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A resonance between a long wave and a short wave occurs if the phase velocity of
the long wave matches the group velocity of the short wave. Rogue waves modeled
as special breathers (pulsating modes) can arise from these resonant interactions. This
scenario is investigated for internal waves in a density stratified fluid. We examine the
properties of these rogue waves, such as the polarity, amplitude and robustness, and show
that these depend critically on the specific density stratification and the choice of the
participating modes. Three examples, namely, a two-layered fluid, a stratified fluid with
constant buoyancy frequency, and a case of variable buoyancy frequency are examined.
We show that both elevation and depression rogue waves are possible, and the maximum
displacements need not be confined to a fixed ratio of the background plane wave.
Furthermore, there is no constraint on the signs of nonlinearity and dispersion, nor any
depth requirement on the fluid. All these features contrast sharply with those of a wave
packet evolving on water of finite depth governed by the nonlinear Schrödinger equation.
The amplitude of these internal rogue waves generally increases when the density variation
in the layered or stratified fluid is smaller. For the case of constant buoyancy frequency,
critical wave numbers give rise to nonlinear evolution dynamics for “long wave-short wave
resonance,” and also separate the focusing and defocusing regimes for narrow-band wave
packets of the nonlinear Schrödinger equation. Numerical simulations are performed by
using baseband modes as initial conditions to assess the robustness of these rogue waves
in relation to the modulation instability of a background plane wave.
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I. INTRODUCTION

Internal waves in the ocean constitute a rich source for fundamental scientific studies and are also
of great practical importance [1]. These large amplitude displacements in the interior of the ocean
can affect the distribution of nutrients, pollution, sediment transport, acoustic transmission, marine
submersibles and offshore structures, important bearings on acoustic transmission, and safety
of marine infrastructures. Consequently there have been extensive theoretical studies, numerical
simulations, and oceanic observations. These range from the large-amplitude long waves in shallow
water, often modeled by the Korteweg-de Vries equation [2,3], to the vertically propagating internal
waves in the interior of the ocean which are often linked to mixing events through wave breaking
[4,5].

A resonance among three linear waves arises if their frequencies (ω) and wave numbers (k)
match (ω(k3) = ω(k1) + ω(k2), k3 = k1 + k2). A special case is “long wave-short wave” resonance
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(k3 ≈ k1, k2 � 1), which can occur between a long internal wave and a much shorter surface wave,
if the phase velocity of the long wave matches the group velocity of the short wave [6,7]. Evolution
equations for the weakly nonlinear wave packet of the short wave and the long interfacial wave were
derived using a two-layer fluid model using a multiple scale perturbation technique [8]. A similar set
of model equations has also been derived for a continuously stratified fluid [9,10]. This long-short
wave resonance occurs on a time scale of ε4/3t , where ε is a small amplitude parameter, and is thus
asymptotically faster than the ε2t time scale of the much studied nonlinear Schrödinger equation
(NLSE) [7]. The precise definition of ε in terms of properties of the fluid flows will be given in
Sec. II.

There has been intense recent interest in rogue waves, which are locally and temporally confined
large amplitude displacements from an equilibrium position [11]. In the ocean, such surface rogue
waves clearly pose immense danger to ships and offshore structures [11,12]. Further, rogue waves
can arise in other physical contexts [13]. A frequently used model for a rogue wave is the Peregrine
breather of the NLSE, an exact solution algebraically localized in both space and time. The Peregrine
breather has been generated and observed experimentally in water wave tanks [14]. Recently the
time-reversal approach was implemented in numerical wave tanks and wave flumes to study rogue
waves [15–17]. We are particularly concerned here with the sign of the main displacement of the
rogue wave. As the integral of the intensity over the entire spatial domain is a constant for the NLSE,
a region of depression must also accompany a rise in water level above the average position. The
commonly accepted terminology in the literature is to term the Peregrine breather or similar modes
as an elevation rogue wave, if the displacement of the largest amplitude is above the mean level.

In this paper we examine if rogue waves with such unexpectedly large displacements are possible
also for internal waves, using the long-short wave resonance model, and examine whether both
depression and elevation waves are feasible. Since energy tends to be concentrated in the oceanic
waves with lower frequencies, it is especially important to study long internal rogue waves [18].
The answers to both questions are affirmative. Several theoretical studies on the system of model
nonlinear evolution equations for a long-short wave resonance have been performed [19–21]. The
rogue wave modes of this system can be derived by the bilinear Hirota method or the Darboux
transformation. Previous studies have indicated that although the short wave packet can exhibit
depression waves as well as elevation waves, the long wave component was still only an elevation
wave [20]. Our main goals here are to examine this further in the internal wave context, and to
demonstrate that the long wave component can experience a polarity change, that is, a conversion
from a depression mode to an elevation mode, or vice versa. Such reversal of polarity has indeed
been recorded in observational data in the coastal ocean for long nonlinear waves where a change
of sign in the nonlinear coefficient of the underlying Korteweg-de Vries equation is indicative of a
polarity reversal [2,3].

The long-short wave resonance system for a complex-valued short wave envelope S and a real-
valued long wave L, obtained through a multiple scale expansion setting is given by [8]

iSt + λ1Sxx = γ1LS, Lt = μ1(|S|2)x. (1)

The parameters λ1, γ1, and μ1, measure the effects of dispersion, nonlinear coupling, and
radiation stress of the short waves acting on the long wave, respectively. The precise numerical
values of these parameters will depend on the physical context, which here is a density stratified
fluid. The dispersion of the short wave envelope is balanced by the nonlinear interaction with the
long wave. In contrast, the mean flow (long wave) of a weakly nonlinear, narrow-band packet is
generated by self-interaction of the short wave through the radiation stress term [8]. Asymptotically,
the group velocity coordinate of “long-short” resonance is associated with ε2/3x and ε2/3t , where ε

is a nondimensional, small amplitude parameter. The evolution time scale for the long-short system
is ε4/3t , rather than the ε2t of the nonlinear Schrödinger equation model. The mean flow of the
long-short resonance system is of order ε4/3.

A remark on the physical origin of Eq. (1) is in order. While linear theory will predict particle
paths to be strictly periodic orbits (circular or elliptical), nonlinear effects will displace the fluid
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downstream in the propagation direction, resulting in the well-known “Stokes drift”, which is
proportional to the square of the wave amplitude. Further, when a wave packet is considered,
that is the wave amplitude is spatially modulated, a radiation stress is formed which generates a
wave-induced mean flow also proportional to the square of the wave amplitude. This interacts with
the primary harmonic, and together with the interaction of the primary harmonic with the induced
second harmonic, and cubic interactions of the primary harmonic, lead to the cubic nonlinear term
in the widely studied nonlinear Schrödinger model.

On the other hand, a triad resonance arises for a special combination of linear waves where
spontaneous generation of one member is possible due to special wave numbers and frequencies
dictated by the dispersion relation. Long-short wave resonance is a special case of triad resonance
where two members are nearly identical while a third one is much longer. Indeed this third member
effectively serves as the “mean flow” [L of Eq. (1)] of the system, whereas the “mean flow” of the
nonlinear Schrödinger equation model is the slaved amplitude-dependent wave-induced mean flow.
This provides a physical explanation for the first component of Eq. (1). The second component can
be interpreted as the slow evolution of the long wave component being modulated by the interaction
of two nearly identical short waves, expressed as a radiation stress term.

The governing equations, boundary conditions and precise scaling will be described in Secs. II
and III. Weakly nonlinear theory has an intrinsic assumption of a small amplitude parameter. Truly
large amplitude and fully nonlinear waves must be investigated by numerical simulations or higher-
order perturbation series. Nevertheless, weakly nonlinear models serve as a preliminary analysis in
providing useful insights. Moreover, the rogue waves of lowest order in the (2 + 1)-dimensional
long wave-short wave resonance system are long crested, which justified the (1 + 1)-dimensional
approach [21]. Investigation on higher order rogue waves with more complex structures in the
(2 + 1)-dimensional system will be carried out in subsequent works.

Without loss of generality, system (1) can be normalized through a scaling

iSτ − Sxx = L̃S, L̃τ = −σ (|S|2)x, (2)

τ = −λ1t, L̃ = −γ1

λ1
L, σ = −γ1μ1

λ2
1

. (3)

The explicit form of a rogue wave as an exact breather solution of Eq. (2) is given in our earlier
work [19], and is also reproduced in Appendix A for completeness. An important goal here is to
study how the properties of this rogue wave will be affected by the specific fluid configuration. In
contrast to the well-known Peregrine breather of the nonlinear Schrödinger equation, rogue wave
modes always exist for Eq. (2) regardless of the sign of the parameter σ . For this normalized system,
both the short wave and long wave are elevation (or “bright”, borrowing a term from optics) rogue
waves [19]. For the short wave S, the amplification ratio of the rogue wave from the background
amplitude is two. The maximum of the internal long wave mode is attained at (x, τ ) = (0, 0) with

L̃(0, 0) = 3
(
2σs2

0

)2/3
, (4)

where s0 is the background amplitude of the short wave component and is taken as one in the
following analysis. The rogue wave profiles in the fluid domain are then recovered through the
rescaling in Eq. (3). We shall refer to this extremum of L as the normalized amplitude of the rogue
wave for the long wave component. Remarkably, the polarity of the rogue wave would change if the
nonlinearity γ1 changes sign. This change is reminiscent of a similar transformation for a soliton in
the long wave regime, where the quadratic nonlinearity in the Korteweg-de Vries equation changes
sign [22].

In practice, there may be a small deviation from the exact resonance condition. To account
for such deviation in wave number (κ) of the carrier wave train, a correction of the form
exp[i(κx − �t )] is incorporated in S. Mathematically, this is equivalent to considering a detuned
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FIG. 1. The two-layer fluid model in the physical domain. In nondimensional units, the depth of the upper
layer is the characteristic length.

system [19],

iS̃τ − 2iκS̃x − S̃xx = L̃S̃, L̃τ = −σ (|S̃|2)x. (5)

The resulting rogue wave mode of Eq. (5) can be an elevation (bright), a depression (dark) or
a four-petal shaped unit with two peaks and two depressions [20]. This contrasts strongly with the
case with κ = 0 (corresponding to exact resonance), where the rogue wave must be an elevation. In
this work, we focus on the case of exact resonance (κ = 0).

The remaining structure of this paper is as follows. First in Sec. II we consider a two-layered fluid
model. In general, the rogue wave mode displays no peculiarities, that is, the polarity of the rogue
wave is not dramatically affected by the depth and density ratios. In Sec. III we consider the case
of a constant buoyancy frequency, which permits a complete theoretical analysis, and in Sec. IV we
use a hyperbolic secant profile in the buoyancy frequency. These cases are more intriguing. The role
of modulation instability on the generation of these rogue waves is discussed in Sec. V.

II. TWO-LAYER FLUID MODEL

A two-layer fluid model of piecewise homogeneous fluids offers a simplified approach. Although
a Hamiltonian formulation for flows with constant vorticity in each layer is possible [23], only the
irrotational case is considered here. The jump conditions for the continuity of vertical displacement
and pressure at each interface then complete the formulation. For special values of the wave number,
resonance can occur between a surface wave and an interfacial wave. This allows us to examine the
effects of the density stratification and the depth ratio between the two layers on the structure of the
rogue waves.

More precisely, in the undisturbed state we consider a homogeneous fluid of density ρ2 and depth
h2 located below another homogeneous fluid of density ρ1 = ρ2(1 − �) and depth h1 (Fig. 1). We
consider a nondimensional system where acceleration due to gravity is unity and set y = 0 as the
undisturbed interface between the two layers. Velocity potentials in the upper (lower) layer φ̃1(φ̃2)
satisfy the Laplace equation due to mass conservation for irrotational flows [8],

φ̃1xx + φ̃1yy = 0, ζ < y < h1 + ξ ; φ̃2xx + φ̃2yy = 0, −h2 < y < ζ,
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FIG. 2. (a) Dispersion relation of the two-layer model; (b) group velocity (cg) of the surface mode (solid
line) and the phase velocity (c) of the internal mode (dashed line). Resonance occurs at k = 1.79 for this case
with � = 0.2 and h = 2.

where ζ and ξ are the interfacial and surface displacements. The kinematic boundary condition is
applied at the interface and the free surface:

ξt + φ̃1xξx = φ̃1y at y = h1 + ξ,

ζt + φ̃1xζx = φ̃1y, ζt + φ̃2xζx = φ̃2y, at y = ζ.

The dynamic boundary conditions require that the pressure be (a) continuous across the interface
and (b) constant at the free surface. Using the Bernoulli equation, these requirements give

φ̃1t + ξ + 1
2

(
φ̃2

1x + φ̃2
1y

) = 0, at y = h1 + ξ,

(1 − �)
[
φ̃1t + ζ + 1

2

(
φ̃2

1x + φ̃2
1y

)] = [
φ̃2t + ζ + 1

2

(
φ̃2

2x + φ̃2
2y

)]
, at y = ζ.

Furthermore, rigid boundary condition is imposed at the bottom y = −h2. To simplify the
discussions, we adopt further nondimensional scaling where the fluid depth of the upper layer, wave
speed for the surface long wave and the density of the bottom layer are the characteristic scales for
length, velocity, and density, respectively [8]. The dispersion relation for linear (small amplitude)
sinusoidal waves of angular frequency ω and wave number k is then [Fig. 2(a)]

ω4[1 + (1 − �)η1η2] − ω2k(η1 + η2) + �k2η1η2 = 0, (6a)

where η1 = tanh(k), η2 = tanh(kh), and h = h2/h1. (6b)

The small parameter ε used in the asymptotic expansion will be the ratio of the free surface or
interfacial displacement to fluid depths, i.e., ε � 1, h = O(1) . We shall examine values of ε in the
range 0.02–0.05, and use a density difference � in the range 0.2–0.5. Hence it is permissible to use
the same reference scale for surface and interfacial displacements.

The two frequencies (ω) correspond to the surface mode and the internal mode. Long-short wave
resonance occurs if the linear phase velocity c of the (long) internal wave (k → 0),

c2 = 1 + h −
√

(1 + h)2 − 4�h

2
, (7)
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FIG. 3. Effect of density difference on the normalized amplitude of the internal rogue wave at h = 2.

matches the linear group velocity cg of the (short) surface wave packet,

cg = dω

dk
, where ω2 = k

{
η1 + η2 +

√
(η1 + η2)2 − 4�η1η2[1 + (1 − �)η1η2]

}
2[1 + (1 − �)η1η2]

. (8)

This equality determines the wave number for a resonance as a function of h and � [Fig. 2(b)].
The coefficients in the long wave-short wave system (1) can be found in the literature and are
presented in Appendix B [8].

Since the scaling in Eq. (3) does not affect the sign of the short wave component, the short wave
envelope is still an elevation rogue wave upon scaling the rogue wave solution given in Appendix A
[19]. In the following, we focus on the polarity of the long wave component. Remarkably, this
component is usually a depression rogue wave, independent of the depth ratio and density difference.
The words “elevation” and “depression” are used to describe the main displacement of the rogue
wave. While the fast oscillations inside the carrier envelope might go above and below the average
position regularly, the envelope itself is represented by an algebraic expression depicting elevation
(depression) above (or below) the background plane wave respectively.

A. Effect of density stratification

To study the effect of the density difference, the extremum of L is computed for various values
of � (Fig. 3, for h = 2). The long wave mode is then a depression mode with the main displacement
below the mean level. As the difference between the densities decreases, the restoring force due to
buoyancy becomes smaller and the depression rogue wave can attain a larger amplitude. Similar
results can be obtained for other values of the depth ratio. For application to realistic ocean
situations, the density difference is small and � may typically take values around 0.01 or even
smaller. The frequency of the internal mode is then small, and resonance would occur only at
large values of the wave number for the short wave. For example, for � = 0.01 and h = 2, the
resonance condition is fulfilled at k = 37.4. For such small density difference, the amplitude of
the corresponding internal solitons or rogue waves could be exceedingly large. As this scenario may
compromise the asymptotic scaling and ordering of the perturbation sequence, a more detailed study
will be pursued in the future.

B. Effect of depth ratio

The influence of the depth ratio between the two layers is less drastic when compared with the
effect of the density difference. The internal mode is always a depression rogue wave even when
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FIG. 4. Effect of depth ratio on the normalized amplitude of the internal rogue wave at � = 0.2.

the upper layer is deeper (h = 0.5 in Fig. 4). This contrasts sharply with the classical nonlinear long
wave theory based on equations of the Korteweg-de Vries type, where the interfacial solitary bulges
towards the fluid of greater depth [24].

III. MODEL WITH CONSTANT BUOYANCY FREQUENCY

The two-layer fluid is a coarse approximation, as the density variation in a real oceanic
pycnocline may be rapid but is nevertheless continuous. As a different approach we consider a
uniformly and continuously stratified fluid confined between rigid boundaries at y = y1 and y = y2

with a typical buoyancy frequency of Nref . The Boussinesq approximation is invoked. With length,
time, velocity being nondimensionalized respectively by h3 (channel depth), Nref , and Nrefh3, a
nonlinear evolution equation can be established for the stream function [10]. A small parameter is
taken as the ratio of wave amplitude to h3. Asymptotic expansion of a slowly varying wave packet
can be performed for the regime of long-short wave resonance, and the nondimensional governing
system then takes the form,

iSt + λ2Sxx = γ2LS, Lt = μ2(|S|2)x, (9)

where the coefficients are reproduced in Appendix C [10]. We study elevation or depression rogue
waves for a fluid with a constant buoyancy frequency:

N (y) = N0. (10)

The channel is taken as y1 = −1 and y2 = 1. It is possible to normalize N0 through rescaling
time. However, in order to study the effect of density variation, the reference buoyancy frequency
Nref is fixed and the nondimensional buoyancy frequency N0 is varied.

As an illustrative example, only odd linear modes will be considered and it is sufficient to take
the domain as the interval [0, 1]. The linear vertical velocity of the nth mode (n positive integer) is
given by Eq. (C1) as [25]

φ = sin (by), b = nπ. (11)

The rigid boundary conditions at the wall give the dispersion relation [Fig. 5(a)]

ω2 = N2
0 k2

n2π2 + k2
. (12)
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FIG. 5. (a) Dispersion curves of the first four modes for N0 = 1. (b) Group velocity (cg) of the first mode
(solid line) and the phase velocity (c) of the second mode (dashed line). Resonance occurs between the first
and second mode at the wave number marked by a cross. (c) Group velocity (cg) of the second mode (solid
line) and the phase velocity (c) of the fourth mode (dashed line). Resonance occurs between the second and
fourth mode at the wave number marked by a cross.

Unlike the two-layer model of Sec. II, a continuously stratified fluid permits an infinite number of
modes. Long-short wave resonance can thus arise between various modes at different wave numbers.
More precisely, resonance may occur between a short wave of the nth mode with wave number k

and a long wave of the mth mode if k (of the nth mode) satisfies the relation [Fig. 5(b)]

k2 = (m2/3n4/3 − n2)π2, (13)

and the corresponding group velocity is given by

cg = N0

mπ
. (14)

With this special value of group velocity, the “mean flow” [Eq. (C2)] is thus

� = sin (mπy). (15)
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FIG. 6. The effect of buoyancy frequency on the normalized amplitude of the internal rogue wave. As
the buoyancy frequency decreases, the amplitude increases. For resonance between modes of higher mode
numbers, the amplitude of the rogue wave increases: n = 1 (lower solid line); n = 2 (middle dashed line);
n = 3 (upper dotted line).

The coefficients of nonlinear coupling (γ2) and self-interaction (μ2) will generally vanish. We
focus on the exceptional case m = 2n [Eqs. (13) and (C4)–(C6)]:

k2
c = k2

0n
2π2 where k2

0 = 4
1
3 − 1, (16)

λ2 = − 3k0

2π2
(
1 + k2

0

) 5
2

N0

n2
≈ −0.04

N0

n2
, (17)

γ2 = π2k3
0

(
k2

0 + 3
)

2
n2 ≈ 7.97n2, (18)

μ2 = −πk2
0

(
k2

0 + 3
)

8
(
k2

0 + 1
)3 n ≈ −0.21n. (19)

Hence, the normalized amplitude of the internal rogue wave is given by

L(0, 0) = 9
1
3
(
k2

0 + 3
) 1

3 π
2
3

4
1
3
(
k2

0 + 1
) 7

6

n
2
3

N
1
3

0

≈ 2.51
n

2
3

N
1
3

0

. (20)

(1) Elevation rogue wave: For convenience a rogue wave mode is termed an elevation rogue
wave if L(0, 0) is positive. The actual physical quantities (displacement and velocities) will be the
product �(y)L(x, t ) or its derivative, and thus may oscillate with the vertical coordinate through
�(y). Using such terminology, the long wave is always an elevation rogue mode [Eq. (20)]. The
significance of this critical wave number kc [Eq. (16)] is twofold. Not only it highlights the onset
of long-short wave resonance, it also separates the focusing regime from the defocusing one for the
nonlinear Schrödinger equation for a “narrow band” wave packet [25].

(2) Effect of buoyancy frequency: The amplitude L(0, 0) will become larger with a smaller
buoyancy frequency, as the reduced density variation gives rise to a taller rogue wave [Eq. (20) and
Fig. 6].

(3) Effect of mode number: The order of the participating modes is also critical. For a fixed N0,
long-short wave resonance involving higher mode number (n) will yield rogue waves of a bigger
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FIG. 7. Typical buoyancy frequency profiles for various input parameters: α = 0.1 and β = 0.00577 (solid
line); α = 0.5 and β = 0.144 (dashed line); α = 1 and β = 0.577 (dotted line); α = 1.5 and β = 1.297
(dashed-dotted line), with r = 0.659 in all cases.

amplitude [Eq. (20) and Fig. 6]. This theoretical trend cannot continue indefinitely with larger n, as
physically the larger values of wave number k [Eq. (16)], or exceedingly short waves, may render
the asymptotic balance for the long-short scaling questionable.

IV. STRATIFIED FLUID MODEL WITH HYPERBOLIC SECANT BUOYANCY FREQUENCY

To further improve the modeling of the density stratification, a hyperbolic secant profile for
the buoyancy frequency is considered. A local maximum in the buoyancy frequency corresponds
physically to a greater change in the density profile. More precisely, a stratified fluid of buoyancy
frequency

N2 = α2sech2(ry) + β, (21)

with r , α and β being positive constants (Fig. 7), is located in a channel from y1 = −1 to y2 = 1.
To obtain the dispersion relation for linear modes, the eigenvalue problem for the angular frequency
ω for a given wave number k

−d2φ

dy2
+ k2φ = 1

ω2
k2N2φ (22)

is solved with boundary conditions φ(−1) = φ(1) = 0. Remarkably, an exact solution of Eq. (C1)
can be obtained at one specific value of the wave number k:

φ = sech2(ry) − 2

3
. (23)

Our strategy is to employ such special exact solutions to facilitate higher order calculations
of the long-short wave resonance model, assisted by numerical solutions whenever necessary.
Straightforward calculations now yield

r = sech−1

(√
2

3

)
, (24)

k = r
√

6β

α
and ω =

√
β. (25)
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FIG. 8. Dispersion curves of the first two modes at α = 1 and β = 0.577. The “cross” marks the wave
number of the “short” first mode which is in resonance with the a long wavelength second mode.

A. Dispersion relation

For arbitrary wave number k, Eq. (22) is a Sturm-Liouville problem, and the Rayleigh-Ritz
method can be applied to estimate the eigenvalues. Polynomials are employed here as trial functions:

wj (y) = yj−1(y2 − 1), for j = 1, . . . , M. (26)

To obtain the first few eigenvalues, polynomials of degree 12 are sufficient (i.e., M = 11). The
dispersion curves of the first two linear modes of the stratification profile Eq. (21) can then be
obtained (Fig. 8 using α = 1, β = 0.577). Quality assurance checks are performed by increasing
values of M , and also by employing a different basis set in the Rayleigh-Ritz procedure, e.g.,
hyperbolic functions. The results are in good agreement.

From the dispersion curves, the phase velocity of long wave mode at a small wave number can be
estimated numerically. The short wave mode participating in the resonance can then be identified.
As example, the phase velocity of a long wavelength second mode matches the group velocity of a
special first mode given in Eq. (25) for α = 1 and β = 0.577.

B. Formulation

The general formulation of the long-short wave resonance model for a continuously stratified
fluid is given in Sec. III and Appendix C. Since the dispersion relation is obtained numerically,
Eq. (C4) is utilized to compute the group velocity dispersion. Equation (C1) is differentiated with
respect to k to yield an equation in φk ,

φkyy + k2

(
N2

ω2
− 1

)
φk =

[
2k

(
1 − N2

ω2

)
+ 2N2k2ωk

ω3

]
φ. (27)

By reduction of order, the complementary functions of Eq. (27) are given by

θ1(y) = sech2(ry) − 2

3
,

θ2(y) =
[

sech2(ry) − 2

3

] ∫ [
sech2(ry) − 2

3

]−2

dy

=
[

sech2(ry) − 2

3

]{
9y

4
− 27[2 exp(2ry) − 1]

4r[exp (4ry) − 4 exp (2ry) + 1]

}
. (28)
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FIG. 9. Mean flow for a density stratification profile given by a hyperbolic function, Eqs. (21), (24), and
(25): α = 1, β = 0.577, and k = 1.225.

The particular solution can be obtained by variation of parameters. The group velocity dispersion
can then be computed.

Secondly, the mean flow � can be found in terms of hypergeometric functions (Fig. 9). For the
cases considered here, the odd solutions satisfy the boundary conditions:

�(y) = −2coshG2 (ry) sinh (ry)F

[
1

2
+ G2

2
+ i
√

G1,
1

2
+ G2

2
− i
√

G1,
3

2
,−sinh2(ry)

]
,

where

G1 = 3β

2α2

[ ∫ 1
−1 N2φ2dy∫ 1

−1 (N2 − β )φ2dy

]2

, G2 = 1

2
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⎪⎩1 +

√√√√1 + 24

[ ∫ 1
−1 N2φ2dy∫ 1

−1 (N2 − β )φ2dy

]2
⎫⎪⎬
⎪⎭,

and F is the hypergeometric function [26].

C. Results

To examine the effect of density variation, the maximum displacements at various values of α are
computed (Table I). In all cases here, the resonance occurs between short wave of the first mode and
long wave of the second mode. The long wave component is an elevation rogue wave, which gets
taller as the average N2 gets smaller (Fig. 7), a trend readily explained by the notion of buoyancy.
Furthermore, with a smaller spatial variation in the buoyancy frequency (smaller α, Table I), the
rogue wave gets taller too. However, modes fulfilling the resonance condition do not automatically

TABLE I. Effect of density variation on the normalized amplitude of the rogue wave.

α β k L(0, 0)

0.1 0.00577 1.225 4.268
0.5 0.144 1.225 2.496
1 0.577 1.225 1.981
1.5 1.297 1.225 1.731
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FIG. 10. Generation of rogue wave from baseband modulation instability: (a) analytical rogue wave
solution for σ = 1.36 and s0 = 0.5; (b) rogue wave mode generated from a wavy disturbance with small wave
number (K = 0.2) and 0.1% amplitude.

imply generation of rogue waves, as the resulting nonlinear coefficients may vanish, and hence the
elaborate analysis presented here is valuable.

V. ROGUE WAVES GENERATED FROM BASEBAND DISTURBANCES

While rogue wave modes have been analytically derived for many dynamical systems, their
generation from arbitrary initial conditions still remains an issue of intense debate. One school
maintains that “baseband instability” (long wavelength regime of modulation instability) will be
essential for the occurrence of rogue waves [27]. At the other end of the spectrum of diverse
opinions, there are suggestions that modulation instability will not play a key role in the dynamics
[28].

The connection between the onset of baseband instability and the existence condition of rogue
waves has been established analytically for many nonlinear evolution systems [29]. This generation
mechanism can be further substantiated by choosing one special baseband mode as the initial
condition [30]. By perturbing the background short wave envelope (long wave) with exp(iKx)
[cos(Kx)], respectively, that is,

S(x, 0) = [1 + 0.001 exp (iKx)] s0, L̃(x, 0) = 0.001 cos (Kx), (29)

localized entities [Fig. 10(b)] resembling the rogue waves can be generated [Fig. 10(a)].
To further elucidate this idea in a physically realistic setting, chaotic wave fields are generated

by a random noise containing modes of various wave numbers. The initial condition is given by

S(x, 0) = {1 + 0.001[1 − 2ν(x)]}s0, L̃(x, 0) = 0.001[1 − 2ν(x)], (30)

where ν(x) is a random function uniformly distributed in the interval (0,1) and hence the spectrum
will cover a wide range of frequencies. Rogue wave modes exist in a chaotic wave field provided
that baseband modes are unstable [27]. Among various breather-like entities in the chaotic field
[Fig. 11(a)], localized modes with waveform similar to a rogue wave can be observed [Fig. 11(b)].
We can thus assert that baseband instability plays a crucial role in the generation of rogue waves.

VI. DISCUSSIONS AND CONCLUSIONS

While rogue waves on the sea surface have recently been intensively studied theoretically and
experimentally, our aim here is to examine analytically if such unexpectedly large amplitude waves

124801-13



H. N. CHAN, R. H. J. GRIMSHAW, AND K. W. CHOW

FIG. 11. (a) Observation of rogue wave modes in a chaotic wave field (σ = 1.36 and s0 = 0.5); (b) an
enlarged view of the localized peak enclosed by a square frame as indicated in panel (a).

can also occur as internal waves, using the long-short wave resonance as an illustrative example.
The analysis confirms the existence of such waves and also highlights that the nonlinear dynamics
can be quite different from that of the well-known nonlinear Schrödinger equation. For this internal
wave setting, the timescale of evolution is faster asymptotically (ε4/3t versus ε2t of the Schrödinger
model, ε being a nondimensional small amplitude parameter). Furthermore, the amplification ratio
is not restricted to three times the background plane wave (the case for the nonlinear Schrödinger
equation), and there is no constraint on the signs of the nonlinearity and dispersion. Moreover, the
nonlinear Schrödinger model imposes a restriction of kH > 1.363 for modulation instability of
water waves (and so for rogue waves) where k is the wave number of the carrier waves, and H is
the water depth. However, there are no such corresponding requirements for this long-short wave
resonance.

An important result is that the character of these “internal” rogue waves will depend critically
on the stratification profile and the precise nature of the internal modes involved. As illustrative
examples, three density profiles were considered. First, a two-layer fluid model with a jump in
density at the interface was investigated. Second, to provide a better model for a smooth transition
at the pycnocline, two models with continuous density stratification were considered, a case with
constant buoyancy frequency and a case with buoyancy frequency taking up a hyperbolic secant
profile. One major difference between the two-layer model and the continuously stratified models
is that the latter allow infinitely many modes. As a result, long-short wave resonance may occur
between various pairs of modes. These density profiles have all been commonly used in the
literature. We note in particular the study of Stokes drift for internal equatorial Kelvin waves, where
both continuously stratified and two-layer models had been employed [31]. Indeed the two-layer
model for internal waves had been extended to the case where each layer itself consisted of fluid
with constant buoyancy frequency [32].

Further, the effect of density variations on the amplitude of the rogue waves was examined. In
general, a smaller jump in density would give rise to a rogue wave with a larger amplitude, as the
effect of buoyancy will be reduced. For an elevation or depression rogue wave, the maximum height
or depth attained is larger when the density difference is reduced respectively. This is true for both
layered and continuously stratified models, independent of whether the change in density is gradual
or abrupt. On the other hand, the change in depth ratio causes only minor effect on the amplitude of
the rogue wave.

For continuously stratified fluids, there may be an infinite number of linear modes. However,
generation of rogue waves is not automatic or spontaneous, as the nonlinear dynamics depends
critically on the nature of the participating modes. Although the resonance condition can be fulfilled,
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the evolution systems may have zero coefficients, and the dynamics is degenerate. For a stratified
fluid with constant buoyancy frequency, the wave number of a special, first internal mode in
resonance with a long, second internal mode will permit the occurrence of rogue waves. This critical
wave number [Eq. (16)] also highlights the boundary of the focusing/defocusing regimes in the
context of the nonlinear Schrödinger equation. Similar resonances involving other internal modes
pairs (a short second order mode and a long fourth order mode) also exist. The amplitude of the
rogue wave will depend on the participating modes.

To elucidate the importance of baseband modulation instability, rogue waves are generated
numerically from initial conditions consisting solely of baseband modes. Similar rogue-wave-like
structures are observed from a chaotic wave field too, but the amplitude and time of formation are
slightly different.

All these and related issues remain to be resolved in the future. First, rigid wall conditions versus
the presence of a free surface may influence the outcome. Second, resonant interactions in the
presence of nonzero vorticity have not been considered here [33]. To give a better modeling of
geophysical phenomena, such as the Equatorial Undercurrent [34], the effect of background current
shear on internal rogue waves will be investigated in future works. Moreover, the complexity of the
density configuration will be improved to include thermohaline staircases or multiple stratified fluid
patches [35,36]. Thermohaline staircases are indeed observed in many places, including both warm
regions and cold regions like the Arctic Ocean [35,37,38]. Hence, extensions of the present work
to include multiple layers with piecewise constant or smooth density profiles would be valuable
in applications to physical oceanography. We note that the present long-short wave resonance
condition for the constant buoyancy frequency case coincides with that obtained in the literature in
a different context [39], where the issues of momentum and impulse in stratified flows were treated.
Another interesting aspect is the interaction of multiple wave trains [29]. The effect of density
stratification on the evolution of rogue waves in coupled systems will also be considered in future
efforts. The main information here is that the precise structure of the density stratification profiles
will have a profound influence on the generation and nature of rogue waves in the interior of a fluid
[40,41]. Finally, the present work imposes a localized flow structure in the vertical direction, and
the stratified fluid forms a wave guide for wave propagation in the horizontal direction. In contrast,
several other works in the literature allow wave propagation in the vertical direction as well [42,43].
Further theoretical works along these directions will definitely be fruitful.
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APPENDIX A

The rogue wave solution of the long-short system Eq. (2) is given by [19]

S = s0

{
1 + −4 + 4�i ix + 4

(
�2

r − �2
i

)
iτ(

�2
r + �2

i

)[
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where s0 is the background amplitude of the short wave component, and �r + i�i is the leading
order frequency in a long wave expansion of the dispersion relation with input from the density
stratification profile. The long wave component usually does not change polarity [29]. Equation (A1)
represents a pulse algebraically localized in both space and time.

APPENDIX B

The parameters in Eq. (1) for a two-layer fluid are given by [8]

λ1 = 1

2

d2ω

dk2
, γ1 = γ11

γ12
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.

The above expressions are evaluated at k for which the resonance condition c = cg is satisfied.

APPENDIX C

For a continuously stratified fluid, the spatial structure of the vertical component of velocity,
φ(y), is governed by the modal equation [10],

d2φ

dy2
+ k2

(
N2

ω2
− 1

)
φ = 0, in y1 < y < y2, (C1)

where N is the buoyancy frequency, k is the wave number, and ω is the angular frequency. Rigid
wall conditions are imposed at the boundaries,

φ(y1) = φ(y2) = 0.

Using an asymptotic expansion of the form

εφ(y)[Sei(kx−ωt ) + c.c.] + ε
4
3 �(y)L + · · · ,

the mean flow �(y) is obtained by solving the differential equation

d2�

dy2
+ N2

c2
g

� = 0, in y1 < y < y2, (C2)
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under the boundary conditions �(y1) = �(y2) = 0. The parameters in Eq. (9) are given by

c = ω

k
, cg = c
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