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Dipolar parity anomaly can be induced by spatiotemporally weak-dependent energy-momentum separation
of paired Dirac points in two-dimensional Dirac semimetals. Here we reveal topological currents arising from
this kind of anomaly. A corresponding lattice model is proposed to emulate the topological currents by using
two-component ultracold atoms in a two-dimensional optical Raman lattice. In our scheme, the topological
currents can be generated by varying on-site coupling between the two atomic components in time and tuned via
the laser fields. Moreover, we show that the topological particle currents can directly be detected from measuring
the drift of the center of mass of the atomic gases.
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I. INTRODUCTION

Topological states of quantum matter have been paid
significant attention in condensed-matter physics [1,2] and
belong to a new classification paradigm based on the notion
of topological order [3,4], which is distinctly different from
the states that are characterized by Landau theory based on
spontaneous symmetry breaking [5]. In recent years, more and
more interest have shifted from gapped topological insulators
or superconductors to gapless topological systems, including
topological semimetals with Dirac points [6–8], Weyl points
[9–18], Dirac line nodes [19–25], as well as symmetry-
protected Z2-type gapless points [26,27] and spin-1 Maxwell
points [28,29].

On one hand, the topological electromagnetic responses
have emerged as a hot topic of research on topological
semimetals. For three-dimensional (3D) topological Weyl
semimetals, there exists a topological current JW = b0B/4π2

arising from the chiral magnetic effect in the presence of the
energy separation of paired Weyl points b0 and the external
magnetic field B [30], which has been virtually simulated with
superconducting quantum circuits in 3D parameter space [31].
Another kind of topological responses is induced by the so-
called axial gauge fields coupling with opposite signs to Weyl
fermions of opposite chirality, which emerge due to spatially
and temporally dependent separations of a pair of Weyl points
in energy-momentum space [32–36]. In two-dimensional (2D)
graphene, similar gauge fields coupling with opposite signs
to each Dirac point (valley) can emerge from an external
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strain field [37]. Unlike Weyl points in Weyl semimetals, the
topologically stable Dirac points in 2D systems should be pro-
tected by certain robust kinds of symmetry. Therefore, topo-
logical responses (currents) in 2D Dirac semimetals related
to quantum anomalies remain unclear. Notably, a topological
edge current may be obtained from time-dependent elastic
deformations in gapped graphene preserving time-reversal
symmetry [38], which lies on a mixed Chern-Simons term in
the effective action that involves the electromagnetic and the
elastic vector potentials.

On the other hand, ultracold atoms in optical lattices pro-
vide a powerful platform to simulate various quantum states of
matter due to their high flexibility and controllability [39–43].
Remarkably, various topological systems have been realized
and measured with ultracold atoms, such as the Hofstadter
model [44,45], Haldane model [46], 2D spin-orbit-coupled
systems with Dirac points [47] and with nonzero Chern
numbers [48,49], and the chiral edge states [50]. Moreover,
several schemes have been proposed to realize various topo-
logical semimetal bands [51–57] and artificial (axial) gauge
fields [36,58,59] with cold atoms in optical lattices. However,
feasible cold-atom schemes for the experimental realization
(simulation) and detection of topological currents are still
badly needed.

In this paper, we reveal a distinct kind of topological
currents of dipolar parity anomaly in 2D Z2-type semimetals
possessing a joint space-time inversion (PT ) symmetry [27].
Such topological currents in the bulk are induced by the
spatiotemporally dependent energy-momentum separation of
paired Dirac points, which leads to an effective gauge field
that can be viewed as a 2D analog of axial gauge fields. We
also propose a tunable lattice model, which is theoretically
able to generate pure topological currents and is realizable by
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FIG. 1. (a) A sketch of the dipole momentum bμ = (b0, b) of
paired Dirac points in energy-momentum space for b1 = 0, where
bμ is a function of space and time. The Dirac points k+

D and k−
D are,

respectively, in blue and red Dirac cones, with ± denoting the two
opposite parity signs. (b) A sketch of the topological current induced
by the dipolar parity anomaly JD from a weak time-dependent b
perturbation.

using two-component ultracold atoms in a 2D optical Raman
lattice. In the proposed optical lattice system, the topological
currents can experimentally be generated by varying on-site
coupling between the two atomic components in time and
tuned via the applied laser fields. Furthermore, we show that
the topological particle currents can directly be detected from
measuring the drift of the center of mass of the atomic gas.

The rest of the paper is organized as follows. In Sec. II, we
present the general results of topological currents in 2D Dirac
semimetals. Section III introduces the tight-binding model for
realizing tunable topological currents with cold atoms in a 2D
optical Raman lattice. In Sec. IV, we propose schemes for
detecting the topological particle currents in the optical lattice.
Finally, a brief discussion and a short summary are given in
Sec. V.

II. TOPOLOGICAL CURRENTS
IN 2D DIRAC SEMIMETALS

We consider a 2D Dirac semimetal system with a single
pair of Dirac points k±

D , as shown in Fig. 1(a). The low-energy
effective Hamiltonian of the system reads

Heff = kμγ μ − bμγ μτz, (1)

with μ = 0, 1, 2, where γ μ are the Gamma matrices defined
here in the (2+1) dimension of space-time as γ 0 = σ0τ0,
γ 1 = σ1τ0, and γ 2 = σ2τz, with σμ being the Pauli matrices
acting on the (pseudo-)spin states at each Dirac cone, while
τ0 and τz belong to the other set of Pauli matrices acting on
the two cones. The dipole momentum bμ denotes the separa-
tion of paired Dirac points in the energy-momentum space.
More specifically, here 2b0 denotes the energy separation
and one can define the vector b = (b1, b2) = (k+

D − k−
D )/2

denoting the momentum separation, with an example shown
in Fig. 1(a).

When the system is coupled with an external (effective)
electromagnetic field Aμ, the effective action gives rise to a
topological term,

Stop = i
∫

dx3εμνρbμ∂νAρ/(2π ). (2)

See a derivation in Appendix A. The response current can be
obtained by taking the functional derivative of the anisotropic
Chern character term,

Jμ = δStop/δAμ = εμνρ∂νbρ. (3)

This implies a topological current (see Appendix A),

JD = 1

2π
(∇b0 − ∂τ b) × êz, (4)

and the corresponding particle density is ρD = (∇ × b) ·
êz/(2π ), where h̄ = e = c = 1 is set for briefness and τ de-
notes time. Obviously, the topological current JD is dependent
solely on dipole momentum bμ, which plays a similar role
as the gauge field Aμ → (b0, b). The above current stems
from a pair of topologically protected Dirac points in 2D,
which is different from that caused by the parity anomaly of a
single Dirac point (see Appendix A), and thus may be called
topological currents of dipolar parity anomaly.

In contrast to the conventional currents that are parallel to
the induced effective electric field Eeff = ∇b0 − ∂τ b, here the
pure topological currents are perpendicular to Eeff, similar to
the anomalous Hall current arising from a single Dirac point
having the corresponding local Berry curvatures. However,
the total anomalous Hall currents contributed from a paired
Dirac points will be vanishing in this 2D semimetal system
as they carry the opposite Berry curvatures. Although the
topological current is derived from an effective field theory of
2D Dirac semimetals under external electromagnetic fields, it
can still be illustrated as the particle current in neutral atom
systems with the same spatiotemporally dependent Dirac
dipole momentum. Notably, when there are multipairs of
Dirac points in the system, the total induced topological cur-
rent equals to that takes the sum of currents arising from each
pair of Dirac points [31]. The topological current given by
Eq. (4) is general to 2D Dirac semimetals with the low-energy
effective Hamiltonian in Eq. (1), which can be realized in
actual graphene or artificial Dirac systems. In the following
section, we propose a 2D Dirac Hamiltonian with the PT -
symmetry-protected Dirac points, which is realizable with
cold atoms in optical lattices and thus enables us to simulate
tunable topological currents of dipolar parity anomaly.

III. REALIZATION IN AN OPTICAL RAMAN LATTICE

We now turn to the realization of the topological particle
current JD with cold atoms in a 2D optical lattice, which can
be created by slowly space varying b0 (and)/or time varying
b, such that the adiabatic approximation is valid for the topo-
logical features of the considered bands. For simplicity but
without loss of generalization, here we focus on generating JD

from time-dependent b in the corresponding lattice system, as
shown in Fig. 1(b). In addition, since a pair of Dirac points
denoted by τz in the four-component low-energy effective
Hamiltonian in Eq. (1) is decoupled, we can simply work on a
two-component 2D Dirac (graphenelike) Hamiltonian. To do
this, we consider the following Bloch Hamiltonian on the 2D
lattice:

H(k) = sin (kxax )σ1 + [λ(τ ) − δt cos (kxax )

− cos
(
kyay

)
]σ2 + f (k)σ0, (5)
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where ax (ay) is the lattice length in the x (y) direction, λ(τ )
denotes a time-dependent on-site coupling between the two
atomic components, δt is a hopping parameter, and f (k) is an
arbitrary function.

According to the theory of joint space-inversion (P) and
time-reversal (T ) invariant topological gapless bands [27],
H(k) supports a nontrivial class of node points with Z2

topological charges. The topological stability of the system
only relies on the PT symmetry with the operator Â = P̂T̂ =
σ1K̂ , independent of the individual P̂ = σ1 Î and T̂ = K̂ Î here,
with Î inversing the wave vector k to −k and K̂ the complex
conjugate operator. For H(k), it is obvious that the individual
P and T symmetries are broken, but the joint PT symmetry
is preserved. Here we wish to pinpoint that the topological
currents arising from any dipole of Dirac points in this lat-
tice Hamiltonian system take the same formula as that for
another dipole [i.e., Eq. (4)] derived from the aforementioned
continuum model Heff because of the topological equivalence
between the two dipoles.

The real-space Hamiltonian H corresponding to the Bloch
Hamiltonian H(k) is given by (see Appendix B)

H = itx
2

∑
j

[
â†

j+ex,↑â j,↓ + â†
j+ex,↓â j,↑

]
+ i

δt

2

∑
j

[
â†

j+ex,↑â j,↓ − â†
j+ex,↓â j,↑

]
+ ity

2

∑
j

[
â†

j+ey,↑â j,↓ − â†
j+ey,↓â j,↑

]
−iλ(τ )

∑
j

â†
j,↑â j,↓ +

∑
j,σ,η

t ′
0,ηâ†

j+eη,σ
â j,σ + H.c., (6)

where tx = ty = t [t ≡ 1 in Eq. (5)] denotes the spin-flip
hopping for spin states σ =↑,↓, and t ′

0,η denotes the spin-
independent natural hopping along the η axis with η = x, y. A
challenge for realizing this Hamiltonian with neutral atoms is
to implement the spin-flip hopping, which acts as the effective
2D spin-orbit coupling. In general, the required spin-flip
hopping terms may be achieved in a 2D optical Raman lat-
tice [48]. Particularly, they can be formed by simultaneously
applying two pairs of light beams via two-photon Raman cou-
pling with the lattice potential V L(x, y) and Raman potential
V R(x, y). A similar Raman lattice scheme was proposed [48]
and realized in the experiment [49].

For realizing our lattice model, we can choose the lattice
potential as

V R(x, y) = i
{
V R

0,x cos (πx/ax ) + V R
0,y[cos(2πy/ay) + 1]

}
and the Raman potential as

V L(x, y) = V L
0,x cos2 (πx/ax ) + V L

0,y cos2(πy/ay).

The sketch of the Raman potential is shown in Fig. 2(a) with
ay = 2ax. In addition, the in-site coupling between two atomic
components λ(τ ) in Eq. (6) can be achieved and tuned by one-
photon Raman coupling (via radio-frequency or microwave
fields) with the time-dependent Rabi frequency [60]. For the
optical Raman lattice under tight-binding approximation, the
system can be effectively described by the Hamiltonian H in

FIG. 2. (a) A sketch of Raman lattice potential V R(x, y) as
a function of y and x (in units of ax and let V R

0,x = V R
0,y). The

green rings region denotes the Raman lattice site [minimal Ra-
man lattice potential V R

Min(x, y)] and the red rings denote the site
with potential V R(x, y) = −V R

Min(x, y) < V R
Max(x, y). Moreover, the

orange ovals denote the optical lattice site (xi, y j ), where the i
and j is the shorthand notation of xi and y j , respectively. The
orange and light-blue arrows denote the laser beams, which are
used to construct the optical lattice and Raman lattice, respectively.
From V R(x, y), we easily find V R(x, y = y j ) = −V R(x + ax, y = y j )
as well as V R(x, y ≈ y j ) ≈ −V R(x + ax, y ≈ y j ) and V R(x, y) =
V R(x, y + ay ). Two typical topological band structures (having one
or two pairs of Dirac points) are showed in (b) and (c), where the
Dirac points are denoted by k±

D,1/2 and the ± denote the different
chiralities. The parameters are (b),(c) δt = 0.32 and (b),[(c)] λ(τ ) =
1.2 [λ(τ ) = 0.48], corresponding to the point of blue (red) lines with
τ ∼ 17.7 or 49.1 in Fig. 3(a).

Eq. (6). See Appendix B for more details of the optical Raman
lattice and the hopping strengths.

In this optical lattice, the number of pairs of Dirac
points can be controlled by adjusting the values of λ(τ )
and δt (see Appendix C). If λ(τ ) > 1 + δt or λ(τ ) < −(1 +
δt ), the band is gapped without Dirac points and thus
JD = 0. If −(1 − δt ) < λ(τ ) < 1 − δt , there are two pairs
of Dirac points denoted as k±

D,1 = (0,±ky,1) and k±
D,2 =

(π,∓ky,2), where ky,1 = arccos [λ(τ ) − δt ]/ay and ky,2 =
arccos [λ(τ ) + δt ]/ay, respectively. The corresponding dipole
momenta are 2b1 = k+

D,1 − k−
D,1 = (0, 2ky,1), 2b2 = k+

D,2 −
k−

D,2 = (0,−2ky,2), 2b0,1 = f (k+
D,1) − f (k−

D,1), and 2b0,2 =
f (k+

D,2) − f (k−
D,2). The topological current can be written as

JD = J−
D + J+

D , where the two contributions are given by

J±
D = ∓λ′(τ )/(2πay{1 − [λ(τ ) ± δt ]

2}1/2)êx, (7)

with λ′(τ ) = ∂λ/∂τ . Here, we set b0,1/2 = 0 since f (k)
(even function) only includes the spin-independent hopping.
If 1 − δt < λ(τ ) < 1 + δt [−(1 + δt ) < λ(τ ) < −(1 − δt )],
there is only one pair of Dirac points k±

D,1 (k±
D,2) and the

topological current is JD = J−
D (J+

D). Two typical bands with
one and two pairs of Dirac points are shown in Figs. 2(b) and
2(c), respectively.

For generating experimentally tunable topological cur-
rents, we consider a typical form of λ(τ ): the time-
periodical driving λ(τ ) = λP(τ ) = λ cos (ωτ )/2 + λ0/2 with
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FIG. 3. The topological current JD (in units of t/ay) for the
slowly periodically driving case with λ = 0.2 in (a) and (b). We set
ω 
 1 and λ(τ ) − λ0/2 
 1 for ∀τ . λ0 = 2.44, 1.0 are denoted by
blue and red dashed lines, respectively. In (a), the red and blue lines
denote JD for two pairs and a single pair of Dirac points, respectively,
with ω = ωmax = 0.1 and δt = 0.32. In (b), JD as a function δt with
τ = 10.0 is shown. The red line denotes the case with two pairs of
Dirac points, while the blue line represents the case undergoing a
topological phase transition from the trivial state to the nontrivial
state (a pair of Dirac points); the discontinuity of the topological
currents JD reflects this topological phase transition. The inset is an
enlarged figure of JD.

frequency ω, noting that the concrete form of λ(τ ) is
not important for generating the topological currents. Im-
portantly, the time-dependent term must change slowly
enough to avoid breaking the band structure. One can set
λ/2|[cos(ωτ + ωT0) − cos(ωτ )]| 
 t with T0 = 1/t being
satisfied, such that λP(τ ) can be considered as a quan-
tity which changes slowly in time. Here, ωT0 = ω/t 
 1
is required to avoid resonance absorption for the atom-
laser coupling field. Typically, we can set ωmaxT0 = 0.1
and λmax = 0.2t , such that |[cos(ωτ + ωT0) − cos(ωτ )]| �
0.1 and |λ(τ + T0) − λ(τ )|max = 0.01t 
 t . For the time-
periodical driving case, the parameters λ, ω, and τ are the
compact notations of λ/t , ωT0, and τ/T0, respectively, which
are used to calculate JD. In this notation, JD takes the unit
of t/ay. The typical topological currents JD in this case are
shown in Figs. 3(a) and 3(b). For λP(τ ), one can regulate the
number of the pairs of Dirac points through driving the sys-
tem. The discontinuity of JD shown in Fig. 3(b) is due to the

change of the number of paired Dirac points. This indicates
the Lifshitz transition in the system and means that one can
induce the transition by adjusting the driving parameters.

IV. DETECTION SCHEMES

To observe this topological current in realistic experiments,
we consider typical energy scales for several physical quan-
tities. For cold alkali atoms trapped in the optical lattice,
the typical recoil energy ER/(h̄ × 2π ) is about several kHz
[61], and the typical hopping amplitude t is changed in the
region (0, 0.1ER). The coherence time of cold-atom systems is
typically around τcoh ∼ 100 ms. Thus, the intrinsic timescale
of the lattice system is T0 = h̄/t = (1, 10, 100, 1000) ms,
corresponding to t = (1000, 100, 10, 1) Hz. The bosonic or
fermionic atoms can be loaded in the optical Raman lattice,
and we assume the bosons as used in the experiment [49]. The
critical temperature of typical Bose gases is about 10–100 nK.
When the trapping potential satisfies V L

0,x/y � 5Ex/y
R , the sys-

tem is well described within the tight-binding approximation
[61]. The bandwidth W ≈ 4(t ′

0,x + t ′
0,y + tx + ty) is several

kHz (the corresponding temperature is several-hundred nK)
for the 2D systems, where t ′

0,x/y is the amplitude of normal
hopping. Thus, if the temperature of the system is about
several hundred nK (the same level of bandwidth W ), we can
assume the bosonic atoms will be an incoherent homogeneous
distribution within each band in k space [45] (each k can
be equally filled). Under these conditions, the topological
current can be detected via measuring the drift of the center
of mass of the atomic cloud along the x direction, although
it is not straightforward to perform conventional transport
measurements in cold-atom systems.

The drift measurement can be achieved in the same way
as that in the experiment in Ref. [45], but without an external
effective force since the topological currents arise from the
time-varying fields here. The drift velocity reads vc = JD/ρ,
where ρ denotes the average density of the atomic gas and
is assumed invariable within the coherence time. Thus the
atomic center-of-mass displacement reads xc(τ ) = ∫

JDdτ/ρ,
which directly reveals the features of JD. The typical results
of the drift of the center of mass �xc = xc(τ ) − xc(τ = 0) as
a function of time τ are shown in Fig. 4 for the periodical
driving case with ρ = 0.01(ayax )−1 [see Fig. 3(a) for the
corresponding JD]. In Fig. 4(a), the dashed blue lines indicate
the maximum drift of |�xc|. To detect JD for the hopping
amplitude t ∼ 1 kHz, one requires the particle density ρ <

0.1 (ayax )−1. This can be achieved by setting the particle num-
ber N � 1000 for the typical optical lattice of size 100ax ×
100ay. For ρ = 0.1, 0.05, 0.01(ayax )−1, the corresponding
maximum displacement of |�xc| is about 1ax, 2ax, 10ax with
τ ∼ 31.4 ms, which can be well measured in cold-atom ex-
periments [45].

An alternative detection method is to use an atomic gas of
two wave packets prepared near the paired Dirac points and
then to observe the topological response from the dipolar par-
ity anomaly, via the same dynamical (in situ) density measure-
ments [45]. For the considered time-varying perturbation that
is uniform in space, the semiclassical dynamics of the wave
packets that are centered at rc (real space) and kc (momentum
space) can be described by the equations of motion [36,62]:
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FIG. 4. The drift of the center of mass �xc = xc(τ ) − xc(τ = 0)
(in units of ax) as a function of τ in the x direction are shown by
taking ρ = 0.01(ayax )−1. The parameters for blue and red dashed
lines are the same as those in Fig. 3(a). Here the parameters for the
red transparent thick line are the same as the others color lines except
δt , where δt is 0 (0.32) for the red transparent thick line (the others
lines). It is clear that there is no drift of the center of mass �xc for
δt = 0, even though there are two pairs of Dirac points (due to the
current cancellation from the two pairs). Thus this nonvanishing �xc

feature may be taken as an experimental signature for topological
currents of dipolar parity anomaly.

ṙc = ∇kεk − �kkk̇c − �kt + Eeff × êz and k̇c = 0, where εk
is the energy dispersion, and �kk and �kt are (generalized)
Berry curvatures. Since the Berry curvatures are opposite near
a pair of Dirac points, the terms with respect to �kk and �kt
have vanishing total contributions in the real-space motion of
the atomic gas. Finally, the contribution from the term Eeff ×
êz as the topological response can be extracted (isolated) by
factoring out the effect of the group velocity ∇kεk in the
dynamics. This can be achieved by simply subtracting the
responses of two protocols with opposite Eeff (i.e., ∂τ b in
this case), similar to the differential measurements of atomic
center-of-mass shifts in Ref. [45].

V. DISCUSSION AND CONCLUSION

Before concluding, we note that the topological current
JD is protected by the joint PT symmetry, which can also
be tested in experiments. If we add the P and/or T broken
perturbation term, such as H′ = ε sin(kyay) with a small value
ε, JD is not destroyed. If we add the PT -symmetry-broken
term, such as εσz in this system, the bands will be gapped and
then JD will disappear.

In a realistic cold-atom system with an external harmonic
trap, one should consider the mixture of the propagating edge
modes and the bulk currents [63], if they have contributions
along the same axis. In our proposed cold-atom system, the
edge currents in the 2D system can only propagate along
the particular direction of an effective external force, but the
intrinsic pure topological currents in the bulk can be tuned to
be perpendicular and then be isolated from the edge currents.
For the case of a paired of Dirac points shown in Fig. 1,
the possible edge currents can only propagate in the metallic
edges along the y axis, while the topological currents in the
bulk are along the x axis. Furthermore, in the center-of-mass

measurements, the wave packet of an atomic gas can be pre-
pared in the center of the 2D optical lattice in the presence of
the harmonic trap, such that the edge effects can be neglected
in the dynamical response when the wave packet does not
reach the trap edge. As shown in Fig. 4, the length scale of
atomic drifts is about several lattice sites within the timescale
about 30 ms, which can be achieved in realistic experiments.

In summary, we have revealed an exotic kind of topo-
logical currents arising from the dipolar parity anomaly
in the presence of the spatiotemporally weak-dependent
energy-momentum separation of paired Dirac points in 2D
PT -symmetric semimetals. In particular, we have proposed
an experimentally feasible scheme to realize and detect this
kind of topological particle currents with ultracold atoms in
a 2D optical lattice. The present scheme is quite promising
for realizing the first experimental detection of topological
currents of dipolar parity anomaly.
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APPENDIX A: TOPOLOGICAL CURRENTS ARISING
FROM DIPOLAR PARITY ANOMALY

This topological current JD can be caused by the action
S = i

∫
dx3εμνρbμ∂νAρ/2π , where Aμ represents the corre-

sponding component of the electric-magnetic potential, and
εμνρ is the antisymmetric tensor. The details of how to obtain
the topological current JD are presented below. One may
start with the graphenelike effective Hamiltonian that reads
Heff = kμγ μ − bμγ μτ z.

When the system is coupled with an external electromag-
netic filed Aμ, the effective action Seff can be written as

Seff = ln det(i /D − /bτ z ). (A1)

Here, D is the gauge covariant derivative: Dμ = ∂μ + Aμ, and
the symbol “/” denotes the inner product of the vector and the
Gamma matrices (namely, /b = bμγ μ) in the (2+1) dimension
of space-time. We first regularize the effective action through
the Pauli-Villars method,

SReg
eff = tr ln det(i /D − /bτ z + mσz ), (A2)

where mσz is the regularization mass term. After a straightfor-
ward expansion, we can obtain

Seff [A, M] = tr ln(i/∂ + mσz ) + tr

[
1

i/∂ + mσz
(/A − /bτ z )

]
+ 1

2
tr

[
1

i/∂ + mσz
(/A − /bτ z )

1

i/∂ + mσz
(/A − /bτ z )

]
+ · · · . (A3)
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Also, what concerns us is only the quadratic term. Ac-
cordingly, we restrict our attention to the terms b · � · A and
A · � · b, which contribute to effective action equally. Since
only the vacuum polarization graph and the triangle graph are
ultraviolet divergent, the only term of concern should be the
third one, which is quadratic in the gauge field A. The third
term gives

Stop =
∫

d3 p

(2π )3
bμ(−p)�μν (p)Aν (p), (A4)

and

�μν (p) = 4mεμνρ pρ

∫
d3 p

(2π )3

1

[(p + q)2 + m2](q2 + m2)

∼ 1

2π
sgn(m)εμνρ pρ. (A5)

After a straightforward, but lengthy and tedious calculation,
the anisotropic term is finally obtained,

Stop = ± i

2π

∫
d3xεμνρbμ∂νAρ. (A6)

Since the sign does no harm in the effective action, one arrives
at a compact form,

Stop = i

2π

∫
d3xεμνρbμ∂νAρ. (A7)

Let us consider the response under an external electromag-
netic field A. The response current of topological semimetals
can be easily obtained by taking the functional derivative of
the anisotropic Chern character term [as shown in Eq. (A7)]
with respect to the electromagnetic field A. Accordingly, one
finds

Jμ = δ

δAμ

Stop = 1

2π
εμνρ∂νbρ, (A8)

which implies

ρD = 1

2π
(∇ × b) · êz, (A9)

JD = 1

2π
(∇b0 − ∂t b) × êz, (A10)

where ρD is the density and the corresponding current is JD.
Here, the first term in JD depends upon the spatial gradient
of difference in energy between two Dirac points, while the
second one depends on the time derivative of the span in
momentum space between two Dirac points. In particular, it
should be noted that there is no dependency on the original
gauge field A.

Meanwhile, as a comparison, one could evaluate the re-
sponse current of a single Dirac point coupled to an electro-
magnetic field in a similar manner. The functional derivative
of the Chern-Simons term yields

Jμ = δ

δAμ

SCS = 1

2π
εμνρ∂νAρ = F

2π
, (A11)

which implies

ρ = 1

2π
(∇ × A) · êz = B

2π
, (A12)

J = 1

2π
(∇A0 − ∂t A) × êz = 1

2π
E × êz, (A13)

where B and E denote the magnetic field (z component) and
electric field, respectively. The formulas above indicate that a
Chern-Simons term would induce a transverse conductivity in
even dimensions. In topological semimetals, as a consequence
of the emergence of the anisotropic Chern character term, a
sort of response, where the span of two Dirac points bμ play
the role of the gauge field, emerges, as shown in Eq. (A10).

APPENDIX B: THE ATOMIC SPIN-FLIP HOPPING
IN THE 2D OPTICAL RAMAN LATTICE

If we can realize the real-space Hamiltonian as

H̃ = itx
∑

j

[
â†

j+ex,↑â j,↓ + â†
j+ex,↓â j,↑

]
+ iδt

∑
j

[
â†

j+ex,↑â j,↓ − â†
j+ex,↓â j,↑

]
+ ity

∑
j

[
â†

j+ey,↑â j,↓ − â†
j+ey,↓â j,↑

]
− iλ(τ )

∑
j

â†
j,↑â j,↓ +

∑
j,σ,η

t ′
σ â†

j+η,σ â j,σ + H.c., (B1)

where η = (ex, ey), σ =↑,↓ and λ(τ ) = �RF cos (ωτ ) + �0

for periodical drive, then the nondimensionalized real-space
Hamiltonian H in Eq. (3) is realized by doing a transfor-
mation H̃/(2tx ) → H with tx = ty = 1. The processes for
spin-flip hopping in the x (y) direction [the hopping process
from the lattice site x j (y j) to site x j ± ax (y j ± ay)], the
radio-frequency field induced on-site spin-flip hopping, and
normal spin-independent hopping are presented in Fig. 5.
We only need to realize the processes (a)–(c) in cold-atom
systems; then the momentum space H(k) is simulated since
the processes of ↓←↑→↓ are only the Hermitian processes of∑

j (a) and (b).
The process (a) with δt = 0 requires that the �eff (x) satisfy

the constraint as V R(x, y) = −V R(x + ax, y). When we make
the Raman lattice length meet the condition aR

x = 2ax, this
requirement can be satisfied, where ax is the lattice length of
trapping the optical lattice in the x direction. The process (b)
requires that the �eff (y) satisfy the constraint as V R(x, y) =
V R(x, y + ay). If the Raman lattice length aR

y is equal to ay, the
process (b) can be realized. If we can independently control
the Raman lattice and trapping lattice, respectively, we can
simulate this momentum space H(k) by choosing Raman
potential V R(x, y) as

V R(x, y) = i

{
V R

0,x cos

(
πx

ax

)
+ V R

0,y

[
cos

(
2πy

ay

)
+ 1

]}
,

(B2)

and trapping lattice potential V L(x, y) as

V L(x, y) = V L
0,x cos2

(
πx

ax

)
+ V L

0,y cos2

(
πy

ay

)
. (B3)

Here the imaginary unit i in Eq. (B2) can be realized by
suitable tuning of the relative phase of the Raman frequency
�1�

∗
2. From Eqs. (B2) and (B3), we can easily obtain Raman

lattice length aR
x = 2ax (aR

y = ay) in the x (y) direction. In
order to realize the Raman potential easily, we can choose
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(a)

(b)

(c)

FIG. 5. (a)–(c) The cartoon pictures of the spin-flip hopping
along the x and y directions, the radio-frequency field induced on-
site spin-flip hopping, and the normal spin-independent hopping,
respectively, where x j (y j) denotes the lattice site along the x (y)
direction and ax (ay) denotes the lattice length along the x (y)
direction. t0,x is the amplitude of normal spin-independent hopping
along the x direction (we do not show the y direction), and � is the
detuning of the |↑〉 state and |↓〉.

a square lattice as the Raman potential, i.e., ay = 2ax. The
lattice site xi can be written as xi = (1/2 + i)ax and y j

can be written as y j = (1/2 + j)ay. The Raman potential
V R(x, y) as a function of y and x is presented in Fig. 2(a).
When y = y j , this Raman potential V R(x, y) can easily meet
the request V R(x, y) = −V R(x + ax, y) (green (red) rings in
Fig. 2(a) when we choose x = (xi−1 + xi )/2 [x + ax = (xi +
xi+1)/2]), which is the condition for realizing the process
(a) with δt = 0. Without loss of generality, we choose the
value of y approaching y j as an example to analyze how
can we realize the process (a) with nonzero δt . If y is
equal to y j ± δ, process (a) with δt = 0 is not quantitatively
satisfied since the value of V R[x ∈ (xi−1, xi ), y = y j ± δ] is
not strictly equal to −V R[x + ax, y = y j ± δ] when δ �= 0.
This small deviation of V R[x ∈ (xi−1, xi ), y = y j ± δ] with
−V R[x + ax, y = y j ± δ] has a significant contribution for
the realization of nonzero δt . On the other hand, approach-
ing the lattice xi, the Raman potential in the x direction is
antisymmetrical (cos [π (xi + δ)/ax] = − cos [π (xi − δ)/ax]),
whereas the Wannier functions are symmetrical for x =
xi ± δ, and thus the contribution of the Raman potential in
the y-direction hopping is zero. This means that the hop-
ping amplitude in the y direction is independent of the
site xi. The process (b) is always satisfied for all value of x
since the Raman potential satisfies V R(x, y) = V R(x, y + ay)
and the hopping amplitude in the y direction is independent

of site xi. Thus, if we can realize those specific Raman
and lattice potentials, which are presented in Eqs. (B2) and
(B3), the real-space Hamiltonian H can be realized. In con-
sequence, it will cause the existence of these topological
currents of dipolar parity anomaly JD in the 2D optical
lattice.

In order to calculate the hopping amplitude qualitatively,
we can use the harmonic approximation at the minimum trap-
ping potential point [64,65], and thus the Wannier function in
the x and y directions can be written as

w(x − xi ) = (
Ṽ L

0,x

) 1
8

(
π

a2
x

) 1
4

exp

[
−π2

2

√
Ṽ L

0,x

(x − xi )2

a2
x

]
,

(B4)

and

w(y − yi ) = (
Ṽ L

0,y

) 1
8

(
π

a2
y

) 1
4

exp

[
−π2

2

√
Ṽ L

0,y

(y − yi )2

a2
y

]
,

(B5)

respectively, where Ṽ L
0,x/y = V L

0,x/y/Ex/y
R is the dimensionless

optical lattice depth in units of Ex/y
R and Ex/y

R =
h̄2k2

x/y/2m(kx/y = 2π/λx/y, λy = 2λx = 4ax ) is the
recoil energy. The spin-flip hopping term induced
by the Raman field takes the form t(i, j),(↓,↑) =∫

w∗
↑(r − ri )V R(x, y)w↓(r − r j )dr. After some lengthy

but straightforward calculations, the explicit form of the
spin-flip hopping term in the x and y directions can be written
as t x

(i, j),(↓,↑) = ±itx + iδt (for j = i ± 1) and t y
(i, j),(↓,↑) = ity,

where ± is corresponding to j = i + 1 and j = i − 1. Here
the forms of tx, δt , and ty are written as

tx = V R
0,x exp

⎛⎝−
π2

√
Ṽ L

0,x

4

⎞⎠ exp

⎛⎝− 1

4
√

Ṽ L
0,x

⎞⎠, (B6)

δt = V R
0,y exp

⎛⎝−
π2

√
Ṽ L

0,x

4

⎞⎠⎡⎣1 − exp

⎛⎝− 1√
Ṽ L

0,y

⎞⎠⎤⎦, (B7)

ty = V R
0,y exp

⎛⎝−
π2

√
Ṽ L

0,y

4

⎞⎠⎡⎣1 + exp

⎛⎝− 1√
Ṽ L

0,y

⎞⎠⎤⎦. (B8)

By taking the units of V R
0,x and V L

0,x, we have V R
0,y = mV R

0,x and
V L

0,y = lV L
0,x. Moreover, the normal hopping t ′

0,x/y can read as

t ′
0,x/y = Ex/y

R

4√
π

(
Ṽ L

0,x/y

)3/4
exp

( − 2
√

Ṽ L
0,x/y

)
, (B9)

which is the solution of the 1D Mathieu equation [61].
When ty = tx, the value of δt/tx is an important parameter

which impacts the value of topological current JD. Thus, we
show ty = tx and δt/tx as a function of l and m for given Ṽ L

0,x
in Figs. 6. From Fig. 6(a), the curve ty = tx changing with
the value of Ṽ L

0,x is not distinct. So, we chose Ṽ L
0,x = 5 as an

example to show δt/tx as a function of l and m. From Figs. 6,
we easily know that δt/tx = 0.32 with tx = ty can be realized
in the experiment. In order to clearly detect this topological
current JD under current experimental conditions, we want
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FIG. 6. (a) The solid lines denote tx = ty and the dashed lines
denote the δt = 0.32tx , which have been chosen to calculate the
topological current JD and the corresponding drifting of center mass
xc; the orange, red, black, blue, and magenta lines denote the values
of trapping potential Ṽ L

0,x = 4, 5, 6, 7, 8, respectively. (b) δt/tx as a
function of m and l with Ṽ L

0,x = 5.

to observe the maximum drifting of the center mass xmax
c

within the coherent time τcoh. This means that the measuring
time τ ∼ 31.4T0, which is the time for the center of mass
moving from |xc|min to |xc|max, must be smaller than τcoh ∼
100 ms. In Fig. 7, we show the range of possible values of
trapping potential Ṽ L

0,x and Raman potential Ṽ R
0,x for 87Rb [see

Fig. 7(a)] and 23Na [see Fig. 7(b)] atom systems, in which the
measuring time τ is smaller than the coherent time τcoh and the

FIG. 7. tx as a function of trapping potential Ṽ L
0,x and Raman

potential Ṽ R
0,x takes the unit of kHz for (a) 87Rb and (b) 23Na. In

these regions, the maximum drifting of the center of mass �xc,
which is presented in Fig. 4, will be observed within the coherent
time τcoh. The trapping laser wavelength is λ = 790.1 nm and recoil
energy is Ex

R = (kx )2 h̄2/(2M ) (Ex
R = h̄ × 2π × 3.68 kHz for 87Rb

and Ex
R = h̄ × 2π × 13.9 kHz for 87Rb), where kx = 2π/λ is the

recoil momentum [66].

drifting of the center of mass �xc is largest. Furthermore, if
ρ < 0.02(axay)−1, �xc can be detected for both cases (having
one or two pairs of Dirac points), where the the measurement
accuracy of �xc is about ax. For the case of ρ = 0.01(axay)−1,
if the parameters of the systems are chosen with the same
value of the parameters as the blue dashed line presented in
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FIG. 8. The sketch of the solution of Eqs. (C2) and (C3).

Fig. 4, the experimenters can verify the JD existence within
a very short time, τmin = 2T0 (within 2T0, the corresponding
�xc = ax). The range of possible values of the Raman po-
tential Ṽ R

0,x (Ṽ R
0,x > 0.18 for 87Rb and Ṽ R

0,x > 0.05 for 23Na)
for 87Rb and 23Na atom systems is dramatically expanded, in
which the experimenters can verify the JD existence with the
corresponding measuring time τmin � τcoh.

APPENDIX C: TUNING THE NUMBER
OF PAIRS OF DIRAC POINTS

For momentum-space Hamiltonian

H(k) = sin (kxax )σ̂x + [λ(τ ) − δt cos (kxax )

− cos
(
kyay

)
]σ̂y + f (k)σ̂0, (C1)

the Dirac points can be obtained by the solution of the equa-
tions sin (kxax ) = 0 and λ(τ ) − δt cos (kxax ) − cos (kyay) =
0. It is easy to know the solutions in the kx direction, which
can be written as kD

x = 0, π , and the kx direction solutions kD
y

must satisfy the equations

−1 � λ(τ ) − δt � 1 (C2)

and

−1 � λ(τ ) + δt � 1, (C3)

with δt > 0, 1 > δt . It is found that the solution of Eq. (C2) is

−(1 − δt ) � λ(τ ) � 1 + δt , (C4)

and the solution of Eq. (C3) is

−(1 + δt ) � λ(τ ) � 1 − δt . (C5)

There are four different cases, which are presented at
follows: in the first case λ(τ ) > 1 + δt or λ(τ ) < −(1 + δt )
(see the region of the black lines in Fig. 8), there are no Dirac
points in system. In the second case (1 − δt ) < λ(τ ) � (1 +
δt ) (see the region of the cyan line in Fig. 8), there is only one
pair of Dirac points, which is denoted as kD,1 = (0,±ky,1). In
the third case −(1 − δt ) < λ(τ ) < (1 − δt ) (see the region of
the green dashed line in Fig. 8), there are two pairs of Dirac
points, which are denoted as k±

D,1 = (0,±ky,1) and k±
D,2 =

(π,∓ky,2). In the fourth case −(1 + δt ) < λ(τ ) < −(1 − δt )
(see the region of the purple line in Fig. 8), there is only one
pair of Dirac points, which is denoted as kD,2 = (π,±ky,2).
Thus, the number of pairs of Dirac points can be regulated by
changing the value of λ(τ ). In Figs. 3(b) and 3(c), we choose
two typical points, δt = 0.32, and λ(τ ) = 1.2 or λ(τ ) = 0.48,
as two examples to reveal this characteristic.
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