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Quantum Shannon theory with superpositions of trajectories
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Shannon’s theory of information was built on the assumption that the information carriers were
classical systems. Its quantum counterpart, quantum Shannon theory, explores the new possibilities
arising when the information carriers are quantum systems. Traditionally, quantum Shannon theory
has focussed on scenarios where the internal state of the information carriers is quantum, while their
trajectory is classical. Here we propose a second level of quantisation where both the information
and its propagation in spacetime is treated quantum mechanically. The framework is illustrated
with a number of examples, showcasing some of the counterintuitive phenomena taking place when
information travels simultaneously through multiple transmission lines.

Contents

I. Introduction 1

II. Framework 3
A. Systems and sectors 3
B. Superposition of channels 4
C. The vacuum extension of a quantum channel 5
D. The superposition of two independent

channels 6
E. Superposition of multiple independent

channels 7

III. Communication through a superposition of

independent channels 7
A. Communication model with coherent control

over independent transmission lines 7
1. Single-particle communication 7
2. Extension vs restriction 8
3. No-signalling vs signalling encodings 8
4. Communication capacities assisted by

superposition of paths 10
B. Examples 10

1. Classical communication through pure
erasure channels 11

2. Quantum communication through
entanglement-breaking channels 12

3. Perfect communication through
asymptotically many paths 12

IV. Communication through a superposition of

correlated channels 13
A. Spatially correlated channels 13
B. Channels with correlations in time: realising

the output of the quantum SWITCH 14
C. Communication model with time-correlated

channels 16
D. Examples 16

1. Self-switching 16
2. Perfect communication through a coherent

superposition of orders 17

V. Conclusions 17

Acknowledgments 18

References 18

A. Proof of Theorem 1 20

B. Vacuum extensions with non-trivial

vacuum dynamics 22

C. Vacuum extensions and unitary dilations 24

D. Extreme vacuum extensions 26

E. Proof of Proposition 1 27

I. INTRODUCTION

When Claude Elwood Shannon laid the foundations of
information theory [1], he modelled the transmission of
data according to the laws of classical physics. Specifi-
cally, he assumed that the information carriers had per-
fectly distinguishable internal states and travelled along
well-defined trajectories in spacetime. Shannon’s model
worked extremely well for all practical purposes (even too
well, according to Shannon himself [2]). However, at the
very bottom Nature is described by the laws of quantum
physics, which radically differ from the classical laws as-
sumed by Shannon. When information is encoded into
quantum systems, some of Shannon’s most fundamental
conclusions no longer hold, giving rise to new opportu-
nities, such as the opportunity to communicate securely
without pre-established keys [3, 4].

The extension of Shannon’s theory to the quantum do-
main, called Quantum Shannon theory, is now a highly
developed research area [5]. However, there is a sense
in which the transition from classical to quantum is still
incomplete. Traditionally, quantum Shannon theory has
explored scenarios where a number of parties exchange
quantum messages, i.e. messages encoded into quantum
states. While the messages are allowed to be quantum,
their trajectory in spacetime is assumed to be classical.
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However, quantum particles can also propagate simulta-
neously among multiple trajectories, as illustrated by the
iconic double slit experiment [6, 7].

The ability to propagate along multiple paths allows
quantum particles to experience coherent superpositions
of alternative evolutions [8, 9], or to experience a set
of evolutions in a superposition of alternative orders
[10, 11]. When a particle travels along alternative paths,
the interference of noisy processes taking place on differ-
ent paths can result in cleaner communication channels
overall [12, 13]. Similarly, when a particle experiences
noisy processes in a superposition of orders, the interfer-
ence between alternative orderings can boost the capac-
ity to communicate classical and quantum bits [14–16].
The communication advantages of superposing alterna-
tive channel configurations have been recently demon-
strated experimentally, both for superpositions of inde-
pendent channels [17] and of orders in time [18, 19].

The above examples indicate, both theoretically and
experimentally, the potential of extending quantum
Shannon theory to a broader framework where not only
the content of the messages, but also their trajectory can
be quantum. This extension can be regarded as a sec-
ond level of quantisation of Shannon’s information the-
ory: the first level of quantisation was to quantise the
internal degrees of freedom of the information carriers,
while the second level is to quantise the external degrees
of freedom, thus allowing for the coherent propagation of
messages along multiple trajectories. Such quantisation,
however, poses a few challenges.

The first challenge is to formulate a clear-cut separa-
tion between the role of the internal degrees of freedom
(in which information is encoded) and the external de-
grees of freedom (along which information propagates).
This separation seems hard to enforce, due to the possi-
bility of information flow from the internal to the exter-
nal degrees of freedom, via the mechanism known as the
phase kickback [20]. If the sender exploits phase kick-
back to encode information into the path, then the path
itself becomes part of the message, and the communica-
tion protocol can be described within the framework of
standard Shannon theory, just with an enlarged quantum
system playing the role of the message-carrying degree of
freedom. In contrast, a genuine extension of quantum
Shannon theory should assign the message and the path
two qualitatively distinct information-theoretic roles.

The second challenge is to formulate a model of com-
munication where the superposition of transmission lines
can be operationally built from the devices available to
the communicating parties. A sender and a receiver who
have access to multiple communication devices should be
able to combine them into a new communication device,
corresponding to a quantum superposition of the original
devices. However, the existing definition of superposition
of channels [8, 9, 13] depends not only on the channels
themselves, but also on the way in which the channels are
realised through interactions with the environment. For
a sender and receiver who only know the input-output

description of their devices, it is not possible to know in
advance which superposition will arise when the informa-
tion carrier is sent through them along multiple paths. In
a Shannon-theoretic context, it is important to pinpoint
what exactly are the basic resources available to the com-
municating parties, and show how these resources deter-
mine the transmission of information from the sender to
the receiver.

This paper provides a framework that meets the above
desiderata, laying the foundation for an extended quan-
tum Shannon theory where the information carriers prop-
agate in a coherent superposition of trajectories. A key
ingredient of the framework is an abstract notion of vac-
uum, describing the situation where no input is provided
to the communication devices. The communication de-
vices are described by quantum channels capable of act-
ing on the quantum system used as the message, on the
vacuum, and generally on coherent superpositions of the
vacuum and the message. The propagation of the mes-
sage along a superposition of trajectories is realised by
coherently controlling which devices receive the message
and which devices receive the vacuum as their input.
Such controlled routing provides an operational way to
build superpositions of channels from the local devices
available to the sender and the receiver, without the need
to specify the interaction with the environment.

Our communication model prohibits all encoding op-
erations that could be used to encode messages (in part
or in full) in the path of the information carrier. This
condition is satisfied when the information carrier is pre-
pared in a superposition of paths and sent directly to
the communication devices: in this case, the encoding
operation is just to initialise the path in a fixed state,
independent of the message. In general communication
networks, where the information has to pass through a
sequence of noisy channels, our model also rules out in-
termediate repeater operations that create correlations
between the message and the path. In this way, it guar-
antees that the path is not used as an additional informa-
tion carrier. Global operations on the message and path
are allowed only in the decoding stage, after the message
has reached the receiver.

The main resources used in our model are the vacuum-
extended communication channels, the number of paths
that are coherently superposed, and the total number
of transmitted particles (where the term particle is used
broadly to denote any quantum system with an external
degree of freedom determining its trajectory in space-
time). For a fixed communication device and for a fixed
number of paths N , one can compute the number of clas-
sical or quantum bits that can be reliably transmitted in
the limit of asymptotically many particles. This con-
struction defines a sequence of channel capacities, one
capacity for every value of N . The sequence of capacities
is monotonically increasing with N , and the base case
N = 1 corresponds to the standard channel capacities
studied in quantum Shannon theory [5]. Higher values of
N correspond to communication protocols with increas-



3

ing levels of delocalisation of the paths. In addition, one
can also consider more general configurations where the
paths of the transmitted particles are correlated. In gen-
eral, the communication model proposed in this paper
opens up the study of a range of new quantum channel
capacities and the search for new techniques for quanti-
fying them.

We illustrate our communication model in a series of
examples. First, we consider the scenario where the com-
munication channels on alternative paths are indepen-
dent, showing a number of interesting phenomena aris-
ing when the number of superposed paths N becomes
large. For example, we show that a qubit erasure chan-
nel, which cannot transfer any information when the path
is fixed, can become a perfect classical bit channel when
many paths are superposed. Similarly, a qubit dephas-
ing channel can become a perfect qubit channel in the
large N limit. Then, we extend our analysis to scenar-
ios exhibiting correlations. An example of this situation
arises when the local environments encountered on dif-
ferent paths are correlated due to previous interactions
between them. Another example arises when a particle
visits a given set of regions in a superposition of multiple
orders [10]. In this setting, the correlations arising from
the memory in the environment can give rise to a noise-
less transmission of quantum information through noisy
channels, a phenomenon that cannot take place with the
superposition of independent channels [16].

The remainder of the paper is organised as follows.
In Section II we provide the theoretical foundation of
our communication model. We provide a general defi-
nition of superposition of channels, which includes the
superposition of independent channels, as well as super-
positions of correlated channels. We then provide an op-
erational recipe to construct a superposition of channels
from the communication devices available to the commu-
nicating parties. In Section III we formulate a communi-
cation model where information can propagate through
multiple independent channels. We also provide several
examples of communication protocols admitted by our
model, including seemingly counterintuitive effects such
as the possibility of classical communication through a
superposition of pure erasure channels, or the possibility
of quantum communication through a superposition of
entanglement-breaking channels. The model is extended
in Section IV to scenarios where the channels on different
paths are correlated, including correlations in space and
correlations in time. Finally, conclusions are drawn in
Section V.

II. FRAMEWORK

Here we provide the basic framework upon which our
communication model is built.

A. Systems and sectors

Quantum Shannon theory describes communication in
terms of abstract quantum systems, representing the de-
grees of freedom used to carry information. An abstract
quantum system A is associated to a Hilbert space HA.
Its state space is the set St(A) containing all density oper-
ators on system HA, i.e. all linear operators ρ ∈ L(HA),
satisfying the conditions Tr[ρ] = 1 and 〈ψ|ρ|ψ〉 ≥ 0 for
every |ψ〉 ∈ HA.
A process transforming an input system A into an out-

put system B is described by a quantum channel [21],
namely a linear, completely positive, trace-preserving
map from St(A) to St(B). The action of a quantum chan-
nel on an input state can be written in the Kraus rep-

resentation C(ρ) =
∑r

i=1 CiρC
†
i , where {Ci}ri=1 is a set

of operators from HA to HB, called Kraus operators and

satisfying the normalisation condition
∑r

i=1 C
†
iCi = IA,

IA being the identity on HA. The Kraus representation
is non-unique, and the number r can be made arbitrar-
ily large, e.g. by appending null Kraus operators, or by
replacing a Kraus operator Ci with two Kraus operators√
pCi and

√
1− pCi.

The set of all channels from system A to system B
will be denoted as Chan(A,B). When A = B, we use
the shorthand Chan(A) := Chan(A,B). All throughout
the paper, we use calligraphic fonts for channels (such
as C) and standard italic for the corresponding Kraus
operators (such as Ci).
In reality, an abstract quantum system A is only the

effective description of a subset of degrees of freedom that
are accessible to the experimenter in a certain region of
spacetime [22–24]. For example, a polarisation qubit is
identified by the two orthogonal states |1〉k,H ⊗ |0〉k,V
and |0〉k,H ⊗ |1〉k,V , corresponding to a single photon of
wavevector k in the mode of horizontal polarisation and
a single photon in the mode of vertical polarisation. The
“polarisation qubit” description holds as long as the state
of the electromagnetic field is constrained within the sub-
space spanned by these two vectors.
In general, the Hilbert space HA of an abstract quan-

tum system A is a subspace of a larger Hilbert space
HS describing all the degrees of freedom that in princi-
ple could be accessed. The states of system A are the
density operators ρ satisfying the constraint

Tr[ρPA] = 1 , (1)

where PA is the projector onto HA. When a system cor-
responds to a subspace of a larger Hilbert space, we call
it a sector.
The evolution of the larger system is described by a

channel C̃ ∈ Chan(S). Such a channel defines an effective
evolution of the sector A only if it maps the sector A into
itself, that is, if it satisfies the No Leakage Condition

Tr
[
PA C̃(ρ)

]
= 1 ∀ρ ∈ St(A) , (2)
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meaning that if we set up an experiment to test whether
the system is in the sector A after the action of the pro-
cess C, the test will always respond positively provided
that the initial state was in the sector A. In turn, the No
Leakage Condition holds if and only if the Kraus opera-

tors of C̃ satisfy the relation

PAC̃iPA = C̃iPA ∀i ∈ {1, . . . , r} (3)

(see Lemma 1 in Appendix A). When equation (3) is
satisfied, one can define an effective channel C ∈ Chan(A)

with Kraus operators Ci := PAC̃iPA. In this case, we say

that C is the restriction of C̃ to sector A and that C̃ is an
extension of C.

B. Superposition of channels

Two sectors A and B are orthogonal if the correspond-
ing Hilbert spaces are orthogonal subspaces of the larger
Hilbert space HS . Given two quantum systems A and B,
one can build a new system S = A⊕B, in which A and
B are orthogonal sectors. Mathematically, this is done
by taking the direct sum Hilbert space HA⊕HB. Physi-
cally, A⊕B represents a quantum system that can be in
sector A, or in sector B, or in a coherent superposition
of the two.
We are now ready to provide a general definition of

superposition of channels:

Definition 1. A superposition of two channels A ∈
Chan(A) and B ∈ Chan(B) is any channel S ∈ Chan(A⊕
B) such that (i) S satisfies the No Leakage Condition
with respect to A and B, and (ii) the restrictions of S to
sectors A and B are A and B, respectively.
The channel S describes a process that can take an

input in the sector A, in the sector B, or in a coherent
superposition of these two sectors.
One example of superposition is the superposition of

two unitary channels U = U ·U † and V = V ·V † in terms
of the unitary channel S = S · S† defined by S = U ⊕ V .
Another example of a superposition is the non-unitary

channel S = S1 · S†
1 + S2 · S†

2 , with S1 = U ⊕ 0B and
S2 = 0A ⊕ V , where 0A and 0B are the null operators
on HA and HB , respectively. One way to realise the sec-
ond example is to perform a non-demolition measurement
that distinguishes between the sectors A and B while pre-
serving coherence within each sector. Then, channel S
can be implemented by performing either channel U or
channel V depending on the measurement outcome. This
second type of superposition is incoherent, in the sense
that it collapses every superposition state in St(A ⊕ B)
into a classical mixture of states of A and states of B.
For noisy channels A and B, one can pick two Kraus

representations {Ai}ri=1 and {Bi}ri=1 with the same num-
ber of Kraus operators, and define a superposition chan-
nel S with Kraus operators

Si := Ai ⊕Bi i ∈ {1, . . . , r} . (4)

Note that if two Kraus representations {Ai}rAi=1 and
{Bi}rBi=1 have different numbers of operators, one can
always extend them to Kraus representations with the
same number of operators, e.g. by appending null oper-
ators.
One may wonder whether there exist other ways to

superpose two channels. The answer is negative:

Theorem 1. The following are equivalent:

1. Channel S is a superposition of channels A and B.

2. The Kraus operators of S are of the form Si =
Ai ⊕ Bi for some Kraus representations {Ai} and
{Bi} of channels A and B, respectively.

3. There exists an environment E, a pure state
|η〉 ∈ HE, two Hamiltonians HAE and HBE,
with supports in the orthogonal subspaces HA ⊗
HE and HB ⊗ HE, respectively, and an inter-
action time T , such that A(ρ) = TrE

[
UAE(ρ ⊗

η)U †
AE

]
with UAE = exp

[
− iHAET/~

]
, and

B(ρ) = TrE
[
UBE(ρ⊗ η)U †

BE

]
with UBE = exp

[
−

iHBET/~
]
, and S(ρ) = TrE

[
U(ρ ⊗ η)U †] with

U = exp
[
− i(HAE ⊕ HBE)T/~

]
, having used the

notation η := |η〉 〈η|.

Theorem 1, proven in Appendix A, characterises all
the possible superpositions of two given quantum chan-
nelsA and B. Condition 3 provides a physical realisation,
illustrated in Figure 1: a general way to realise a super-
position of channels is to jointly route the system and
the environment to two distinct regions, RA and RB, de-
pending on whether the system is in the sector A or in
the sector B. In the two regions, the system and the en-
vironment interact either through the Hamiltonian HAE

or through the Hamiltonian HBE . After the interaction,
the two alternative paths are recombined, and the envi-
ronment is discarded.
Theorem 1 pinpoints a few issues with the notion of

“superposition of channels”. First, the superposition of
two channels A and B is not determined by the channels
A and B alone: different choices of Kraus representations,
{Ai}ri=1 and {Bi}ri=1 generally give rise to different su-
perpositions. Physically, the dependence on the choice of
Kraus representation can be understood in terms of the
unitary realisation of channels A and B [9, 13]: in gen-
eral, the superposition of two channels depends not only
on the channels themselves, but also on the way in which
the channels are realised through an interaction with the
surrounding environment.
A further issue is that, even if complete access to the

environment is granted, the superposition of two unitary
gates cannot be implemented in a circuit if the two uni-
taries are unknown [25–28]. In other words, it is impos-
sible to generate the coherent superposition U⊕V of two
arbitrary unitaries U and V by inserting the correspond-
ing devices into a quantum circuit with two open slots.
The impossibility to build the superposition of two gates
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FIG. 1: Hamiltonian realisation of an arbitrary superposi-
tion of channels. The system S and the environment E are
jointly routed to one of two regions, RA and RB , depending
on whether the system is in sector A or sector B. In region
RA (RB) the system and the environment interact through
a Hamiltonian HAE (HBE). After the interaction, the two
paths of both the system and the environment are recom-
bined, and finally the environment is discarded. In general,
this realisation requires the ability to control the environment.

from the gates themselves is reflected in the fact that the
superposition is not a quantum supermap [10, 27, 29, 30],
i.e. is not a physically admissible transformation of quan-
tum channels. This prevents a resource-theoretic formu-
lation where the communicating parties are given a set of
communication resources and a set of allowed operations
to manipulate them [14].
Finally, Theorem 1 shows one physical realisation of

the superposition of channels, in which the system and
the environment are jointly routed to two different re-
gions, where they experience two different interactions.
Routing the environment is problematic in a theory
of communication, especially in cryptographic scenarios
where the environment is under the control of an adver-
sary.
In the following we will address the above issues by

upgrading the physical description of the communication
devices: instead of describing them as quantum channels
acting on the information carrier alone, we will describe
them as quantum channels acting on the information car-
rier, on the vacuum, or on coherent superpositions of the
information carrier and the vacuum.

C. The vacuum extension of a quantum channel

In information theory, each use of a communication
channel is counted as a resource. However, the physical
apparatus used to communicate does not come into exis-
tence in the moment when it is used to transmit a signal.
For example, an optical fibre is in place also when no
photon is sent through it. When the fibre is not used, we
can model its input as being the vacuum state. Abstract-
ing from this example, we assume that the system used
to communicate is a sector A of a larger system S, con-
taining another sector, called the vacuum sector Vac, and
orthogonal to A. Orthogonality of A and Vac means that

one can perfectly distinguish between situations where a
signal is sent and situations where it is not.
Our abstract notion of the vacuum is directly inspired

by the vacuum in quantum optics, which is orthogonal
to the polarisation states of single photons, that are used
as information carriers in many quantum communication
protocols. Orthogonality of the message with the vacuum
may not be exactly satisfied in some scenarios, e.g. when
single-photon states are replaced by weak coherent states,
or in certain scenarios of quantum field theory, where the
vacuum may not be exactly orthogonal to the states the
sender can generate locally in order to transmit a mes-
sage. In these scenarios, it is understood that our exact
orthogonality condition should be relaxed to an approxi-
mate orthogonality condition. In this paper, however, we
will stick to to the exact case, which allows for a consid-
erably simpler presentation.
A communication device is modelled as a quantum

channel on the direct sum system Ã := A ⊕ Vac. In
this picture, the input of the device can be interpreted as
an abstract mode, which can be either in the one-particle
sector A or in the vacuum sector Vac. This description
is consistent with the standard framework of quantum
optics, where the action of physical devices like beam
splitters or phase shifters are represented by quantum
channels from a set of input modes to a set of output
modes.

Definition 2. Channel C̃ ∈ Chan(Ã) is a vacuum ex-

tension of channel C ∈ Chan(A) if (i) C̃ satisfies the No
Leakage Condition with respect to sectors A and Vac, and

(ii) the restriction of C̃ to sector A is C.
The vacuum extension of channel C is a superposition

of C with some other channel CVac, representing the ac-
tion of the communication device on the vacuum sector.
For simplicity, in the following we will assume that the

vacuum sector is one-dimensional, meaning that there is
a unique vacuum state |vac〉, up to global phases. In this
case, Theorem 1 implies that the Kraus operators of the

vacuum extension C̃ are of the form

C̃i = Ci ⊕ γi |vac〉〈vac| , (5)

where {Ci}ri=1 is a Kraus representation of C, and {γi}ri=1

are complex amplitudes satisfying the normalisation con-
dition

∑

i

|γi|2 = 1 . (6)

Hereafter, we will call {γi}ri=1 the vacuum amplitudes of

C̃. The case of vacuum sectors of arbitrary dimension is
discussed in Appendix B. In the main body of the paper
we will always assume that the vacuum sector is one-
dimensional.
Note that the vacuum extension is highly non-unique:

it depends on the choice of Kraus representation and on
the choice of vacuum amplitudes. For example, the vac-
uum extension of a unitary channel U could be a unitary
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channel Ũ with Ũ = U ⊕|vac〉〈vac|, or also a non-unitary

channel C(·) = C1 ·C†
1 +C2 ·C†

2 , with C1 = U ⊕ 0Vac and
C2 = 0A ⊕ |vac〉〈vac|. In the second case, coherence with
the vacuum is not preserved, and channel C transforms
every superposition in A ⊕ Vac into a classical mixture
of a state of A and the vacuum.

For a non-unitary channel C with Kraus operators
{Ci}ri=1 one can define many vacuum extensions, e.g. by

defining the Kraus operators C̃i := Ci ⊕ |vac〉〈vac|/√r,
or the Kraus operators C̃i := Ci⊕0Vac, for i ∈ {1, . . . , r},
and C̃r+1 = 0A ⊕ |vac〉〈vac|. Note that the second ex-
ample does not preserve coherence between the sectors A
and Vac. In general, we say that a vacuum extension has
no coherence with the vacuum if γi = 0 whenever Ci 6= 0.

Even though the vacuum extension is mathematically
not unique, the choice of vacuum extension is uniquely
determined by the physics of the device. For example,
consider a device that rotates the polarisation of a single-
photon about the z-axis by an angle θk, chosen at ran-
dom with probability pk. Physically, the single-photon
polarisation corresponds to the two-dimensional subspace
spanned by the logical states |0〉L := |1〉k,H ⊗ |0〉k,V and
|1〉L := |0〉k,H ⊗ |1〉k,V , where k is the wavevector, and
H and V label the modes with vertical and horizontal
polarisation. The polarisation rotation is generated by

the Hamiltonian H = (a†
k,Hak,H − a†

k,V ak,V )/2 (in suit-

able units), which induces the unitary transformation
Uθ = exp[−iθH ] on the modes. When restricted to the
one-photon subspace, the unitary rotation Uθ acts in the
familiar way, as Rθ = e−iθ/2 |0〉〈0|L+eiθ/2 |1〉〈1|L. When
restricted to the vacuum |vac〉 := |0〉k,H ⊗ |0〉k,V , it acts
trivially as Uθ|vac〉 = |vac〉. When acting on a coher-

ent superposition, it acts as the direct sum R̃θ = Rθ ⊕
|vac〉〈vac|. In this example, the communication channel

is C(·) =
∑

k pkRθk · R†
θk

and its vacuum extension is

C̃(·) =
∑

k pk R̃θk · R̃†
θk
. Explicitly, the original Kraus

operators are Ck =
√
pkRk and the vacuum-extended

Kraus operators are C̃k =
√
pk Rk ⊕

√
pk |vac〉〈vac|.

Physically, the vacuum extension is the complete de-
scription of the communication resource available to the
sender and receiver, and it can be determined experi-
mentally by an input-output tomography of the commu-
nication device. Its specification is part of the specifi-
cation of the communication scenario. It is important
to stress that specifying the vacuum extension does not
mean specifying the full unitary realisation of the chan-
nel C. Thanks to this fact, our communication model
maintains a separation between the system and its envi-
ronment, which potentially can be under the control of
an adversary. The relation between the vacuum exten-
sion and the unitary realisation is discussed in Appendix
C.

The vacuum extensions of a given channel form a con-
vex set. Its extreme points correspond to vacuum ex-
tensions that are free from classical randomness. In Ap-
pendix D we characterise the extreme vacuum extensions

of a given channel, proving bounds on the number of lin-
early independent Kraus operators and on the structure
of the vacuum amplitudes. An interesting consequence
of this characterisation is that the extreme vacuum ex-
tensions should have coherence with the vacuum: the
vacuum amplitude γi should be non-zero whenever the
corresponding Kraus operator Ci is non-zero.

D. The superposition of two independent channels

We now provide an operational way to build the super-
position of two channels from their vacuum extensions.
The idea is that physical systems always come in alter-
native to the vacuum. Given two systems A and B, we

construct the vacuum-extended systems Ã := A ⊕ Vac

and B̃ := B ⊕ Vac, and we consider the composite sys-

tem Ã ⊗ B̃. Such a system contains a no-particle sector
Vac⊗Vac, a one-particle sector (A⊗Vac)⊕ (Vac⊗B),
and a two-particle sector A⊗B. Since the vacuum sector
is one-dimensional, the one-particle sector is isomorphic
to the direct sum A⊕B.
Given two vacuum extensions Ã and B̃ of the channels

A and B, we can consider the product channel Ã ⊗ B̃
representing the independent action of Ã and B̃. Then,
we can define a superposition of channels A and B as

the restriction of the product channel Ã ⊗ B̃ to the one-
particle sector (A⊗Vac)⊕ (Vac⊗B). More formally:

Definition 3. The superposition of channels A and B
specified by the vacuum extensions Ã and B̃ is the channel

SÃ,B̃ := V† ◦
(
Ã ⊗ B̃

)
◦ V , (7)

where V and V† are the quantum channels V(·) :=
V (·)V †, V†(·) := V †(·)V , and V is the unitary operator
V : HA⊕HB → (HA ⊗HVac)⊕ (HVac ⊗HB), defined by
the relation

V
(
|α〉 ⊕ |β〉

)
:=
(
|α〉 ⊗ |vac〉

)
⊕
(
|vac〉 ⊗ |β〉

)
, (8)

for every |α〉 in HA and every |β〉 in HB .

Operationally, the superposition SÃ,B̃ is built from the

physical devices described by the vacuum extensions Ã
and B̃. The two devices are used in parallel, and their
input is constrained to be a superposition of one par-

ticle travelling through Ã (with the vacuum in B̃) and

one particle travelling through B̃ (with the vacuum in

Ã). Mathematically, the transformation from the pair

of channels (Ã, B̃) to the channel SÃ,B̃ is a legitimate

quantum supermap [10, 27, 29, 30].
The Kraus operators of the superposition SÃ,B̃ are

Sij = Ai βj ⊕ αiBj , (9)

where αi and βj are the vacuum amplitudes associated to
channels A and B, respectively. Note that these Kraus
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Ã1

Ã2

ÃN

FIG. 2: Operational superposition of N independent channels.
An input system A = A1 ⊕ A2 ⊕ · · · ⊕ AN branches out ac-
cording to its sectors, with the j-th branch sent through the

vacuum extension Ãj . The outputs are finally recombined to
form the overall output of the superposition channel.

operators may or may not have coherence between the
sectors A and B, depending on whether or not the vac-

uum extensions Ã and B̃ have coherence with the vac-
uum. For example, if the vacuum extension of A has no
coherence with the vacuum (αi = 0 whenever Ai 6= 0),
then the superposition has no coherence between the sec-
tors A and B, meaning that the Kraus operators are
either of the form Sij = Ai βj ⊕ 0B, or of the form
Sij = 0A ⊕ αiBj .

E. Superposition of multiple independent channels

The generalisation to superpositions of more than two
channels is immediate, and is illustrated in Figure 2. The
superposition of the channels A(1), . . . ,A(N) specified by

the vacuum extensions Ã(1), . . . , Ã(N) is the channel with
Kraus operators

Si1···iN =

N⊕

j=1

α
(1)
i1

· · ·α(j−1)
ij−1

A
(j)
ij
α
(j+1)
ij+1

· · ·α(N)
iN

, (10)

where {A(j)
ij

} is a Kraus representation of the j-th chan-

nel, and {α(j)
ij

} are the corresponding vacuum ampli-

tudes. Physically, the above Kraus operators describe
a coherent superposition of scenarios where a particle is
sent to the j-th process, while the remaining N − 1 pro-
cesses act on the vacuum.

III. COMMUNICATION THROUGH A

SUPERPOSITION OF INDEPENDENT

CHANNELS

In this section we formulate a communication model
where information can be transmitted simultaneously
through multiple independent channels. The central idea
is to maintain a separation of roles between the internal

degrees of freedom, in which information is encoded, and
the external degrees of freedom, which control the prop-
agation of information in spacetime. The general model
is illustrated in a number of examples, highlighting some
counterintuitive features of the superposition of channels.

A. Communication model with coherent control

over independent transmission lines

Here we develop a model of communication where the
information carrier can travel along multiple alternative
paths, experiencing an independent noisy process on each
path. In the typical scenario, the paths are spatially sep-
arated, meaning that they visit non-overlapping regions.

1. Single-particle communication

Let us consider first the simplest scenario of commu-
nication from a single sender to a single receiver using
a single particle. The particle has an internal degree of
freedom M (the “message-carrying system”), and an ex-
ternal degree of freedom P (the “path”). For simplicity,
we assume that the particle can travel through two alter-
native devices, and therefore the path degree of freedom
P can be effectively described as a qubit.
The action of the two devices on the internal degree of

freedomM is specified by two channels A and B, with in-
puts A and B, respectively, with A ≃ B ≃M . When the
message is not sent through a device, the input of that
device is the vacuum. The full description of the commu-

nication devices is provided by the vacuum extensions Ã
and B̃, acting on the extended systems Ã = A⊕Vac and

B̃ = B ⊕Vac. The channels Ã and B̃ are assumed to be
independent, meaning that the evolution of the composite

system Ã⊗ B̃ is the product channel Ã ⊗ B̃.
The transmission of a single particle in a superposition

of paths is described by initialising the input of the chan-

nel Ã⊗B̃ in the one-particle sector
(
A⊗Vac

)
⊕
(
Vac⊗B

)
.

Since the sectors A and B are both isomorphic toM , the
one-particle subspace is isomorphic to M ⊗ P , where P
is the path qubit. The isomorphism is implemented by
the unitary gate U , defined as

U(|ψ〉 ⊗ |0〉) := |ψ〉 ⊗ |vac〉
U(|ψ〉 ⊗ |1〉) := |vac〉 ⊗ |ψ〉 , (11)

where the basis states |0〉 and |1〉 correspond to the two
alternative paths that the particle can take. The isomor-
phism U is crucial, in that it implements the change of de-
scription from the “particle picture” with system M ⊗P
to the “mode picture” with system

(
A⊗Vac

)
⊕
(
Vac⊗B

)
.

With these notions, we are ready to construct commu-
nication protocols like the one shown in Figure 3. Ini-
tially, the sender has a message, represented by a quan-
tum state ρ of some abstract quantum system Q. Then,
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Q M Ã Ã M Q
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FIG. 3: Communication via the transmission of a single particle through two independent channels. The sender uses the
encoding channel E to encode the state of a quantum system Q into the composite system M ⊗ P , representing a quantum
particle with internal degree of freedom M and external degree of freedom P . The unitary channel U maps the composite

system M⊗P into the one-particle subspace of the composite system Ã⊗ B̃, on which the product channel Ã⊗B̃ acts. Finally,
the unitary channel U† converts the output back into the system M ⊗P and the decoding channel D outputs the decoded state
of system Q.

the sender encodes the message in the state of the parti-
cle, using an encoding channel

E : St(Q) → St(M ⊗ P ) . (12)

In general, the encoding channel could encode informa-
tion not only in the internal degree of freedom M , but
also in the path P . In that case, however, there would be
no difference of roles betweenM and P as far as informa-
tion theory is concerned: the composite system M ⊗ P
would just become the new message M ′. In contrast,
here we are interested in the scenario where the informa-
tion is encoded into the original message systemM , while
the path system P is used to route the message in space.
From this perspective, it is natural to demand that the
encoding channel E satisfies the no-signalling condition

TrM
[
E(ρ)

]
= TrM

[
E(σ)

]
∀ρ, σ ∈ St(Q) . (13)

In fact, we will demand an even stronger condition, which
guarantees that the encoding does not create any corre-
lations between the message and the path. Explicitly, we
require the encoding operation to have the product form

E = M⊗ ω , (14)

where M is a channel from St(Q) to St(M), and ω ∈
St(P ) is a fixed state of the path. This means that, for
every initial state ρ ∈ St(Q), the encoded state has the
product form M(ρ)⊗ω, with the state of the path com-
pletely uncorrelated with the message. Conditions (13)
and (14) will be further discussed in Subsection IIIA 3.
After the message is encoded, it is sent through the

channels Ã and B̃. The transmission is described by the
channel

SÃ,B̃ = U†(Ã ⊗ B̃)U , (15)

and has Kraus operators

Sij = Ai βj ⊗ |0〉〈0|+ αiBj ⊗ |1〉〈1| , (16)

where {αi} and {βj} are the vacuum amplitudes of chan-
nels A and B, respectively. Note that in this stage the
transmission can generate correlations between the mes-
sage and the path, due to the interaction of the particle
with the communication devices.

Finally, the receiver will perform a decoding operation,
described by a quantum channel D : St(M⊗P ) → St(Q).
Since in this stage the particle has already reached the
receiver, we assume no constraints on the decoding oper-
ations.

2. Extension vs restriction

The aim of our communication model is to provide an
extension of quantum Shannon theory where messages
can propagate in a coherent superposition of trajectories.
In a genuine extension, the role of the path should be
qualitatively different from the role of the message, for
otherwise the “extension” would only consist of using a
larger quantum system as the message.
Now, the separation of roles between internal and ex-

ternal degrees of freedom is not automatically guaran-
teed. For example, if no restriction is imposed, the sender
could send a bit to the receiver by encoding the value of
the bit in the path. Explicitly, the sender could encode
the bit value 0 into the state |ψ0〉 ⊗ |0〉 and the bit value
1 into the state |ψ1〉⊗|1〉, which remain orthogonal when
the particle is sent through the communication channel
[cf. Equations (15) and (16)], no matter which commu-
nication channel is used.
Perhaps counterintuitively, the extension of quantum

Shannon theory to the scenario where messages propa-
gate in a superposition requires a restriction on the al-
lowed encoding operations. The contradiction is only
apparent, because the extension consists in giving the
message system M an additional feature (the ability to
propagate in a superposition of paths), which was not
present in the standard model of quantum Shannon the-
ory. As we will see in the following, this extension allows
us to define a hierarchy of quantum channel capacities
that includes the standard quantum channel capacities
as its first level.

3. No-signalling vs signalling encodings

The condition that the encoding operation must not
signal to the path rules out a number of communication
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SWAP

Ã

SWAP

B̃vac

•
FIG. 4: A quantum circuit realising the operational superpo-
sition of two channels using controlled-SWAP operations. The

state of the input system goes through either channel Ã or B̃
depending on the state of the control system (bottom wire),
while the other channel takes the vacuum as input. At the
output, the system in the vacuum is discarded.

B

SWAP

|+〉〈+| •

A

FIG. 5: Bypassing noise via the SWAP test. A two-qubit mes-
sage undergoes a SWAP controlled by the path. Using the SWAP
test [31], this encoding can transfer one bit from the message
to the path, thus bypassing channels A and B. Such a sig-
nalling encoding is forbidden by our model.

protocols based on a “quantum superposition of circuits”,
which has some similarities with our model, but is con-
ceptually rather different.
To analyse these scenarios, it is convenient to refor-

mulate the superposition of channels (16) as a controlled
circuit, where a control qubit determines which of the

two channels Ã and B̃ receives a particle as its input, and
which one receives the vacuum, as illustrated in Figure 4.
One choice of encoding is to initialise the control system
in a fixed state ω. In this way, the encoding channel is

E(ρ) = CSWAP

(
ρ⊗ |vac〉〈vac| ⊗ ω

)
CSWAP , (17)

where CSWAP = I⊗I⊗|0〉〈0|+SWAP⊗|1〉〈1| is the control-
swap operator. Since the vacuum is orthogonal to all
states used to encode the message, the encoding opera-
tion E satisfies the no-signalling condition (13): no infor-
mation flows from the information-carrying system (rep-
resented by the two top wires in Figure 4) and the control
system (represented by the bottom wire).
Extrapolating from Figure 4, one could think of a

similarly-looking setup, where two particles are sent to

the input ports of channels Ã and B̃, as in Figure
5. In this case, using controlled-SWAP operations does
lead to signalling, due to the possibility of performing
a SWAP test [31]. Explicitly, suppose that the two in-
puts are two qubits, prepared either in a symmetric
state |Φ+〉 = SWAP|Φ+〉 or in an antisymmetric state
|Φ−〉 = −SWAP|Φ−〉. Then, the control swap operation
transforms the input states |Φ±〉 ⊗ |+〉 into the states

•

X A

|+〉〈+|

FIG. 6: Bypassing noise via phase kickback. A single-qubit
message undergoes a bit flip X controlled by the path. This
encoding can transfer one bit from the message to the path,
exploiting the phase kickback property of the CNOT gate [20].
The transfer of information to the path trivialises the com-
munication protocol, making the communication channel A
irrelevant.

|Φ±〉 ⊗ |±〉, transferring one bit of information from the
message to the control qubit. This bit reaches the re-
ceiver independently of channels A and B. Since the
control qubit is unaffected by noise, this type of encoding
bypasses any noisy process occurring on the system. Our
model rules out such bypassing, allowing us to highlight
non-trivial ways in which the superposition of communi-
cation devices can boost the communication from sender
to receiver.
Another example of a communication protocol ex-

cluded in our model is a protocol that uses the CNOT gate
in the encoding stage. Suppose that a NOT operation is
applied to a target qubit, depending on the state of a
control qubit, as in Figure 6. The roles of the control
and the target in the CNOT gate can be exchanged, as
shown explicitly by the relation

CNOT = I ⊗ |0〉〈0|+X ⊗ |1〉〈1|
= |+〉〈+| ⊗ I + |−〉〈−| ⊗ Z , (18)

expressing the phase kickback of the CNOT gate [20].
Hence, a CNOT applied to the states |±〉⊗ |+〉, will gener-
ate the states |±〉 ⊗ |±〉, transferring one bit of informa-
tion from the target to the control. This is another ex-
ample of signalling encoding that can be used to transfer
classical information, independently of the noisy channel
acting on the target qubit. Also in this case, the ability
to communicate does not reveal any interesting feature
of the original channel, and instead it is an artefact of
the signalling from the target to the control.
The no-signalling condition (13) prevents communica-

tion protocols that encode information in the path, in
such a way that this information can be retrieved even if
the message is lost. However, there exist protocols that
encode information in the path, but hide it in such a way
that the information can only be retrieved if one has ac-
cess to a “key”, written in the message. For example,
consider the encoding channel

E(ρQ) =
1

4

[
|0〉〈0|M ⊗ ρP + |1〉〈1|M ⊗ (XρX)P

+ |2〉〈2|M ⊗ (Y ρY )P + |3〉〈3|M ⊗ (ZρZ)P
]
, (19)

where the input system Q is a qubit, the internal degree
of freedomM is a four-dimensional system, and the path
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FIG. 7: Bypassing a complete dephasing channel via a quan-
tum one-time pad. The sender encodes a qubit Q into a four-
dimensional message system M and a two-dimensional path
system P , using a quantum version of the one-time pad [32].
The state of the qubit Q is first transferred to the path P ,
and then rotated by a random Pauli gate Ui, with index i
chosen uniformly at random in the set {0, 1, 2, 3}. The index
i is written on the state |i〉 of the message M , as in Equation
(19). The message then goes through the completely dephas-
ing channel A, which however does not affect the states of
the basis {|i〉}3i=0. Thanks to this fact, the receiver can un-
lock the quantum information encoded in the path by reading
the value i from M and performing the correction operation
U

†
i on P .

P is a qubit. If system M is discarded, one obtains the
depolarising channel TrM [E(ρ)] = (ρ + XρX + Y ρY +
ZρZ)/4 = I/2, and therefore the no-signalling condition
(13) is satisfied. Still, one may argue that information has
been encoded in the path, although the message system
is necessary to unlock it. With this kind of encoding, the
sender could send the message through the completely
dephasing channel A(ρ) =

∑3
i=0 |i〉〈i|ρ|i〉〈i|, and the re-

ceiver would still be able to recover the quantum state
ρ without any error. Also in this case, it appears that
the path has been used to circumvent the channel A, al-
lowing the transmission of quantum information through
the path degree of freedom. This protocol is illustrated
in Figure 7. In our model we forbid this type of transmis-
sion by demanding that the encoding operation does not
create any correlations between M and P . The product
encoding condition (14) guarantees that the sender does
not use the path to sneak information through the path,
even in an indirect way as in Equation (19).

4. Communication capacities assisted by superposition of
paths

In our communication model, the sender is only al-
lowed to use product encodings, of the form E(ρ) =
M(ρ)⊗ ω, where ω is a fixed state of the path. For sim-
plicity, we consider the case where the initial system Q
has the same dimension as the internal degree of freedom
M , so that M can be chosen to be the identity channel.
As we will see this simplification can be made without
loss of generality, because the framework of channel ca-
pacities already includes global encoding operations, in
which map M can be incorporated (cf. Figure 8). The
evolution of the internal degree of freedom is then de-

scribed by the effective channel SÃ,B̃,ω given by

SÃ,B̃,ω(ρ) := SÃ,B̃(ρ⊗ ω) , (20)

where SÃ,B̃ is the superposition defined in Equation (15).

One can then study various communication capacities of
the effective channel, considering the asymptotic scenario
when the channel is used k times, with k → ∞, as illus-
trated in Figure 8.

As in standard quantum Shannon theory, one can
consider several types of capacities, such as the classi-
cal (quantum) capacity, corresponding to the maximum
number of bits (qubits) that can be reliably transmitted
per use of the channel SÃ,B̃,ω, in the limit of asymptoti-

cally many uses.

An interesting special case is Ã = B̃, meaning that
the particle can travel through two identical transmis-
sion lines. In this case, the (classical or quantum) ca-
pacity of the channel SÃ,Ã,ω is a new type of (classical

or quantum) capacity of the channel Ã. We call it the
(classical or quantum) two-path capacity. More gener-
ally, the sender could send a single particle along one of
N identical transmission lines, and one could evaluate the
communication capacity of the resulting channel. Once
the path state ω has been optimised, the capacity is a
non-decreasing function of N , and the base case N = 1
corresponds to the usual channel capacity considered in
quantum Shannon theory. TheN -path capacity, whereN
is the number of paths that are coherent with each other,
can be regarded as the amount of information transmit-
ted per particle in the asymptotic limit where k → ∞
particles are sent through the N transmission lines. In
the next Subsection we will see examples where increas-
ing N leads to interesting capacity enhancements.

In passing, we mention that the scenario of Figure
8 lends itself to several generalisations. For example,
instead of assuming that the path of each particle is
in the same state ω, one could allow different states
ω1 ⊗ ω2 ⊗ · · · ⊗ ωk, or even generally correlated states
ω12...k. Likewise, the number of paths available for each
particle could be different from particle to particle. Fi-
nally, instead of taking the limit k → ∞ for fixed N , one
could consider different asymptotic regimes where both
k and N tend to infinity together.

B. Examples

The model defined in the previous Subsection allows
for new communication protocols that are not possible in
the standard quantum Shannon theory. Some examples
that fit into this model have been recently presented in
[13]. Here we illustrate a few new examples, some of
which exhibit rather striking features in the limit of large
numbers of paths N .
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FIG. 8: Communication of a message encoded in k particles, with each particle travelling in a superposition of two paths. The
sender encodes the state of a quantum system Qk onto the internal state of k particles, using a global encoding operation

Ek. Each particle is sent through one of the channels Ã and B̃, with the choice of the channel controlled by the state ω of
the particle’s external degree of freedom. Finally, the receiver applies a global decoding operation Dk on the output particles,
returning a quantum state in system Qk.

1. Classical communication through pure erasure channels

Suppose that a sender and a receiver have access to two
communication channels, A and B, each of which acts
on the message as a complete erasure E(ρ) = |ψ0〉〈ψ0|,
i.e. A = B = E . Clearly, no information can be sent
to the receiver using a conventional communication pro-
tocol where the two channels A and B are in a defi-
nite configuration. Now, suppose that the communica-
tion devices used in the protocol can take the vacuum
as the input, and are described by a vacuum extension

Ẽ with Kraus operators Ẽi = |ψ0〉〈i| ⊕ αi |vac〉〈vac|, for
i ∈ {1, . . . , d} and for some amplitudes {αi}. Then, the
sender can transmit the message in a superposition of
travelling through A and travelling through B, initial-
ising the path in the state |+〉 = (|0〉 + |1〉)/

√
2. The

output state, computed according to (16), is

SẼ,Ẽ(ρ⊗ |+〉〈+|) = |ψ0〉〈ψ0| ⊗
(
p|+〉〈+|+ (1− p)

I

2

)

(21)

p = 〈α|ρ|α〉, |α〉 =
∑

i

αi|i〉,

Since the output state depends on the input, the receiver
will be able to decode some of the information in the
original message. Precisely, the overall channel from the
sender’s input ρ to the receiver’s output is a measure and
re-prepare channel, equivalent to the orthogonal mea-
surement with projectors {|α〉〈α|, I−|α〉〈α|} followed by
a re-preparation of the states |+〉〈+| or I/2, depending
on the outcome. In turn, this channel is equivalent to a
classical binary asymmetric channel, with 0 mapped de-

terministically to 0, and 1 mapped to a uniform mixture
of 0 and 1. The capacity of this channel, also known
as the Z channel, is log2(5/4) ≈ .32 [33] and can be
achieved using polar codes [34]. In the quantum setting,
the sender has only to encode 0 in the state |α〉 and 1
in an orthogonal state |α⊥〉, and then use the optimal
classical code.

Note that the possibility to communicate with the

vacuum-extended erasure channel Ẽ depends essentially
on the fact that such a channel preserves coherence be-
tween the message and the vacuum. If we had cho-
sen a vacuum extension without coherence, such as the

extension with Kraus operators Ẽ′
i := |ψ〉〈i| ⊕ 0Vac,

i ∈ {1, . . . , d} and Ẽ′
d+1 := 0A ⊕ |vac〉〈vac|, the over-

all channel would be equivalent to a measurement on
the path followed by an erasure channel on the message.
The output state, computed according to Equation (16),
would have been

SẼ′,Ẽ′
(ρ⊗ |+〉〈+|) = |ψ0〉〈ψ0| ⊗

I

2
, (22)

which is independent of the input state ρ, and therefore
prevents any kind of communication. In this and the
following examples, the resource that enables communi-
cation is the coherence in the initial state of the path, and
the availability of communication devices that preserve
such coherence. The advantage of having a device that
can act coherently on the vacuum is similar in spirit to
the advantages of counterfactual quantum computation
[35], cryptography [36], and communication [37, 38]. An-
other related effect is two-way classical communication
using one-particle states[39].
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2. Quantum communication through entanglement-breaking
channels

In the previous example quantum communication is
not possible, because the overall channel SẼ,Ẽ in Equation

(21) is entanglement-breaking [40], and all such channels
have zero quantum capacity [41]. Examples where the
superposition of channels enables quantum communica-
tion do exist, however. Before showing an explicit ex-
ample, it is useful to get some general insight into the
superposition of two identical channels. Suppose that a
message propagates in superposition through two trans-

mission lines, each described by the vacuum extension Ã
of channel A. Assuming that the path is initialised in
the state |+〉, a message encoded into the input state ρ
is transformed into the output state

SÃ,Ã(ρ⊗ |+〉〈+|) = A(ρ) + FρF †

2
⊗ |+〉〈+|

+
A(ρ)− FρF †

2
⊗ |−〉〈−| , (23)

where F :=
∑

i αiAi depends on the specific vacuum
extension describing the communication devices. We will
call F the vacuum interference operator.
By measuring in the Fourier basis {|+〉, |−〉}, the re-

ceiver can separate the two quantum operations Q± =
(A ± F · F †)/2. The outcome + heralds a construc-
tive interference among the noisy processes along the two
paths, while the outcome − heralds a destructive inter-
ference. This observation is the working principle of the
error filtration technique of Gisin et al [12], which allows
probabilistically reducing the noise by selecting events
where one of the two operations Q± is less noisy than
the original channel.
Equation (23) offers several important insights. First,

it shows that the optimal decoding strategy consists in
measuring the path and conditionally operating on the
message. Second, it shows that it is sometimes pos-
sible to obtain a noiseless probabilistic transmission of
the quantum state, thanks to the destructive interference
term A−F ·F †. For example, consider the complete de-
coherence channel D(ρ) = |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|,
which per se cannot transmit any quantum informa-
tion. For a vacuum extension with Kraus operators
{|i〉〈i|⊕ 1√

2
|vac〉〈vac|}1i=0, the vacuum interference oper-

ator is F = I/
√
2, and the destructive interference term

is proportional to the unitary gate Z = |0〉〈0| − |1〉〈1|,
which can be undone by the receiver. The probabil-
ity of destructive interference is 1/4, meaning that the
superposition of channels allows us to transmit a sin-
gle qubit 25% of the times. In the remaining cases,
one has constructive interference, and the conditional
evolution of the message amounts to the the channel
2
3 (A(ρ)+FρF †) = 2

3 (|0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|+ρ/2) =
2
3ρ+

1
3ZρZ, whose quantum capacity is 1− h(1/3) ≈ .08

with h(x) = −x log2 x−(1−x) log(1−x) being the binary
entropy [5].

It is worth noting that the superposition of indepen-
dent noisy channels never leads to a noiseless communica-
tion channel. Indeed, in order for the superposition chan-
nel (23) to be perfectly correctable, both maps A±FρF †

must be proportional to unitary channels. However, the
map A + F · F † is proportional to a unitary gate if and
only if the original channel A was a unitary gate itself.
In fact, the same result holds for the superposition of
two different channels A and B, and more generally, of
N independent channels: superpositions of independent
noisy channels never lead to a noiseless channel, as long
as N is a finite number [16].

3. Perfect communication through asymptotically many
paths

It is interesting to see what happens when a single par-
ticle is sent through N identical and independent trans-
mission lines, each described by the vacuum extension

Ã of some channel A. Initialising the path in the maxi-

mally coherent state |e0〉 =
∑N−1

k=0 |k〉/
√
N we obtain the

output state

C(ρ⊗ |e0〉〈e0|) =
A(ρ) + (N − 1)FρF †

N
⊗ |e0〉〈e0|

+
A(ρ)− FρF †

N
⊗
(
I − |e0〉〈e0|

)
, (24)

with F :=
∑

i αiAi. Again, the state of the path is
diagonal in the Fourier basis, and one has the possibility
of constructive and destructive interference. In the large
N limit, the channel tends to become a mixture of the
two quantum operations F · F † and A − F · F †. This
limiting behaviour leads to striking results:

1. For the pure erasure channel A(ρ) =
|ψ0〉〈0|ρ|0〉〈ψ0| + |ψ0〉〈1|ρ|1〉〈ψ0| , perfect classical
communication of one bit is achieved in the limit
N → ∞ if one has access to the vacuum extension
with Kraus operators Ã0 = |ψ0〉〈0| ⊕ α0 |vac〉〈vac|
and Ã1 = |ψ0〉〈1| ⊕ α1 |vac〉〈vac|. In
this case, one has has F = |ψ0〉〈α| and
Equation (24) yields C(ρ ⊗ |e0〉〈e0|) →
〈α|ρ|α〉 |ψ0〉〈ψ0|⊗|e0〉〈e0|+〈α⊥|ρ|α⊥〉 |ψ0〉〈ψ0|⊗ω⊥
with 〈α⊥|α〉 = 0 and ω⊥ := (I − |e0〉〈e0|)/(N − 1).
This channel is equivalent to a measurement on
the basis {|α〉, |α⊥〉}, followed by preparation
of one of the orthogonal states |e0〉〈e0| and ω⊥,
depending on the outcome. Since these states are
orthogonal, this channel acts as a perfect channel
for communicating classical bits.

2. For the complete dephasing channel A(ρ) =
|0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|, perfect quantum com-
munication is achieved for N → ∞ if one has ac-
cess to the vacuum extension with Kraus operators
|0〉〈0| ⊕ |vac〉〈vac|/

√
2 and |1〉〈1| ⊕ |vac〉〈vac|/

√
2.

Indeed, one has F = I/
√
2 and A(ρ) − FρF † =
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ZρZ/2. Hence, both quantum operations F · F †

and A − F · F † are proportional to unitary chan-
nels. By measuring the path, the receiver can find
out which unitary channel acted and correct it.

3. For the complete depolarising channel A(ρ) = (ρ+
XρX+Y ρY +ZρZ)/4, noiseless quantum commu-
nication with probability 25% becomes possible in
the N → ∞ limit if one has access to the vacuum
extension with Kraus operators Ã0 = (I ⊕ 1)/2,

Ã1 = (X ⊕ i)/2, Ã2 = (Y ⊕ i)/2, and Ã3 =
(Z ⊕ i)/2. In this case, the vacuum interference
term is proportional to a unitary gate, as one has
F = (cos θ I − i sin θS) /2, with cos θ = 1/2 and

S = (X + Y + Z)/
√
3. Hence, when the measure-

ment on the path heralds the quantum operation
F ·F †, the noiseless transmission of a qubit occurs.

IV. COMMUNICATION THROUGH A

SUPERPOSITION OF CORRELATED

CHANNELS

Here we extend our communication model to scenarios
where the channels on alternative paths are correlated.
We consider first correlations in space, and then correla-
tions in time.

A. Spatially correlated channels

When a particle travels through a given region, its in-
ternal degree of freedomM interacts with degrees of free-
dom in that region, which play the role of a local envi-
ronment E. Without loss of generality, the interaction
can be modelled as a unitary channel V , acting jointly
on M and E. When no particle is sent in the region,
we assume that the state of the environment remains un-
changed. This can be modelled by defining an extended

system Ã = A⊕Vac, with A ≃M , and by extending the

unitary channel V to a unitary channel Ṽ acting on the

extended system Ã⊗ E, in such a way that

Ṽ
(
|vac〉〈vac| ⊗ η

)
= |vac〉〈vac| ⊗ η ∀η ∈ St(E) .

(25)

We call Ṽ a local vacuum extension of channel V , empha-
sising that it specifies the action of the channel V when
system A is replaced by the vacuum, while the environ-
ment is in a non-vacuum sector E. In the terminology of

Definition 1, the local vacuum extension Ṽ is a coherent
superposition of the unitary channel V acting on the sec-
tor A⊗E with the identity channel acting on the sector
Vac⊗ E.
An example of a local vacuum extension is the unitary

gate generated by the Hamiltonian H = a†
k,V ak,V ⊗ Z

(in suitable units), representing an interaction between a

• •σEF

ṼAE

W̃BF

E

F

E

F

FIG. 9: Quantum particle travelling through two alternative
paths, interacting with two correlated environments E and F .
The two environments are in a correlated state σEF as the
result of a previous interaction. Each environment interacts

locally with the particle via a unitary channel (ṼAE and W̃BF

in the picture). After the interactions, the environments are
discarded and the paths of the particle are recombined.

vertically polarised mode with wavevector k and a two-
level atom with Pauli operator Z. Here, the system A
is the polarisation of a single photon, and the environ-
ment E is the two-level atom. The unitary operator
U = exp[iπH/2] acts as the identity on the sector Vac⊗E
defined by the vacuum state |vac〉 = |0〉k,H ⊗ |0〉k,V . On
the sector A ⊗ E, the operator U acts as the entangling
gate W = |0〉〈0| ⊗ I + |1〉〈1| ⊗ iZ. This means that, in
general, the interaction with the environment will lead
to an irreversible evolution of the polarisation degree of
freedom.
Now, suppose that a particle can be sent through two

alternative paths, as in Figure 9. Along the two paths,
the particle can interact with two environments, E and
F , which may have previously interacted with each other.
As a result of the interaction, their state σEF may exhibit
correlations. We denote by A and B the input systems

on the two paths (A ≃ B ≃ M) and by ṼAE and W̃BF

the unitary channels describing the interaction with the
environments E and F , respectively. Then, the evolution
of the particle is described by the effective channel

C(ρ⊗ ω)= U†
(
TrEF

{
(ṼAE ⊗ W̃BF )[U(ρ⊗ ω)⊗ σEF ]

})
,

(26)

where U is the unitary channel that implements the iso-
morphism between the “particle picture” M ⊗P and the
“mode picture” (A⊗Vac)⊕(Vac⊗B) [cf. Eq. (11)]. Notice
that the original superposition of independent channels
can be recovered by letting each channel interact with
uncorrelated environments.
The generalisation to N ≥ 2 paths is immediate: the

local environments on the N paths can be generally in an
N -partite correlated state, and the interaction between
a particle on a path and the corresponding environment
is modelled by a unitary channel.
Let us see an example for N = 2. Suppose that

the environments E and F are isomorphic, and their
initial state is the classically correlated state σEF =∑

i pi |i〉〈i| ⊗ |i〉〈i|. We take the interactions with the
two environments to be identical, and to be described by



14

the control unitary channel ṼAE = W̃BF with unitary
operator

Ṽ =

(
∑

i

Ui ⊗ |i〉〈i|
)
⊕
(
|vac〉〈vac| ⊗ I

)
. (27)

With these settings, the effective channel (26) takes
the form

C = R⊗ IP , (28)

where R =
∑

i pi Ui is the random-unitary channel that
performs the unitary gate Ui with probability pi, and IP
is the identity on the path.
Note how the correlations between the channels on two

paths result into a product action of the effective channel
(28), which acts non-trivially only on the internal degree
of freedom of the particle. In contrast, if there are no
correlations between the channels on the paths, the ef-
fective channel generally creates correlations between the
path and the internal degree of freedom.
The above example shows that preexisting correlations

between the environments on the two paths can realise
every random unitary channel on the internal degree of
freedom, leaving the path degree of freedom untouched.
It is worth stressing that this is not the case for all quan-
tum channels:

Proposition 1. Let E0(·) = |ψ0〉〈ψ0| Tr[·] be a pure era-
sure channel on the internal degree of freedom M . Then,
the channel C = E0 ⊗ IP does not admit a realisation of
the form (26).

The proof is given in Appendix E. The intuition behind
the proof is that a complete erasure channel transfers all
the information from the message to the environment.
Due to the no-cloning theorem, it is impossible to have
a complete transfer of information taking place simulta-
neously in two spatially separated regions, even if the
environments in these regions are correlated. In general,
the product channel E0 ⊗ IP represents two overlapping
paths, going through the same region and interacting
with the same environment.

B. Channels with correlations in time: realising

the output of the quantum SWITCH

In the previous Section, we analysed situations where
the correlations in the noise on two paths are induced by
pre-existing correlations of the two local environments.
Here we consider a scenario where the local environments
in two different regions are uncorrelated, but environ-
ments within the same region exhibit correlations in time.
We illustrate the main ideas through an example. Sup-

pose that a quantum particle can visit two regions, RA

and RB, following the two alternative paths shown in Fig-
ure 10. Region RA contains a quantum system E in some
initial state ηE , while region RB contains another quan-
tum system F in the state ηF . When the information

• •

ηE

ηF

E E

F F

RA

RB

FIG. 10: Quantum particle visiting two spatial regions in two
alternative orders. The particle can travel in a superposition
of two alternative paths (in red and blue, respectively), vis-
iting either region RA before region RB , or vice-versa. In
each region, the particle interacts with a local environment,
initially in the state ηE for region RA and in the state ηF for
region RB . The state of each local environment at later times
is generally correlated with the state of the environment at
earlier times. After the particle emerges from the two regions,
the alternative paths are recombined and the environments
are discarded.

carrier visits one region, it interacts with the correspond-
ing system, thereby experiencing a noisy channel. Let us

denote the two channels as A(·) = TrE [VAE(· ⊗ ηE)V
†
AE ]

and B(·) = TrF [VBF (· ⊗ ηF )V
†
BF ]. In general, the state

of a local environment at later times will be correlated
with the state of the same environment at earlier times.
In particular, suppose that environments E and F be-
have as ideal quantum memories, whose quantum state
does not change in time unless the information carrier
interacts with them. Then, a path visiting region RA

before region RB will result in the channel B ◦ A, while
a path visiting region RB before region RA will result in
the channel A ◦ B.
The evolution of a particle sent through the two paths

in a superposition is determined by the local vacuum ex-

tensions of the unitary channels VAE(·) = VAE ·V †
AE and

WBF (·) = WBF ·W †
BF , denoted as ṼAE and W̃BF , re-

spectively (see Equation (25) for the definition of local
vacuum extension). The quantum circuit describing the
propagation of the particle is illustrated in Figure 11, and
the corresponding quantum evolution is described by the
effective channel

S(A,B)(ρ⊗ ω)

= U†
(
TrEF

{
(ṼAE ⊗ W̃BF )(IE ⊗ SWAP ⊗ IF )

(ṼAE ⊗ W̃BF )[ηE ⊗ U(ρ⊗ ω)⊗ ηF ]
})

, (29)

where the unitary channel U implements the isomor-
phism between M ⊗ P and the one-particle subspace
(A⊗Vac)⊕(Vac⊗B) [cf. Eq. (11)]. The effective channel
S(A,B) has Kraus operators

Sij = AiBj ⊗ |0〉〈0|+BjAi ⊗ |1〉〈1| , (30)

where {Ai} and {Bj} are Kraus representations for chan-
nelsA and B, respectively. Note that the channel S(A,B)
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Ã

B̃

M

P

E

F

E

F

E

F

FIG. 11: Effective evolution of a particle travelling through regions with time-correlated environments. The path P is initialised
in the state ω. Depending on the state of the path, the message M is routed to one of two spatially separated regions, where
it interacts either with the environment E or with the environment F , respectively. The interaction is modelled by unitary

channels ṼAE and W̃BF , which act trivially when their input is in the vacuum state. When the particle emerges from one
region it is routed to the other region by a SWAP operation. Finally, the message emerges from the two regions, generally with
its internal and external degrees of freedom correlated. The overall evolution reproduces the output of the quantum SWITCH
[10].

depends only on the channels A and B, and not on their
local vacuum extension. This situation arises because of
the form of the local vacuum extensions ṼAE and W̃BF ,
which act as the identity on Vac⊗E and Vac⊗F , respec-
tively, and because of the form of the circuit in Figure 11,

which forces each of the input states in the two sectors Ã

and B̃ to interact with both environments in sequence.
These two features of the circuit erase the dependence
of the Kraus operators of S(A,B) on the vacuum ampli-
tudes associated with the channels A and B.
The channel (29) is equal to the output of the quantum

SWITCH [10], i.e. the higher-order quantum operation
that takes the two channels A and B and combines them
into the channel S(A,B). Using the direct sum notation

Sij = AiBj ⊕BjAi (31)

we can see that the switched channel S(A,B) is a (cor-
related) superposition of the channels A ◦ B and B ◦ A,
in the sense of our general Definition 1.
The realisation of the switched channel S(A,B) in Fig-

ure 11 can be easily extended from two to N ≥ 2 in-
dependent channels. In a communication scenario, this
realisation has the following features:

1. The encoding operations do not induce signalling
from the message to the path. Specifically, the
encoding operation is of the product form E(ρ) =
ρ⊗ ω, with the path in the fixed state ω.

2. Also the intermediate operations between two sub-
sequent time steps do not induce signalling from
the message to the path. In Figure 11, the inter-
mediate operation is a SWAP gate, which takes the
output of region RA (RB) and routes it to region
RB (RA). In terms of the “message + path” bipar-
tition, the SWAP gate is just a bit flip on the path,
namely U †

SWAPU = IM⊗XP . Not only is this oper-
ation no-signalling, but in fact it is also a product
operation, where M and P evolve independently.

This is important, because it means that the in-
termediate operation SWAP respects the separation
between internal and external degrees of freedom.

3. The realisation of the switched channel S(A,B) is
independent of the specific way in which the chan-
nels are realised through interactions with the envi-

ronment, as long as the unitary channels ṼAE and

W̃BF are local vacuum extensions of two unitary
evolutions that give rise to channelsA and B. Phys-
ically, this means that the only assumption in the
realisation of the switched channel S(A,B) is that
the state of the environment remains unchanged in
the lack of interactions with the system.

4. The realisation of the quantum SWITCH in Fig-
ure 11 offers more than just the switched channel
S(A,B): it also gives us a vacuum extension. This
is important because it makes the superposition of
orders composable with the superposition of paths.

It is important to stress the difference between the cir-
cuit in Figure 11 and the quantum SWITCH as an ab-
stract higher-order operation. The quantum SWITCH
is the abstract higher-order map that takes two ordi-
nary channels A and B as input resources and gener-
ates the switched channel S(A,B) as output. The circuit
in Figure 11 produces the same output of the quantum
SWITCH, using as input resources the local vacuum ex-
tensions of A and B, and two perfect memories in the
environments E and F . Due to the different input re-
sources, the circuit can therefore not be considered a
genuine implementation of the quantum SWITCH, but is
rather a simulation of the higher-order map. In addition,
the SWITCH map S : (A,B) 7→ S(A,B) admits different
physical realisations, which are generally different from
the circuit in Figure 11. For example, another circuital
implementation of the switched channel S(A,B) was pro-
posed by Orehskov in Ref. [42]. The SWITCH also ad-
mits realisations based on exotic physics, such as super-
position of spacetimes [43, 44] and closed timelike curves
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[10]. The importance of the circuital realisations, such
as that in Figure 11, lies in the fact that they can be im-
plemented with existing photonic technologies, thereby
allowing the implementation of communication protocols
built from the quantum SWITCH [18, 19].
In a similar vein, it is important to stress the dif-

ference between the communication model proposed in
this paper and the model of quantum communication
with superposition of orders introduced by Ebler, Salek,
and Chiribella (ESC) in Ref. [14]. The ESC model de-
scribes an abstract resource theory where an agent (e.g.
a communication company) builds a quantum communi-
cation network from a given set of quantum channels,
using a subset of allowed higher-order operations, de-
scribed by quantum supermaps [10, 29, 30]. The purpose
of the model is to analyse how the ability to combine
quantum channels through the quantum SWITCH af-
fects their communication capability. The set of allowed
operations includes composition in parallel, in sequence,
and through the quantum SWITCH [14], without assum-
ing a specific implementation of the quantum SWITCH.
This makes the theory applicable not only to standard
quantum theory, but also to future extensions of it to
new spacetime scenarios, involving e.g. superposition of
spacetimes [43, 44] or closed timelike curves [10]. In con-
trast, the second-quantised model proposed in our paper
refers to the known physics of quantum particles propa-
gating in a well-defined background spacetime.

C. Communication model with time-correlated

channels

In the previous section we gave a physical model for
the realisation of time-correlated channels through inter-
actions with an environment. It is important to stress,
however, that the superposition of time-correlated chan-
nels can be realised without access to the environment.
Generally, correlations between multiple time steps can

be described as quantum memory channels [45] and can
be conveniently represented with the framework of quan-
tum combs [30, 46] (see also [47]). Crucially, the frame-
work of quantum combs does not need the specification
of the internal memories. In a communication scenario,
this means that the communication resources can be de-
scribed purely in terms of the local input/output systems
available to the communicating parties, without the need
of specifying the details of the interactions with the en-
vironment.
An example of a communication protocol using a su-

perposition of two channels with memory is shown in
Figure 12. Each channel has T pairs of input/output sys-
tems, whose evolution is correlated by an internal mem-
ory. Each input system can either carry a message or be
in the vacuum. The communication protocol works as
follows:

1. The sender encodes a quantum system Q in the

one-particle subspace of the system Ãin
1 ⊗ B̃in

1 , rep-

resenting the inputs of the first time step. The
encoding operation is required to be of the product
form E = M⊗ ω, where M is a channel from Q to
M , and ω is a fixed state of the path.

2. The communication channel transfers information
from the (one-particle subspace of the) first input

system Ãin
1 ⊗ B̃in

1 to the (one-particle subspace of

the) first output system Ãout
1 ⊗ B̃out

1 , which is re-
ceived by a repeater. The repeater implements
the operation R1, which relays the message to the
(one-particle subspace of the) second input system

Ãin
2 ⊗ B̃in

2 . The repeater operation is required to be
of the product form

U†R1U = M′ ⊗ P , (32)

where M′ is a quantum channel acting only on the
message (not necessarily the same channel used in
the encoding operation), and P is a quantum chan-
nel acting only on the path (for simplicity, we as-
sume here that the input and output systems at all
steps are isomorphic to M).

3. The journey of the message to the receiver contin-
ues through T time steps, alternating transmissions
through noisy channels and repeaters. Eventually,
the message reaches the receiver, who performs a
decoding operation D.

We finally mention that the correlations in time, rep-
resented by quantum memory channels/quantum combs,
and the correlations in space, represented by shared
states, can be combined together, giving rise to complex
patterns of correlated channels through which informa-
tion can travel in a superposition of paths.

D. Examples

Several examples of Shannon-theoretic advantages of
the quantum SWITCH have been recently presented,
both for classical [14, 18] and for quantum communica-
tion [15, 16]. Here we briefly highlight the main features,
also providing a new example of classical communication
involving the superposition of two pure erasure channels.

1. Self-switching

Quite counterintuitively, switching a quantum channel
with itself gives rise to a number of non-trivial phenom-
ena. Suppose that a quantum system A is sent through
two independent uses of the same channel A, with the
control qubit in the |+〉 state. When the message is pre-
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Q Ã Q

U R1

Ã2
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FIG. 12: Superposition of two quantum memory channels. The state of a quantum system Q is encoded into a quantum
particle, with internal degree of freedom M (“message”) and external degree of freedom P (“path”). The composite system

M ⊗ P is then mapped onto the one-particle subspace of the composite system Ã ⊗ B̃ by the unitary channel U . Channels

Ãi, B̃i, i ∈ {1, 2, . . . , T} are then applied to the composite systems E ⊗ Ã and B̃ ⊗ F , respectively, where E and F are internal

memories. Between each successive pair of channels Ãi, B̃i, a repeater Ri acts on the system Ã ⊗ B̃, preparing the input for
the next step. After T iterations, the decoding operation D converts the output back into system Q.

pared in the input state ρ, the output state is

S(A,A)(ρ ⊗ |+〉〈+|) = C+(ρ)⊗ |+〉〈+|+ C−(ρ)⊗ |−〉〈−|

(33)

C+(ρ) =
1

4

∑

i,j

{Ai, Aj}ρ{Ai, Aj}†

C−(ρ) =
1

4

∑

i,j

[Ai, Aj ]ρ[Ai, Aj ]
† ,

where {Ai} is any Kraus representation of channel A,
while [A,B] and {A,B} denote the commutator and anti-
commutator, respectively.
Equation (33) gives a number of insights into the sce-

narios where the superposition of orders offers advan-
tages. First of all, note that the action of the quan-
tum SWITCH is trivial if the Kraus operators of chan-
nel A commute with one another. In that case, C+ is
equal to A2, while C− is zero. Instead, non-trivial effects
take place when some of the operators do not commute.
For example, suppose that A is a pure erasure channel,
viz. A(ρ) = |ψ0〉〈ψ0| for every state ρ. Then, the self-
switching formula (33) yields the output state

S(A,A)(ρ ⊗ |+〉〈+|) = |ψ0〉〈ψ0| ⊗
[
p|+〉〈+|+ (1 − p)

I

2

]

(34)

p = 〈ψ0|ρ|ψ0〉 .
The resulting communication channel is identical to

the communication channel in Eq. (21), and its classical
capacity is log2(5/4) ≈ .32.

2. Perfect communication through a coherent superposition
of orders

Another consequence of the self-switching formula
(33), is that one can obtain perfect quantum commu-
nication using a noisy channel A. A qubit example was

recently discovered in [16] and involves the random uni-
tary channel A = 1/2(X + Y), with X = X · X and
Y = Y · Y . With this choice, the channels C+ and C−
in the self-switching formula (33) are the identity or the
phase flip channel Z = Z ·Z, respectively. Hence, perfect
communication can be achieved by measuring the path
and conditionally performing a correction operation on
the message. More generally, it is clear that the same
effect takes place for a random-unitary channel that per-
forms either the unitary gate U or the unitary gate V ,
provided that the conditions U2 = V 2 and {U, V } = 0 are
satisfied. The possibility of a complete removal of noise
through the self-switching effects is in stark contrast with
the irreducible amount of noise characterising the super-
position of noisy channels on independent paths, cf. the
discussion around Equation (24).

V. CONCLUSIONS

We have developed a Shannon-theoretic framework for
communication protocols where information propagates
along a superposition of multiple paths, experiencing
either independent or correlated processes along them.
Central to our framework is a separation between the in-
ternal and external degrees of freedom of the information
carrier. Information is encoded only in the internal de-
grees of freedom, while its propagation is determined by
the state of the external degrees of freedom. As infor-
mation propagates through space and time, the internal
and external degrees of freedom become correlated, and
such correlations can be exploited by a receiver to en-
hance their ability to decode the sender’s message. Sev-
eral examples have been provided, including protocols for
classical communication with pure erasure channels and
for quantum communication with entanglement-breaking
channels.
Our basic model assumed that the external degrees of

freedom are not subject to noise. This assumption can
be easily relaxed by introducing noisy channels, such as
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dephasing or loss of particles along different paths. An
important direction for future research is to quantify how
much noise can be tolerated while still having an advan-
tage over conventional communication protocols where
information travels along a single, well-defined path.
The step from a first to a second quantisation is in

tune with other recent developments in quantum Shan-
non theory, such as the study of network scenarios [48].
As technology advances towards the realisation of quan-
tum communication networks, we expect that scenarios
involving the superpositions of paths will become acces-
sible, enabling new communication protocols as well as
new fundamental experiments of quantum mechanics in
spacetime.
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Appendix A: Proof of Theorem 1

The starting point of the proof is the characterisation of the No Leakage Condition (2) in terms of Kraus operators.

Lemma 1. Let C̃(ρ) =
∑r

i=1 C̃iρC̃
†
i be a Kraus representation of channel C̃. Then, channel C̃ satisfies the No Leakage

Condition if and only if

PAC̃iPA = C̃iPA ∀i ∈ {1, . . . , r} . (A1)

Proof. The No Leakage Condition can be rewritten as

Tr

[(
∑

i

PAC̃
†
i PAC̃iPA

)
ρ

]
= Tr[PAρ] ∀ρ ∈ St(A) ,

or equivalently

∑

i

PAC̃
†
i PAC̃iPA = PA . (A2)

On the other hand, one has the inequality

PA = PA

(
∑

i

C̃†
i C̃i

)
PA

=
∑

i

PAC̃
†
i

(
PA + P⊥

A

)
C̃iPA P⊥

A := I − PA

≤
∑

i

PAC̃
†
i PAC̃iPA , (A3)

where the equality sign holds if and only if

∑

i

PAC̃
†
i P

⊥
A C̃iPA = 0 , (A4)

or equivalently,

∑

i

(
P⊥
A C̃iPA

)† (
P⊥
A C̃iPA

)
= 0 , (A5)

Since every term in the sum is a positive semidefinite operator, the equality holds if and only if each term is zero,

namely if and only if P⊥
A C̃iPA = 0 for every i. In conclusion, we obtained

C̃iPA = (PA + P⊥
A )C̃iPA = PAC̃iPA ,

as stated in Equation (A1).

Proof of Theorem 1. 1 =⇒ 2. Let S ∈ Chan(A ⊕ B) be a superposition of channels A ∈ Chan(A) and

B ∈ Chan(B), and let S(ρ) = ∑i SiρS
†
i be a Kraus decomposition of S. Since S satisfies the No Leakage Condition

for A, we must have

SiPA = PASiPA ∀i ∈ {1, . . . r} . (A6)

Similarly, since S satisfies the No Leakage Condition for B, we must have

SiPB = PBSiPB ∀i ∈ {1, . . . r} . (A7)

Combining Equations (A6) and (A7) we obtain Si = Si(PA +PB) = Ai⊕Bi, with Ai := PASiPA and Bi := PBSiPB.
Since the restriction of S to sector A must be channel A, we have the condition S(PAρPA) = A(PAρPA). Hence,
we conclude that {Ai}ri=1 is a Kraus representation of A. Similarly, since the restriction of S to sector B must be
channel B, we conclude that {Bi}ri=1 must be a Kraus representation of B.
2 =⇒ 1 is immediate.
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2 =⇒ 3. Consider the Stinespring representation of channel S, obtained by introducing an environment E of
dimension r, equal to the number of Kraus operators of S. Explicitly, the Stinespring representation is given by the
isometry V =

∑r
i=1 Si ⊗ |i〉, where {|i〉}ri=1 is the canonical basis for E. Since each Si is of the form Si = Ai ⊕ Bi,

the isometry V is of the direct sum form V = VA ⊕ VB, where VA : HA → HA ⊗HE and VB : HB → HB ⊗ HE are
the isometries defined as

VA :=

r∑

i=1

Ai ⊗ |i〉 (A8)

VB :=

r∑

i=1

Bi ⊗ |i〉 . (A9)

Now, each isometry VA and VB can be extended to a unitary UA and UB, so that VA = UA(IA ⊗ |ηA〉) and VB =
UB(IB ⊗ |ηB〉), where |ηA〉 and |ηB〉 are unit vectors in HE .
Note that (i) one can choose |ηA〉 = |ηB〉 = |η〉 without loss of generality, and (ii) each unitary UA and UB can

be realised as a time evolution for time T with Hamiltonian HAE and HBE , respectively. Hence, one can define the
unitary evolutions UA := exp[−iHAE T/~], UB := exp[−iHBE T/~], and U := exp[−i(HAE ⊕HBE)T/~] = UA ⊕ UB.
With these definitions, we have

TrE

[
UAE(ρ⊗ |η〉〈η|)U †

AE

]
=
∑

i

KiρK
†
i , (A10)

with

Ki :=
(
IA ⊗ 〈i|

)
UAE

(
IA ⊗ |η〉

)

=
(
IA ⊗ 〈i|

)
VA

= Ai , (A11)

having used Equation (A8) in the last equality. Similarly, we have

TrE

[
UBE(ρ⊗ |η〉〈η|)U †

BE

]
=
∑

i

LiρL
†
i , (A12)

with

Li :=
(
IB ⊗ 〈i|

)
UBE

(
IB ⊗ |η〉

)

=
(
IB ⊗ 〈i|

)
VB

= Bi , (A13)

having used Equation (A9) in the last equality, and

TrE
[
U(ρ⊗ |η〉〈η|)U †] =

∑

i

MiρM
†
i , (A14)

with

Mi :=
(
IS ⊗ 〈i|

)
U
(
IS ⊗ |η〉

)
S := A⊕B

=
(
IA ⊗ 〈i|

)
UAE

(
IA ⊗ |η〉

)
⊕
(
IB ⊗ 〈i|

)
UBE

(
IB ⊗ |η〉

)

= Li ⊕Ki

= Ai ⊕Bi . (A15)

3 =⇒ 1. Let E be an environment, let |η〉 ∈ HE be a pure state, and let HAE ,HBE be Hamiltonians with supports
in HA ⊗HE and HB ⊗HE , respectively, such that

A(ρ) = TrE [UAE(ρ⊗ η)U †
AE ] UAE = exp[−iHAE T/~]

B(ρ) = TrE [UBE(ρ⊗ η)U †
BE ] UBE = exp[−iHBE T/~]

S(ρ) = TrE [U(ρ⊗ η)U †] U = exp[−i(HAE ⊕HBE)T/~] ≡ UAE ⊕ UBE . (A16)
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By construction, if ρ has support in HA, one has

S(ρ) = TrE [UPAE (ρ⊗ η)PAEU
†] PAE := PA ⊗ IE

= TrE [UAE (ρ⊗ η)U †
AE ]

= A(ρ) . (A17)

Similarly, if ρ has support in HB , one has

S(ρ) = TrE [UPBE (ρ⊗ η)PBEU
†] PBE := PB ⊗ IE

= TrE [UBE (ρ⊗ η)U †
BE ]

= B(ρ) . (A18)

Hence, S is a superposition of A and B.

Appendix B: Vacuum extensions with non-trivial vacuum dynamics

Let HVac be the vacuum sector, i.e. the subspace corresponding to the vacuum degrees of freedom.

Definition 4. Let C ∈ Chan(A) be a quantum channel. A vacuum extension of channel C is any channel C̃ ∈
Chan(A ⊕Vac) such that (i) C̃ satisfies the No Leakage Condition with respect to A and Vac, and (ii) the restriction

of C̃ to sector A is channel C.

The proof of Theorem 1, provided in Appendix A, shows that every vacuum extension C̃ must have Kraus operators
of the form

C̃i = Ci ⊕ CVac,i i ∈ {1, . . . , r} (B1)

where {Ci}ri=1 is a Kraus representation of C and {CVac,i}ri=1 are Kraus operators of a channel CVac ∈ Chan(Vac),
representing the dynamics of the vacuum sector.
The simplest case is when the vacuum does not evolve under the action of the device, in which case CVac is the

identity channel. In this case, the Kraus operators of the vacuum extension have the simpler form

C̃i = Ci ⊕ γi I i ∈ {1, . . . , r} , (B2)

with
∑

i |γi|2 = 1, which is essentially equivalent to a vacuum extension with a one-dimensional vacuum subspace.
We now use the vacuum extension to define an operational superposition of two channels A and B. For simplicity,

we assume that the “vacuum for system A” is the same as the “vacuum for system B”, and we will denote it as
Vac. The operational superposition of channels is built in the following way. First, the direct sum sector A ⊕ B is

embedded into the tensor product Ã⊗ B̃, with Ã = A⊕Vac and B̃ = B ⊕Vac using the isometry

V : HA ⊕HB → HÃ ⊗HB̃

|α〉 ⊕ |β〉 7→ |α〉 ⊗ |υ0〉 ⊕ |υ0〉 ⊗ |β〉 , (B3)

where |υ0〉 is a fixed unit vector in HVac.

As an inverse of the isometry V : A⊕B → Ã⊗ B̃, we use the following vacuum-discarding map:

Definition 5. A map T ∈ Chan(Ã⊗ B̃, A⊕B) is a vacuum-discarding map if it has the form

T (ρ) = T succ(ρ) + T fail(ρ) , (B4)

where T (succ) is the quantum operation with Kraus operators

T succ
k = PA ⊗ 〈υk| ⊕ 〈υk| ⊗ PB , (B5)

{|υk〉}dVac

k=1 being an orthonormal basis for the vacuum subspace, and

T (fail)(ρ) = (1− Tr[Psucc ρ]) |ψ0〉〈ψ0|, (B6)

where |ψ0〉 is a fixed vector in HA ⊕HB and Psucc := PA ⊗ PVac + PVac ⊗ PB.
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Physically, the map T inverts the isometry V when the total system is in the one-particle sector (A⊗Vac)⊕(Vac⊗B),
and outputs a “failure state” |ψ0〉 when the system is in the two-particle or zero-particle sectors. Note that the
definition of the map T succ is independent of the choice of orthonormal basis {|υi〉} for the vacuum subspace.
Using the above notions, one can define a superposition of two channels in the following way:

Definition 6. Let A ∈ Chan(A) and B ∈ Chan(B) be two quantum channels with vacuum extensions Ã and B̃,
respectively. Let V be the isometry defined in Equation (B3), and T be the vacuum-discarding map defined in Equation

(B4). Then, the superposition of A and B specified by Ã, B̃, V , and T is the quantum channel S ∈ Chan(A ⊕ B)
defined by

S := T ◦ (Ã ⊗ B̃) ◦ V , (B7)

with V(·) := V · V †.

Note that in the case where we restrict the overall system to be in the one-particle sector, Tr[Psucc ρ] = 1, so
T (ρ) = T (succ)(ρ). If in addition the vacuum is taken to be one-dimensional, then T reduces to the unitary channel
V† of Equation (7), in which case the above Definition 6 reduces to Definition 3 in the main text.
Using the definition (B7), one can express the superposition as

S(ρ) =A(PAρPA)⊕ B(PBρPB)

+
∑

i,j

AiρB
†
j 〈υ0|A†

Vac,iBVac,j|υ0〉

+
∑

i,j

BjρA
†
i 〈υ0|B†

Vac,jAVac,i|υ0〉 . (B8)

The merit of this expression is that it shows how the interference between the two channels A and B is mediated by
the vacuum. More explicitly, the superposition has a Kraus representation of the form

Sijk = Ai βjk ⊕Bj αik , (B9)

where {Ai} and {Bj} are the Kraus representations used in the definition of the vacuum extensions Ã and B̃,
respectively, and

αik := 〈υk|AVac,i|υ0〉 and βjk := 〈υk|BVac,j|υ0〉 , (B10)

where {AVac,i} and {BVac,j} are the Kraus representations of the vacuum dynamics associated to the extensions Ã
and B̃, respectively.
We have seen that every vacuum extension leads to a superposition of channels with Kraus operators as in Equation

(B9). It is worth noting that the converse also holds:

Proposition 2. Let {Ai}rAi=1 and {Bj}rAj=1 be Kraus decompositions for A and B, respectively, and let

{αik}i∈{1,...,ra},k∈{1,...,v} and {βjk}j∈{1,...,rB},k∈{1,...,v} be complex numbers such that
∑

i,k |αi,k|2 =
∑

j,k |βj,k|2 = 1

(note that rA and rB need not be equal here). Then, there exist two vacuum extensions Ã and B̃, with v-dimensional
vacuum sector, such that the Kraus operators Sijk := Ai βjk ⊕Bj αik define a superposition of channels A and B.

Proof. Define the probabilities pi :=
∑

k |αi,k|2 and qj :=
∑

k |βj,k|2 and the unit vectors

|α(1)
i 〉 :=

∑
k αi,k |υk〉√

pi
and |β(1)

j 〉 :=
∑

k βj,k |υk〉√
qj

. (B11)

Then, define the Kraus operators

AVac,i :=
√
pi UA,i UA,i :=

v∑

k=1

|α(k)
i 〉〈υk|

BVac,j :=
√
qj UB,j UB,j :=

v∑

k=1

|β(k)
j 〉〈υk| , (B12)
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where, for every fixed i and j, {|α(k)
i 〉} and {|β(k)

j 〉} are two orthonormal bases of HVac, containing the vectors |α(1)
i 〉

and |β(1)
j 〉, respectively. Then, UA,i and UB,j are unitary operators acting on the vacuum subspace, and {AVac,i} and

{BVac,j} are the Kraus representations of two (random-unitary) channels. The thesis follows by defining the vacuum

extensions Ã and B̃ through their Kraus representations Ãi := Ai ⊕AVac,i and B̃j := Bj ⊕BVac,j , and by setting the
initial state of the vacuum to be the first state of the basis {|υk〉}.

Appendix C: Vacuum extensions and unitary dilations

Here we clarify the relation between the superposition of channels defined through their action on the vacuum and
the superposition of channels defined through their unitary implementation.
Oi [9] defined the superposition of two channels A ∈ Chan(S) and B ∈ Chan(S) in terms of their unitary implemen-

tations

A(ρ) = TrE

[
USE (ρ⊗ |η〉〈η|)U †

SE

]
(C1)

B(ρ) = TrF

[
VSF (ρ⊗ |φ〉〈φ|)V †

SF

]
, (C2)

where E and F are quantum systems (the “environments” for A and B, respectively), U and V are unitary operations,
representing the joint evolution of system and environment, and |η〉 and |φ〉 are initial pure states of the environments
E and F , respectively. The superposition of channels A and B is defined as the channel S, taking system S and a
control qubit C as input, and satisfying the relation

SOi(ρS ⊗ ρC) : = TrEF

[
W (ρS ⊗ |η〉〈η| ⊗ |φ〉〈φ| ⊗ ρC)W

†]

with

W =
(
USE ⊗ IF ⊗ |0〉 0|

)
+
(
VSF ⊗ IE ⊗ |1〉〈1|

)
. (C3)

One can extend Oi’s definition to the case of channels A and B acting on generally different systems A and B. In
this case, the unitary implementations read

A(ρ) = TrE

[
UAE (ρ⊗ |η〉〈η|)U †

AE

]
(C4)

B(ρ) = TrF

[
VBF (ρ⊗ |φ〉〈φ|)V †

BF

]
, (C5)

and the superposition channel S ∈ Chan(A⊕B) is defined as

SOi(ρ) : = TrE TrF
[
W (ρ⊗ |η〉〈η| ⊗ |φ〉〈φ|)W †] (C6)

with

W = (UAE ⊗ IF )⊕ (VBF ⊗ IE) . (C7)

For brevity, we will denote the unitary extensions of A and B as (U, |η〉) and (V, |φ〉), respectively.
We now show that the superpositions of channels arising from Oi’s definition coincide with the superpositions

specified by vacuum extensions defined in this paper, provided that the vacuum subspace is one-dimensional. More
generally, we have the following theorem:

Theorem 2. The following are equivalent:

1. channel S is a standard superposition of independent channels A and B, specified by vacuum extensions Ã and

B̃ with vacuum subspace of dimension v

2. channel S has the unitary realisation of the form

S(ρ) : = TrE TrF TrG
[
W (ρ⊗ |η〉〈η| ⊗ |φ〉〈φ| ⊗ |γ〉〈γ|)W †], (C8)

where G is a v-dimensional system, |γ〉 is a fixed pure state of G, and

W =
(
UAE ⊗ UFG

)
⊕
(
VBF ⊗ VEG

)
. (C9)

Here, (UAE , |η〉) is a unitary extension of A, (VBF , |φ〉) is a unitary extension of B, and UFG and VEG are
unitary operators.
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Proof. 1 =⇒ 2. Suppose that S is a standard superposition with v-dimensional vacuum. Then, S has Kraus
operators of the form Sijk = Ai βjk ⊕ Bj αik, where {Ai} and {Bj} are Kraus operators of A and B, respectively,
while {αik} and {βjk} are complex amplitudes, cf. Eq. (B9). Then, one can construct a Stinespring isometry for S
as

V =
∑

ijk

Sijk ⊗ |i〉E ⊗ |j〉F ⊗ |k〉G

=
(
VA ⊗ |β〉FG

)
⊕
(
VB ⊗ |α〉EG

)
, (C10)

with

VA :=
∑

i

Ai ⊗ |i〉E |β〉FG :=
∑

j,k

βjk |j〉F ⊗ |k〉G

VB :=
∑

j

Bj ⊗ |j〉F |α〉EG :=
∑

i,k

αi,k |i〉E ⊗ |k〉G . (C11)

Now, the isometries VA and VB can be extended to unitary operators UAE and VBF such that

VA = UAE

(
IA ⊗ |η〉

)

VB = VBF

(
IB ⊗ |φ〉

)
. (C12)

Likewise, for every fixed pure state |γ〉 ∈ HG, one can find unitary operators UFG and VEG such that

|β〉 = UFG

(
|φ〉F ⊗ |γ〉G

)

|α〉 = VEG

(
|η〉E ⊗ |γ〉G

)
(C13)

Hence, we obtain

S(ρ) = TrEFG[V ρV
†]

= TrEFG

{[(
VA ⊗ |β〉FG

)
⊕
(
VB ⊗ |α〉EG

)]
ρ
[(
VA ⊗ |β〉FG

)
⊕
(
VB ⊗ |α〉EG

)]†}

= TrEFG

{[(
UAE ⊗ UFG

)
⊕
(
VBF ⊗ VEG

)] (
ρ⊗ ηE ⊗ φF ⊗ γG

)

×
[(
UAE ⊗ UFG

)
⊕
(
VBF ⊗ VEG

)]†}

= TrEFG[W
(
ρ⊗ ηE ⊗ φF ⊗ γG

)
W †] , (C14)

where ηE = |η〉 〈η|E , φF = |φ〉 〈φ|F and γG = |γ〉 〈γ|G.
2 =⇒ 1. Suppose that channel S has the unitary extension (C8). Then, it has a Stinespring isometry of the form

V = (VA ⊗ |β〉FG)⊕ (VB ⊗ |α〉EG) , (C15)

where VA := UAE(IA ⊗ |η〉) and VB := VBF (IB ⊗ |φ〉F ) are Stinespring isometries for A and B, respectively, while
|α〉EG := UFG(|φ〉 ⊗ |γ〉) and |β〉FG := VEG(|η〉 ⊗ |γ〉) are pure states.

Now, one has S(ρ) = TrEFG[V ρV
†] =

∑
i,j,k SijkρS

†
ijk, with

Sijk := (IS ⊗ 〈i|E ⊗ 〈j|F ⊗ 〈k|G)V

= (IS ⊗ 〈i|E ⊗ 〈j|F ⊗ 〈k|G)
[
(VA ⊗ |β〉FG)⊕ (VB ⊗ |α〉EG)

]

=
[
(IA ⊗ 〈i|E)VA (〈jF ⊗ 〈k|G) |β〉FG

]
⊕
[
(IB ⊗ 〈j|F )VB (〈iE ⊗ 〈k|G) |α〉EG

]

= Ai βjk ⊕Bj αik , (C16)

having defined Ai := (IA ⊗ 〈i|E)VA, Bj := (IB ⊗ 〈j|F )VB, αik := (〈i|E ⊗ 〈k|G)|α〉EG, and βjk := (〈j|F ⊗ 〈k|G)|β〉FG.
By construction {Ai} and {Bj} are Kraus representations ofA and B, and the amplitudes {βjk} and {αik} satisfy the

normalisation conditions
∑

j,k |βjk|2 = 1 and
∑

i,k |αik|2 = 1. By Proposition 2 we conclude that S is a superposition,
specified by vacuum extensions, with v-dimensional vacuum.
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Theorem 2 shows that Oi’s superpositions coincide with our superpositions specified by vacuum extensions in the
special case of one-dimensional vacuum: in this case, system G is not present and the unitaries UFG and VEG can be
taken to be the identity without loss of generality, e.g. by redefining |η′〉 = VEG|η〉 and |φ′〉 = UFG|φ〉. In this way,
one retrieves Equations (C6) and (C7).

Appendix D: Extreme vacuum extensions

For a fixed dimension v of the vacuum subspace, the vacuum extensions of a given channel C form a convex set,
denoted as Vac(C, v). The extreme points of the set are characterised by a straightforward generalisation of Choi’s
extremality theorem [49]:

Proposition 3 (Extreme vacuum extensions). Let C̃ ∈ Chan(A⊕Vac) be a vacuum extension of C with v-dimensional

vacuum subspace, and let {C̃i = Ci ⊕ CVac,i}ri=1 be a Kraus representation of C̃ consisting of linearly independent

operators. The channel C̃ is an exteme point of Vac(C, v) if and only if the operators
{
C†

jCi ⊕ C†
Vac,jCVac,i

}
i,j∈{1,...,r}

are linearly independent.

Proof. Channel C̃ is an extreme point if and only if no pair of channels C̃1 ∈ Vac(C, v) and C̃2 ∈ Vac(C, v) exist such
that C̃ = (C̃1 + C̃2)/2. Equivalently, channel C̃ is an extreme point if and only if there exists no Hermitian-preserving

map P such that C̃ ± P is in Vac(C, v). Now, the same argument of Choi’s theorem [49] shows that the maps C̃ ± P
are completely positive if and only if the map P is of the form P(ρ) =

∑
i,j pij C̃iρC̃

†
j , for some Hermitian matrix

[pij ]. Then, the maps C̃ ±P are trace-preserving if and only if
∑

i,j pij C̃
†
j C̃i = 0. This condition implies the condition

pij = 0 for all i, j if and only if the operators {C̃†
j C̃i}ri,j=1 are linearly independent. The condition in Proposition 3

then follows from the block diagonal form (B1).

Proposition 3 yields several necessary conditions for a vacuum extension to be extreme.

Proposition 4. Let C̃ ∈ Chan(A ⊕ Vac) be a vacuum extension of C with a v-dimensional vacuum subspace, let

{C̃i = Ci ⊕ CVac,i}ri=1 be a Kraus representation of C̃ consisting of linearly independent operators, and let L be the

number of linearly independent operators in the set {C†
jCi}ri,j=1. If C̃ is an extreme vacuum extension, then the bound

r2 ≤ L+ v2 holds.

Proof. Let us use the shorthand notation (i, j) := k, Ok := C†
jCi, and OVac,k = C†

Vac,jCVac,i. Let S be a set

of values of k such that the operators {Ok , k ∈ S} are linearly independent. Every operator Ol with l 6∈ S can be
decomposed as Ol =

∑
k∈S

λlk Ok. Now, let {ck} be coefficients such that

∑

k

ck (Ok ⊕OVac,k) = 0 . (D1)

Projecting on the subspace HA, we obtain the condition

∑

k∈S


ck +

∑

l 6∈S

cl λlk


 Ok = 0 , (D2)

which implies

ck = −
∑

l 6∈S

cl λlk ∀k ∈ S . (D3)

Projecting on the subspace HVac and using relation (D3), we obtain the condition

∑

l 6∈S

clAl = 0, Al := OVac,l −
∑

k∈S

λlk OVac,k . (D4)

Now, the number of terms in the sum (D4) is r2 − L. If this number exceeds v2, then some of the operators {Al}l 6∈S

must be linearly dependent, and therefore there exist non-zero coefficients {cl}l 6∈S such that Equations (D4) and
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Equation (D1) hold. In that case, C̃ would not be extreme. Hence, an extreme vacuum extension must satisfy the
relation r2 − L ≤ v2.

An easy corollary is that the evolution of the system and the evolution of the vacuum must be coherent with one

another, meaning that the Kraus operators C̃i = Ci ⊕CVac,i cannot be separated into a set with Ci = 0 and another
set with CVac,i = 0. Quantitatively, we have the following:

Proposition 5. Let C̃ ∈ Chan(A⊕Vac) be a vacuum extension of C with v-dimensional vacuum subspace, let {C̃i =

Ci ⊕ CVac,i}ri=1 be a Kraus representation of C̃ consisting of linearly independent operators, and let z be the number

of values of i such that Ci = 0. If C̃ is an extreme vacuum extension, then the bound z ≤
√
v2 + 1 − 1 holds. In

particular, for a one-dimensional vacuum (v = 1), none of the Kraus operators Ci can be zero.

Proof. Since z Kraus operators are null, the number L of linearly independent operators of the form {C†
jCi} is at

most (r − z)2. Hence, Proposition 4 implies the bound

r2 ≤ L+ v2 ≤ (r − z)2 + v2 , (D5)

which implies

2rz ≤ z2 + v2 . (D6)

Now, since C̃ is trace-preserving, there exists at least one value of i such that Ci 6= 0. Hence, r ≥ z + 1 and one has
z(z + 2) ≤ v2. Solving in z, one obtains z ≤

√
v2 + 1− 1.

Appendix E: Proof of Proposition 1

Proof of Proposition 1. The proof is by contradiction. Let E0(·) = |ψ0〉〈ψ0|Tr[·] be a pure erasure channel acting
on the message system M . Suppose that channel C = E0 ⊗ IP has the form

C(ρM ⊗ ωP ) = U†
(
TrEF

{
(ṼAE ⊗ W̃BF )[U(ρM⊗ωP )⊗ σEF ]

})
(E1)

where σEF is a suitable state of EF , and ṼAE(·) = ṼAE · Ṽ †
AE and W̃BF (·) = W̃BF · W̃ †

BF are local vacuum extensions
satisfying the conditions

ṼAE = VAE ⊕
(
|vac〉〈vac| ⊗ IE

)
and W̃AE =WAE ⊕

(
|vac〉〈vac| ⊗ IF

)
(E2)

Without loss of generality, we assume the initial state σEF to be pure, namely σEF = |Φ〉〈Φ|EF .
Since C = E0 ⊗ IP , we must have

C(ρM ⊗ |0〉〈0|P ) = |ψ0〉〈ψ0|M ⊗ |0〉〈0|P ∀ρ ∈ St(M) (E3)

and

C(ρM ⊗ |1〉〈1|P ) = |ψ0〉〈ψ0|M ⊗ |1〉〈1|P ∀ρ ∈ St(M) . (E4)

Now, suppose that the input state ρ is pure, say ρ = |ψ〉〈ψ|. Then, condition (E3) yields

|ψ0〉〈ψ0|M ⊗ |0〉〈0|P = C(|ψ〉〈ψ|M ⊗ |0〉〈0|P )

= U†
(
TrEF

{
(ṼAE ⊗ W̃BF )[U(|ψ〉〈ψ|M⊗|0〉〈0|P )⊗ σEF ]

})

= U†
{
TrEF [(VAE ⊗ IBF )(|ψ〉〈ψ|A ⊗ |vac〉〈vac|B ⊗ |Φ〉〈Φ|EF )]

}
, (E5)

or equivalently,

|ψ0〉〈ψ0|A ⊗ |vac〉〈vac|B = TrEF [(VAE ⊗ IBF )(|ψ〉〈ψ|A ⊗ |vac〉〈vac|B ⊗ |Φ〉〈Φ|EF )] , (E6)

which in turn is equivalent to

|ψ0〉〈ψ0|A = TrEF [(VAE ⊗ IF )(|ψ〉〈ψ|A ⊗ |Φ〉〈Φ|EF )] . (E7)
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Since the pure state |ψ〉 is generic, this condition implies

(VAE ⊗ IF )(IA ⊗ |Φ〉EF ) = |ψ0〉A ⊗ S , (E8)

where S : HA → HEF is an isometry. Similarly, condition (E4) yields the relation

(WBF ⊗ IE)(IB ⊗ |Φ〉EF ) = |ψ0〉B ⊗ T , (E9)

where T : HB → HEF is an isometry.
Now, the condition C = E0 ⊗ IP also implies

|ψ0〉〈ψ0|M ⊗ |+〉〈+|P = C(|ψ〉〈ψ|M ⊗ |+〉〈+|P )

= U†
(
TrEF

{
(ṼAE ⊗ W̃BF )[U(|ψ〉〈ψ|M⊗|+〉〈+|P )⊗ σEF ]

})

= U†
{
TrEF

[
(ṼAE ⊗ W̃BF )

( |ψ〉A ⊗ |vac〉B + |vac〉A ⊗ |ψ〉B√
2

⊗ |Φ〉EF

)

×
( 〈ψ|A ⊗ 〈vac|B + 〈vac|A ⊗ 〈ψ|B)√

2
⊗ 〈Φ|EF

)
(ṼAE ⊗ W̃BF )

†
]}

.

We combine this equality with the relations
(
ṼAE ⊗ W̃BF

)(
|ψ〉A ⊗ |vac〉B ⊗ |Φ〉EF

)
=
(
VAE ⊗ IBF

)(
|ψ〉A ⊗ |vac〉B ⊗ |Φ〉EF

)

= |ψ0〉A ⊗ |vac〉B ⊗ S|ψ〉 (E10)

and
(
ṼAE ⊗ W̃BF

)(
|vac〉A ⊗ |ψ〉B ⊗ |Φ〉EF

)
=
(
IAE ⊗WBF

)(
|ψ〉A ⊗ |vac〉B ⊗ |Φ〉EF

)

= |vac〉A ⊗ |ψ0〉B ⊗ T |ψ〉 , (E11)

thus obtaining

|ψ0〉〈ψ0|M ⊗ |+〉〈+|P = U†
{
TrEF

[( |ψ0〉A ⊗ |vac〉B ⊗ S|ψ〉+ |vac〉A ⊗ |ψ0〉B ⊗ T |ψ〉√
2

)

×
( 〈ψ0|A ⊗ 〈vac|B ⊗ 〈ψ|S† + 〈vac|A ⊗ 〈ψ0|B ⊗ 〈ψ|T †

√
2

)]}

= TrEF

[( |ψ0〉M ⊗ |0〉P ⊗ S|ψ〉+ |ψ0〉M ⊗ |1〉P ⊗ T |ψ〉√
2

)

×
( 〈ψ0|M ⊗ 〈0|P ⊗ 〈ψ|S† + 〈ψ0|M ⊗ 〈1|P ⊗ 〈ψ|T †

√
2

)]

= |ψ0〉〈ψ0|M ⊗ TrEF [|Ψ〉〈Ψ|PEF ] , (E12)

with

|Ψ〉PEF :=
|0〉P ⊗ S|ψ〉+ |1〉P ⊗ T |ψ〉√

2
(E13)

Since Equation (E12) must be satisfied for every |ψ〉, we conclude that T and S must be equal.
To conclude the proof, consider the channels M(ρ) := TrF [SρS

†] and Mc(ρ) := TrE [SρS
†]. Here, we regard both

channels as having input M , owing to the identification A ≃ B ≃M . Using Equation (E9), we obtain

M(ρ) = TrMF [|ψ0〉〈ψ0| ⊗ SρS†]

= TrMF

[
(WMF ⊗ IE)(ρM ⊗ |Φ〉〈Φ|EF )

]

= TrF [|Φ〉〈Φ|EF ] ∀ρ ∈ St(M) . (E14)

Similarly, Equation (E8) implies

Mc(ρ) = TrME [|ψ0〉〈ψ0| ⊗ SρS†]

= TrME

[
(VME ⊗ IF )(ρM ⊗ |Φ〉〈Φ|EF )

]

= TrE [|Φ〉〈Φ|EF ] ∀ρ ∈ St(M) . (E15)
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Now, Equation (E14) implies that Mc is correctable (i.e. can be inverted to recover the state ρ), while Equation
(E15) implies that M is correctable [5]. Since M and Mc are complementary to each other, this is in contradiction
with the no-cloning theorem: by correcting M one would retrieve one copy of ρ, and by correcting Mc one would
retrieve another copy. In conclusion, the channel E0 ⊗ IP does not admit a realisation of the form (E1).


