data for estimations, calibrations and validations, it is a timely data scaling method that can 
compatibly fuse data from different sources for unbiased traffic data estimation. The scaling 
factors can be defined differently to fit the specified physical context. The unobservable 
traffic data can usually be expressed as a linear combination of the scaling factors and the 
observable traffic data. Due to the complexity and stochastic nature of transportation systems, 
scaling factors are usually random variables rather than constants, and are thus assumed to 
follow distributions. Depending on the sampling approach, different types of variability, such 
as spatial or temporal variability, can be measured by the scaling factor variance. In practice, 
because the value of each scaling factor is unknown, they are replaced by the estimated 
scaling factor mean in a linear data projection to provide an unbiased estimator for the 
unobservable traffic data. 
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Linear data projection has been used in transportation studies to estimate 
unobservable traffic data. For instance, the unbiased estimator of an hourly total traffic flow 
across a link that does not have a detector can be obtained using a data scaling method. Given 
that the total traffic flow in a network is only observable at the subset of links with detectors, 
and that the probe vehicle flow is observable at every link in the network, the total-traffic-to-
probe-vehicle ratio at a link can be defined as the scaling factor in this context. Scaling 
factors can be sampled from the subset of links with detectors due to the data availability of 
both total traffic and probe vehicle flows. Because of the heterogeneities of land-use patterns 
and stochasticity, the scaling factors sampled at different locations are usually different, but 
they can be assumed to follow a distribution over the network due to geographical proximity. 
In such cases, the scaling factor variance measures spatial variability across the network. As 
the scaling factor mean is the most probable observed traffic composition ratio across the 
network in the long run, if its value is 100 and the hourly probe vehicle flow on the link of 
interest is 10	veh/h, then the unbiased estimator for total hourly traffic on this link can be 
evaluated by their product; that is, 1000	veh/h. This method has been employed in many 
studies to estimate traffic flow (Wong and Wong 2015, 2016a, 2016b, 2016c). Another 
example that estimates hourly equivalent traffic flow across a road based on linear data 
projection uses a passenger car unit (PCU) as the scaling factor. Due to the varying traffic 
composition across time, a PCU is not necessarily static (Chandra, Kumar, and Sikdar 1995). 
Given that a road is outfitted with a detector counting vehicles 24 hours a day, the hourly 
equivalent traffic flow across that road for a specific hour is the product of the traffic flow 
and the PCU value in that hour. However, this PCU value may not be known, because due to 
budget constraints, surveyors are usually only sent on site to determine vehicle types for 
several hours a day on certain days in a year, according to a strategic sampling plan. In such 
cases, the product of an hourly traffic flow and the sampled PCU mean offers an unbiased 
hourly equivalent traffic flow and the PCU variance measures its temporal variability. 
Similarly, linear data projection can be leveraged to extrapolating demand data such as 
projecting travel diary surveys from a sample of households to the zonal level and expanding 
transit travel distribution from sampled vehicles outfitted with automatic passenger counting 
system. 

Apart from estimating unobservable traffic flows and travel demand, linear data 
projection can be applied in accident analysis to estimate exposure measures such as vehicle 
mileage and travel time, which are the typical explanatory variables accounting for the 
variations in crash counts at specific sites. The corresponding sensitivity parameter in relation 
to these variables is known as the crash risk. As an example, the annual vehicle mileage on a 
road is expressed as the product of its annual traffic volume and road length. Because of 
limited budgets and resources, detailed traffic data collection throughout a year is usually 
only possible for a subset of roads, and short-term (e.g., one weekday) traffic data are 
recorded for the remaining roads. If only short-term traffic volume is available for the road of 
interest, its unbiased vehicle mileage can be estimated via a linear data projection with the 
annual-to-short-term-traffic-volume ratios sampled from the nearby roads with full-year 
traffic data as the selected scaling factors. The scaling factor variance quantifies the spatial 
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variability. Similarly, Meng et al. (2017b) estimated the time exposure based on linear data 
projection in their recent study modelling multiple-vehicle crash frequency. 

With the recent emergence and growing popularity of high-tech devices such as 
cellular systems and GPSs, linear data projection could be the key to fusing data from 
different sources and estimating the unobservable but necessary traffic data for different 
macroscopic transport model estimations. Macroscopic transport models have rapidly gained 
momentum in recent decades due to their tremendous potential benefits in various 
applications such as initial land-use planning (Ho and Wong 2007; Yin et al. 2013), urban 
network traffic control (Daganzo 2007; Aboudolas and Geroliminis 2013; Geroliminis, 
Haddad, and Ramezani 2013; Zhong et al. 2017) , road pricing schemes (Geroliminis and 
Levinson 2009; Zheng et al. 2012; Zheng, Rerat, Geroliminis 2016) and dynamic modelling 
and control of taxi services (Ramezani and Nourinejad 2017). These models can be generally 
categorised as macroscopic cost flow (MCF) functions and macroscopic fundamental 
diagrams (MFDs). MCFs are commonly used for static analyses whereas MFDs are usually 
used for dynamic analyses. Known and accurate macroscopic models are the prerequisite for 
beneficial applications, and accurate traffic data collected from the entire network are the 
essential ingredients for their estimation. However, direct measurements of these traffic data 
are normally not feasible using currently available devices due to the various aforementioned 
limitations. Linear data projection offers a practical and useful framework to provide 
unbiased estimators for those unobservable traffic data based on data collected from different 
sources or methods. In their study of the existence of MFD, Geroliminis and Daganzo (2008) 
adopted linear data projection to infer accumulation (a proxy measure for traffic density) in a 
network using a total-traffic-to-occupied-taxi ratio constituted by data retrieved from both 
detectors and occupied GPS taxis as the scaling factor. For MCFs, Wong and Wong (2015, 
2016a, 2016b) estimated macroscopic Bureau of Public Road functions for 1	km	ൈ	1	km 
sampled networks in Hong Kong based on real-world data acquired from counting stations 
and GPS-equipped taxis. The total hourly traffic flows entering the sampled networks were 
estimated by linear data projection with total-traffic-to-occupied-taxi ratio as the chosen 
scaling factor. The scaling factor variability could be attributed to different factors such as 
land-use heterogeneity of different lots (Meng et al., 2017a). 

As linear data projection offers unbiased estimators for unobservable traffic data, it is 
intuitive to estimate models based on the linearly projected data. However, the implications – 
and most importantly, the corresponding effects on the estimated parameters – have been 
largely ignored in the field. Estimating models directly based on linearly projected data is 
equivalent to ignoring the effects of scaling factor variability. Ignoring spatial variability 
implies a uniform scaling factor value across space. Similarly, a constant scaling factor is 
assumed if temporal variability is ignored. Wong and Wong (2015) recently proved that 
systematic bias is generically introduced in the parameters of models estimated from linearly 
projected data, regardless of the scaling factor distribution and the form of the model to be 
estimated, as long as the scaling factor is subject to variability and the model is a nonlinear 
function of the scaling factor. The authors, however, only examined generalised multivariate 
polynomial (GMP) functions with fixed exponents that are essentially linear regression 
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models. Analytical expressions for quantifying the extents of biases and adjustment factors 
for reducing such biases were derived for this family of functions. Wong and Wong (2016b) 
later proved that heteroscedasticity is inherently introduced when linear data projection is 
adopted, regardless of the form of model to be estimated. This will certainly lead to biased 
standard error estimation. The authors similarly focused only on the family of GMP functions 
with fixed exponents. An analytical distribution free method and equivalent scaling factor 
methods were proposed to accurately estimate the model parameters and their standard errors. 
In the case studies of estimating MCFs, the usually ignored spatial variability of the scaling 
factor was incorporated to ensure accurate estimated parameters and standard errors. 
However, it must be stressed that these methods are applicable only to GMP functions with 
fixed exponents, which are linear regression models although they can be nonlinear in shape. 
Methods for reducing such biases have not been extended to the territory of generic nonlinear 
transport models requiring nonlinear regressions. Despite focusing on network flow and 
density estimations, Ambühl and Menendez (2016) and Du, Rakha and Gayah (2016), 
discussed and addressed the unrealistic assumption of a uniform scaling factor (or probe 
vehicle penetration rate) across the entire network that is usually assumed in MFD 
estimations. Ambühl and Menendez (2016) proposed a data fusion algorithm to estimate 
network flows and densities based on probe vehicle data and high-resolution loop detector 
data. Simulation results revealed that the data fusion algorithm could always reduce the error 
in data points compared to estimations based on only one data source. Moreover, if the probe 
vehicle penetration rate was not too low and only median error was considered, the algorithm 
was found to be efficient within the investigated range of spatial heterogeneity of the probe 
vehicles. With the distribution of probe vehicle OD pairs, a novel algorithm based on k-
means clustering analysis was proposed by Du, Rakha and Gayah (2016) to estimate the 
unobservable probe vehicle penetration rates of individual OD pairs. Using these estimated 
rates, equivalent average probe vehicle penetration rates (i.e., harmonic means of the 
estimated OD pair probe vehicle penetration rates) could be evaluated for network flow and 
density estimations. Simulation results showed that equivalent average probe vehicle 
penetration rates can capture the spatial heterogeneity and provided more accurate flow and 
density estimates compared to cases based on constant probe vehicle penetration rates. 
Nevertheless, these algorithms focusing on data point estimations typically require relatively 
detailed data, such as high-resolution loop detector data and distributions of probe vehicle 
OD pairs, to incorporate the lost scaling factor variability into each of the data points. These 
algorithms were designed for data point estimations for MFDs, so they are usually not 
directly transferrable and cannot be easily extrapolated to other situations. Modifications of 
the algorithms are usually necessary to solve other physical problems. Rather than focusing 
on data point estimations, this paper aims to develop generic unbiased model estimation 
methods for nonlinear transport models, based on data estimated from highly transferrable 
linear data projection. 

Many transport models do not belong to the category of GMP functions with fixed 
exponents, so this study serves as a natural extension of the work of Wong and Wong (2015). 
Methods are proposed that can reduce the systematic bias arising from the ignorance of 
scaling factor variability in estimating generic nonlinear transport models that necessitate 
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nonlinear regressions. Essentially, the size of the model set that can be handled by the 
methods proposed in this paper is much greater than that in Wong and Wong (2015). In this 
paper, the mechanism of systematic data point distortion arising from linear data projection is 
first examined. This provides insights into the direction of biases in parameter estimation 
from linearly projected data. The inexistence or derivation complexity of simple closed-form 
adjustment factors and the model specification error induced by linear data projection are 
identified as the main practical difficulties of the adjustment factor approach adopted in 
Wong and Wong (2015) for nonlinear transport models. The implication is that the 
adjustment factor approach is not a feasible solution to cases considering nonlinear regression 
models. Instead, a generic mean value restoration (MVR) method, requiring only the first two 
moments of the scaling factor, and an extended MVR (EMVR) method, further incorporating 
higher order moments by assuming a scaling factor distribution, are proposed. 
Comprehensive simulation studies with different settings are conducted for both GMP 
functions with relaxed exponents and multivariate exponential decay functions, to 
demonstrate and compare the effectiveness and robustness of the proposed methods for 
recovering the assumed true model parameters. GMP functions with relaxed exponents and 
multivariate exponential decay functions are the most commonly adopted functional forms 
for modeling traffic flow relationships such as cost-flow functions and speed-density 
relationships in their link- and area-based forms. The results show that the EMVR method 
generally can provide more accurate estimated parameters. 

The remainder of the paper is structured as follows. Section 2 explains the mechanism 
of the systematic distortion of data points led by linear data projection. The practical 
difficulties identified in Section 3 show that the adjustment factor approach may not be a 
feasible direction for generic nonlinear transport models that require nonlinear regressions. 
The MVR and EMVR methods are proposed in Section 4 to remove the embedded systematic 
biases for all nonlinear models. Section 5 presents the comprehensive simulation studies 
assessing the effectiveness and robustness of the proposed methods. Simulation results reveal 
that the EMVR method generally outperforms the MVR method. The final section concludes 
with the major findings of the paper and discusses the potential directions for future research. 

 

2. The silent distortion of the truth by linear data projection 

This section approximates the expectation function of linearly projected data using a 
Taylor series expansion. To simplify the explanation, quadratic approximation is used to 
identify the two major factors governing the mechanism of the systematic distortion of data 
points. A thorough understanding of the mechanism is important because it provides clues to 
the solution of the problem. 

2.1 Approximated expectation functions of linearly projected data 

Let ܩሺࢼ; :ሻݖ Թ௠ → Թ be a highly differentiable function of any form, where	ࢼ is the 
vector of the model parameters; the independent variable ݖ  is constituted by linear 
combinations of a set of observable independent variables and a set of scaling factors, i.e., 
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ݖ ൌ ∑ ௜݂ݔ௜
௠
௜ୀଵ , ∀݅ ∈ ሼ1, 2, … ,݉ሽ; ݔ௜ is the observable independent variables; ௜݂ is the scaling 

factor of ݔ௜ that is assumed to follow any distribution with mean ݂ ̅and variance ߪ௙ଶ; and ݉ is 

the number of terms constructing the quantity ݖ. 

In most cases, collecting data for ݖ  is impossible or impractically expensive. In 
contrast, the observable independent variable ݔ௜ can usually be collected using much cheaper 
methods. The scaling factor ௜݂  for each ݔ௜  is assumed to follow a distribution. In theory, 
although it can be assumed to follow any distribution, the properties of the chosen 
distribution should be in accordance with the conditions of the given situation. For example, 
if the scaling factor is a non-negative random variable with a relatively lower frequency at 
high values, then lognormal distribution can usually be assumed to be the candidate 
distribution. The first and second moments of the assumed distribution can be estimated 
based on a set of scaling factors sampled from independent sources under similar conditions. 
In practice, the value of each individual ௜݂, however, is unknown, thus ݖ can be estimated by 
using linear data projection in which each individual ௜݂ is replaced by the estimated scaling 

factor mean ݂̅, i.e., ̅ݖ ൌ ∑ ௜ݔ݂̅
௠
௜ୀଵ . Because taking the expectation of ݖ arrives at the same 

expression, i.e., ܧሺݖሻ ൌ  in the long ݖ the linearly projected data are unbiased estimates of ,̅ݖ
run. Nevertheless, the expectation of ܩሺࢼ;  ሻ is not only dependent on the scaling factorݖ

mean ݂,̅ but also its variance ߪ௙ଶ, skewness ௙ܵ, kurtosis ܭ௙ and higher order moments of the 

scaling factor. As shown in Eq. (1), the expectation function of the linear projected data can 
be approximated up to different orders. The detailed derivation of Eq. (1) is provided in 
Appendix A. 

;ࢼሺܩሾܧ ሻሿݖ ൌ ;ࢼ൫ܩ ത൯ࢌ ൅
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௠
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൅
1
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߲ଷܩ൫ࢼ; ത൯ࢌ

߲ ௜݂
ଷ
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௙෍ܭ

߲ସܩ൫ࢼ; ത൯ࢌ

߲ ௜݂
ସ

௠

௜ୀଵ

൅ ⋯ 

ሺ1ሻ

Define ܧ௥ሾܩሺࢼ; ሻሿݖ  to be the ݎ th order approximation of the expectation function 
obtained by truncating all the terms behind the ݎth term in Eq. (1), and ܴܧ௥ሾܩሺࢼ;  ሻሿ to beݖ
the sum of the corresponding truncated terms, ∀ݎ ∈ Գା. Thus, ܧሾܩሺࢼ; ሻሿݖ ൌ ;ࢼሺܩ௥ሾܧ ሻሿݖ ൅
;ࢼሺܩ௥ሾܧܴ ሻሿݖ . As shown in Eq. (2)–(5), the linear, quadratic, cubic and quartic 
approximations of the expectation function are represented by ܧଵሾܩሺࢼ; ሻሿݖ ;ࢼሺܩଶሾܧ , ሻሿݖ , 
;ࢼሺܩଷሾܧ ;ࢼሺܩସሾܧ ሻሿ andݖ   .ሻሿ, respectivelyݖ

;ࢼሺܩଵሾܧ ሻሿݖ ൌ ;ࢼ൫ܩ ത൯ ሺ2ሻࢌ
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ଶ

௠

௜ୀଵ
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Moreover, ܧ௥ሾܩሺࢼ;  ሻሿ is an approximation but not exact expectation function if andݖ
only if ܴܧ௥ሾܩሺࢼ; ሻሿݖ  is nonzero. Most importantly, it should be noted that although ࢌ  is 

replaced by ࢌത in the linear data projection, the linear approximation, ܩ൫ࢼ;  ത൯, is identical toࢌ

the true model, ܩሺࢼ;  ሻ, because their shapes are determined by the same model form alongݖ
with the same set of model parameters, ࢼ. In other words, the expectation function of the 
linearly projected data, ܧሾܩሺࢼ; ሻሿݖ , differs from the true model, ܩሺࢼ; ሻݖ , if and only if 
;ࢼሺܩଵሾܧܴ  .ሻሿ is not zeroݖ

2.2 Systematic data points distortion mechanism 

In the previous subsection, it is shown that ܴܧଵሾܩሺࢼ; ሻሿݖ ൌ ;ࢼሺܩሾܧ ሻሿݖ െ ;ࢼ൫ܩ  ത൯ isࢌ

the vertical difference between the expectation function of the linearly projected data and the 

true model. Because ࢌ is replaced by ࢌത in linear data projection, data points must be shifted 
horizontally and systematically such that the dislocations result in the vertical difference. 
This subsection aims to explain the systematic distortion by introducing two major factors 
governing such a mechanism. 

In general, the contribution of each term on the right-hand side of Eq. (1) to 
;ࢼሺܩሾܧ  ሻሿ usually decreases with its term order. Therefore, for the sake of simplicity, theݖ
expectation function can be approximated by the quadratic approximation (i.e., ܧሾܩሺࢼ; ሻሿݖ ≅
;ࢼሺܩଶሾܧ  ሻሿ). The approximate vertical difference shown in Eq. (6) reveals that whether theݖ
expectation function is above or below the true model is mainly dependent on the convexity 
of ܩ over the space of the scaling factor. In particular, if ܩ is linear, the vertical difference 
should be equal to zero. 

;ࢼሺܩሾܧ ሻሿݖ െ ;ࢼ൫ܩ ത൯ࢌ ≅
1
2!
௙ଶ෍ߪ

߲ଶܩ൫ࢼ; ത൯ࢌ

߲ ௜݂
ଶ

௠

௜ୀଵ

ቐ
൐ 0, ݂݅ ܩ ݏ݅ .ݔ݁ݒ݊݋ܿ
ൌ 0, ܩ݂݅ ݏ݅ 				.ݎ݈ܽ݁݊݅
൏ 0, ݂݅ ܩ ݏ݅ .݁ݒܽܿ݊݋ܿ

 ሺ6ሻ

We now consider that ܩሺࢼ; ̅ݖ∀ ,ሻ is strictly increasing and convex̅ݖ ∈ ሺݖ௔̅, ௕̅ሻݖ , as 
illustrated in Fig. 1. ∃ܷ ൌ ሼሺݖଵ, ,ሻ	ଵݕ ሺݖଶ, ,ሻ	ଶݕ … , ሺݖ௟, ,ሻ	௟ݕ … , ሺݖ௅,  ሻሽ, where ܷ is one of the	௅ݕ
many sets of unobservable ordered pairs that collects data points lying on ܩሺࢼ;  is the ܮ ሻ and̅ݖ
number of ordered pairs in ܷ . On most occasions, these data points are not observable 
because the value of each individual ௜݂ is unknown.  
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Fig. 1. The mechanism of systematic distortion of data points associated with the 
virtual projection plane located at ̅ݖ ൌ  ∗̅ݖ

Nevertheless, the unbiased estimators for ݖ can be obtained by adopting linear data 
projection, in which all of the data points in ܷ move horizontally while retaining their ݕ 
values, and are projected on the virtual projection plane located at ̅ݖ ൌ ௟ሻݖሺܧ that is ,∗̅ݖ ൌ
,∗̅ݖ ∀݈ ∈ ሼ1, 2, … , ሽܮ  and ̅ݖ∗ ∈ ሺݖ௔̅, ௕̅ሻݖ . The ordered pairs set for the observable linearly 
projected data, ܱ ൌ ሼሺ̅ݖ∗, ,ሻ	ଵݕ ሺ̅ݖ∗, ,ሻ	ଶݕ … , ሺ̅ݖ∗, ,ሻ	௟ݕ … , ሺ̅ݖ∗, ሻሽ	௅ݕ , is subsequently obtained. 

The mean value of ݕ for these linearly projected points is ݕത∗ ൌ ∑ ௟ݕ
௅
௟ୀଵ  The expectation .ܮ/

function, ܧሾܩሺࢼ; ሻሿݖ , must pass through the point ሺ̅ݖ∗, ത∗ሻݕ , which aggregates all the 
information of these data points. Because ܩሺࢼ; ̅ݖ∀ ,ሻ is convex̅ݖ ∈ ሺݖ௔̅, ,∗̅ݖ௕̅ሻ, ሺݖ  ത∗ሻ must beݕ
above the true model and the vertical difference between them is exactly equal to 
;ࢼሺܩଵሾܧܴ ሻሿ∗̅ݖ  or can be approximated by Eq. (6). Moreover, ܩሺࢼ; ሻ̅ݖ  is strictly 
increasing, ̅ݖ∀ ∈ ሺݖ௔̅, ௕̅ሻݖ , thus the inverse of ܩ  at ݕ ൌ ∗തݕ  is greater than ̅ݖ∗  (i.e., 
;ࢼଵሺିܩ ത∗ሻݕ ൐  That means although some data points shift to the left as others shift to the .(∗̅ݖ
right upon linear data projection, the net movement of shifting is towards the left such that 
ሺ̅ݖ∗,  ത∗ሻ is above the true model. Therefore, the systematic distortion is mainly governed byݕ
the first and the second derivative of the true model and the resultant dislocation of ሺ̅ݖ∗,  ത∗ሻ isݕ
the source of biases introduced in the estimated parameters. Similarly, the net shifting 
movements of data points associated with any projection plane located at any segment of 
;ࢼሺܩ  ሻ with different first and second derivatives combinations are summarised in Fig. 2. In̅ݖ

particular, if ܩ′′൫ࢼ; ̅ݖ∀ ,ത൯ is zeroࢌ ∈ ሺݖ௔̅,  ௕̅ሻ, there should be no net horizontal movement ofݖ

data points no matter if ܩሺࢼ;  ሻ is increasing or decreasing for the given interval. These̅ݖ
findings are important because they can be used to predict the directions of biases of the 
estimated parameters (as illustrated in Section 5.3). Linear data projection offers us the 
unbiased estimator for ݖ, but it silently contorts the truth and what we can observe from the 
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scatter plot of the linearly projected data does not fully reflect reality. Thus, our research aim 
is to establish methods that can restore the true relationship of any nonlinear transport models. 

 

Fig. 2. Summary of the net horizontal movements of data points associated with any 
virtual projection plane located at any segment of ܩ with different first and second 

derivatives combinations 

 

3. Practical difficulties of the adjustment factor approach to generic nonlinear 
transport models 

The objective of the least squares method in model estimation is to search for a set of 
model parameters that can minimise the sum of the squared residuals of the observed data for 
a given model. For model estimations with linear projected data, Wong and Wong (2015) 
generically proved that the estimated parameters that can minimise this difference can be 
systematically biased if the model is a nonlinear function of the scaling factor and the scaling 
factor is subject to variability. The authors then focused the discussion on GMP functions 
with fixed exponents, which are linear regression models. Adjustment factors for reducing 
such biases and analytical expressions for quantifying the biases were derived for this family 
of functions. However, whether such an adjustment factor approach is also suitable for 
generic nonlinear transport models remains unknown. This section presents some practical 
difficulties of using the adjustment factor approach in these cases, suggesting that such an 
approach may not be a feasible solution for generic nonlinear transport models.  

3.1 Inexistence or derivation complexity of simple closed-form adjustment factors  

A GMP function with fixed exponents was examined in studies by Wong and Wong 
(2015, 2016b). Although the function is nonlinear in the independent variable, it is, in fact, a 
linear regression model because the exponents are fixed and the normal equations are linear 
in their parameters. The adjustment factors can be easily obtained by taking the expectation 
of the solution of the normal equations. The derived adjustment factors capture the 
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information of the ignored higher order scaling factor moments that contribute to the mean 
values of dependent variables. 

However, for other nonlinear transport models that require nonlinear regressions, the 
normal equations are nonlinear in parameters because at least one of the partial derivatives of 
their expectation functions with respect to the parameters is a function of the unknown 
parameters. Thus, these models are categorised as nonlinear regression models. Unlike linear 
regression models, their normal equations generally cannot be solved by a finite sequence of 
standard operations, but by iterative methods such as the Gauss-Newton method and the 
method of steepest descent. As there may be no simple closed-form solution for the nonlinear 
normal equations, simple closed-form adjustment factors may not exist. Even if they do exist, 
their derivations could be highly complicated and cumbersome. 

3.2 Model specification error induced by linear data projection 

In addition to the ignoring of higher order scaling factor moments, model 
specification error induced by linear data projection is another source of embedded 
systematic biases. This error arises when the expectation function of linearly projected data 
and the original function possess different properties, and thus they belong to different 
families of functions. Under such circumstance, the estimated model parameters can never 
fully capture the resultant systematic distortion caused by linear data projection, and hence 
they can never perfectly fit the expectation function. 

The possibility of introducing such model specification error can be demonstrated by 
the existence of a single example in which the model structure of the expectation function of 
the linearly projected data is changed due to linear data projection. To this end, we consider 
an exponential decay function as shown in Eq. (7):  

ݕ ൌ ܽ exp ቀ
െݖ
ܾ
ቁ ൌ ܽ expሺ

െ݂ݔ
ܾ
ሻ, ሺ7ሻ

where ܽ  and ܾ  are the model parameters. The exponential decay function often 
adopted in the natural sciences is a member of the family of exponential functions that is 
uniquely characterised by the direct proportionality between an exponential function and its 
first derivative. In other words, the growth rate of an exponential function and the function 
itself are linked by a proportionality constant.  

Assuming that each individual ݂ is unknown and ݖ only can be estimated by linear 

data projection (i.e., ̅ݖ ൌ  the expectation function of the linearly projected data can be ,(ݔ݂̅
obtained by using Eq. (1): 

ሻݕሺܧ ൌ ቈ1 ൅
1
2!
௙ଶߪ

݂̅ଶ
൬
െ̅ݖ
ܾ
൰
ଶ

൅
1
3!

௙ܵ

݂̅ଷ
൬
െ̅ݖ
ܾ
൰
ଷ

൅
1
4!
௙ܭ
݂̅ସ
൬
െ̅ݖ
ܾ
൰
ସ

൅ ⋯ ቉ܽ exp	ሺ
െ̅ݖ
ܾ
ሻ ሺ8ሻ

The square bracket in Eq. (10) is a polynomial function of ̅ݖ, which can be written as 
 :ሻ. Thus, Eq. (8) can be expressed as̅ݖሺ݌
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ሻݕሺܧ ൌ ሻ̅ݖሺ݌ ܽ expሺ
െ̅ݖ
ܾ
ሻ ሺ9ሻ

Given that ݂ is subject to variability (i.e., at least the second moment ߪ௙ଶ ൐  ሻ̅ݖᇱሺ݌ ,(0

is also a function of ̅ݖ. The first derivative of ܧሺݕሻ	ݓ. .ݎ  :is given by Eq. (10)	̅ݖ		.ݐ

݀
̅ݖ݀

ሻݕሺܧ ൌ ൤݌ᇱሺ̅ݖሻ െ
1
ܾ
ሻ൨̅ݖሺ݌ ܽ expሺ

െ̅ݖ
ܾ
ሻ ሺ10ሻ

Because the expression in the square brackets in Eq. (10), ሾ݌ᇱሺ̅ݖሻ െ ሻ̅ݖሺ݌ ܾ⁄ ሿ, is a 
function of ̅ݖ, the growth rate of the expectation function and the function are not linked by a 
proportionality constant. In other words, the model structure of the expectation function 
differs from that of the exponential decay function. The fact that the expectation function in 
this case does not belong to the family of exponential functions is demonstrated by 
contradiction. Thus, model specification error could possibly be introduced by linear data 
projection. 

In such cases, biases are derived both from the ignored information of higher order 
scaling factor moments and the model specification error induced by linear data projection. If 
an adjustment factor approach is adopted, the derived adjustment factors should be able to 
account for these two effects simultaneously to remove the systematic biases. It seriously 
complicates the adjustment factor derivation and their existence could be doubtful. These 
practical difficulties suggest that the adjustment factor approach may not be feasible for our 
research question. A generic approach with a solid theoretical foundation that can cater for all 
nonlinear transport models is preferable. 

 

4. MVR and EMVR methods 

This section proposes the MVR and EMVR methods that can be used for unbiased 
estimations of all nonlinear transport models based on linearly projected data. The proposed 
methods restore the mean values of the dependent variable during model estimation by 
accounting for the average vertical difference between the true model and the expectation 
function of the linearly projected data, and thus reduce the systematic biases embedded in the 
estimated model parameters. The MVR method, which requires only the first and second 
moments of the scaling factor, is flexible. It can be widely applied in many situations because, 
on most occasions, only the first two moments of the scaling factor, but not its entire 
distribution, are known. In contrast, the EMVR method, which requires an assumed scaling 
factor distribution, can further capture higher order moments of the scaling factor and achieve 
higher level of accuracy of the estimated model parameters. 

4.1. Formulation of the MVR method 

The underlying principle of the MVR method is introduced in this subsection. In 
Section 2, the resultant dislocation of ሺ̅ݖ∗,  ത∗ሻ is identified as the major cause of systematicݕ
biases in the estimated parameters. ܴܧଵሾܩሺࢼ;  ത∗ andݕ	 ሻሿ is the vertical difference between∗̅ݖ
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the true model at ̅ݖ ൌ ;ࢼሺܩሾܧ Assuming that .∗̅ݖ ሻሿ̅ݖ ≅ ;ࢼሺܩଶሾܧ ;ࢼሺܩଶሾܧܴ ,ሻሿ, that is̅ݖ ሻሿ̅ݖ ≅
0 , the average vertical difference at any ̅ݖ ൌ ∗̅ݖ  (denoted by ∆ݕ  in Fig. 3) can be 
approximated by Eq. (6), which is only dependent on the first two moments of the scaling 
factor. In practical terms, such an assumption is useful and important because, in most cases, 
only the first two moments are available. The central idea of the MVR method is to restore 
the dislocated point ሺ̅ݖ∗, ;ࢼሺܩ ,ത∗ሻ to a point lying on the true modelݕ  ሻ, by moving it along̅ݖ
the ݕ-axis. To achieve this, for any ̅ݖ ൌ  is subtracted ,ݕ∆ ,the average vertical difference ,∗̅ݖ
from each element in the range ሼݕଵ, ,ଶݕ … , ,௟ݕ … ,  ௅ሽ, such that the new set of the range isݕ
given by ሼݕଵ െ ,ݕ∆ ଶݕ െ …,ݕ∆ , ௟ݕ െ …,ݕ∆ , ௅ݕ െ ሽݕ∆  as illustrated in Fig. 3. Their mean 

value is given by ݕത∗∗ ൌ ∑ ሺݕ௟ െ ሻ௅ݕ∆
௟ୀଵ ,∗̅ݖThe restored point ሺ .ܮ/  ത∗∗ሻ should lie on the trueݕ

model, ܩሺࢼ;  .ሻ, or very close to it̅ݖ

The MVR method is a regression analysis based on all ܰ pairs of restored points 
across the entire range of the independent variable. The corresponding least squares function, 
ܵ, can be expressed as Eq. (11): 

ܵ ൌ෍ൣሺݕ௝ െ ௝ሻݕ∆ െ ;෡ࢼ൫ܩ ௝̅൯൧ݖ
ଶ

ே

௝ୀଵ

 ሺ11ሻ

where ࢼ෡ is the vector of parameters to be estimated and ∆ݕ௝ ≅
ଵ

ଶ!
௙ଶߪ ∑

డమீ൫ࢼ෡;௭̅ೕ൯

డ௙೔
మ

௠
௜ୀଵ . The best-

fitted curve should pass through the mean value of the dependent variable at each ̅ݖ∗. As ∆ݕ௝ 

is also a function of ࢼ෡ , both the model and the vertical difference are estimated 
simultaneously during the regression. Using Eq. (3), the least square function, ܵ , can be 
alternatively expressed as: 

ܵ ൌ෍൛ݕ௝ െ ;෡ࢼ൫ܩଶൣܧ ௝̅൯൧ൟݖ
ଶ

ே

௝ୀଵ

 ሺ12ሻ

Thus, the MVR method is equivalent to direct model estimation of the linearly 
projected data based on the quadratic approximation of their expectation function using 
conventional nonlinear regression packages. 
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Fig. 3. Restoration of the dislocated point, ሺ̅ݖ∗,   ത∗ሻݕ
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4.2. Formulation of the EMVR method 

The MVR method proposed in the previous subsection is based on an assumption that 
;ࢼሺܩଶሾܧܴ ሻሿ̅ݖ ≅ 0 and ܧሾܩሺࢼ; ሻሿ̅ݖ ≅ ;ࢼሺܩଶሾܧ  ሻሿ. In general, the assumption is roughly true̅ݖ
and acceptable because ܴܧଶሾܩሺࢼ; ;ࢼሺܩଶሾܧ ሻሿ is much smaller than̅ݖ  ሻሿ, even if it is not equal̅ݖ
to zero. However, if higher order moments can be incorporated in the model estimation 
procedures, the accuracy of the estimated parameters can be further improved. The EMVR 
method restores the mean values of the dislocated data points by capturing higher order 
moments of the scaling factor based on an assumed scaling factor distribution. The assumed 
scaling factor distribution should be in line with the physical properties of the scaling factor. 
For example, if the scaling factor is non-negative with lower probabilities at relatively higher 
values, a lognormal distribution can be an appropriate candidate distribution. In applications, 
a Kolmogorov-Smirnov or a chi-square goodness-of-fit test can be conducted to check the 
suitability of the specified distribution with statistical evidence. Depending on the required 
level of accuracy, a model can be estimated based on an ݎth order approximated expectation 
function using the required higher order moments of the scaling factor, where ݎ ൐ 2. Similar 
to Section 4.1, the least square function in this case can be formulated as shown in Eq. (13). 

ܵ ൌ෍൛ݕ௝ െ ;෡ࢼ൫ܩ௥ൣܧ ௝̅൯൧ൟݖ
ଶ

ே

௝ୀଵ

 ሺ13ሻ

In other words, more accurate estimated parameters can be obtained by direct model 
estimation based on the linearly projected data using the ݎth order approximated expectation 
function. The EMVR method can also be applied using conventional nonlinear regression 
packages. 

 

5. Case studies 

To assess the effectiveness and robustness of the proposed MVR and EMVR methods, 
comprehensive simulation studies estimating both GMP functions with relaxed exponents and 
multivariate exponential decay functions based on linearly projected data are presented in this 
section. These two models are the most commonly adopted functional forms for modeling 
traffic flow relationships. The capability of the proposed methods to recover the assumed true 
model parameters is examined in various dimensions, including the model forms, scaling 
factor distributions and numbers of linear combinations constituting the unobservable traffic 
quantity. This section first introduces the two chosen model forms and describes the physical 
context of situations in which these two classes of transport models must be estimated based 
on linearly projected data. With the assumed true model parameters, data are generated to 
mimic situations that necessitate the use of linear data projection and the proposed methods. 
Regression analyses are conducted based on the proposed MVR and EMVR methods. The 
strengths and weaknesses of the two proposed methods are subsequently compared. 



16 
 

5.1.The two chosen classical traffic flow models 

The GMP function with relaxed exponent (Eq. 14) and the multivariate exponential 
decay function (Eq. 15), which are the most commonly adopted functional forms in modeling 
traffic flow relationships, are the two models used in these simulation studies to examine the 
effectiveness and robustness of the two proposed methods. The GMP function is defined as 
follows: 

ݕ  ൌ ଴ߚ ൅ ௡ݖ௡ߚ ൌ ଴ߚ ൅ ௡ߚ ൭෍ ௜݂ݔ௜

௠

௜ୀଵ

൱

௡

 ሺ14ሻ

where ߚ଴ ௡ߚ ,  and ݊  are the model parameters. The GMP function can be used to model 
monotonically increasing relationships between traffic variables. One typical class of traffic 
flow models possessing such a relationship is the cost flow function or volume delay function, 
which can either be link-based (i.e., ݉ ൌ 1) or area-based (i.e., ݉ ൐ 1). The link-based 
Bureau of Public Roads (BPR) function adopted in the Highway Capacity Manual 
(Transportation Research Board, 2000) and the area-based macroscopic BPR (MBPR) 
investigated by Wong and Wong (2015, 2016a, 2016b) share exactly the same model form as 
the GMP function. In such a context, ߚ଴ is the free-flow travel time per unit distance; ߚ௡ is 
the product of the free-flow travel time and the congestion sensitivity parameter; ݊ is the 
parameter controlling the model nonlinearity; ݕ is the travel time per unit distance associated 
with the road or network entity under consideration; and ݖ is the traffic flow associated with 
the road or network entity under consideration.  

Assuming that the total traffic flow in a network is observable at a subset of links 
outfitted with detectors, and that the probe vehicle flow is observable at every link in the 
network, which is a common real-world occurrence, the cases of estimating both a link-based 
BPR function and an area-based MBPR function necessitate the use of linear data projection 
and the proposed unbiased estimation methods. If the BPR function of a link without a 
detector is of interest (Scenario (a1) in Fig. 4), the number of links considered, ݉, is one. In 
such a case, ݕ is the travel time per unit distance across the link that can be estimated by the 
reciprocal of the hourly space-mean speed of probe vehicles, under the assumption that those 
vehicles have traveled at similar speeds to all of the nearby traffic; ݔ is the hourly probe 
vehicle flow across that link; and ݂ is the scaling factor defined as the total-traffic-to-probe-
vehicle ratio at the same link. However, ݂ is unknown due to the absence of a detector. 
Because of geographical proximity, the scaling factors of nearby links can be assumed to 
follow a distribution, which can be inferred from the total-traffic-to-probe-vehicle ratios 
sampled from nearby links with detectors. Both the mean and variance of the scaling factor 
can thus be estimated. The scaling factor mean can be used to provide unbiased estimation of 

the hourly total traffic flow across the link in a linear data projection (i.e., ݂̅ݔ ). If the 
exponent of the BPR function is allowed to vary, making it a nonlinear regression model, the 
proposed MVR or EMVR method is necessary for unbiased estimation.  
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Conversely, if the MBPR function of a network is of interest (Scenario (a2) shown in 
Fig. 4), ݉ is the number of links intercepting the boundaries of the selected network (defined 
as boundary stations in Wong and Wong, 2015, 2016a, 2016b). In such a case, ݕ is the travel 
time per unit distance across the network that can be approximated by the reciprocal of the 
hourly space-mean speed of probe vehicles sampled within the network in an hour; ݔ௜ is the 
hourly probe vehicle flow entering the network via boundary station ݅ ; and ௜݂  is the 
corresponding scaling factor, defined as the total-traffic-to-probe-vehicle ratio at boundary 
station ݅. Again, the exact value of each of the scaling factors could be unknown due to the 
absence of a detector. The scaling factor distribution can be inferred from the scaling factors 
sampled from links with detectors in the network. The scaling factor mean can be used to 
project the expected hourly total traffic flow entering the network via the boundary stations 

based on linear data projection (i.e., ∑ ௜ݔ݂̅
௠
௜ୀଵ ). The proposed MVR or EMVR method can 

then be applied for unbiased model estimation. 

 

Fig. 4. Real-world scenarios of estimating link- and area-based cost flow functions and 
speed-density relationships that necessitate the use of linear data projection and the proposed 

methods for unbiased model estimations 
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The multivariate exponential decay function is defined as follows: 

ݕ ൌ ܽ exp ቀ
െݖ
ܾ
ቁ ൌ ܽ expቆ

െ∑ ௜݂ݔ௜
௠
௜ୀଵ

ܾ
ቇ ሺ15ሻ

where ܽ and ܾ are the model parameters. The model can be used to model strictly decreasing 
relationship between traffic variables. Speed-density relationships, which can either be link-
based (i.e., ݉ ൌ 1) or area-based (i.e., ݉ ൐ 1), are a typical class of traffic flow models 
possessing a decreasing relationship. Therefore, they can potentially be modeled using the 
multivariate exponential decay function. When a single link is considered, the multivariate 
exponential decay function reduces to the classical Underwood’s model depicting the link-
based speed-density relationship. When an MFD is considered, the multivariate exponential 
decay function could also be a candidate model describing the decreasing relationship 
between speed and density over a given area. In particular, urban networks are usually 
heterogeneously loaded and MFDs have low scatter for homogeneous networks. Different 
clustering algorithms have been proposed to partition heterogeneous networks into relatively 
homogenous networks (Saeedmanesh and Geroliminis 2016, 2017; Lopez et al. 2017; An et 
al. 2018). In the context of speed-density relationships, the ݕ-intercept, ܽ, is the free-flow 
speed; ܾ  is the optimal/critical traffic density at which traffic flow/throughput is at its 
maximum; ݕ  is the space-mean speed associated with the road or network entity under 
consideration; and ݖ is the traffic density associated with the road or network entity under 
consideration. 

Similar to the cases of cost flow function estimations, the estimations of both link- 
and area-based speed-density relationships require the use of linear data projection and the 
proposed MVR or EMVR method when the total traffic flow in a network is only observable 
at a subset of links installed with detectors and the probe vehicle flow is observable at every 
link in the network. If the Underwood’s model of a link without a detector is of interest 
(Scenario (b1) in Fig. 4), ݉ is equal to one. In such a case, ݕ is the space-mean speed of 
traffic across the link within a short period of time (e.g., 5 min) that can be estimated by the 
space-mean speed of probe vehicles under the assumption that those vehicles have traveled at 
similar speeds to all of the nearby traffic; ݔ is the average probe vehicle density at the link 
within the short time period; and ݂ is the scaling factor, defined as the total-traffic-to-probe-
vehicle ratio at the same link. Again, ݂ is unknown due to the absence of a detector. The 
scaling factor distribution could be estimated using the total-traffic-to-probe-vehicle ratios 
sampled from nearby links with detectors in a similar manner to that described earlier. The 
scaling factor mean is applied in a linear data projection to provide an unbiased estimation of 

the total traffic density (i.e., ݂̅ݔ). Because the Underwood’s model is a nonlinear regression 
model, either the MVR or EMVR method must be used for unbiased model estimation.  

For the area-wide speed-density relationship (Scenario (b2) shown in Fig. 4), ݉ is the 
number of links within the sampled network; ݕ is the space-mean speed of all traffic within 
the network in a short period of time (e.g., 5 min) that can be approximated by the space-
mean speed of the probe vehicles within the sampled network in that time period; ݔ௜	is the 
average probe vehicle density at link ݅ in the sampled network within that time period; and ௜݂ 
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is the corresponding scaling factor, defined as the total-traffic-to-probe-vehicle ratio at link ݅. 
Because of the absence of detectors, the individual values of scaling factors are usually 
unknown. The scaling factor distribution can be inferred from the total-traffic-to-probe-
vehicle ratios of links with detectors sampled within the network. Linear data projection can 

be applied for unbiased estimation of network traffic density (i.e., ∑ ௜ݔ݂̅
௠
௜ୀଵ ). As the 

multivariate exponential decay function is a nonlinear regression model, the proposed MVR 
or EMVR method must then be used for unbiased model estimation. 

5.2.Data generation 

To assess the effectiveness and robustness of the proposed MVR and EMVR methods 
under different conditions, 12 simulation cases with different combinations of the chosen 
models (GMP functions with relaxed exponents and multivariate exponential decay 
functions), scaling factor distributions (normal and lognormal) and numbers of linear 
combinations of the scaling factors and observable independent variables (݉ ൌ 1, 2	and	3ሻ 
were considered. 

 The simulation studies estimating the GMP functions and the multivariate exponential 
decay functions based on linearly projected data could be used to mimic the situations 
estimating the BPR functions and speed-density relationships in their link- and area-based 
forms, as described. We set ߚ଴ ൌ 0.025	 ௡ߚ , ൌ 0.01	 , ݊ ൌ 3 , ܽ ൌ 30	and ܾ ൌ 2000	  and 
examined the performance of the proposed MVR and EMVR methods in recovering these 
true model parameters. The observable independent variable, ݔ௜, could be used to mimic the 
hourly probe vehicle flow on link ݅ or the average density of probe vehicle present on link ݅ 
in real-world scenarios. In principle, the observable independent variable can be any traffic 
variable that follows any distribution. For ݉ ൌ 1 , each observation ࢞  comprised one ݔ . 
Similarly, when ݉ ൌ 2 or 3, two or three ݔ were independently sampled from the chosen 
distribution for each observation ࢞. Uniform distributions were chosen for the purpose of data 
generation. For the GMP function, 10,000  observations of the observable independent 
variable ݔ were sampled from a ܷ݂݊݅ሺ0, 1ሻ. For the multivariate exponential decay function, 
10,000  observations of the observable independent variable ݔ  were sampled from a 
ܷ݂݊݅ሺ0, 100ሻ. To avoid any sampling error derived from data generation of the observable 
independent variables, these six sets of sampled observable independent variables were used 
throughout all of the simulations. The scaling factor ݂ of each ݔ, which could be defined as 
the total-traffic-to-probe-vehicle ratio, was sampled from either a normal or lognormal 

distribution, with ݂̅ ൌ 2 and ߪ௙ ൌ 0.4 for the cases of GMP functions and with ݂̅ ൌ 100 and 

௙ߪ ൌ 20  for the multivariate exponential decay functions. For each simulation case, the 

corresponding 10,000 ݕ, which could serve as the observable travel time per unit distance or 
the observable space-mean speed, were evaluated based on the values of the true model 
parameters, the sampled ݔ and ݂. Assuming that the value of each ݂ was no longer available, 
which is a common real-world occurrence, ݖ  could only be estimated using linear data 

projection based on the mean of the scaling factor (i.e., ̅ݖ ൌ ∑ ௜ݔ݂̅
௠
௜ୀଵ ). The proposed MVR or 

EMVR method had to be employed for unbiased model estimations. 
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5.3.Regression analyses based on the MVR method 

In this subsection, regression analyses were conducted based on the linearly projected 
data using the original models (Eq. (14) and Eq. (15)) and the MVR method. The quadratic 
approximation of the expectation functions of the GMP and multivariate exponential decay 
functions, as shown in Eq. (16) and Eq. (17), respectively, can be obtained by adopting Eq.(3). 

ሿݕଶሾܧ ൌ ଴ߚ ൅ ௡ߚ ൥1 ൅
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Each of the simulation cases was repeated 10,000  times with resampled scaling 
factors to obtain the means of the estimated model parameters. Tables 1 and 2 summarise the 
results of the six simulation cases for the GMP function and the multivariate exponential 
decay function, respectively. 
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Table 1 
Estimated model parameters of the GMP functions based on the original model and the MVR method 
Assumed 
scaling factor 
distribution 

m
Original model or linear approximation 

 
Quadratic approximation 

 መ௡ (% error) ො݊ (% error)ߚ መ଴ (% error)ߚ መ௡ (% error) ො݊ (% error)ߚ መ଴ (% error)ߚ

Normal 
distribution 

1 0.0250ሺെ0.01%ሻ 0.0112ሺ൅12.06%ሻ 2.9997ሺെ0.01%ሻ  0.0250ሺെ0.01%ሻ 0.0100ሺ൅0.07%ሻ 2.9997ሺെ0.01%ሻ 

2 0.0251ሺ൅0.39%ሻ 0.0109ሺ൅8.88%ሻ 2.9806ሺെ0.65%ሻ  0.0250ሺെ0.03%ሻ 0.0100ሺ൅0.21%ሻ 3.0007ሺ൅0.02%ሻ 

3 0.0252ሺ൅0.62%ሻ 0.0107ሺ൅7.45%ሻ 2.9832ሺെ0.56%ሻ  0.0250ሺ൅0.08%ሻ 0.0100ሺ൅0.32%ሻ 3.0013ሺ൅0.04%ሻ 
         

Lognormal 
distribution 

1 0.0250ሺ൅0.01%ሻ 0.0112ሺ൅12.44%ሻ 3.0022ሺ൅0.07%ሻ  0.0250ሺ൅0.01%ሻ 0.0100ሺ൅0.40%ሻ 3.0022ሺ൅0.07%ሻ 

2 0.0251ሺ൅0.49%ሻ 0.0109ሺ൅9.08%ሻ 2.9804ሺെ0.65%ሻ  0.0250ሺ൅0.08%ሻ 0.0100ሺ൅0.39%ሻ 3.0005ሺ൅0.02%ሻ 

3 0.0252ሺ൅0.72%ሻ 0.0108ሺ൅7.64%ሻ 2.9827ሺെ0.58%ሻ  0.0250ሺ൅0.19%ሻ 0.0100ሺ൅0.50%ሻ 3.0007ሺ൅0.02%ሻ 

 
 
 
                  Table 2 
                  Estimated model parameters of the multivariate exponential decay functions based on the original model and the MVR method 

Assumed scaling 
factor 
distribution 

m 
Original model or linear approximation 

 
Quadratic approximation 

ොܽ (% error) ෠ܾ (% error) ොܽ (% error) ෠ܾ (% error) 

Normal 
distribution 

1 29.6806ሺെ1.06%ሻ 2086.6541ሺ൅4.33%ሻ  29.9713ሺെ0.10%ሻ 2005.1767ሺ൅0.26%ሻ 

2 29.3731ሺെ2.09%ሻ 2086.0795ሺ൅4.30%ሻ  29.9376ሺെ0.21%ሻ 2005.6811ሺ൅0.28%ሻ 

3 29.1208ሺെ2.93%ሻ 2085.3468ሺ൅4.27%ሻ  29.9161ሺെ0.28%ሻ 2006.2485ሺ൅0.31%ሻ 
       

Lognormal 
distribution 

1 29.7159ሺെ0.95%ሻ 2079.2287ሺ൅3.96%ሻ  30.0087ሺ൅0.03%ሻ 1997.6377ሺെ0.12%ሻ 

2 29.4557ሺെ1.81%ሻ 2077.5473ሺ൅3.88%ሻ  30.0073ሺ൅0.02%ሻ 1998.3882ሺെ0.08%ሻ 

3 29.0931ሺെ3.02%ሻ 2081.2316ሺ൅4.06%ሻ  30.0101ሺ൅0.03%ሻ 1999.1007ሺെ0.04%ሻ 
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The model estimation results based on the linearly projected data using the original 

models of the GMP functions revealed that the estimated parameters, ߚመ଴  and ො݊ , were 
unbiased because their values were extremely close to their true values (i.e., ߚ଴ ൌ 0.025 and 

݊ ൌ 3). In terms of magnitude, the percentage errors of ߚመ଴ and ො݊ were less than or equal to 

0.72%  and 0.65% , respectively, for all the simulation cases. ߚመ௡  was the only biased 

parameter. The magnitudes of percentage errors of ߚመ௡ decreased with the number of linear 
combination of the scaling factor and the observable independent variables (i.e., ݉). Taking 
the cases with normally distributed scaling factor as examples, the magnitudes of the 

percentage errors of ߚመ௡  gradually decreased from 12.06%  when ݉ ൌ 1  to 7.45%  when 
݉ ൌ 3. A similar pattern persisted for the cases with lognormally distributed scaling factors. 
The random effect cancellation among scaling factors as ݉ escalates could be the explanation 

for the decreasing percentage errors. Moreover, it should also be noted that ߚመ௡  was 
overestimated for all cases. According to the finding in Section 2.2, as the GMP functions 
under consideration were strictly increasing convex functions ∀ݖ ൐ 0, the net movement of 
data point shifting was to the left such that the expectation functions of the linearly projected 

data were above their true functions ∀ݖ ൐ 0. Thus, ߚመ௡ had to be overestimated to account for 
the vertical difference and minimise the least squares functions. 

The last three columns of Table 1 present the results obtained using the MVR method. 

Although ߚመ଴  and ො݊  were originally unbiased, their extremely small percentage errors with 
magnitudes less than or equal to 0.19% for all the cases show that the MVR method further 
improved their accuracy. Most importantly, the MVR method significantly reduced the 

systematic biases embedded in ߚመ௡. The magnitudes of the percentage errors of ߚመ௡ for all of 
the cases with normally distributed scaling factors were well confined to between 0.07% and 

0.32%. Theoretically, the expected value of ߚመ௡  should exactly equal its true value (i.e., 
௡ߚ ൌ 0.01) because the skewness of the normally distributed scaling factor was zero and 
݊ ൌ 3, and hence the quadratic approximations used in the MVR method were the exact 
expectation functions. The small discrepancies were derived from the sampling errors of the 
scaling factor among the 10,000  repeated simulations for each case, because all of the 
repeated simulations were conducted using the same set of observable independent variable ݔ. 

Conversely, the magnitudes of the percentage errors of ߚመ௡ were slightly greater for the cases 
with lognormally distributed scaling factors because their quadratic approximations were not 
exact due to the nonzero skewness of their scaling factors. The slightly larger percentage 
errors originated from both the sampling errors of scaling factors and unrecovered minimal 

effects due to the third moments of the scaling factors on ߚመ௡. Nevertheless, in practical terms, 
such small percentage errors with magnitudes less than or equal to 0.5% were acceptable. 

According to the results from estimations based on the original models of the 
multivariate exponential decay functions, it is apparent that both the estimated parameters, ොܽ 
and ෠ܾ, were biased, which indicates that the least squares functions can be minimised when 
they are biased. Taking the cases with normally distributed scaling factors as examples, the 

magnitudes of percentage errors of ොܽ and ෠ܾ, respectively, increased from around 1% to 3% 
and oscillated at about 4.3%. The parameter ܽ  controls the ݕ -intercept of a multivariate 
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exponential decay function. As ݉  increased, the sampled data points close to the ݕ-axis 
became sparser. The sparser sampled data points at high ݉ and the relatively larger gradient 
at the ݕ-intercept of a multivariate exponential decay function could be the reason for the 

increasing percentage error in magnitudes of ොܽ. Similar patterns appeared for ොܽ and ෠ܾ in the 

cases with lognormally distributed scaling factors. The directions of biases of ොܽ and ܾ	෡  should 

also be noted: ොܽ was underestimated and ෠ܾ  overestimated in all cases. As the multivariate 
exponential decay functions are strictly decreasing convex functions, the net movement of 
data point shifting was to the right, such that the expectation functions were above their true 
functions. Moreover, according to Section 3.2, the expectation functions did not belong to the 
family of exponential functions; thus, model specification errors were induced in these cases. 
To better fit the flattened expectation functions (relatively flatter than their corresponding 

true functions), ොܽ had to be underestimated and ෠ܾ overestimated to account for the vertical 
difference and minimise the least squares function. Therefore, in addition to the sampling 
errors of the scaling factor and the unrecovered effects of higher order moments, the change 
in the model structure of the expectation functions, which is categorised as a model 
specification error induced by linear data projection, was also a source of bias. 

The last two columns in Table 2 show the results of ොܽ  and ෠ܾ  based on the MVR 

method. The percentage errors of ොܽ and ෠ܾ were significantly reduced in magnitude for all of 
the cases. Taking the case with ݉ ൌ 3 and normally distributed scaling factors as an example, 

the magnitudes of the percentage errors of ොܽ  and ෠ܾ  reduced, respectively, from 2.93% to 
0.28%  and from 4.27%  to 0.31% . Similarly, for the case with ݉ ൌ 3  and lognormally 

distributed scaling factors, the percentage errors of ොܽ and ෠ܾ dropped significantly from 3.02% 
to 0.03% and from 4.06% to 0.04%, respectively. One may observe that the magnitudes of 
percentage errors for cases with normally distributed scaling factors were generally slightly 
greater than those for cases with lognormally distributed scaling factors. This is because, for 
multivariate exponential decay functions, the effects of higher order moments of normally 
distributed scaling factors on the systematic data point distortion are relatively greater than 
those of lognormally distributed scaling factors. Thus, fitting the distorted data points using 
quadratic approximations led to slightly greater percentage errors in these cases. This was 
indirectly evidenced by the dissipation of such a pattern in the simulations with exactly the 
same settings presented in Section 5.4 where quartic approximations of the expectation 
functions. However, in practical terms, the minimal percentage error of less than 0.3% for 
cases with normally distributed scaling factors were acceptable. 
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5.4.Regression analyses based on the EMVR method 

This subsection assesses and demonstrates the estimation accuracy of the proposed 
EMVR method. Simulations of model estimations for the GMP function and multivariate 
exponential decay functions were conducted with the same settings as those presented in the 
Section 5.3. To enable comparison, the same six sets of observable independent variables 
were used for all simulations in this subsection. 

The application of the proposed EMVR method requires the higher order 
approximation of the expectation function, and hence, the higher order moments of the 
scaling factor. For the GMP function, as the chosen value of ݊ is 3, its expectation function 
can only be approximated up to its cubic form, as shown in Eq. (18), using Eq. (4). In 
particular, ௙ܵ ൌ 0 if the scaling factor is assumed to follow a normal distribution. The cubic 

approximation automatically reduces to a quadratic approximation in these cases. Therefore, 
only those simulation cases associated with lognormally distributed scaling factors are 
relevant and presented in this subsection because of their nonzero skewness. 
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In contrast, the multivariate exponential decay function is infinitely differentiable. As 
the fourth order approximation is generally considered to have a satisfactory level of 
accuracy, the quartic approximation of the expectation function, which can be obtained by 
using Eq. (5), was used to demonstrate the effectiveness of the proposed EMVR method. 
Moreover, for the cases with the normally distributed scaling factor, the term associated with 

௙ܵ in the square brackets of Eq. (19) reduced to zero due to the zero skewness.  
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Similar to Section 5.3, each of the simulation cases was repeated 10,000 times with 
the same sets of sampled observable independent variables and resampled scaling factors to 
obtain the means of the estimated model parameters. Table 3 presents the results of the three 
simulation cases with lognormally distributed scaling factor for the GMP function, and 
Table 4 reveals the results of the six simulation cases based on the quartic approximation for 
the multivariate exponential decay function. 
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Table 3 
Estimated model parameters of the GMP functions based on the EMVR method 

Assumed scaling 
factor distribution 

m 
Cubic approximation 

 መ௡ (% error) ො݊ (% error)ߚ መ଴ (% error)ߚ

Lognormal 
distribution 

1 0.0250ሺ൅0.01%ሻ  0.0100ሺെ0.04%ሻ  3.0022ሺ൅0.07%ሻ  

2 0.0250ሺ൅0.05%ሻ  0.0100ሺ൅0.12%ሻ  3.0017ሺ൅0.06%ሻ  

3 0.0250ሺ൅0.12%ሻ  0.0100ሺ൅0.34%ሻ  3.0014ሺ൅0.05%ሻ  

     

The model estimation results of the GMP functions show the significant correction 
power of the proposed EMVR method. All of the estimated parameters were extremely close 
to their true values, with most of the percentage errors close to 0%. Because ݊ ൌ 3, the cubic 
approximations were the exact expectation functions of the linearly projected data. Any 
remaining percentage errors in the estimated parameters should arise from the sampling 
errors of the scaling factors. 

Table 4  
Estimated model parameters of the multivariate exponential decay functions based on the EMVR method 

Assumed scaling factor 
distribution 

݉  
Quartic approximation 
ොܽ (% error) ෠ܾ (% error) 

Normal distribution 

1  29.9971ሺെ0.01%ሻ  2000.3991ሺ൅0.02%ሻ  

2  29.9868ሺെ0.04%ሻ  2001.0856ሺ൅0.05%ሻ  

3  29.9643ሺെ0.05%ሻ  2001.7658ሺ൅0.09%ሻ  
     

Lognormal distribution 

1  30.0046ሺ൅0.02%ሻ  1999.1886ሺെ0.04%ሻ  

2  29.9995ሺ0.00%ሻ  1999.9005ሺ0.00%ሻ  

3  29.9970ሺെ0.01%ሻ  2000.6292ሺ൅0.03%ሻ  

 

The estimated model parameters of the multivariate exponential decay functions 
based on the EMVR method were remarkably close to their true values (ܽ ൌ 30 and ܾ ൌ
2000) with percentage errors well below 0.1% for all cases. The remaining tiny percentage 
errors should mainly stem from the sampling errors of the scaling factors and any 
unrecovered higher order moments. The results show the significant correction power of the 
proposed EMVR method. It should be noted that the pattern of slightly greater percentage 
errors for cases with normally distributed scaling factors observed in Section 5.3 dissipated 
here, providing indirect empirical evidence that the relatively greater effects of higher order 
moments of normally distributed scaling factors on the systematic data point distortion for 
these functions was indeed the reason for that pattern. 

5.5. Comparison of the MVR and EMVR methods 

Both the proposed MVR and EMVR methods can significantly reduce systematic 
biases in estimated parameters for all nonlinear transport models. They can be easily adopted 
with the use of standard nonlinear regression packages. However, they have different 
properties, and hence different strengths and weaknesses. The most suitable method should 
be selected for a given situation. 
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The MVR method is generic and flexible because only the first two moments of the 
scaling factor are required and no assumption about the distribution of the scaling factor 
needs to be made in applications. However, such flexibility is achieved at the cost of the 
accuracy of the estimated model parameters, if the higher order moments of the scaling factor 
do effectively play roles in the systematic data point distortion. 

In contrast, an assumption of the scaling factor distribution is indispensable when the 
EMVR method is adopted. The assumed distribution should be in line with the properties of 
the scaling factor in the given situation. Statistical tests such as a Kolmogorov-Smirnov or a 
chi-square goodness-of-fit test can be performed to validate the assumed distribution in 
applications. In general, the EMVR method can further improve the accuracy of the estimated 
parameters compared with the MVR method. 

In other words, the selection of the MVR or EMVR method is a trade-off between 
flexibility and accuracy. As the EMVR method is generally superior to the MVR method, it 
should be used to achieve a higher level of accuracy in parameter estimations as long as 
sufficient information concerning the properties of the scaling factor is available. 

 

6. Conclusions 

The various limitations of different high-tech devices have long been the obstacles 
hindering direct traffic data collection in many real-world situations. This makes traffic data 
estimation inevitable. Linear data projection is a data scaling method that can fuse data 
collected from different sources and offer unbiased traffic data estimation. Due to its 
simplicity, it has been widely adopted in many transportation studies. Although it is intuitive 
to estimate models based on unbiased data, Wong and Wong (2015) recently proved that this 
approach can lead to systematically biased estimated parameters because information about 
the variability of the scaling factor used in linear data projection is lost. GMP functions with 
fixed exponents were chosen for examination and adjustment factors reducing biases of the 
estimated parameters were derived. However, it must be stressed that the method is only 
applicable to GMP functions with fixed exponents that are typical linear regression models 
characterised by linear normal equations in model estimation. 

Because many transport models do not belong to the family of GMP functions with 
fixed exponents, it is necessary to develop methods that address generic nonlinear transport 
models requiring nonlinear regression, so the benefits of this powerful tool can be maximised 
and fully realised. This paper is dedicated to filling this research gap and makes several 
contributions to the existing body of knowledge in our field. We first investigated the 
mechanism of the systematic data point data distortion resulting from linear data projection, 
which is the root cause of systematic bias. The first and second derivatives were found to be 
the governing factors determining the data point shifting. This finding is important because it 
can be used to predict the directions of biases of parameters estimated from linearly projected 
data. We then identified two major practical difficulties in applying the adjustment factor 
approach (previously adopted in Wong and Wong (2015) for GMP functions with fixed 
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exponents) to generic nonlinear transport models: the inexistence or derivation complexity of 
simple closed-form adjustment factors and the model specification error induced by linear 
data projection. This not only illustrates the complex nature of the problem for nonlinear 
models, but also reveals a new type of error constituting the systematic bias.  

Based on the data point distortion mechanism, a generic MVR method, only requiring 
the first two scaling factor moments, and an EMVR method, further incorporating higher 
order moments, were proposed to reduce or avoid systematic bias in nonlinear transport 
model estimation. To demonstrate the effectiveness and robustness of the proposed methods, 
simulation studies were conducted, estimating both the GMP functions with relaxed 
exponents and the multivariate exponential decay functions based on linearly projected data. 
The GMP function and the multivariate exponential decay function are the most commonly 
adopted functional forms in modeling traffic flow relationships such as cost-flow functions 
and speed-density relationships in their link- and area-based forms. The results revealed that 
the EMVR method usually provides more accurate estimations and should be adopted if 
sufficient information concerning the scaling factor properties is available. Both MVR and 
EMVR methods can be easily applied using any standard statistical package with an 
optimization library. With these methods, analysts who leverage linear data projection are 
better supported to make practical decisions. These proposed methods are generic and easy to 
apply, and hence powerful. 

According to Wong and Wong (2016b), heteroscedasticity is inherently introduced by 
linear data projection if the scaling factor is subject to variability. That means, even if the 
proposed MVR or EMVR method is employed for unbiased parameter estimations, the 
estimated parameter standard errors are biased. To ensure valid statistical tests based on these 
statistics that quantify the dispersion of and confidence in the estimated model parameters, 
the effects of non-homoscedasticity must be taken into consideration. We are currently 
working on standard error estimations for the estimated parameters of nonlinear transport 
models based on the proposed MVR and EMVR methods. 
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Appendix A. The expectation function of the linearly projected data 

Here, we provide the expectation function of the linearly projected data. Approximate 

;ࢼሺܩ ሻ by a Taylor series expansion with a centre at ௜݂ݖ ൌ ݂,̅ ∀݅ ∈ ሼ1, 2, … ,݉ሽ. 
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Taking expectation on both sides of Eq. (A1), 
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Because ܧሺ ௜݂ሻ ൌ ݂,̅ ∀݅ ∈ ሼ1, 2, … ,݉ሽ, ൫ܧ ௜݂ െ ݂൯̅ ൌ 0 . Assuming ௜݂ , ∀݅ ∈ ሼ1, 2, … ,݉ሽ,  are 

independent of each other, 

൫ൣܧ     ௜݂ െ ݂൯̅൫ ௝݂ െ ݂൯̅൧ ൌ 0, ݂݅	݅ ് ݆, ∀݅, ݆ ∈ ሼ1, 2, … ,݉ሽ; 

൫ൣܧ     ௜݂ െ ݂൯̅൫ ௝݂ െ ݂൯̅൫ ௦݂ െ ݂൯̅൧ ൌ 0, ݂݅	݅ ് ݆ ് ,ݏ ∀݅, ݆, ݏ ∈ ሼ1, 2, … ,݉ሽ; and 

൫ൣܧ     ௜݂ െ ݂൯̅൫ ௝݂ െ ݂൯̅൫ ௦݂ െ ݂൯̅൫ ௧݂ െ ݂൯̅൧ ൌ 0, ݂݅	݅ ് ݆ ് ݏ ് ,ݐ ∀݅, ݆, ,ݏ ݐ ∈ ሼ1, 2, … ,݉ሽ. 

Moreover, 

ܧ     ቂ൫ ௜݂ െ ݂൯̅
ଶ
ቃ ൌ ,௙ଶߪ ݂݅	݅ ൌ ݆, ∀݅, ݆ ∈ ሼ1, 2, … ,݉ሽ; 

ܧ     ቂ൫ ௜݂ െ ݂൯̅
ଷ
ቃ ൌ ௙ܵ, ݂݅	݅ ൌ ݆ ൌ ,ݏ ∀݅, ݆, ݏ ∈ ሼ1, 2, … ,݉ሽ; and 
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ܧ     ቂ൫ ௜݂ െ ݂൯̅
ସ
ቃ ൌ ,௙ܭ ݂݅	݅ ൌ ݆ ൌ ݏ ൌ ,ݐ ∀݅, ݆, ,ݏ ݐ ∈ ሼ1, 2, … ,݉ሽ. 

The higher order terms, involving the expectation of the random variable ௜݂, can be simplified 
in a similar manner. Therefore, the expectation function of the linearly projected data is given 

by Eq. (A2). It shows that not only the first moment of the scaling factor ݂,̅ but also its higher 
order moments such as variance ߪ௙ଶ, skewness ௙ܵ, kurtosis ܭ௙, contribute to the mean values 

of the linearly projected data. 
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