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Abstract

Aims/hypothesis: Growth differentiation factor 15 (GDF-15), a suggested biomarker for
metformin use, may explain the potential cardioprotective and anti-cancer properties of
metformin. We conducted a Mendelian randomization study to examine the role of GDF-15 in
risk of coronary artery disease (CAD), breast and colorectal cancer. Secondary analyses included
examination of the association of GDF-15 with type 2 diabetes, glycaemic traits, blood pressure,
lipids and body mass index.

Methods: We obtained single nucleotide polymorphisms (SNPs) strongly (p value < 5 x 10%)
predicting GDF-15 from a genome wide association study (GWAS) (n=5,440) and applied them
to genetic studies of CAD (CARDIoOGRAMplusC4D 1000 Genomes-based GWAS
(n=184,305)), type 2 diabetes (DIAbetes Genetics Replication And Meta-analysis (n=898,130)),
glycaemic traits (the Meta-Analyses of Glucose and Insulin-related traits Consortium (HbALc:
n=123,665; fasting glucose: n=46,186)), blood pressure, breast cancer and colorectal cancer
(UK Biobank (n<=401,447)), lipids (Global Lipids Genetic Consortium (n<=92,820)) and
adiposity (Genetic Investigation of ANthropometric Traits consortium (n=681,275)). Causal
estimates were obtained using inverse variance weighting, taking into account correlations
between SNPs. Sensitivity analyses included focusing on the lead SNP (rs888663) and validation
for CAD in the UK Biobank and for breast cancer in the breast cancer association consortium
(BCACQ).

Results: Using 5 SNPs, increased GDF-15 was associated with lower CAD (odds ratio (OR)
0.93 per standard deviation (SD), 95% confidence interval (CI) 0.87 to 0.99) and breast cancer
(OR 0.89 per SD, 95% CI 0.82 to 0.96), with similar results from lead SNP analysis. However,
the associations with CAD (OR 0.99 per SD increase, 95% CI 0.93 to 1.04) and breast cancer
(OR 0.97 per SD increase, 95% CI1 0.94 to 1.01) in the validation studies were not as apparent.
GDF-15 was not associated with type 2 diabetes, glycaemic traits, CAD risk factors or colorectal
cancer.

Conclusions/Interpretation: There is no convincing evidence that GDF-15 reduces risk of
CAD, breast or colorectal cancer. Whether the observed inverse association of metformin use

with cancer risk is via other unexplored mechanistic pathways warrants further investigation.



Research in context

What is already known about this subject?

- Metformin use is inversely associated with cardiovascular disease and cancer although these
observations are susceptible to confounding by indication and to misallocation of exposure time

- Growth differentiation factor 15 (GDF-15) is a biomarker of metformin use and may explain the
non-glycemic effects of metformin on cardiovascular disease and cancer

What is the key question?

- Toinvestigate the causal role of GDF-15 in risk of coronary artery disease (CAD), colorectal
cancer and breast cancer using Mendelian randomization

What are the new findings?

- Although increased GDF-15 appeared to decrease the risk of CAD and breast cancer in the main
analyses, these associations were not observed in the validation study.

- GDF-15 was not associated with type 2 diabetes, glycaemic traits, CAD risk factors or colorectal
cancer.

How might this impact on clinical practice in the foreseeable future?

- There is no convincing evidence that GDF-15 reduces risk of CAD, breast or colorectal cancer.
Whether the inverse association of metformin use with cancer is an artefact of biases or acts via
other unexplored mechanistic pathways warrants further investigation, which would help validate
whether this medication could be repurposed for cancer prevention.



Introduction

Metformin is the first line medication for diabetes, given its superiority and safety compared to
other diabetes medications (e.g. sulfonylureas),! which suggests metformin reduces glycaemia
via potentially less hazardous pathways than other medications.! Some randomized controlled
trials have also suggested a potential beneficial effect of metformin on cardiovascular disease
(CVD) although the evidence remains inconclusive.? In addition, the relation of metformin use
with cancer remains controversial because most studies suggesting a protective effect are
observational and hence are open to confounding by indication and to misallocation of exposure
time.® Assessing the impact of potential downstream factors of metformin, such as growth
differentiation factor 15 (GDF-15), may provide additional insight to elucidate the health impacts
of metformin. GDF-15 (also known as macrophage inhibitory cytokine-1 (MIC-1)) was found to
be a strong biomarker of metformin use, but not of sulphonylurea use, in a cross sectional
analysis of the Outcome reduction with Initial Glargine Intervention (ORIGIN) trial. The
association of metformin use with GDF-15 remained after adjusting for glycaemic traits, such as
HbA1c and glucose, which suggests GDF-15 could be a potential non-glycaemic effect of
metformin use, possibly explaining the effect of metformin on other health outcomes, including
coronary artery disease (CAD) and cancer.* Although GDF-15 is also associated with other
cardiovascular risk factors such as plasma creatinine, diuretic use, and smoking, metformin use
appears to be the main contributor to GDF-15.°> Observationally, GDF-15 is positively related to
CVD and cancer.®’ However, this association could be driven by reverse causation, confounding
and selection bias (i.e., selective survival before recruitment). Elucidating the role of GDF-15 in
CVD and cancer may help clarify whether metformin could be repurposed to further mitigate

CVD and to reduce cancer risk.



Mendelian randomization studies are increasingly used to ascertain causes of disease since they
utilize genetic variants of exposure randomly assigned at conception, and hence are less
vulnerable to confounding than observational studies.® A previous study examined the relation of
2 single nucleotide polymorphisms (SNPs) (rs62122429 and rs62122430) relevant to GDF-15
with CAD in CARDIoGRAM and found rs62122429 associated with CAD whilst rs62122430
was not.* This finding suggests GDF-15 may have a role in CAD development although a recent
Mendelian randomization study did not provide strong evidence for the role of GDF-15 in
cardiometabolic diseases. Nevertheless, this study only used 3 SNPs as instruments and did not
formally assess its role in cancer risk, which is directly relevant to the evaluation of metfomin’s
potential anti-cancer property.® Here, we conducted Mendelian randomization to evaluate the
impact of GDF-150n CAD and cancer (breast and colorectal) risk. For completeness, we also
assessed its relation with type 2 diabetes and glycaemic traits (HbA1c and fasting glucose), given
GDF-15 is strongly related to metformin use, and other established CAD risk factors (systolic
and diastolic blood pressure, high density lipoprotein (HDL) cholesterol, low density lipoprotein

(LDL) cholesterol, and body mass index (BMI)).

Method

Study design

This is a 2 sample Mendelian randomization study using summary statistics from genome wide
association studies (GWAS). It has 3 main assumptions.® First, the genetic instruments, i.e.
SNPs, should be associated with GDF-15. Second, the genetic instruments should be
independent of confounders. Thirdly, the exclusion-restriction assumption that the genetic

instruments’ should only be linked with the outcome via GDF-15.



Exposure: Genetic predictors of GDF-15

The exposure in this study was genetically predicted GDF-15, in standard deviations (SD). The
genetic predictors of GDF-15 were extracted from a GWAS consisting of 4 cohorts (n=5,440) of
people of European descent: the Framingham Offspring Cohort, the Prospective Investigation of
the Vasculature in Uppsala Seniors (PIVUS) Study, the Northern Sweden Population Health
Study (NSPHS), and the Sydney Memory and Aging Study (Sydney MAS).*® The mean age was
62 years and 53% of the participants were women. Serum/plasma GDF-15 was measured using
immunoassays. Imputation was based on the HapMap2 reference panel (Framingham; PIVUS
and Sydney MAS) and 1000 Genomes Project Phase 3 reference panel (NSPHS). We used
estimates adjusted for age, sex, systolic blood pressure, antihypertensive medication use,
diabetes mellitus, and smoking status, and year of data collection (NSPHS only). Population
stratification was accounted for using different methods in the studies, such as principal
components and kinship matrix adjustment.® ESM table 1 shows the 9 correlated SNPs,
identified in the GWAS, which explained 21.5% of the variance of GDF-15. Six (6) SNPs were
in the PGPEP1 gene region whilst 3 SNPs were in the GDF15 gene region. We excluded 3 SNPs
(rs3746181, rs1363120, and rs1054564) in high linkage disequilibrium (LD) (R?>0.8) and with
higher p-values than the other SNPs based on LD in European samples from the 1000 Genomes
project. We also excluded a SNP (rs16982345) which did not reach genome wide significance (p

value > 5x10®). As such, 5 correlated SNPs were used as genetic instruments.

Outcomes



The primary outcomes were CAD, breast cancer and colorectal cancer. The secondary outcomes
were type 2 diabetes, HbAlc and glucose, systolic and diastolic blood pressure (mmHg), LDL
cholesterol (SD), and HDL cholesterol (SD), and BMI (SD). The studies used are described

below.

Genetic associations with coronary artery disease

Genetic associations with CAD were obtained from CARDIOGRAMplusC4D 1000 Genomes-
based GWAS, a meta-analysis of GWAS of CAD studies (cases=60,801, non-cases=123,504) of
people of mainly European descent (77%) with imputation using the 1000 Genomes phase 1 v3
reference panel.'? The definition of CAD varied across studies, such as diagnosis of myocardial
infarction, acute coronary syndrome, chronic stable angina, or coronary stenosis >50%.
Diagnoses of CAD also varied across studies, such as clinical diagnosis, procedures (coronary
angiography results or by-pass surgery), use of medications or symptoms that indicate angina, or
self-report of a doctor diagnosis, as described elsewhere.*> CARDIoGRAMplusC4D 1000

Genomes-based GWAS was adjusted for study-specific covariates and genomic control.

Genetic associations with colorectal and breast cancer

Genetic associations with colorectal and breast cancer risk were obtained from the UK Biobank
summary statistics generated by Scalable and Accurate Implementation of GEneralized mixed
model (SAIGE) and restricted to white British of European ancestry (n<401,447).1® The mean
age for all the UK Biobank participants at recruitment was 57 years.!* In brief, SAIGE fits a null
logistic mixed model to estimate the variance component and the model parameters, followed by

ascertainment of the gene-phenotype association with the application of saddlepoint



approximation to the score test statistics.® 1* SAIGE is particularly suitable for studies with
extreme imbalance in case-control ratios and is able to control for sample relatedness.*®
Imputation was based on the Haplotype Reference Consortium (HRC) imputation reference
panel. Colorectal cancer (4,562 cases, 382,756 non-cases) and breast cancer (12,898 cases,
388,549 non-cases) in the UK Biobank were defined using UK Biobank PheWAS codes, which
is an aggregate of relevant International Classification of Diseases codes (153 for colorectal
cancer; 174 for breast cancer).’® SAIGE was adjusted for sex, birth year, and the first 4 principal

components.

Genetic associations with type 2 diabetes

Genetic association with type 2 diabetes were obtained from DIAbetes Genetics Replication And
Meta-analysis (DIAGRAM) consortium, a meta-analysis of 32 GWAS of type 2 diabetes studies
(cases=74,124, controls=824,006) of European ancestry.*® Type 2 diabetes was defined in
various ways, such as previous diagnosis, the use of anti-diabetic mediation, and self-report.
Imputation was performed based on the HRC reference panel for all studies expect deCODE
which was imputed based on the Icelandic panel. The GWAS was adjusted for study-specific
covariates, principal components, and corrected for genomic control. In this study, we used

summary statistics without adjustment for BMI to avoid the possibility of collider bias.®

Genetic associations with HbAlc and glucose
Genetic associations with HbA1c and glucose were obtained from the Meta-Analysis of Glucose
and Insulin-related traits consortium (MAGIC), a meta-analysis of GWAS of HbAlc in 159,940

adults without diabetes, imputed using Phase 2 of the International HapMap Project reference



panel.!” In this study, we only used genetic associations from 123,665 participants of European
ancestry. Genetic associations with HbA1c were adjusted for age, sex, study specific covariates,
and genomic control. Genetic associations with glucose were generated from a meta-analysis of
GWAS of fasting glucose in up to 46,186 participants of European descent without diabetes,
imputed using the HapMap CEU reference panel.*® Adjustment was made for age, sex, study

specific covariates, and genomic control.

Genetic associations with HDL and LDL cholesterol

Genetic associations with lipids were obtained from the Global Lipids Genetics Consortium
(GLGC) a meta-analysis of GWAS of different study designs, which included 188,577
participants of European ancestry.'® Genotyping was done using two arrays, the GWAS array
(n=94,595) and the Metabochip array (n=93,982). Imputation was based on the CEU (Utah
residents of Northern and Western European Ancestry) Hapmap release 22 reference panel.
However, the SNPs used in this study were only present in one of the panels (n<=92,820). Blood
lipids were typically sampled after more than 8 hours of fasting. Participants were excluded if
they took lipid lowering medications in the majority of studies. LDL cholesterol was directly
measured in 24% of the participants and was estimated using the Friedewald formula in the
remaining 76% of the participants. HDL cholesterol was directly measured. The GWAS was

adjusted for age, sex, and genomic control.

Genetic associations with body mass index
Genetic associations with BMI were obtained from the Genetic Investigation of ANthropometric

Traits (GIANT) consortium, which is a meta-analysis of GWAS of different study designs



(n=681,275).2° Imputation was based on HapMap CEU release 22 reference panel (GWAS by
Locke et al.) and the HRC imputation reference panel (UK Biobank). BMI was calculated based
on height and weight (either measured or self-reported). The GWAS was adjusted for age, and

other study specific covariates (e.g. principal components) and corrected for genomic control.

Genetic associations with systolic and diastolic blood pressure

Genetic associations with systolic and diastolic blood pressure (automated reading) were
obtained from summary statistics generated from the UK Biobank, restricted to ~337,000
unrelated individuals of white British ancestry, with imputation using the HRC imputation
reference panel.?? Seated blood pressure was measured using the Omron HRM-7015IT digital
BP monitor. Genetic associations with blood pressure (mmHg) were obtained using
multivariable linear regression, adjusted for age, age squared, sex, the interactions of age and age

squared with sex, and the first 20 principal components.

Statistical analysis

We calculated the mean F statistics of the instruments used in this study to assess potential weak
instruments bias.?>?* To take into account correlations between the SNPs when calculating the
estimates using inverse variance weighting (IVW), we obtained the correlation matrix based on
European 1000 Genomes data obtained from MR-Base. We then used VW with the correlation
matrix in our main analysis to correct for correlation between SNPs. 226 We used fixed effects
IVW since variation in the Wald estimates (gene-outcome association divided by gene-exposure

association) for each SNP are likely due to sampling error only, given they were primarily from



two gene regions (PGPEP1 and GDF15). To assess the robustness of results, we also included

sensitivity analyses.

1. Validation of association with CAD using the UK Biobank, and breast cancer using Breast

Cancer Association Consortium (BCAC)

As a validation, we examined the association of GDF-15 with CAD using the UK Biobank, and
with breast cancer using BCAC given the differences in study design, sample selection and
analytic strategy between the disease specific GWAS and the UK Biobank. We used SAIGE UK
Biobank summary statistics. The PheWAS code for CAD is 411 (cases=31,355, non-
cases=377,103).12 Genetic associations with breast cancer were obtained from a large GWAS of
breast cancer, including BCAC, DRIVE, and iCOGS (cases=122,977, controls=105,974), with
imputation based on the 1000 Genomes Project Phase 3 panels.?” These GWAS adjusted for up
to 10 principal components and other study-specific covariates (e.g. study and country). For

breast cancer we only included associations from women of European descent.

2. Inverse variance weighting with multiplicative random effects

We repeated the analyses using IVW with multiplicative random effects. This model gives the
same point estimate as the fixed effect model with the variance of the estimate increased when
heterogeneity between SNP-specific Wald estimates is high (a sign of potentially invalid SNPs).
The multiplicative random effects model is less sensitive to biases introduced by weaker SNPs

than additive random effects.?®



3. Lead SNP analysis
We repeated the analyses only using the lead SNP (rs888663, p value with GDF-15: 2.64 x 10°%)

to further rule out the possibility of bias due to inclusion of invalid SNPs.

4. MR-Egger intercept test

As another means of identifying potential pleiotropy, we used MR-Egger intercept test, which
can be implemented with correlated variants and does not rely on the instrument strength
independent of direct effects (InSIDE) assumption.?® However, we did not perform MR-Egger
since the INSIDE assumption is unlikely to be satisfied with correlated instruments and hence

estimates from MR-Egger are likely biased.?®

5. Mendelian randomization restricted to instruments from the same gene region
We also repeated the analyses using SNPs from each gene region separately. Consistent
estimates using SNPs from different gene regions would provide more convincing evidence

concerning the causal role of GDF-15.

Power calculation

In the GDF-15 GWAS the variance explained by all 9 SNPs was 21.5%;° how much of that
variance is explained by the 5 SNPs used here is unclear. We provide power calculations
assuming the SNPs explained 21% of the variance and more conservatively 15% of the variance
(ESM table 2).2° Assuming 15% of the variance explained, this study is powered to find
relatively small effects, such as an odds ratio of 1.04 per SD change in GDF-15 for CAD using

CARDIoGRAMplusC4D 1000 Genomes-based GWAS and 0.024 per SD change for lipids.



All analyses were performed using R Version 3.3.3 (R Development Core Team, Vienna,

Austria) with the R packages (TwosampleMR) and (MendelianRandomization).?%2

Ethics approval

This study only used publicly available data and hence no ethics approval was required.

Results

One SNP (rs1227731) from GDF15 and 4 SNPs (rs888663, rs749451, rs3195944, and
rs17725099) from PGPEP1 were used in the main analysis, as shown in ESM table 1, and
corresponding correlation matrix in ESM table 3. ESM table 4 and ESM figures 1-5 show the
associations of the genetic variants with GDF-15 and with the outcomes. Figure 1 shows the
selection process for the GDF-15 SNPs and the GWAS used for the outcomes. The mean F

statistic for the instruments was 108, suggesting weak instrument bias is unlikely.

Table 1 shows the relation of GDF-15 with CAD and its risk factors using IVW with fixed
effects. Higher GDF-15 was associated with lower CAD risk (odds ratio (OR) 0.93 per SD
increase, 95% confidence interval (CI) 0.87 to 0.99). However, the association was not evident in
the UK Biobank (OR 0.99 per SD increase, 95% CI 0.93 to 1.04). GDF-15 was unrelated to type
2 diabetes risk (OR 1.02 per SD, 95%CI 0.98 to 1.06), HbAlc (0.084 per SD, 95%CI -0.046 to
0.215) or glucose (0.004 per SD, 95%CI -0.023 to 0.031). Higher GDF-15 was associated with
lower HDL cholesterol (-0.05 per SD increase, 95% CI -0.09 to -0.02), but not with LDL

cholesterol, BMI, systolic blood pressure (SBP) or diastolic blood pressure (DBP). Higher GDF-



15 was associated with lower breast cancer risk (OR 0.89 per SD increase, 95% CI 0.82 to 0.96)
but the association was non-significant for colorectal cancer risk (OR 0.91 per SD increase, 95%
C10.80 to 1.04) albeit directionally similar. The estimate for breast cancer risk using BCAC was
smaller than the UK Biobank estimate and was non-significant (OR 0.97 per SD increase, 95%

C10.94 to 1.01).

ESM table 5 shows the relation of GDF-15 with the outcomes using VW with multiplicative
random effects, which gave similar results as with fixed effects although with wider confidence

intervals.

Table 2 shows the relation of GDF-15 with the outcomes using the lead SNP (*rs888663”) only.
When compared with the main results, the estimates were most consistent for CAD and breast
cancer, with directionally similar estimates for colorectal cancer. The associations with other

outcomes were non-significant.

The MR Egger intercept test did not provide strong evidence of potential violation of the IV
exclusion-restriction assumption, except for DBP (p value: 0.046), BMI (p value <0.001) and

HbA1c (p value: 0.009), as shown in ESM table 6.

ESM table 7 shows the Mendelian randomization analysis restricted to instruments from the
same gene region. Majority of estimates were directionally consistent, with the association of

GDF-15 with lower HDL cholesterol most evident.



Discussion

This is one of the first Mendelian randomization studies examining the role of GDF-15 in CAD,
breast and colorectal cancer, as well as CAD risk factors, type 2 diabetes and glycaemic traits.
Although GDF-15 might have potential utility in prediction, as shown in previous observational
studies, our study suggests GDF-15 unlikely increases the risk of CAD, breast cancer, and
colorectal cancer.®” Although our main analysis suggested a potential inverse association of
GDF-15 wih CAD and breast cancer risk, these findings were not consistently observed in the
validation studies. Our study does therefore not support that GDF-15, a suggested biomarker for

metformin use, is causally associated with CAD, breast or colorectal cancer.

Previous observational studies mainly found higher GDF-15 associated with higher CVD risk
and cancer risk.31*® However, increased GDF-15 could be a symptom of disease, i.e. reverse
causation, where the disease increases GDF-15. Some in vitro studies suggest GDF-15 is
overexpressed in cancer and myocardial GDF-15 mRNA is induced rapidly on ischemic
injury.343® Differences in findings between our study and previous studies could have occurred
for several reasons. GDF-15 could simply be an early marker of underlying disease, a reflection
of confounding by ill-health,® or a consequence of selection or survivor bias in studies of older
people.®® Mechanistically, GDF-15 could reduce CAD risk via anti-inflammatory and/or anti-
hypertrophic effects although this is inconsistent with our findings.3” Animal studies suggest
increases in GDF-15 may result in weight loss via regulation of appetite, although these findings
were not always consistent and may depend on other conditions such as interactions with other
receptors, which may explain the lack of association with BMI in our study. GDF-15 might

have different effects on cancer depending on the cancer stage which needs to be clarified and



the underlying mechanisms elucidated in future studies.®® Our study also suggests GDF-15 is
unrelated to type 2 diabetes and glycaemic traits, which is inconsistent with previous
observational studies.*® However, these studies could be confounded by other metabolic markers,
as well as by ill-health status. Given GDF-15 is a strong correlate of metformin use, it is also
unlikely that increases in GDF-15 lead to type 2 diabetes since this is inconsistent with the effect

of metformin on glycaemic traits.*!

Overall, our study does not support that increased GDF-15 levels is a potential explanation for
the observed inverse association between metformin use and CAD or some cancers. Alternative
pathways are in need of further investigation. For example, metformin decreases plasminogen-
activator inhibitor type 1 (PAI-1),%? and sex hormones,*® which are potential causes of CAD,*+4
as well as some cancers.*” Future studies should further systematically explore other potential
pathways by which metformin may have an impact such as via detailed metabolomic analyses
using Mendelian randomization, which may be useful in identifying new interventions to treat
these diseases. Similar approaches have already been used for statins,*® which are more

efficacious than other lipid lowering drugs in reducing CAD.*°

This is one of the first studies to evaluate the impact of GDF-15, a biomarker for metformin, on
CAD and cancer risk using Mendelian randomization which is less susceptible to confounding,
nevertheless limitations exist. First, the validity of the study depends on the chosen genetic
instruments. The instruments strongly predicted GDF-15 and were unlikely confounded (with no
evidence of association with Townsend deprivation index, age completed full time education or

ever smoking in the UK Biobank (p value >0.08)).2%%> We cannot rule out the possibility of



violation of the exclusion-restriction assumption. For example, rs888663 is associated with CAD
whilst rs1227731 and rs3195944 are associated with red blood cells.>®! However, it is unclear
whether these pleiotropic effects are downstream effects of GDF-15 (which does not violate the
exclusion-restriction assumption) or effects independent of GDF-15 (which violates the
assumption). We were unable to use weighted median or MR-Egger estimates because of the use
of correlated SNPs. Although the MR-Egger intercept test suggested no violation of the IV
exclusion-restriction assumptions for the main outcomes (CAD, breast and colorectal cancer),
there was some evidence of potential violation for DBP, BMI and HbAlc. As such, our study
needs confirmation when more genetic instruments for GDF-15 from different gene regions have
been identified in a larger GWAS. Second, we were unable to directly evaluate the impact of
metformin on CAD and cancer risk which would require individual genetic data (e.g. UK
Biobank)!* and definitive targets of metformin (e.g. AMP-activated protein kinase). Such
Mendelian randomization studies would be able to emulate more fully the impact of metformin.
Third, some participants in the UK Biobank were taking antihypertensives, so the observed
blood pressure for these participants were underestimated, leading to misclassification. Fourth,
the identified genetic instruments may not be the true genetic signals for GDF-15 (i.e. false
positives), leading to potential weak instrument bias. However, this is unlikely given the mean F
statistic for the instruments used was much greater than 10. Fifth, our study was unable to
identify if exogenous (e.g. metformin) and endogenous GDF-15 (naturally occurring) have
different effects, which could be answered using other designs, such as regression discontinuity
applied to comprehensive electronic health records. Sixth, the main analyses showed a potential
inverse association of GDF-15 with CAD and breast cancer but these findings were not

consistently observed in the validation studies. Such differences may be driven by



methodological differences generating potential biases, such as healthy volunteers in the UK
Biobank or the lack of age adjustment in some of the studies within BCAC since some of them
had few or no controls.?” However, these differences also highlight the importance of validation,
whenever possible, for Mendelian randomization. Seventh, although it is possible that GDF-15 is
influenced by previous health status, i.e. reverse causation, we were unable to examine this
possibility using a bi-directional Mendelian randomization design as we do not have access to
genetic summary statistics for GDF-15. Lastly, we were unable to assess differences by age or
sex, because sufficiently large age- or sex-specific studies are not available. We also had to

assume a linear relation of GDF-15 with the outcomes.

There is no convincing evidence that GDF-15 may reduce risk of CAD, breast or colorectal
cancer. Whether the inverse association of metformin use with cancer risk is an artefact of biases
or acts via other unexplored mechanistic pathways warrants future investigation, to help validate

whether this medication can be repurposed for cancer prevention.
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Figure legend: Figure 1: Selection process of single nucleotide polymorphisms (SNPs) for
growth differentiation factor -15 (GDF-15) and the data sources used



Table 1: The impact of growth differentiation factor 15 (GDF-15) on coronary artery disease (CAD) risk, type 2 diabetes and

glycaemic traits, CAD risk factors, breast and colorectal cancer risk using Mendelian randomization

Inverse variance weighting with fixed effects

Per standard deviation increase GDF-15

20utcome bData source Odds ratio/ Beta 95% ClI
CAD CARDIoGRAM 0.93 0.87 t0 0.99
CAD UK Biobank 0.99 0.93t0 1.04
Type 2 diabetes DIAGRAM 1.02 0.98t0 1.06
HbA1c (mmol/mmol) MAGIC 0.084 -0.046 to 0.215
Fasting glucose (mmol/L) MAGIC 0.004 -0.023 t0 0.031
SBP (mmHg) UK Biobank -0.09 -0.35t00.18
DBP (mmHg) UK Biobank 0.10 -0.05t0 0.25
LDL-C (SD) Global Lipids Genetic Consortium -0.01 -0.05t0 0.03
HDL-C (SD) Global Lipids Genetic Consortium -0.05 -0.09 to -0.02
BMI (SD) GIANT 0.002 -0.009 t0 0.01
Breast cancer UK Biobank 0.89 0.821t00.96
Breast cancer BCAC 0.97 0.941t01.01
Colorectal cancer UK Biobank 0.91 0.80t0 1.04

4BMI: Body mass index; Cl: confidence interval; DBP: Diastolic blood pressure; HDL-C: High density lipoprotein cholesterol; LDL-

C: Low density lipoprotein cholesterol; SBP: Systolic blood pressure

b BCAC: Breast cancer association consortium; CARDIOGRAM: CARDIoGRAMplusC4D 1000 Genomes-based GWAS;
DIAGRAM: DIAbetes Genetics Replication And Meta-analysis; GIANT: Genetic Investigation of ANthropometric Traits; MAGIC:

the Meta-Analyses of Glucose and Insulin-related traits Consortium;



Table 2: The impact of growth differentiation factor 15 (per standard deviation (SD)) on

coronary artery disease (CAD), type 2 diabetes and glycaemic traits, CAD risk factors,

breast and colorectal risk using Mendelian randomization with the lead SNP (rs888663) as

the instrument

Wald estimate

Odds

20utcome bData source ratio/Beta  95% Confidence Interval
CAD CARDIoGRAM 0.87 0.81t00.95
CAD UK Biobank 0.93 0.87 t0 1.00
Type 2 diabetes DIAGRAM 1.00 0.96 t0 1.06
HbAlc (mmol/mmol) MAGIC 0.0036 -0.167 t0 0.174
Fasting glucose (mmol/L) MAGIC 0.006 -0.031 to0 0.042
SBP (mmHg) UK Biobank -0.34 -0.69 to 0.006
DBP (mmHg) UK Biobank 0.005 -0.19t0 0.20
LDL-C (SD) Global Lipids Genetic Consortium -0.03 -0.08 t0 0.02
HDL-C (SD) Global Lipids Genetic Consortium -0.03 -0.07 t0 0.02
BMI (SD) Genetic Investigation of ANthropometric Traits -0.010 -0.024 to 0.004
Breast cancer UK Biobank 0.80 0.721t00.89
Breast cancer BCAC 0.99 0.941t01.04
Colorectal cancer UK Biobank 0.88 0.74t0 1.05

4BMI: Body mass index; DBP: Diastolic blood pressure; HDL-C: High density lipoprotein

cholesterol; LDL-C: Low density lipoprotein cholesterol; SBP: Systolic blood pressure

b BCAC: Breast cancer association consortium; CARDIOGRAM: CARDIoGRAMplusC4D 1000
Genomes-based GWAS; DIAGRAM: DIAbetes Genetics Replication And Meta-analysis;
MAGIC: the Meta-Analyses of Glucose and Insulin-related traits Consortium
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