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Abstract 

Aims/hypothesis: Growth differentiation factor 15 (GDF-15), a suggested biomarker for 

metformin use, may explain the potential cardioprotective and anti-cancer properties of 

metformin. We conducted a Mendelian randomization study to examine the role of GDF-15 in 

risk of coronary artery disease (CAD), breast and colorectal cancer. Secondary analyses included 

examination of the association of GDF-15 with type 2 diabetes, glycaemic traits, blood pressure, 

lipids and body mass index. 

Methods: We obtained single nucleotide polymorphisms (SNPs) strongly (p value < 5 x 10-8) 

predicting GDF-15 from a genome wide association study (GWAS) (n=5,440) and applied them 

to genetic studies of CAD (CARDIoGRAMplusC4D 1000 Genomes-based GWAS 

(n=184,305)), type 2 diabetes (DIAbetes Genetics Replication And Meta-analysis (n=898,130)), 

glycaemic traits (the Meta-Analyses of Glucose and Insulin-related traits Consortium (HbA1c: 

n=123,665; fasting glucose: n= 46,186)), blood pressure, breast cancer and colorectal cancer 

(UK Biobank (n<=401,447)), lipids (Global Lipids Genetic Consortium (n<=92,820)) and 

adiposity (Genetic Investigation of ANthropometric Traits consortium (n=681,275)). Causal 

estimates were obtained using inverse variance weighting, taking into account correlations 

between SNPs. Sensitivity analyses included focusing on the lead SNP (rs888663) and validation 

for CAD in the UK Biobank and for breast cancer in the breast cancer association consortium 

(BCAC). 

Results: Using 5 SNPs, increased GDF-15 was associated with lower CAD (odds ratio (OR) 

0.93 per standard deviation (SD), 95% confidence interval (CI) 0.87 to 0.99) and breast cancer 

(OR 0.89 per SD, 95% CI 0.82 to 0.96), with similar results from lead SNP analysis. However, 

the associations with CAD (OR 0.99 per SD increase, 95% CI 0.93 to 1.04) and breast cancer 

(OR 0.97 per SD increase, 95% CI 0.94 to 1.01) in the validation studies were not as apparent. 

GDF-15 was not associated with type 2 diabetes, glycaemic traits, CAD risk factors or colorectal 

cancer. 

Conclusions/Interpretation: There is no convincing evidence that GDF-15 reduces risk of 

CAD, breast or colorectal cancer. Whether the observed inverse association of metformin use 

with cancer risk is via other unexplored mechanistic pathways warrants further investigation. 

 

  



  

Research in context 

What is already known about this subject? 

- Metformin use is inversely associated with cardiovascular disease and cancer although these 
observations are susceptible to confounding by indication and to misallocation of exposure time 

- Growth differentiation factor 15 (GDF-15) is a biomarker of metformin use and may explain the 
non-glycemic effects of metformin on cardiovascular disease and cancer  

What is the key question? 

- To investigate the causal role of GDF-15 in risk of coronary artery disease (CAD), colorectal 
cancer and breast cancer using Mendelian randomization 

What are the new findings? 

- Although increased GDF-15 appeared to decrease the risk of CAD and breast cancer in the main 
analyses, these associations were not observed in the validation study. 

- GDF-15 was not associated with type 2 diabetes, glycaemic traits, CAD risk factors or colorectal 
cancer. 

How might this impact on clinical practice in the foreseeable future? 

- There is no convincing evidence that GDF-15 reduces risk of CAD, breast or colorectal cancer. 
Whether the inverse association of metformin use with cancer is an artefact of biases or acts via 
other unexplored mechanistic pathways warrants further investigation, which would help validate 
whether this medication could be repurposed for cancer prevention. 

 

  



  

Introduction 

Metformin is the first line medication for diabetes, given its superiority and safety compared to 

other diabetes medications (e.g. sulfonylureas),1 which suggests metformin reduces glycaemia 

via potentially less hazardous pathways than other medications.1 Some randomized controlled 

trials have also suggested a potential beneficial effect of metformin on cardiovascular disease 

(CVD) although the evidence remains inconclusive.2 In addition, the relation of metformin use 

with cancer remains controversial because most studies suggesting a protective effect are 

observational and hence are open to confounding by indication and to misallocation of exposure 

time.3 Assessing the impact of potential downstream factors of metformin, such as growth 

differentiation factor 15 (GDF-15), may provide additional insight to elucidate the health impacts 

of metformin. GDF-15 (also known as macrophage inhibitory cytokine-1 (MIC-1)) was found to 

be a strong biomarker of metformin use, but not of sulphonylurea use, in a cross sectional 

analysis of the Outcome reduction with Initial Glargine Intervention (ORIGIN) trial. The 

association of metformin use with GDF-15 remained after adjusting for glycaemic traits, such as 

HbA1c and glucose, which suggests GDF-15 could be a potential non-glycaemic effect of 

metformin use, possibly explaining the effect of metformin on other health outcomes, including 

coronary artery disease (CAD) and cancer.4 Although GDF-15 is also associated with other 

cardiovascular risk factors such as plasma creatinine, diuretic use, and smoking, metformin use 

appears to be the main contributor to GDF-15.5 Observationally, GDF-15 is positively related to 

CVD and cancer.6,7 However, this association could be driven by reverse causation, confounding 

and selection bias (i.e., selective survival before recruitment). Elucidating the role of GDF-15 in 

CVD and cancer may help clarify whether metformin could be repurposed to further mitigate 

CVD and to reduce cancer risk. 

 



  

Mendelian randomization studies are increasingly used to ascertain causes of disease since they 

utilize genetic variants of exposure randomly assigned at conception, and hence are less 

vulnerable to confounding than observational studies.8 A previous study examined the relation of 

2 single nucleotide polymorphisms (SNPs) (rs62122429 and rs62122430) relevant to GDF-15 

with CAD in CARDIoGRAM and found rs62122429 associated with CAD whilst rs62122430 

was not.4 This finding suggests GDF-15 may have a role in CAD development although a recent 

Mendelian randomization study did not provide strong evidence for the role of GDF-15 in 

cardiometabolic diseases. Nevertheless, this study only used 3 SNPs as instruments and did not 

formally assess its role in cancer risk, which is directly relevant to the evaluation of metfomin’s 

potential anti-cancer property.9 Here, we conducted Mendelian randomization to evaluate the 

impact of GDF-15on CAD and cancer (breast and colorectal) risk. For completeness, we also 

assessed its relation with type 2 diabetes and glycaemic traits (HbA1c and fasting glucose), given 

GDF-15 is strongly related to metformin use, and other established CAD risk factors (systolic 

and diastolic blood pressure, high density lipoprotein (HDL) cholesterol, low density lipoprotein 

(LDL) cholesterol, and body mass index (BMI)).  

 

Method 

Study design  

This is a 2 sample Mendelian randomization study using summary statistics from genome wide 

association studies (GWAS). It has 3 main assumptions.8 First, the genetic instruments, i.e. 

SNPs, should be associated with GDF-15. Second, the genetic instruments should be 

independent of confounders. Thirdly, the exclusion-restriction assumption that the genetic 

instruments’ should only be linked with the outcome via GDF-15. 



  

 

Exposure: Genetic predictors of GDF-15 

The exposure in this study was genetically predicted GDF-15, in standard deviations (SD). The 

genetic predictors of GDF-15 were extracted from a GWAS consisting of 4 cohorts (n=5,440) of 

people of European descent: the Framingham Offspring Cohort, the Prospective Investigation of 

the Vasculature in Uppsala Seniors (PIVUS) Study, the Northern Sweden Population Health 

Study (NSPHS), and the Sydney Memory and Aging Study (Sydney MAS).10 The mean age was 

62 years and 53% of the participants were women. Serum/plasma GDF-15 was measured using 

immunoassays. Imputation was based on the HapMap2 reference panel (Framingham; PIVUS 

and Sydney MAS) and 1000 Genomes Project Phase 3 reference panel (NSPHS). We used 

estimates adjusted for age, sex, systolic blood pressure, antihypertensive medication use, 

diabetes mellitus, and smoking status, and year of data collection (NSPHS only). Population 

stratification was accounted for using different methods in the studies, such as principal 

components and kinship matrix adjustment.10  ESM table 1 shows the 9 correlated SNPs, 

identified in the GWAS, which explained 21.5% of the variance of GDF-15. Six (6) SNPs were 

in the PGPEP1 gene region whilst 3 SNPs were in the GDF15 gene region. We excluded 3 SNPs 

(rs3746181, rs1363120, and rs1054564) in high linkage disequilibrium (LD) (R2≥0.8) and with 

higher p-values than the other SNPs based on LD in European samples from the 1000 Genomes 

project. We also excluded a SNP (rs16982345) which did not reach genome wide significance (p 

value > 5x10-8). As such, 5 correlated SNPs were used as genetic instruments.11   

 

Outcomes 



  

The primary outcomes were CAD, breast cancer and colorectal cancer. The secondary outcomes 

were type 2 diabetes, HbA1c and glucose, systolic and diastolic blood pressure (mmHg), LDL 

cholesterol (SD), and HDL cholesterol (SD), and BMI (SD). The studies used are described 

below. 

 

Genetic associations with coronary artery disease  

Genetic associations with CAD were obtained from CARDIoGRAMplusC4D 1000 Genomes-

based GWAS, a meta-analysis of GWAS of CAD studies (cases=60,801, non-cases=123,504) of 

people of mainly European descent (77%) with imputation using the 1000 Genomes phase 1 v3 

reference panel.12 The definition of CAD varied across studies, such as diagnosis of myocardial 

infarction, acute coronary syndrome, chronic stable angina, or coronary stenosis >50%. 

Diagnoses of CAD also varied across studies, such as clinical diagnosis, procedures (coronary 

angiography results or by-pass surgery), use of medications or symptoms that indicate angina, or 

self-report of a doctor diagnosis, as described elsewhere.12 CARDIoGRAMplusC4D 1000 

Genomes-based GWAS was adjusted for study-specific covariates and genomic control. 

 

Genetic associations with colorectal and breast cancer  

Genetic associations with colorectal and breast cancer risk were obtained from the UK Biobank 

summary statistics generated by Scalable and Accurate Implementation of GEneralized mixed 

model (SAIGE) and restricted to white British of European ancestry (n≤401,447).13 The mean 

age for all the UK Biobank participants at recruitment was 57 years.14 In brief, SAIGE fits a null 

logistic mixed model to estimate the variance component and the model parameters, followed by 

ascertainment of the gene-phenotype association with the application of saddlepoint 



  

approximation to the score test statistics.13 14 SAIGE is particularly suitable for studies with 

extreme imbalance in case-control ratios and is able to control for sample relatedness.13 

Imputation was based on the Haplotype Reference Consortium (HRC) imputation reference 

panel. Colorectal cancer (4,562 cases, 382,756 non-cases) and breast cancer (12,898 cases, 

388,549 non-cases) in the UK Biobank were defined using UK Biobank PheWAS codes, which 

is an aggregate of relevant International Classification of Diseases codes (153 for colorectal 

cancer; 174 for breast cancer).15 SAIGE was adjusted for sex, birth year, and the first 4 principal 

components.   

 

Genetic associations with type 2 diabetes 

Genetic association with type 2 diabetes were obtained from DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAM) consortium, a meta-analysis of 32 GWAS of type 2 diabetes studies 

(cases=74,124, controls=824,006) of European ancestry.16 Type 2 diabetes was defined in 

various ways, such as previous diagnosis, the use of anti-diabetic mediation, and self-report. 

Imputation was performed based on the HRC reference panel for all studies expect deCODE 

which was imputed based on the Icelandic panel. The GWAS was adjusted for study-specific 

covariates, principal components, and corrected for genomic control. In this study, we used 

summary statistics without adjustment for BMI to avoid the possibility of collider bias.16 

 

Genetic associations with HbA1c and glucose 

Genetic associations with HbA1c and glucose were obtained from the Meta-Analysis of Glucose 

and Insulin-related traits consortium (MAGIC), a meta-analysis of GWAS of HbA1c in 159,940 

adults without diabetes, imputed using Phase 2 of the International HapMap Project reference 



  

panel.17 In this study, we only used genetic associations from 123,665 participants of European 

ancestry. Genetic associations with HbA1c were adjusted for age, sex, study specific covariates, 

and genomic control. Genetic associations with glucose were generated from a meta-analysis of 

GWAS of fasting glucose in up to 46,186 participants of European descent without diabetes, 

imputed using the HapMap CEU reference panel.18 Adjustment was made for age, sex, study 

specific covariates, and genomic control. 

 

Genetic associations with HDL and LDL cholesterol  

Genetic associations with lipids were obtained from the Global Lipids Genetics Consortium 

(GLGC) a meta-analysis of GWAS of different study designs, which included 188,577 

participants of European ancestry.19 Genotyping was done using two arrays, the GWAS array 

(n=94,595) and the Metabochip array (n=93,982). Imputation was based on the CEU (Utah 

residents of Northern and Western European Ancestry) Hapmap release 22 reference panel. 

However, the SNPs used in this study were only present in one of the panels (n<=92,820). Blood 

lipids were typically sampled after more than 8 hours of fasting. Participants were excluded if 

they took lipid lowering medications in the majority of studies. LDL cholesterol was directly 

measured in 24% of the participants and was estimated using the Friedewald formula in the 

remaining 76% of the participants. HDL cholesterol was directly measured. The GWAS was 

adjusted for age, sex, and genomic control.   

 

Genetic associations with body mass index 

Genetic associations with BMI were obtained from the Genetic Investigation of ANthropometric 

Traits (GIANT) consortium, which is a meta-analysis of GWAS of different study designs 



  

(n=681,275).20 Imputation was based on HapMap CEU release 22 reference panel (GWAS by 

Locke et al.) and the HRC imputation reference panel (UK Biobank). BMI was calculated based 

on height and weight (either measured or self-reported). The GWAS was adjusted for age, and 

other study specific covariates (e.g. principal components) and corrected for genomic control. 

 

Genetic associations with systolic and diastolic blood pressure 

Genetic associations with systolic and diastolic blood pressure (automated reading) were 

obtained from summary statistics generated from the UK Biobank, restricted to ~337,000 

unrelated individuals of white British ancestry, with imputation using the HRC imputation 

reference panel.22 Seated blood pressure was measured using the Omron HRM-7015IT digital 

BP monitor. Genetic associations with blood pressure (mmHg) were obtained using 

multivariable linear regression, adjusted for age, age squared, sex, the interactions of age and age 

squared with sex, and the first 20 principal components. 

 

Statistical analysis 

We calculated the mean F statistics of the instruments used in this study to assess potential weak 

instruments bias.23,24 To take into account correlations between the SNPs when calculating the 

estimates using inverse variance weighting (IVW), we obtained the correlation matrix based on 

European 1000 Genomes data obtained from MR-Base. We then used IVW with the correlation 

matrix in our main analysis to correct for correlation between SNPs. 25,26 We used fixed effects 

IVW since variation in the Wald estimates (gene-outcome association divided by gene-exposure 

association) for each SNP are likely due to sampling error only, given they were primarily from 



  

two gene regions (PGPEP1 and GDF15). To assess the robustness of results, we also included 

sensitivity analyses. 

 

1. Validation of association with CAD using the UK Biobank, and breast cancer using Breast 

Cancer Association Consortium (BCAC) 

 

As a validation, we examined the association of GDF-15 with CAD using the UK Biobank, and 

with breast cancer using BCAC given the differences in study design, sample selection and 

analytic strategy between the disease specific GWAS and the UK Biobank. We used SAIGE UK 

Biobank summary statistics. The PheWAS code for CAD is 411 (cases=31,355, non-

cases=377,103).13 Genetic associations with breast cancer were obtained from a large GWAS of 

breast cancer, including BCAC, DRIVE, and iCOGS (cases=122,977, controls=105,974), with 

imputation based on the 1000 Genomes Project Phase 3 panels.27 These GWAS adjusted for up 

to 10 principal components and other study-specific covariates (e.g. study and country). For 

breast cancer we only included associations from women of European descent. 

 

2. Inverse variance weighting with multiplicative random effects 

We repeated the analyses using IVW with multiplicative random effects. This model gives the 

same point estimate as the fixed effect model with the variance of the estimate increased when 

heterogeneity between SNP-specific Wald estimates is high (a sign of potentially invalid SNPs). 

The multiplicative random effects model is less sensitive to biases introduced by weaker SNPs 

than additive random effects.28 

 



  

3. Lead SNP analysis 

We repeated the analyses only using the lead SNP (rs888663, p value with GDF-15: 2.64 x 10-35) 

to further rule out the possibility of bias due to inclusion of invalid SNPs. 

 

4. MR-Egger intercept test 

As another means of identifying potential pleiotropy, we used MR-Egger intercept test, which 

can be implemented with correlated variants and does not rely on the instrument strength 

independent of direct effects (InSIDE) assumption.29 However, we did not perform MR-Egger 

since the InSIDE assumption is unlikely to be satisfied with correlated instruments and hence 

estimates from MR-Egger are likely biased.29  

 

5. Mendelian randomization restricted to instruments from the same gene region 

We also repeated the analyses using SNPs from each gene region separately. Consistent 

estimates using SNPs from different gene regions would provide more convincing evidence 

concerning the causal role of GDF-15. 

 

Power calculation 

In the GDF-15 GWAS the variance explained by all 9 SNPs was 21.5%;10 how much of that 

variance is explained by the 5 SNPs used here is unclear. We provide power calculations 

assuming the SNPs explained 21% of the variance and more conservatively 15% of the variance 

(ESM table 2).30 Assuming 15% of the variance explained, this study is powered to find 

relatively small effects, such as an odds ratio of 1.04 per SD change in GDF-15 for CAD using 

CARDIoGRAMplusC4D 1000 Genomes-based GWAS and 0.024 per SD change for lipids. 



  

 

All analyses were performed using R Version 3.3.3 (R Development Core Team, Vienna, 

Austria) with the R packages (TwosampleMR) and (MendelianRandomization).25,26 

 

Ethics approval 

This study only used publicly available data and hence no ethics approval was required. 

 

Results 

One SNP (rs1227731) from GDF15 and 4 SNPs (rs888663, rs749451, rs3195944, and 

rs17725099) from PGPEP1 were used in the main analysis, as shown in ESM table 1, and 

corresponding correlation matrix in ESM table 3. ESM table 4 and ESM figures 1-5 show the 

associations of the genetic variants with GDF-15 and with the outcomes. Figure 1 shows the 

selection process for the GDF-15 SNPs and the GWAS used for the outcomes. The mean F 

statistic for the instruments was 108, suggesting weak instrument bias is unlikely. 

 

Table 1 shows the relation of GDF-15 with CAD and its risk factors using IVW with fixed 

effects. Higher GDF-15 was associated with lower CAD risk (odds ratio (OR) 0.93 per SD 

increase, 95% confidence interval (CI) 0.87 to 0.99). However, the association was not evident in 

the UK Biobank (OR 0.99 per SD increase, 95% CI 0.93 to 1.04). GDF-15 was unrelated to type 

2 diabetes risk (OR 1.02 per SD, 95%CI 0.98 to 1.06), HbA1c (0.084 per SD, 95%CI -0.046 to 

0.215) or glucose (0.004 per SD, 95%CI -0.023 to 0.031). Higher GDF-15 was associated with 

lower HDL cholesterol (-0.05 per SD increase, 95% CI -0.09 to -0.02), but not with LDL 

cholesterol, BMI, systolic blood pressure (SBP) or diastolic blood pressure (DBP). Higher GDF-



  

15 was associated with lower breast cancer risk (OR 0.89 per SD increase, 95% CI 0.82 to 0.96) 

but the association was non-significant for colorectal cancer risk (OR 0.91 per SD increase, 95% 

CI 0.80 to 1.04) albeit directionally similar. The estimate for breast cancer risk using BCAC was 

smaller than the UK Biobank estimate and was non-significant (OR 0.97 per SD increase, 95% 

CI 0.94 to 1.01).  

 

ESM table 5 shows the relation of GDF-15 with the outcomes using IVW with multiplicative 

random effects, which gave similar results as with fixed effects although with wider confidence 

intervals.  

 

Table 2 shows the relation of GDF-15 with the outcomes using the lead SNP (“rs888663”) only.  

When compared with the main results, the estimates were most consistent for CAD and breast 

cancer, with directionally similar estimates for colorectal cancer. The associations with other 

outcomes were non-significant. 

 

The MR Egger intercept test did not provide strong evidence of potential violation of the IV 

exclusion-restriction assumption, except for DBP (p value: 0.046), BMI (p value <0.001) and 

HbA1c (p value: 0.009), as shown in ESM table 6. 

 

ESM table 7 shows the Mendelian randomization analysis restricted to instruments from the 

same gene region. Majority of estimates were directionally consistent, with the association of 

GDF-15 with lower HDL cholesterol most evident. 

 



  

Discussion 

This is one of the first Mendelian randomization studies examining the role of GDF-15 in CAD, 

breast and colorectal cancer, as well as CAD risk factors, type 2 diabetes and glycaemic traits. 

Although GDF-15 might have potential utility in prediction, as shown in previous observational 

studies, our study suggests GDF-15 unlikely increases the risk of CAD, breast cancer, and 

colorectal cancer.6,7  Although our main analysis suggested a potential inverse association of 

GDF-15 wih CAD and breast cancer risk, these findings were not consistently observed in the 

validation studies.  Our study does therefore not support that GDF-15, a suggested biomarker for 

metformin use, is causally associated with CAD, breast or colorectal cancer. 

 

Previous observational studies mainly found higher GDF-15 associated with higher CVD risk 

and cancer risk.31-33 However, increased GDF-15 could be a symptom of disease, i.e. reverse 

causation, where the disease increases GDF-15. Some in vitro studies suggest GDF-15 is 

overexpressed in cancer and myocardial GDF-15 mRNA is induced rapidly on ischemic 

injury.34,35 Differences in findings between our study and previous studies could have occurred 

for several reasons. GDF-15 could simply be an early marker of underlying disease, a reflection 

of confounding by ill-health,5 or a consequence of selection or survivor bias in studies of older 

people.36 Mechanistically, GDF-15 could reduce CAD risk via anti-inflammatory and/or anti-

hypertrophic effects although this is inconsistent with our findings.37 Animal studies suggest 

increases in GDF-15 may result in weight loss via regulation of appetite, although these findings 

were not always consistent and may depend on other conditions such as interactions with other 

receptors,38 which may explain the lack of association with BMI in our study. GDF-15 might 

have different effects on cancer depending on the cancer stage which needs to be clarified and 



  

the underlying mechanisms elucidated in future studies.39  Our study also suggests GDF-15 is 

unrelated to type 2 diabetes and glycaemic traits, which is inconsistent with previous 

observational studies.40 However, these studies could be confounded by other metabolic markers, 

as well as by ill-health status. Given GDF-15 is a strong correlate of metformin use, it is also 

unlikely that increases in GDF-15 lead to type 2 diabetes since this is inconsistent with the effect 

of metformin on glycaemic traits.41 

 

Overall, our study does not support that increased GDF-15 levels is a potential explanation for 

the observed inverse association between metformin use and CAD or some cancers. Alternative 

pathways are in need of further investigation. For example, metformin decreases plasminogen-

activator inhibitor type 1 (PAI-1),42 and sex hormones,43 which are potential causes of CAD,44-46 

as well as some cancers.47 Future studies should further systematically explore other potential 

pathways by which metformin may have an impact such as via detailed metabolomic analyses 

using Mendelian randomization, which may be useful in identifying new interventions to treat 

these diseases. Similar approaches have already been used for statins,48  which are more 

efficacious than other lipid lowering drugs in reducing CAD.49 

 

This is one of the first studies to evaluate the impact of GDF-15, a biomarker for metformin, on 

CAD and cancer risk using Mendelian randomization which is less susceptible to confounding, 

nevertheless limitations exist. First, the validity of the study depends on the chosen genetic 

instruments. The instruments strongly predicted GDF-15 and were unlikely confounded (with no 

evidence of association with Townsend deprivation index, age completed full time education or 

ever smoking in the UK Biobank (p value >0.08)).22,25 We cannot rule out the possibility of 



  

violation of the exclusion-restriction assumption. For example, rs888663 is associated with CAD 

whilst rs1227731 and rs3195944 are associated with red blood cells.50,51 However, it is unclear 

whether these pleiotropic effects are downstream effects of GDF-15 (which does not violate the 

exclusion-restriction assumption) or effects independent of GDF-15 (which violates the 

assumption). We were unable to use weighted median or MR-Egger estimates because of the use 

of correlated SNPs. Although the MR-Egger intercept test suggested no violation of the IV 

exclusion-restriction assumptions for the main outcomes (CAD, breast and colorectal cancer), 

there was some evidence of potential violation for DBP, BMI and HbA1c. As such, our study 

needs confirmation when more genetic instruments for GDF-15 from different gene regions have 

been identified in a larger GWAS. Second, we were unable to directly evaluate the impact of 

metformin on CAD and cancer risk which would require individual genetic data (e.g. UK 

Biobank)14 and definitive targets of metformin (e.g. AMP-activated protein kinase). Such 

Mendelian randomization studies would be able to emulate more fully the impact of metformin. 

Third, some participants in the UK Biobank were taking antihypertensives, so the observed 

blood pressure for these participants were underestimated, leading to misclassification. Fourth, 

the identified genetic instruments may not be the true genetic signals for GDF-15 (i.e. false 

positives), leading to potential weak instrument bias. However, this is unlikely given the mean F 

statistic for the instruments used was much greater than 10. Fifth, our study was unable to 

identify if exogenous (e.g. metformin) and endogenous GDF-15 (naturally occurring) have 

different effects, which could be answered using other designs, such as regression discontinuity 

applied to comprehensive electronic health records. Sixth, the main analyses showed a potential 

inverse association of GDF-15 with CAD and breast cancer but these findings were not 

consistently observed in the validation studies. Such differences may be driven by 



  

methodological differences generating potential biases, such as healthy volunteers in the UK 

Biobank or the lack of age adjustment in some of the studies within BCAC since some of them 

had few or no controls.27 However, these differences also highlight the importance of validation, 

whenever possible, for Mendelian randomization. Seventh, although it is possible that GDF-15 is 

influenced by previous health status, i.e. reverse causation, we were unable to examine this 

possibility using a bi-directional Mendelian randomization design as we do not have access to 

genetic summary statistics for GDF-15. Lastly, we were unable to assess differences by age or 

sex, because sufficiently large age- or sex-specific studies are not available. We also had to 

assume a linear relation of GDF-15 with the outcomes.  

 

There is no convincing evidence that GDF-15 may reduce risk of CAD, breast or colorectal 

cancer. Whether the inverse association of metformin use with cancer risk is an artefact of biases 

or acts via other unexplored mechanistic pathways warrants future investigation, to help validate 

whether this medication can be repurposed for cancer prevention. 
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Figure legend: Figure 1: Selection process of single nucleotide polymorphisms (SNPs) for 
growth differentiation factor -15 (GDF-15) and the data sources used 

  



  

Table 1: The impact of growth differentiation factor 15 (GDF-15) on coronary artery disease (CAD) risk, type 2 diabetes and 

glycaemic traits, CAD risk factors, breast and colorectal cancer risk using Mendelian randomization 

  Inverse variance weighting with fixed effects 
  Per standard deviation increase GDF-15 
aOutcome bData source Odds ratio/ Beta 95% CI 
CAD CARDIoGRAM 0.93 0.87 to 0.99 
CAD UK Biobank 0.99 0.93 to 1.04 
Type 2 diabetes DIAGRAM 1.02 0.98 to 1.06 
HbA1c (mmol/mmol) MAGIC 0.084 -0.046 to 0.215 
Fasting glucose (mmol/L) MAGIC 0.004 -0.023 to 0.031 
SBP (mmHg) UK Biobank -0.09 -0.35 to 0.18 
DBP (mmHg) UK Biobank 0.10 -0.05 to 0.25 
LDL-C (SD) Global Lipids Genetic Consortium -0.01 -0.05 to 0.03 
HDL-C (SD) Global Lipids Genetic Consortium -0.05 -0.09 to -0.02 
BMI (SD) GIANT 0.002 -0.009 to 0.01 
Breast cancer UK Biobank 0.89 0.82 to 0.96 
Breast cancer BCAC 0.97 0.94 to 1.01 
Colorectal cancer UK Biobank 0.91 0.80 to 1.04 

a BMI: Body mass index; CI: confidence interval; DBP: Diastolic blood pressure; HDL-C: High density lipoprotein cholesterol; LDL-

C: Low density lipoprotein cholesterol; SBP: Systolic blood pressure 
b BCAC: Breast cancer association consortium; CARDIoGRAM: CARDIoGRAMplusC4D 1000 Genomes-based GWAS; 

DIAGRAM: DIAbetes Genetics Replication And Meta-analysis; GIANT: Genetic Investigation of ANthropometric Traits; MAGIC: 

the Meta-Analyses of Glucose and Insulin-related traits Consortium; 

 

  



  

Table 2: The impact of growth differentiation factor 15 (per standard deviation (SD)) on 

coronary artery disease (CAD), type 2 diabetes and glycaemic traits, CAD risk factors, 

breast and colorectal risk using Mendelian randomization with the lead SNP (rs888663) as 

the instrument 

  Wald estimate 

aOutcome bData source 
Odds 

ratio/Beta 95% Confidence Interval 
CAD CARDIoGRAM 0.87 0.81 to 0.95 
CAD UK Biobank 0.93 0.87 to 1.00 
Type 2 diabetes DIAGRAM 1.00 0.96 to 1.06 
HbA1c (mmol/mmol) MAGIC 0.0036 -0.167 to 0.174 
Fasting glucose (mmol/L) MAGIC 0.006 -0.031 to 0.042 
SBP (mmHg) UK Biobank -0.34 -0.69 to 0.006 
DBP (mmHg) UK Biobank 0.005 -0.19 to 0.20 
LDL-C (SD) Global Lipids Genetic Consortium -0.03 -0.08 to 0.02 
HDL-C (SD) Global Lipids Genetic Consortium -0.03 -0.07 to 0.02 
BMI (SD) Genetic Investigation of ANthropometric Traits -0.010 -0.024 to 0.004 
Breast cancer UK Biobank 0.80 0.72 to 0.89 
Breast cancer BCAC 0.99 0.94 to 1.04 
Colorectal cancer UK Biobank 0.88 0.74 to 1.05 

aBMI: Body mass index; DBP: Diastolic blood pressure; HDL-C: High density lipoprotein 

cholesterol; LDL-C: Low density lipoprotein cholesterol; SBP: Systolic blood pressure 
b BCAC: Breast cancer association consortium; CARDIoGRAM: CARDIoGRAMplusC4D 1000 

Genomes-based GWAS; DIAGRAM: DIAbetes Genetics Replication And Meta-analysis; 

MAGIC: the Meta-Analyses of Glucose and Insulin-related traits Consortium 
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