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Abstract 
Linear data projection is a commonly leveraged data scaling method for unbiased 

traffic data estimation. However, recent studies have shown that model estimations based on 
linearly projected data would certainly result in biased standard errors. Although methods 
have been developed to remove such biases for linear regression models, many transport 
models are nonlinear regression models. This study outlines the practical difficulties of the 
traditional approach to standard error estimation for generic nonlinear transport models, and 
proposes a bootstrapping mean value restoration method to accurately estimate the parameter 
standard errors of all nonlinear transport models based on linearly projected data. 
Comprehensive simulations with different settings using the most commonly adopted 
nonlinear functions in modelling traffic flow demonstrate that the proposed method 
outperforms the conventional method and accurately recovers the true standard errors. A case 
study of estimating a macroscopic fundamental diagram that illustrates situations 
necessitating the proposed method is presented. 

Keywords: Big data era; Linear data projection; Heteroscedasticity; Bootstrap standard error; Macroscopic 
fundamental diagram 

 

1. Introduction 

The advancement of information technology has ushered in an era of big data. The 
vast quantity of traffic data generated every day give transportation and traffic researchers the 
opportunity to gain an unprecedented understanding of the world’s transportation systems. 
Transport models are fundamental tools helping us to understand the past, predict the future 
and control the systems. Therefore, accurate and reliable transport model estimations are 
crucial to many transportation studies. Accurate and unbiased traffic data must be input to 
ensure these models’ accuracy and reliability. 

Although the accuracy and efficiency of traffic data collection have been substantially 
improved, it remains difficult in practice to retrieve traffic data from an entire network due to 
the myriad limitations of high-technology devices. On-road fixed detectors (e.g., loop 
detectors) can generally be used to accurately acquire traffic data, but their installation and 
maintenance usually incur huge costs, impeding their universal deployment (Herrera and 
Bayen, 2010; Herrera et al., 2010). Therefore, their coverage is generally confined to a subset 
of links (Caceres et al., 2012). The travel times of vehicles traveling through a roadway can 
be obtained using a vehicle re-identification system; a vehicle’s signature is matched when it 
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passes sensors installed at the two ends of the roadway (Kwong et al., 2009). Any 
technological utilities or devices that can recognize vehicle identities, such as wireless 
magnetic sensors (Kwong et al., 2009), license plate recognition systems (Herrera et al., 2010) 
and radio frequency identification transponders (Wright and Dahlgren, 2001; Ban et al., 2010) 
can be readily adopted for these schemes. However, in addition to the huge costs of 
installation and implementation, the potential risk to privacy is a major obstacle to the 
deployment of these utilities or devices over an entire network. The cellular systems 
introduced a decade ago (Zhao, 2000; Bolla and Davoli, 2000; Ygnace and Drane, 2001) 
provide a potential solution to the problems of cost and coverage (Herrera et al., 2010). 
However, as mobile phones are generally considered a distraction for drivers (Liang et al., 
2007), their use to collect traffic data is discouraged or even prohibited in many countries. 
Global Positioning System (GPS) devices offer another favorable means of collecting traffic 
data at a relatively low cost from probe vehicles circulating across a network (Miwa et al., 
2013). However, data generated from vehicle fleets, such as UPS, FedEx or taxis (Bertini and 
Tantiyanugulchai, 2004; Moore et al., 2001; Wong et al., 2014; Schwarzenegger et al., 2009), 
may create bias due to their distinct patterns of operation and travel. Moreover, the global 
application of such systems is significantly impeded by the additional capital and installation 
costs and potential privacy issues related to the use of GPS trackers.  

To overcome the practical obstacles to direct and accurate traffic data measurement, 
various mathematical techniques, such as data filtering, scaling and sampling, have been 
leveraged for accurate traffic data estimation. Linear data projection is a common and highly 
transferable data scaling method that can be used to infer unobservable population traffic data 
by extrapolating observable traffic data based on the sampled mean of a set of scaling factors. 
As more and more connected vehicle (or probe vehicle) data become available in the big data 
era, such a method is often necessary to scale up observable traffic data. In addition, many 
transport models in the big data era rely heavily on various sources of data for calibration, 
estimation and validation. Therefore, a data scaling method that can fuse data collected from 
various sources for unbiased traffic data estimation is urgently needed. Unobservable traffic 
data can often be written as a linear combination of observable traffic data and scaling factors. 
Scaling factors are the ratios bridging unobservable and observable traffic data. They can be 
defined differently to fit certain specified physical contexts. Due to the complexity and 
stochastic nature of transportation systems, scaling factors are typically random variables 
rather than constants, and are therefore usually assumed to follow certain distributions. The 
variance of a scaling factor can quantify several types of heterogeneity, such as spatial, 
temporal or spatiotemporal heterogeneity, depending on the sampling approach. In practice, 
as the values of the scaling factors are not known, they are replaced by the estimated scaling 
factor mean in a linear data projection for the unbiased estimation of unobservable traffic data. 

Many transportation studies have used linear data projection to estimate unobservable 
traffic data. For instance, this method can be used to unbiasedly estimate the hourly total 
traffic flow passing through a link without a detector. If the probe vehicle flow is observable 
on every road and the total traffic flow is only observable on a subset of roads with detectors 
installed, then the total-traffic-to-probe-vehicle ratio at a link with a detector can be defined 
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as the scaling factor in this context. As both the total traffic flow and the probe vehicle flow 
are available, scaling factors can be sampled from these links. Sampled scaling factors 
usually differ across space, due to the heterogeneity of land-use patterns and stochasticity, but 
they can generally be assumed to follow a distribution over a network due to geographical 
proximity. In such cases, the spatial heterogeneity across the network can be quantified using 
the variance of the scaling factor. As the expected traffic composition ratio is the mean of the 
scaling factor, if its value is 80 when the hourly probe vehicle flow observed on the road of 
interest is 20 veh/h, the unbiased estimator for total hourly traffic across this road can be 
estimated by their product, i.e., 1600	veh/h. This method has been used for traffic flow 
estimation in many studies (Wong and Wong, 2015; 2016a; 2016b; 2016c; 2018). Similarly, 
the transit travel distribution can be expanded from a set of sampled vehicles fitted with 
passenger counting devices, and a zonal travel diary can be extrapolated from a sample of 
household surveys based on linear data projection. In a recent study of multiple-vehicle crash 
frequency, Meng et al. (2017a) also applied linear data projection in estimating time exposure, 
which accounts for variation in crash count at a specific site. 

Macroscopic transport model estimations are a representative example of the use of 
linear data projection for unobservable population traffic data estimation. Due to their 
enormous potential benefits in various applications, such as initial land-use planning (Yin et 
al., 2013; Ho and Wong, 2007), urban network traffic control (Daganzo, 2007; Geroliminis et 
al., 2013; Aboudolas and Geroliminis, 2013) and road pricing schemes (Zheng et al., 2012; 
Geroliminis and Levinson, 2009), these models have rapidly gained considerable attention in 
recent years. Generally, they can be classified as macroscopic cost flow (MCF) functions or 
macroscopic fundamental diagrams (MFDs). MCF functions are normally used for static 
analysis, and MFDs for dynamic analysis. As accurate and known macroscopic models are 
the necessary input for these beneficial applications, it is essential to estimate these models 
based on accurate traffic data collected from a whole network. However, due to the various 
limitations mentioned, direct measurements of essential traffic data are normally infeasible. 
Linear data projection offers a useful and practical framework for the unbiased estimation of 
these unobservable data, based on data assembled from various sources. In a study of MFDs, 
Geroliminis and Daganzo (2008) used linear data projection to derive the accumulation in a 
network, using the scaling factor of total-traffic-to-occupied-taxi ratio. In terms of MCFs, 
Wong and Wong (2015, 2016b, 2016c) estimated macroscopic Bureau of Public Road 
functions for networks in Hong Kong using real-world data assembled from GPS-equipped 
taxis and counting stations. With the total-traffic-to-occupied-taxi ratio as the chosen scaling 
factor, data scaling was used to estimate the total hourly traffic flows entering the sampled 
networks. The heterogeneity in the scaling factor stemmed from several factors, such as the 
various land-use purposes of lots (Meng et al., 2017b).  

As linear data projection provides unbiased estimators of unobservable traffic data, it 
is intuitive to estimate models using linearly projected data. However, the implications of this 
assumption—most importantly, its effects on estimated parameters and their standard 
errors—have been largely ignored in the field. Directly estimating a model using linearly 
projected data is equivalent to neglecting the effects of scaling factor heterogeneity (or 
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variability). Ignoring spatial heterogeneity inherently assumes a constant scaling factor across 
space. Similarly, if information on temporal heterogeneity is lost, a uniform scaling factor is 
implied. Recently, Wong and Wong (2015) generically proved that systematic bias is 
embedded in the model parameters estimated from linearly projected data, disregarding the 
distribution of the scaling factor and the form of the model to be calibrated, as long as the 
scaling factor is subject to heterogeneity and the model is a nonlinear function of the scaling 
factor. In their study, however, only generalized multivariate polynomial (GMP) functions 
with fixed exponents, which are essentially linear regression models, were chosen for in-
depth examination. Both analytical expressions quantifying the extent of the bias and global 
adjustment factors significantly reducing such bias were derived for GMP functions. 
However, many transport models are categorized not as GMP functions but as generic 
nonlinear models that necessitate nonlinear regressions. Therefore, Wong and Wong (2018) 
further explored the domain of nonlinear transport models. The authors found that the 
nonexistence or complexity of derivation of simple closed-form adjustment factors and the 
model specification error induced by linear data projection were the major pragmatic 
concerns raised by the adjustment factor approach. Inspired by the mechanism of systematic 
data point distortion induced by linear data projection, the authors proposed a mean value 
restoration (MVR) method that required only the first two moments of the scaling factor, and 
an extended MVR (EMVR) method that further captured higher-order moments with an 
assumed scaling factor distribution to remove embedded systematic biases in nonlinear 
transport models. In their study of MFD estimation, Du et al. (2016) proposed an algorithm 
based on k-means clustering analysis to address the unrealistic assumption of a constant 
scaling factor across the network. However, since the algorithm was designed for and focused 
on MFD data point estimation (i.e., network flow and density), it is usually not directly 
transferrable to other situations.  

Even if unbiased parameters can be easily estimated using the methods proposed 
above, their statistical significance, and hence the validity of the models estimated, must be 
determined and tested by their standard errors. Thus, the effects of linear data projection on 
estimated standard errors are another critical research direction. Wong and Wong (2016c) 
generically proved that when linear data projection is used, heteroscedasticity is intrinsically 
introduced regardless of the form of model estimated, as long as the scaling factor is subject 
to heterogeneity. The resulting complicated error structures, which contain both random 
errors independent and identically distributed (i.i.d.) as normal and heteroscedasticity, 
undesirably violate the homoscedasticity assumption and result in biased standard errors. As 
these biased standard errors may be greater or smaller than the true values, they may lead 
either to the mistaken rejection of the true null hypotheses in statistical tests of significance, 
causing a type I error; or to the erroneous failure to reject the false null hypotheses, resulting 
in a type II error. To collectively re-capture lost heterogeneity and accurately estimate model 
parameters and their standard errors, the authors then focused on the family of GMP 
functions with fixed exponents and proposed analytical distribution free (ADF) and 
equivalent scaling factor (ESF) methods. However, these proposed methods are applicable 
only to GMP functions with fixed exponents, which are essentially linear regression models, 
although their shapes can be nonlinear. Methods of reducing the biases embedded in standard 
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error estimates have not been extended to generic nonlinear transport models requiring 
nonlinear regressions. Although unbiased nonlinear transport models can be estimated from 
linearly projected data using the proposed MVR and EMVR methods, the statistical 
significance of the parameter estimates remains unknown, and hence the validity of 
application of the estimated models is still unclear. This poses a new and important research 
question concerning the unbiased standard error estimation of generic nonlinear transport 
models based on linearly projected data. 

The aim of this paper is to fill a gap in previous research—the absence of unbiased 
standard error estimation methods for use with nonlinear transport models estimated from 
linearly projected data. It first identifies the major practical difficulties with the traditional 
approach to standard error estimation in the situation under consideration. A bootstrapping 
MVR method combining the bootstrap resampling method and the MVR or EMVR method is 
proposed to accurately estimate standard errors. Comprehensive simulations with various 
settings are performed for GMP functions with relaxed exponents and multivariate 
exponential decay functions, which are the most commonly used nonlinear functions 
modeling traffic flow, to evaluate the capability and robustness of the proposed method in 
recovering the true standard errors. The results reveal that the method can be used to 
accurately estimate parameter standard errors. To illustrate real-world scenarios necessitating 
the use of linear data projection and the proposed bootstrapping MVR method, an MFD is 
estimated for a sampled network in Hong Kong, based on real-world data retrieved from 
GPS-equipped taxis and counting stations. The estimated parameter standard errors are used 
to assess the statistical significance of the estimated model. Standard errors are crucial when 
testing the statistical significance of an estimated model. Although the MVR and EMVR 
methods proposed by Wong and Wong (2018) provide unbiased estimated parameters for 
nonlinear transport models based on linearly projected data, no existing method offers 
unbiased standard errors that can be used to determine statistical significance. Therefore, this 
work is important and necessary. Moreover, the size of the model set that can be handled by 
the bootstrapping MVR method is much greater than that in Wong and Wong (2016c). Linear 
data projection is a simple, highly transferable and thus powerful data scaling method of 
providing unbiased estimators for unobservable traffic data, using traffic data collected with 
state of the art technology. Thus, developing methods of unbiased standard error estimation 
for nonlinear transport models estimated from linearly projected data contributes to the field 
not only by filling the abovementioned research gap, but also by facilitating the full 
utilization of this powerful data scaling method in the big data era.  

The remainder of the paper is structured as follows. Section 2 explains the practical 
difficulties associated with the traditional approach to standard error estimations in cases of 
nonlinear transport models estimated from linearly projected data. The bootstrapping MVR 
method, which is expected to accurately estimate parameter standard errors for all nonlinear 
models, is proposed in Section 3. Comprehensive simulation studies with various settings, 
conducted to evaluate the performance of the proposed method, are reported in Section 4. 
Next, a case study of MFD estimation, illustrating real-world scenarios requiring linear data 
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projection, and the proposed method are presented. The last section concludes the study with 
the results, major findings and potential directions for future research. 

 

2. Practical difficulties of the traditional approach to standard error estimation 

Using the traditional approach, parameter standard errors (or their approximations) 
are typically estimated using an empirical analog of an explicit theoretical formula derived 
from an assumed model (Shao and Tu, 1995). More specifically, if the parameters ࢼ of a 
specific model ܩሺࢼሻ can be estimated using a closed-form expression, the explicit expression 
of ܸܽݎሺࢼሻ can be readily derived by taking the variance of the closed-form expression as a 
function of certain unknown quantities. The estimated covariance matrix of ࢼ  or the 

estimator of ܸܽݎሺࢼሻ, ܸܽݎሺࢼሻ෣  can be derived by substituting these unknown quantities with 
their unbiased estimators. The standard error estimates of the model parameters are given by 

the square roots of the diagonal elements of ܸܽݎሺࢼሻ෣ . A typical example of the traditional 
approach is the ADF method proposed by Wong and Wong (2016c). As only GMP models 
with fixed exponents, which are essentially linear regression models, were considered, a 
closed-form expression for the estimator of ࢼ was obtained. As a result, standard errors could 
be easily estimated using the traditional approach.  

However, the normal equations are nonlinear in their parameters in the context of 
nonlinear transport models that necessitate nonlinear regression. Hence, they cannot be 
solved by a finite sequence of standard operations; instead, iterative methods such as the 
Gauss–Newton method or the method of steepest descent must be used. In other words, 
closed-form expressions estimating the model parameters ࢼ may not exist. In such cases, the 
traditional approach, in which ܸܽݎሺࢼሻ is obtained by taking the variance of the closed-form 
expression, may not be practicable. Furthermore, according to Wong and Wong (2016c), if 
the scaling factors used are subject to a certain type of heterogeneity, heteroscedasticity is 
inherently introduced by linear data projection. The error term, in this case, is neither simply 
݅. ݅. ݀. as normal nor heteroscedastic, but a combination of both. Additionally, the nonzero 
value of the expectation of the composite error term (Wong and Wong, 2015; 2018) further 
complicates the problem. Thus, the complex structure of the composite random error term 

tends to make the derivation of ܸܽݎሺࢼሻ෣  immensely cumbersome or even impossible, even if 
closed-form expressions do exist. These practical difficulties imply that the traditional 
approach to standard error estimations may not be a viable solution to the research question 
under consideration. Instead, a generic and flexible method that can accurately estimate the 
parameter standard errors of any nonlinear transport models based on linearly projected data 
is needed. A new bootstrap resampling method incorporating either the MVR or the EMVR 
method, known as the bootstrapping MVR method, is proposed in this study. 

 

3. Bootstrapping MVR method 

Bootstrapping is a powerful and appealing statistical method that can be used to 
estimate the sampling distribution of almost any statistic through random sampling with 
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replacement. The properties of the statistic, such as its variance, can then be derived from the 
approximated sampling distribution. However, it should be stressed that bootstrapping alone 
cannot solve the problem considered here, as the expected value of the distorted composite 
error term is not equal to zero (Wong and Wong, 2015; 2018). Thus, either the MVR or 
EMVR method must be incorporated. This section first briefly sets out the central principle of 
the MVR and EMVR methods. It then introduces the notion of bootstrapping and proposes 
the bootstrapping MVR method for unbiased standard error estimations in cases in which 
generic nonlinear transport models are estimated using linearly projected data.  

 

3.1 Central principle of MVR and EMVR methods 

To remove the embedded systematic biases in nonlinear transport models, Wong and 
Wong (2018) investigated the mechanism of systematic data point distortion induced by 
linear data projection and proposed the MVR and EMVR methods to account for the nonzero 
mean value of the complex error term arising from linear data projection. Define 
;ࢼሺܩ :ሻݖ Թ௠ → Թ  as a highly differentiable function of any form, where ࢼ	  is the model 
parameter vector. The unobservable independent variable ݖ  is represented by linear 
combinations of a set of observable independent variables and scaling factors; that is, 
ݖ ൌ ∑ ௜݂ݔ௜

௠
௜ୀଵ , ∀݅ ∈ ሼ1, 2, … ,݉ሽ, where ݔ௜ represents the observable independent variables, ௜݂ 

is the scaling factor of ݔ௜ , which is assumed to follow any distribution with mean ݂̅ and 
variance ߪ௙ଶ and ݉ is the number of terms constituting ݖ. The authors found that when linear 

data projection was used, the unobservable data points originally lying on the true model, 
;ࢼሺܩ ;ࢼሺܩ ሻ orݖ  ሻ, were projected systematically onto the projection plane such that the̅ݖ
mean value of the set of resulting linearly projected data, ݕത∗, deviated from the true model by 
distance ∆ݕ and lay on the expectation function of the linearly projected data, ܧሾܩሺࢼ;  .ሻሿݖ
The diagram on the left-hand side of Fig. 1 illustrates the mechanism described. For more 
details, interested readers may refer to Wong and Wong (2018). 

 

Fig. 1. Illustration of the central principle of the MVR and EMVR methods 
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The general form of the expectation function of linearly projected data (Wong and 
Wong, 2018) can be represented by Eq. (1): 

 

;ࢼሺܩሾܧ ሻሿݖ ൌ

;ࢼሺܩ ሻ̅ݖ ൅ ଵ

ଶ!
௙ଶߪ ∑

డమீሺࢼ;௭̅ሻ

డ௙೔
మ

௠
௜ୀଵ ൅ ଵ

ଷ! ௙ܵ ∑
డయீሺࢼ;௭̅ሻ

డ௙೔
య

௠
௜ୀଵ ൅ ଵ

ସ!
௙ܭ ∑

డరீሺࢼ;௭̅ሻ

డ௙೔
ర

௠
௜ୀଵ 	൅ ⋯, 

ሺ1ሻ

 

where ௙ܵ and ܭ௙ are the skewness and kurtosis, respectively, of the scaling factor. The	ݎth 

order approximation of the expectation function, ܧ௥ሾܩሺࢼ;  ሻሿ, can be obtained by truncatingݖ
all of the terms behind the ݎth term in Eq. (1), ∀ݎ ∈ Գା. It should be noted that the linear 
approximation ܩሺࢼ; ሻ̅ݖ  is identical to the true model ܩሺࢼ; ሻݖ ; thus the deviation ∆ݕ  can 
generally be approximated by Eq. (2): 

 

ݕ∆ ≅ ;ࢼሺܩ௥ሾܧ ሻሿݖ െ ;ࢼሺܩ ሻ, ሺ2ሻ̅ݖ

 

where ݎ ൒ 2. As illustrated in Fig. 1, the central goal of both the MVR method and the 
EMVR method is to restore the mean value of linearly projected data ݕത∗ by accounting for 
the deviation ∆ݕ in model estimations such that the mean value of the restored data, ݕത∗∗, is 
very close to or lies on the true model ܩሺࢼ;  ሻ. For a dataset of size ܰ, the correspondingݖ
least square function, ܵ, is given by Eq. (3): 

 

 ܵ ൌ ∑ ൣሺݕ௝ െ ௝ሻݕ∆ െ ;෡ࢼ൫ܩ ௝̅൯൧ݖ
ଶே

௝ୀଵ ൌ ∑ ൛ݕ௝ െ ;෡ࢼ൫ܩ௥ൣܧ ௝̅൯൧ൟݖ
ଶே

௝ୀଵ . ሺ3ሻ

 

The MVR method, which is equivalent to the direct model estimation of linearly projected 
data based on the quadratic approximation of their expectation function (i.e., ݎ ൌ 2), is 
flexible, because usually only the first two moments of the scaling factor are available. In 
contrast, the EMVR method can further enhance the accuracy of estimation by capturing 
higher-order moments of the scaling factor (i.e., ݎ ൐ 2) based on an assumed distribution of 
the scaling factor. Generally, the quartic approximation of the expectation function (i.e., 
ݎ ൌ 4) can achieve a satisfactory level of accuracy (Wong and Wong, 2018). 

 

3.2 Formulation of the bootstrapping MVR method 

Statistics are random quantities whose probability distributions constitute their 
sampling distributions. As these sampling distributions and their properties typically depend 
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on underlying unknown populations, the distributions and properties are naturally unknown 
(Shao and Tu, 1995). The bootstrapping method, first introduced by Efron (1979), provides a 
simple and powerful means of approximating sampling distributions. These approximations 
make it possible to estimate statistical properties, such as standard errors. As bootstrapping 
involves random sampling with ܰ replacements from an empirical distribution constituted by 
an observed dataset of size ܰ, this method is categorized as nonparametric resampling in the 
statistics field. 

 Bootstrapping provides a simple and powerful means of making statistically precise 
estimations, primarily because it offers two distinct advantages. First, the resampling method 
replaces the theoretical derivations required by traditional methods. Bootstrapping uses the 
Monte Carlo approximation to estimate the precision of statistics. This approximation 
bypasses the complicated and tedious theoretical derivations of analytical formulae. As 
discussed in Section 2, these derivations are usually very complicated or even impossible to 
perform when generic nonlinear transport models that necessitate nonlinear regression and 
complex error structures caused by linear data projection are considered. Second, 
bootstrapping frees the estimation method of certain restrictive parametric assumptions 
usually imposed by the traditional approach in the specific contexts under consideration. 
Instead, it accommodates the complex composite error term and indirectly assesses the 
properties of the sampling distributions of the statistics via resampling, making it feasible for 
use in a wide range of cases. However, the two main advantages of the bootstrap resampling 
method are achieved at the expense of greater computational cost. Fortunately, due to the 
availability of powerful and inexpensive modern computers, this cost is acceptable. Thus, this 
relatively computer-intensive method is applicable to a broad range of problems, and has 
gained considerable attention in the field of applied statistics, although it has rarely been 
applied in the transportation field. 

 In the context of generic nonlinear transport models estimated from linearly projected 
data, however, the expected value of the composite error is nonzero (Wong and Wong, 2015; 
2018). Thus, to accurately estimate the parameter standard errors, a new bootstrap resampling 
method that incorporates either the MVR or the EMVR method is proposed. Given ܰ 
observed two-dimensional vectors ሺݕ௜, ,௜̅ሻݖ ∀݅ ∈ ሾ1, ܰሿ , where ݕ௜  represents the observed 

dependent variable and ݖ௜̅  represents the linearly projected data (i.e., ݖ௜̅ ൌ ∑ ௝ݔ݂̅
௠
௝ୀଵ ) 

generated from an unknown two-dimensional population distribution ߖ , the ܰ  observed 
vectors constitute an empirical distribution ߖே . Assuming that ܩሺࢼሻ is a candidate model 
estimated on the basis of linearly projected data using either the MVR or the EMVR method, 
the following formulated bootstrapping MVR method can be used to estimate the bootstrap 

standard errors of the estimated parameters, ࢼ෡. 

1) To obtain a bootstrap sample, randomly sample ܰ vectors with replacements from the 
empirical distribution, ߖே. ߖே

∗  denotes the distribution of the bootstrap sample. 

2) Based on the bootstrap sample, use the MVR or the EMVR method to estimate the 
candidate model ܩሺࢼሻ and generate a bootstrapping MVR estimate ࢼ∗. 
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3) To generate ܯ bootstrapping MVR estimates, repeat steps 1 and 2 ܯ times, where ܯ 
is large (typically 1,000 or 10,000). The ܯ bootstrapping MVR estimates constitute a 
histogram that is a Monte Carlo approximation of the bootstrap distributions for these 
bootstrap estimates. 

4) Compute the standard deviations of the ܯ bootstrapping MVR estimates, which are 

the bootstrap standard error estimates of ࢼ෡. 

The fundamental concept of bootstrapping MVR method, illustrated in Fig. 2, is to 
mimic inferences about an unknown population distribution ߖ from sample data ߖே  using 
inferences about an empirical distribution ߖே  from resampled data ߖே

∗ . Ideally, if the 

population distribution ߖ is known, a set of MVR parameter estimates ࢼ෡  can be obtained 
using a set of sample data ߖே drawn from ߖ. By repeating this step ܴ times, histograms can 
be formed gradually for the MVR parameter estimates, and their standard deviations can 
serve as the unbiased standard error estimators. As the number of repetitions, ܴ, tends to 
infinity, these histograms tend to the sampling distributions of the MVR parameter estimates.  

However, the population distribution ߖ is not known in reality. Therefore, using the 
bootstrap resampling method, the observed empirical distribution ߖே  is analogous to the 
unknown population distribution ߖ, and the resampled data ߖே

∗  play the role of data sample 
ேߖ . According to the Glivenko–Cantelli theorem, the empirical distribution ߖே  uniformly 
converges to the population distribution ߖ as the sample size, ܰ, increases. Thus, when ܰ is 
sufficiently large, the observed empirical distribution ߖே can be regarded as a reasonable and 
approximate distribution of the unknown population distribution ߖ. The resulting bootstrap 
standard errors are estimates of the parameter standard errors. As the bootstrap resampling 
method comprises repetitions of random sampling with replacements ܰ	times  from an 
observed dataset of size ܰ, the total number of possible ordered bootstrap samples is ܰே. 
Theoretically, all of the bootstrap estimates can be obtained by enumerating all of the 
possible ordered bootstrap samples (Chernick and LaBudde, 2011). The true bootstrap 
distributions of the bootstrapping MVR estimates, which are approximations of the unknown 
sampling distributions of the MVR parameter estimates, can be constituted by the ܰே set of 
bootstrapping MVR estimates.  

However, this approach is only feasible if the observed dataset is sufficiently small 
(Fisher and Hall, 1991); if ܰ is too large, the computational cost may be huge. In practice, a 
commonly used alternative is Monte Carlo approximation with a large number of repetitions 
of ܯ . As ܯ  increases, the histograms constituted by the bootstrapping MVR estimates 
approach the true bootstrap distributions for the bootstrapping MVR estimates. However, it 
must be stressed that increasing the number of bootstrapping MVR estimates, ܯ, does not 
increase the amount of information in the original data sample; it only reduces the effects of 
the random sampling error arising from the bootstrap procedure itself. An ܯ with a size of 
1,000 or 10,000 can generally achieve a satisfactory level of accuracy.  
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Fig. 2. Illustration of the fundamental principle of the bootstrapping MVR method  

 

 

4. Numerical examples 

Section 3 proposes the bootstrapping MVR method capable of accounting for the 
complex error structure of a mixture of i.i.d. random errors and heteroscedasticity resulting 
from linear data projection. The method also accurately estimates the standard errors of 
nonlinear transport models based on linearly projected data. This section evaluates the 
capability and robustness of the proposed method in recovering true standard errors via 12 
simulation studies based on the two nonlinear functions most commonly used to model traffic 
flow relationships. To illustrate a real-world scenario necessitating the use of linear data 
projection and the proposed method, an MFD is estimated for a sample network in Hong 
Kong. 

 

4.1 Simulation studies 

Comprehensive simulation studies based on GMP functions with relaxed exponents 
and multivariate exponential decay functions are conducted in this subsection to evaluate the 
performance of the proposed method in recovering true standard errors. The two selected 
functions are the functions most commonly used to depict traffic flow relationships. In 
addition to variation in the chosen functional forms, the robustness of the proposed method is 
examined with regard to different scaling factor distributions and the numbers of linear 
combinations of the scaling factor and the observable independent variable. 
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4.1.1 Two chosen classical traffic flow models 

The two nonlinear models chosen for the simulation studies are the GMP function 
with relaxed exponents (Eq. 4) and the multivariate exponential decay function (Eq. 5). These 
are the functions most commonly used to depict traffic flow relationships. The GMP function 
with relaxed exponents is defined as follows:  

ݕ  ൌ ଴ߚ ൅ ௡ݖ௡ߚ ൅ ߝ ൌ ଴ߚ ൅ ∑௡ሺߚ ௜݂ݔ௜
௠
௜ୀଵ ሻ௡ ൅ ሺ4ሻ ,ߝ

 

where ߚ଴, ߚ௡ and ݊ are the model parameters and ߝ is the random error normally assumed to 
follow ܰሺ0,  ଶሻ. The GMP function is commonly used to model an increasing relationshipߪ
between traffic quantities. Cost flow functions or volume delay functions, which can be 
categorized as link-based ሺ݉ ൌ 1ሻ or area-based ሺ݉ ൐ 1ሻ, are among the typical classes of 
traffic flow models showing such an increasing relationship. Both the Bureau of Public Roads 
(BPR) function adopted in the Highway Capacity Manual (Transportation Research Board, 
2000) and the macroscopic BPR (MBPR) function studied by Wong and Wong (2015, 2016b, 
2016c) have the same form as the GMP function. In this physical context, ߚ଴ represents the 
free-flow travel time per unit of distance; ߚ௡  is the product of the congestion sensitivity 
parameter and free-flow travel time; ݊ is the model nonlinearity parameter; ݕ represents the 
travel time per unit of distance across the link or network under consideration; and ݖ is the 
total traffic flow associated with the corresponding link or network. 

 Given that total traffic flow is only observable at a subset of links in a network with 
detectors installed, whereas probe vehicle flow is observable at every link within the network, 
model estimations of both the link- and the area-based BPR functions require the use of both 
linear data projection and the proposed method. When estimating the BPR function of a link 
without a detector (see scenario (a1) in Fig. 3), ݕ is the travel time per unit of distance 
associated with that link. Assuming that these probe vehicles travel at speeds similar to those 
of the surrounding traffic, the reciprocal of the hourly space-mean speed of a probe vehicle is 
an estimator for ݕ. The total-traffic-to-probe-vehicle ratio at the link can be defined as the 
scaling factor ݂, and ݔ is the hourly probe vehicle flow across the link. Their product is the 
hourly total traffic flow. However, the link’s ݂ is unknown due to the absence of a detector. 
Only the scaling factors of nearby links with detectors are observable. Due to geographical 
proximity, the scaling factors of all of the nearby links can be assumed to follow a 
distribution. The sampled observable scaling factors can be used to estimate the mean and 
variance of the distribution. As the scaling factor mean is the most commonly observed total-
traffic-to-probe-vehicle ratio, it is used to estimate the unbiased hourly total traffic flow 

across the link of interest in a linear data projection (i.e., ݂̅ݔ). If the exponent of the BPR 
function is relaxed and allowed to vary, the function is a nonlinear regression model; thus, the 
proposed bootstrapping MVR method is required for unbiased standard error estimation. 
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Fig. 3 Real-world cases of estimating link- and area-based cost flow functions and the speed-
density relationship that necessitate the use of linear data projection and the proposed 

bootstrapping MVR method for unbiased standard error estimation 
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However, if an entire network is of interest (see scenario (a2) in Fig. 3), an MBPR 
function should be considered. In this case, ݉  is the number of links intercepting the 
boundaries of the sampled network, which are defined as boundary stations (Wong and Wong, 
2015, 2016a, 2016b). The reciprocal of the hourly space-mean speed of the probe vehicles in 
the sampled network can be used to approximate the travel time per unit of distance across 
the network. 	 ௜݂  is the total-traffic-to-probe-vehicle ratio at boundary station ݅ , and ݔ௜ 
represents the hourly probe vehicle flow entering the network through boundary station ݅. 
Again, as detectors may be absent, the values of the scaling factors may be unknown. By 
inferring the scaling factor distribution using sampled total-traffic-to-probe-vehicle ratios at 
links with detectors in the network, both the mean and variance of the scaling factor can be 
obtained. The linear data projected can then be used to obtain an unbiased estimate of the 

hourly traffic flow entering the network (i.e., ∑ ௜ݔ݂̅
௠
௜ୀଵ ). The proposed method is necessary to 

estimate unbiased standard errors in this case. 

The second model chosen for the simulation studies is the multivariate exponential 
decay function: 

ݕ  ൌ ܽ ݌ݔ݁ ቀି௭
௕
ቁ ൅ ߝ ൌ ܽ ݌ݔ݁ ቀ

ି∑ ௙೔௫೔
೘
೔సభ

௕
ቁ ൅ ሺ5ሻ ,ߝ

 

where ܽ  and ܾ  are the model parameters and ߝ  is the random error normally assumed to 
follow ܰሺ0,  ଶሻ. The multivariate exponential decay function is normally used to depictߪ
strictly decreasing relationships between traffic quantities. Link-based ሺ݉ ൌ 1ሻ  and area-
based ሺ݉ ൐ 1ሻ  speed-density relationships are among the typical classes of traffic flow 
models with such a decreasing relationship. Thus, this functional form can be a candidate 
model for speed-density relationships. If a single link is considered, Eq. (5) reduces to the 
classical Underwood model. If the MFD of a network is of interest, the multivariate 
exponential decay function can be a candidate model for statistical fitting. In these physical 
contexts, parameter ܽ  represents the free-flow speed, parameter ܾ  represents the optimal 
traffic density at which the throughput is maximum and ݖ is the traffic density of the link or 
network considered. 

 Similarly, estimating both the link- and the area-based speed-density relationship 
necessitates both linear data projection and the proposed method if probe vehicle flow is 
observable for each link in the sampled network and the observation of total traffic flow is 
limited to a subset of links outfitted with detectors. Using Underwood’s model of a link (see 
scenario (b1) in Fig. 3), the space-mean speed of the probe vehicles traveling on the link over 
a short period (e.g., 10 min) is an unbiased estimator for ݕ, assuming that all of the vehicles 
on the same link travel at similar speeds.  The total-traffic-to-probe-vehicle ratio at that link 
can be taken as the scaling factor ݂, and ݔ represents the average probe vehicle density at the 
same link. As the scaling factor ݂ of the link of interest is unobservable, linear data projection 
must be used for unbiased estimations of traffic density, using the scaling factor mean 

inferred from the sampled total-traffic-to-probe-vehicle ratios of nearby links (i.e., ݂̅ݔ). The 
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proposed bootstrapping MVR method must then be applied for unbiased standard error 
estimation, as Underwood’s model is a nonlinear regression model. 

 In the case of area-based speed-density relationships (scenario (b2) in Fig. 3), ݉ is the 
total number of links in the selected network. The space-mean speed of all of the probe 
vehicles in the sampled network in a short period (e.g., 10 min) can be taken as an 
approximation of ݕ. ௜݂ is the total-traffic-to-probe-vehicle ratio at link ݅, and ݔ௜	is the average 
probe vehicle density at link ݅. Again, due to the possible absence of detectors, the values of 
the scaling factors may be unobservable. Linear data projection has to be leveraged to 
estimate the network traffic density using the scaling factor mean estimated from the sampled 

total-traffic-to-probe-vehicle ratios (i.e., ∑ ௜ݔ݂̅
௠
௜ୀଵ ). As the multivariate exponential decay 

function is a nonlinear regression model, the proposed method is necessary for unbiased 
standard error estimations. 

 

4.1.2 Data generation 

To evaluate the performance and robustness of the proposed method in recovering 
true standard errors, 12 simulation cases with various combinations of the chosen models 
(GMP functions with relaxed exponents and multivariate exponential decay functions), 
number of linear combinations of the scaling factors and observable independent variables 
(i.e., ݉ ൌ 1, 2 and 3) and distributions of the scaling factors (i.e., normal and lognormal) 
were considered. In addition, model estimations of both the link- and the area-based cost-
flow relationships and the speed-density relationships in the situations described above could 
be mimicked by these simulation studies. 

We set ߚ଴ ൌ ௡ߚ ,3 ൌ 1, ݊ ൌ 3, ܽ ൌ 30 and ܾ ൌ 2000. As ݉ was set at 1, 2 or 3, 
three sets of observable independent variables with 10,000 observations were sampled for 
each selected model. ݔ௜ can be used to represent the hourly probe vehicle flow across link ݅ 
(or boundary station ݅) or the average probe vehicle density at link ݅, according to the above-
described physical contexts. In practice, the observable independent variable can represent 
any traffic variable with any probability distribution. Each observation comprised one ݔ when 
݉ ൌ 1 . Similarly, two or three ݔ s were independently generated from the selected 
distribution for each observation for cases in which ݉ ൌ 2 or 3, respectively. Without a loss 
of generality, uniform distributions were chosen to generate the observable independent 
variable. For the GMP function, ݔ  was sampled from ܷ݂݊݅ሺ0, 1ሻ . For the multivariate 
exponential decay function, ݔ was sampled from ܷ݂݊݅ሺ0, 100ሻ. These six sets of observable 
independent variables were used in all of the simulations to avoid sampling errors during data 
generation. The scaling factor ݂  for each ݔ  was generated from a normal or a lognormal 

distribution, with ݂̅ ൌ 1 and ߪ௙ ൌ 0.2 for the GMP function and ݂̅ ൌ 100 and ߪ௙ ൌ 20 for 

the multivariate exponential decay function. In addition, 10,000 random errors, ߝ, for the 
10,000 observations were generated from ܰሺ0, 0.1ሻ for the GMP function and ܰሺ0, 1ሻ for 
the multivariate exponential decay function. The corresponding 10,000 dependent variables, 
 ߝ and ݂ ,ݔ were evaluated using the true values of the model parameters and the sampled ,ݕ
for each simulation case. Assuming that the value of each ݂ was not available, ݖ could only 
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be estimated based on a linear data projection in which the unknown ݂was replaced by the 

scaling factor mean (i.e., ̅ݖ ൌ ∑ ௜ݔ݂̅
௠
௜ୀଵ ).  

 

4.1.3 Simulation results 

Regression analysis was conducted on the basis of linearly projected data using the 
MVR and EMVR methods proposed by Wong and Wong (2018). For the GMP function, the 
chosen value of ݊ was 3, so its expectation function could only be approximated up to its 
cubic form. In particular, for the simulation case with a scaling factor assumed to follow a 
normal distribution, the cubic approximation was automatically reduced to a quadratic 
approximation due to the zero skewness of the normal distribution. Therefore, the quadratic 
approximation and the cubic approximation were used in the simulation cases associated with 
normally distributed and lognormally distributed scaling factors, respectively. In contrast, the 
multivariate exponential decay function was infinitely differentiable. In general, because the 
fourth-order approximation yielded a satisfactory level of accuracy, the quartic 
approximation of the expectation function was used in the regression analysis. Calibrated 

model parameters (i.e., ߚመ଴ መ௡ߚ , , ො݊ , ොܽ  and ෠ܾ ) and reported standard errors (i.e., ܴܵܧሺߚመ଴ሻ
෣ , 

መ௡ሻߚሺܧܴܵ
෣ ሺܧܴܵ , ො݊ሻ෣ ሺܧܴܵ , ොܽሻ෣  and ܴܵܧሺ෠ܾሻ෣ ) were obtained from the model estimation. The 

proposed bootstrapping MVR method was then leveraged to obtain the bootstrap standard 

errors of the estimated parameters (i.e., ܵܧ஻ሺߚመ଴ሻ
෣ መ௡ሻߚ஻ሺܧܵ ,

෣ ஻ሺܧܵ , ො݊ሻ෣ ஻ሺܧܵ , ොܽሻ෣  and ܵܧ஻ሺ ෠ܾሻ
෣ ). 

The number of bootstrap samples, ܯ, was set at 10,000. 

 The number of repetitions for each simulation case ܴ was set at 10,000. Therefore, to 
obtain the means and standard deviations of the parameter estimates, the means of the 
reported standard errors and the bootstrap standard errors, 10,000 repetitions were conducted 
for each simulation case with resampled scaling factors and random errors. Tables 1 and 2 
present the simulation results for the six cases using the GMP model. Similarly, Tables 3 
and 4 summarize the simulation results for the six cases using the multivariate exponential 
decay function. 
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       Table 1 
        Means and standard deviations of the parameter estimates of the GMP functions based on the MVR or the EMVR method 

Assumed scaling 

factor distribution 

݉ Mean  Standard deviation 

መ଴ߚ ሺ% መ௡ߚ   ሻݎ݋ݎݎ݁ ሺ% ሻ   ො݊ݎ݋ݎݎ݁ ሺ%   መ௡  ො݊ߚ  መ଴ߚ   ሻݎ݋ݎݎ݁
Normal 

distribution 

1 3.000 ሺ0.00%ሻ  1.000 ሺെ0.01%ሻ 3.001 ሺ൅0.03%ሻ  0.0028  0.0127  0.0752  
2 3.000 ሺ0.00%ሻ  1.000 ሺെ0.01%ሻ 3.001 ሺ൅0.03%ሻ  0.0186  0.0328  0.0669  

3 3.000 ሺ0.00%ሻ  1.001 ሺ൅0.05%ሻ 3.001 ሺ൅0.04%ሻ  0.0625  0.0566  0.0679  

         

Lognormal 

distribution 

1 3.000 ሺ0.00%ሻ  1.000 ሺ൅0.01%ሻ 3.003 ሺ൅0.11%ሻ  0.0030  0.0137  0.0840  

2 3.000 ሺ0.00%ሻ  1.000 ሺ൅0.02%ሻ 3.001 ሺ൅0.02%ሻ  0.0199  0.0353  0.0720  

3 3.001 ሺ൅0.03%ሻ 1.000 ሺെ0.01%ሻ 3.002 ሺ൅0.08%ሻ  0.0672  0.0590  0.0704  

 

 

Table 2 
Means of the reported standard errors and bootstrap standard errors for the GMP functions 
Assumed scaling 

factor distribution

݉ Mean  Mean 

መ଴ሻߚሺܧܴܵ
෣ 	ሺ%	݁ݎ݋ݎݎሻ መ௡ሻߚሺܧܴܵ

෣ ሺ% ሻݎ݋ݎݎ݁ ሺܧܴܵ ො݊ሻ෣ ሺ% መ଴ሻߚ஻ሺܧܵ   ሻݎ݋ݎݎ݁
෣ ሺ% ሻݎ݋ݎݎ݁ መ௡ሻߚ஻ሺܧܵ

෣ ሺ% ሻݎ݋ݎݎ݁ ஻ሺܧܵ ො݊ሻ෣ ሺ%   ሻݎ݋ݎݎ݁
Normal 

distribution 

1 0.0048	ሺ൅70.73%ሻ  0.0085 ሺെ32.51%ሻ  0.0586 ሺെ22.04%ሻ   0.0028 ሺ൅0.53%ሻ  0.0125 ሺെ1.17%ሻ  0.0750 ሺെ0.26%ሻ 
2 0.0217	ሺ൅16.53%ሻ  0.0243 ሺെ25.81%ሻ  0.0382 ሺെ42.83%ሻ   0.0186 ሺെ0.14%ሻ  0.0328 ሺെ0.07%ሻ  0.0670 ሺ൅0.05%ሻ 
3 0.0597	ሺെ7.28%ሻ  0.0339 ሺെ40.15%ሻ  0.0350 ሺെ48.40%ሻ   0.0639 ሺെ0.76%ሻ  0.0565 ሺെ0.99%ሻ  0.0673 ሺെ0.90%ሻ 

         

Lognormal 

distribution 

1 0.0053	ሺ൅74.28%ሻ  0.0096 ሺെ29.98%ሻ  0.0650 ሺെ22.62%ሻ   0.0030 ሺെ0.53%ሻ  0.0136 ሺെ0.52%ሻ  0.0837 ሺെ0.36%ሻ 
2 0.0232	ሺ൅16.71%ሻ  0.0261 ሺെ26.03%ሻ  0.0410 ሺെ43.09%ሻ   0.0198 ሺെ0.26%ሻ  0.0352 ሺെ0.43%ሻ  0.0715 ሺെ0.61%ሻ 
3 0.0626	ሺെ6.83%ሻ  0.0356 ሺെ39.63%ሻ  0.0368 ሺെ47.75%ሻ   0.0668 ሺെ0.70%ሻ  0.0586 ሺെ0.62%ሻ  0.0704 ሺെ0.04%ሻ 
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The model estimation results for the GMP functions with relaxed exponents, shown in 
Table 1, revealed that the parameter estimates and their true values were extremely close (i.e., 
଴ߚ ൌ 3 ௡ߚ , ൌ 1  and ݊ ൌ 3 ). In terms of magnitude, the percentage errors of all of the 
parameter estimates were less than or equal to 0.11%. This demonstrated the effectiveness of 
the MVR and EMVR methods proposed by Wong and Wong (2018). Quadratic 
approximation and cubic approximation were the exact expectation functions of the linearly 
projected data for the simulation cases associated with the normally distributed and the 
lognormally distributed scaling factors, respectively. Thus, any remaining percentage errors 
in the parameter estimates should have emanated purely from sampling errors in the random 
errors and from the scaling factors in the 10,000 repetitions. Unbiased estimators of the 
parameter standard errors were given by the standard deviations of the parameter estimates. 
However, as shown in Table 2, the reported standard errors seriously deviated from these 
unbiased estimators. The magnitudes of the percentage errors of the reported standard errors 
ranged from around 7% to 74%.  

 The last three columns of Table 2 reveal the bootstrap standard errors of the 
parameter estimates for the GMP functions estimated using the proposed bootstrapping MVR 
method. As demonstrated by the simulation results, the magnitudes of the percentage errors 
of the bootstrap standard errors were all well within 1.17%. The results indicated that the 
proposed bootstrapping MVR method outperformed conventional regression procedures, 
which were unable to account for the complex error structure comprising both the 
heteroscedasticity induced by linear data projection and random errors ݅. ݅. ݀ as normal. No 
specific patterns in the percentage errors of the bootstrap standard errors were identified 
along the dimensions of ݉ or in the choice of scaling factor distribution. For instance, the 

magnitudes of the percentage errors of ߚመ଴ dropped from 0.53% to 0.26% and then increased 
to 0.70% as ݉ increased from 1 to 3, in the case of the lognormally distributed scaling factor. 

Similarly, when ݉ ൌ 2, the magnitude of the percentage error of ߚመ௡  in the case with the 
lognormally distributed scaling factor (0.43%) was greater than that in the case with the 
normally distributed scaling factor (0.07%). However, when ݉ ൌ 3, the magnitude of the 

percentage error of ߚመ௡ in the situation with a lognormally distributed scaling factor (0.62%) 
was smaller than that in the case with normally distributed scaling factors (0.99%). The 
remaining minimal errors among the bootstrap standard errors stemmed from two types of 
error that are thoroughly explained later in this subsection. 
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 Table 3 
 Means and standard deviations of the calibrated parameters of the multivariate exponential decay functions based on the EMVR method 

Assumed scaling factor 

distribution 

݉ Mean  Standard deviation 

ොܽ ሺ% ሻ   ෠ܾݎ݋ݎݎ݁ ሺ%   ሻ    ොܽ  ෠ܾݎ݋ݎݎ݁
Normal distribution 1 29.999 ሺ0.00%ሻ  2000.293 ሺ൅0.01%ሻ   0.0667  8.1346  

2 29.992 ሺെ0.03%ሻ  2001.076 ሺ൅0.05%ሻ   0.2914  14.3951  

3 29.978 ሺെ0.07%ሻ  2002.523 ሺ൅0.13%ሻ   0.9915  32.6607  

       

Lognormal distribution 1 30.005 ሺ൅0.02%ሻ  1999.135 ሺെ0.04%ሻ   0.0645  7.3904  

2 29.998 ሺെ0.01%ሻ  2000.094 ሺ0.00%ሻ   0.2797  13.6727  

3 30.002 ሺ൅0.01%ሻ  2000.944 ሺ൅0.05%ሻ   0.9769  31.7319  

 

 

            Table 4 
             Means of the reported standard errors and bootstrap standard errors for the multivariate exponential decay function 

Assumed scaling 

factor distribution 

݉ Mean  Mean  

ሺܧܴܵ ොܽሻ෣ ሺ% ሺ෠ܾሻ෣ܧܴܵ  ሻݎ݋ݎݎ݁ ሺ% ሻݎ݋ݎݎ݁ ஻ሺܧܵ  ොܽሻ෣ ሺ% ஻ሺ෠ܾሻܧܵ  ሻݎ݋ݎݎ݁
෣ ሺ% ሻݎ݋ݎݎ݁

Normal 

distribution 

1 0.0064 ሺെ90.36%ሻ  58.9611 ሺ൅624.81%ሻ   0.0666 ሺെ0.16%ሻ  8.0991 ሺെ0.44%ሻ  
2 0.0470 ሺെ83.89%ሻ  135.2453 ሺ൅839.52%ሻ   0.2914 ሺ0.00%ሻ  14.4448 ሺ൅0.35%ሻ  
3 0.4450 ሺെ55.12%ሻ  628.0568 ሺ൅1822.97%ሻ   1.0332 ሺ൅4.20%ሻ  33.6018 ሺ൅2.88%ሻ  

       

Lognormal 

distribution 

1 0.0056 ሺെ91.31%ሻ  51.1547 ሺ൅592.18%ሻ   0.0648 ሺ൅0.48%ሻ  7.5551 ሺ൅2.23%ሻ  
2 0.0442 ሺെ84.21%ሻ  126.7450 ሺ൅826.99%ሻ   0.2848 ሺ൅1.83%ሻ  13.8660 ሺ൅1.41%ሻ  
3 0.4402 ሺെ54.94%ሻ  618.1656 ሺ൅1848.09%ሻ   1.0085 ሺ൅3.24%ሻ  32.7512 ሺ൅3.21%ሻ  
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As shown in Table 3, the model parameters of the multivariate exponential decay 
functions estimated using the EMVR method were extremely close to their true values (i.e., 
௙ݑ ൌ 30 and ݇௢ ൌ 2000). In terms of magnitude, the percentage errors of all of the cases 

were less than or equal to 0.13%. Although the multivariate exponential decay function is 
infinitely differentiable, a quartic approximation of the expectation function was expected to 
attain a satisfactory level of accuracy in the model estimation. Therefore, the remaining 
percentage errors in the parameter estimates were assumed to have stemmed primarily from 
unrecovered minimal effects due to the scaling factors’ higher-order moments, and from the 
sampling errors of the random errors and scaling factors. Again, unbiased estimates of the 
parameter standard errors were given by the standard deviations of the parameter estimates. 
However, as shown in Table 4, the reported standard errors were seriously biased. The 
magnitudes of the percentage errors of the standard errors ranged from around 55%  to 
1848%. 

The last two columns of Table 4 reveal the bootstrap standard errors in the parameter 
estimates for the multivariate exponential decay functions estimated using the proposed 
bootstrapping MVR method. The simulation results showed that the magnitudes of the 
percentage errors for the bootstrap standard errors were less than or equal to 4.20% for all of 
the simulation cases. The magnitudes of the percentage errors for the reported standard errors 
were much greater than those for the bootstrap standard errors. Compared with conventional 
regression, therefore, the proposed bootstrapping MVR method dramatically improved the 
accuracy of the standard error estimates. As in the cases of GMP functions, no clear patterns 
in the percentage errors of the bootstrap standard errors were identified with certainty along 
the dimensions of ݉ or in the choice of scaling factor distribution. For instance, in cases with 

lognormally distributed scaling factors, the magnitude of the percentage errors of ෠ܾ dropped 
from 2.23% to 1.41% and then increased to 3.21% as ݉ increased from 1 to 3. Similarly, 
when ݉ ൌ 2, the magnitude of the percentage error of ොܽ  in the case of the lognormally 
distributed scaling factor (1.83%) was greater than that in the case of the normally distributed 
scaling factor (0.00%). However, when ݉ ൌ 3, the magnitude of percentage error of ොܽ for 
the case of the lognormally distributed scaling factor (3.24%) was smaller than that in the 
case with a normally distributed scaling factor (4.20%). The minimal errors remaining 
among the bootstrap standard errors in these cases also originated from two types of error. 

As the proposed bootstrapping MVR method accurately estimated the parameter 
standard errors under different simulation settings for each of the selected models, it was 
considered robust and flexible. Nevertheless, a minimal amount of error, although 
insignificant, was observed in the bootstrap standard error estimates. These remaining 
minimal errors stemmed from two sources, namely the two leveraged approximation 
mechanisms in the bootstrapping MVR method (see Fig. 2). First, the histograms formed by 
the ܯ sets of bootstrap estimates were only Monte Carlo approximations of the bootstrap 
distributions for the bootstrap estimates. This type of sampling error could be reduced by 
increasing the size of ܯ. Second, ߖே was only an approximation of the distributions for the 
unknown population distribution ߖ. By collecting more data and hence increasing the size, ܰ, 
of the dataset, these errors could be further minimized. In practice, however, when ܰ and ܯ 
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were sufficiently large, these minimal percentage errors in the bootstrap standard error 
estimates were insignificant and acceptable.  

Most importantly, the results of the comprehensive simulation study demonstrate that 
compared with conventional models, the proposed bootstrapping MVR method can better 
accommodate the complex error structure containing both the heteroscedasticity inherently 
induced by linear data projection and random errors ݅. ݅. ݀. as normal. Therefore, to estimate 
accurate statistics indicating the significance of the parameter estimates, the proposed 
bootstrapping MVR method should always be leveraged with generic nonlinear transport 
models based on linearly projected data. 

 

4.2 Application to MFD 

In this subsection, to illustrate the real-world situations necessitating the use of linear 
data projection and the proposed bootstrapping MVR method, an MFD was estimated for a 
1	km	 ൈ 	1	km  network in Choi Hung, Hong Kong. The data were extracted from GPS-
equipped taxis and on-road fixed detectors. The total-traffic-to-occupied-taxi ratio was 
selected as the scaling factor used to estimate network traffic density in a linear data 
projection.  

 

4.2.1 Chosen model depicting the decreasing area-wide speed-density relationship 

To model the decreasing area-wide speed-density relationship, five candidate models 
were chosen for statistical fitting. The five selected models took the functional forms of the 
classical Greenshield, Pipes-Munjal, Greenberg, Underwood and Drake models1, except that 
density was expressed as the sum of the number of vehicles on all the links within the 
sampled network (i.e., ݇ ൌ ∑ ݇௜

௠
௜ୀଵ ). Of the five candidate models, the function in the form of 

the Underwood model performed best as measured by the Akaike information criterion (AIC). 
The AIC, encapsulating the parsimony principle, can be used to select the best fitted model 
with consideration of both goodness of fit and model complexity (Sakamoto et al., 1987). 
Thus, the following model, which shared the form of the multivariate exponential decay 
function, was selected for presentation:  

  	

 
ݑ	 ൌ ௙ݑ exp ቀ

ି௞

௞೚
ቁ ൌ ௙ݑ exp ቀ

ି∑ ௞೔
೘
೔సభ

௞೚
ቁ , ሺ6ሻ 

 

where ݑ௙  is the free-flow space-mean speed (measured in km/h);	݇௢  is the optimal traffic 

density per unit of area (measured in veh/kmଶ); ݇௜ is the number of vehicles on link ݅ in time 
ܶ; ݉ is the total number of links in the sampled network; ݇ is the traffic density per unit of 

                                                            
1 Greenshield model corresponds to linear function. Pipes-Munjal model corresponds to polynomial function. 
Greenberg model corresponds to logarithmic function. Underwood model corresponds to exponential decay 
function. Drake model corresponds to exponential model of a quadratic function. 
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area (measured in veh/kmଶ) in time ܶ, which can be expressed as the sum of the number of 
vehicles on all the links within the sampled network; and ݑ  is the space-mean speed 
(measured in km/h) over time ܶ . 

 

4.2.2 Databases 

 To model the macroscopic space-mean speed and traffic density relationship, traffic 
data for the sampled 1	km ൈ 1	km network in Hong Kong were estimated and extracted from 
the Annual Traffic Census 2010 (ATC) (Transport Department, 2010) and a 2010 taxi GPS 
database, which store one-year traffic data from stationary sources and mobile sources, 
respectively.  

 The ATC report comprised comprehensive traffic data collected from more than 1,500 
counting stations covering approximately 90% of Hong Kong’s trafficable area (Tong et al., 
2003; Lam et al., 2003). The average annual daily traffic (AADT) across each of the counting 
stations associated with the selected network was extracted to constitute the sampled scaling 
factors, which were used to estimate traffic density. 

 The taxi GPS database provided detailed travel information on approximately 480 
GPS-equipped taxis in 2010. These taxis sent their real-time locations, expressed in terms of 
World Geodetic System 1984 (International Terrestrial Reference Frame 96) data in decimal 
degrees, timestamps, instantaneous speed, travel direction and occupancy, to the traffic center 
every 30 seconds. These taxi data covered Hong Kong’s entire transportation network. 

 

4.2.3 Data constitution and the necessity of linear data projection 

 Space-mean speed ݑ  and traffic density ݇  over time ܶ  were essential to the MFD 
estimation. These data were obtained from the one-year ATC report and the taxi GPS 
database described in the previous subsection. As the behavior of the occupied taxis 
resembled that of normal traffic, their speed and density data were retrieved from the 
database to constitute space-mean speed and traffic density. Fig. 4 illustrates the patterns of 
normalized occupied taxi flow and normalized traffic flow at a few stations (defined as core 
stations in the ATC report) at which temporal traffic counts were available in the network 
under study. Although both normalized flows varied through the day, their patterns were 
remarkably similar, which suggested that the assumption was reasonably valid. 
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Figure. 4. Normalized occupied taxi flow and normalized total traffic flow at several 
locations in the network under study 

 

The choice of the sampling (or aggregation) period ܶ reflected a trade-off between 
data quality and traffic state resolution. A greater ܶ  may have increased the number of 
vehicles in the samples and improved their reliability, but it would also have undesirably 
averaged out the inhomogeneous traffic states across ܶ. We chose a ten-minute sampling 
period for ܶ because this appeared to strike a suitable balance between the two factors. Each 
pair of space-mean speed ݑ and traffic density ݇ were thus average values representing the 
traffic state of the network in a ten-minute sampling period. As each GPS-equipped taxi 
reported its travel information to the traffic center twice per minute, we defined a unit time 
slice, ∆ݐ, as 30 seconds. Therefore, a unit sampling period ܶ consisted of 20 time slices. To 
alleviate the problem of significant errors arising from insufficient occupied taxi coverage, 
only samples with observed occupied taxis in each of the 20 time slices were included in the 
case study to filter out and discard unreliable samples and ensure the credibility of the 
sampled data. 

The network traffic density, ݇, was the total number of vehicles on all of the links in 
the sampled network. However, as on-road fixed detectors had only been installed on a subset 
of links in the network, which is usually the case worldwide, it was impossible to directly 
measure network traffic density. However, using the taxi GPS database, the number of 
occupied taxis on any link was readily obtainable. Alternatively, the network traffic density ݇ 
can be expressed as the sum of the linear combinations of ௜݂ and ݔ௜ as follows: 

 

  	

 
݇ ൌ෍݇௜

௠

௜ୀଵ

ൌ෍ ௜݂ݔ௜

௠

௜ୀଵ

, ሺ7ሻ 

 

where ௜݂ is the scaling factor of link ݅, defined as the total-traffic-to-occupied-taxi ratio on 

that link and assumed to follow a certain distribution with mean ݂ ̅and standard deviation ߪ௙; 

and ݔ௜ is the average number of occupied taxis on link ݅ in a unit sampling period ܶ, which 
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was adjusted in accordance with the ratio between the normalized traffic and occupied taxi 
flows to account for temporal effects (Wong and Wong, 2015, 2016c). The data on ݔ௜ could 
be readily retrieved from taxi GPS data; however, the individual value of each ௜݂  was 
unknown. 

Due to the geographical proximity of the links in the sampled network, the scaling 
factors of all of the links were assumed to follow a distribution subject to a certain spatial 
heterogeneity. Such spatial heterogeneity may arise from a number of factors. 
Meng et al. (2017b) quantified spatial heterogeneity using various measures, such as the land-
use purposes of different lots. Fig. 5 is a schematic sketch of the Choi Hung network, 
illustrating the approximately uniformly distributed ATC stations across the network. The 
network consisted of 51 links and 17 ATC stations. As the ATC stations were equipped with 
on-road fixed detectors, the AADT across these stations could be extracted from the ATC 
report, and the links associated with the ATC stations were selected as the sampling sites for 
the scaling factors. By dividing the AADT of an ATC station by the average annual daily 
occupied taxi flow across the same station, each sampled scaling factor was obtained. The 
mean of the scaling factor distribution, the most probable observed total-traffic-to-occupied-
taxi ratio in the network, was estimated by the average value of the sampled scaling factors. 
The spatial heterogeneity of the traffic composition ratio was quantified by the scaling factor 
variance. The scaling factor mean was 198.6, indicating that each observed occupied taxi in 
Choi Hung represented approximately 199 vehicles in the network. The scaling factor 
variance was 139.9. As not all of the scaling factors were known, a direct evaluation of 
network traffic density based on Eq. (7) was not possible. Instead, linear data projection (i.e., 
ത݇ ൌ ∑ ௜ݔ݂̅

௠
௜ୀଵ ) was necessary for unbiased traffic density estimation. 
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Fig. 5. Schematic sketch of the network in Choi Hung, showing the approximately uniform 
distribution of ATC stations 

As the occupied taxis interacted with the surrounding vehicles with which they 
traveled in the sampled network, all of the vehicles were assumed to travel at similar speeds. 
The space-mean speed of all traffic during sampling period ܶ was obtained by dividing the 
total distance traveled by the total time spent. Assuming that the traffic composition ratio of 
each link remained approximately uniform during a short (ten-minute) sampling period, ܶ, 
the space-mean speed was given by Eq. (8): 

 

 

 	

 

ݑ ൌ
∑ ∑ ௨೔ೕ∆௧௙೔

ಿ೟೔
ೕసభ

೘
೔సభ

∑ ∑ ∆௧௙೔
ಿ೟೔
ೕసభ

೘
೔సభ

, ሺ8ሻ

 

where ௧ܰ௜ is the total number of occupied taxis on link ݅, ∀݅ ∈ ሾ1,݉ሿ, ݑ௜௝ is the speed of the 

݆th occupied taxi on link ݅, ∀݆ ∈ ሾ1, ௧ܰ௜ሿ and ∆ݐ is 30 seconds. Similarly, as individual values 
could not be identified for the scaling factors, direct evaluation was impossible. However, the 
second-order approximation of the expectation of the space-mean speed, which was 
dependent on the coefficient of variation of the scaling factor, is given by Eq. (9). A detailed 
derivation is provided in Appendix A. 
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௝ୀଵ ቁ௠
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௠
௜ୀଵ ሻ

ሺ∑ ௧ܰ௜
௠
௜ୀଵ ሻଷ

 

ሺ9ሻ 

 

The first term on the right-hand side of Eq. (9) (i.e., the arithmetic mean of the speeds 
of the occupied taxis) is the first-order approximation of the space-mean speed of all traffic 
and an unbiased estimator of the space-mean speed of the occupied taxis. Although this 
approximation was used in Geroliminis and Daganzo’s (2008) study of MFDs, its adoption 
carries the assumption of a homogeneous traffic composition ratio across a network, which is 
rarely true in reality. The second-order approximation used in this study improves the 
accuracy of the space-mean speed estimate because the second term shown in Eq. (9), which 
can be viewed as a correction to/adjustment of the first term, further incorporates information 
about the spatial heterogeneity of the traffic composition ratio and the spatial distribution of 
the occupied taxis.  

 

4.2.4 Standard error estimations based on the proposed bootstrapping MVR method 

The multivariate exponential decay function was a nonlinear function of the scaling 
factor, and the scaling factor was subject to spatial heterogeneity. Therefore, direct model 
estimation using linearly projected data would have resulted in biased parameters (Wong and 
Wong, 2015). As the histogram of the natural logarithm of the sampled scaling factors was 
approximately symmetrically bell-shaped, a lognormal distribution was a candidate 
distribution for the scaling factor. A Kolmogorov-Smirnov goodness of fit test was performed 
to test the null hypothesis that the sampled scaling factors were consistent with a specified 
lognormal distribution. As the resulting statistic was smaller than the critical value of the test 
at the 0.05 level of significance, insufficient evidence was obtained to reject the null 
hypothesis. Therefore, the scaling factor was assumed to be lognormally distributed and the 
EMVR method with a quartic approximation of the expectation function was leveraged to 
ensure that the parameter estimates were sufficiently accurate (Wong and Wong, 2018). 
Fig. 6 depicts the scatter plot and the best-fitted multivariate exponential decay function 
based on the EMVR method. 
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Fig. 6. Scatter plot of speed against density and the best fitted multivariate exponential decay 

function using the EMVR method for a 1	km	 ൈ 1	km	 network in Choi Hung, Hong Kong 

However, the heteroscedasticity inherently introduced by linear data projection results 
in biased standard error estimates (Wong and Wong, 2016c). Thus, without accurate and 
suitable statistics indicating the significance of the estimates, the validity of application of the 
model remained unclear. In addition, as the multivariate exponential decay function is a 
nonlinear transport model, necessitating nonlinear regression, the proposed bootstrapping 
MVR method was adopted to account for the complex error structure and accurately estimate 
the standard errors. The number of repetitions ܯ was set at 10,000. In addition, 5,254 two-
dimensional vectors (i.e., ܰ ൌ 5,254) were observed in the dataset. Thus, in each repetition, 
5,254 vectors were randomly sampled with replacements from the observed dataset to form a 
bootstrap sample. Based on the bootstrap sample, the EMVR method was used to obtain a set 

of bootstrap estimates (i.e., ݑො௙
∗  and ෠݇௢∗ ). The bootstrap standard errors of the estimated 

parameters were given by the standard deviations of the ܯ sets of bootstrap estimates. The 
parameter estimates and bootstrap standard errors, as estimated by the EMVR method and the 
proposed bootstrapping MVR method, respectively, are presented in Table 5. 
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Table 5 
Parameter estimates and bootstrap standard errors of the multivariate exponential decay function using the 
EMVR method and the proposed bootstrapping MVR method, respectively 

 Model parameter 

ሺkm/hሻ  ෠݇	ො௙ݑ 
௢ ሺveh/kmଶሻ  

Calibrated parameter 50.3  1634.9  

෢ܧܴܵ 	ሺ%	݁ݎ݋ݎݎሻ  0.3538 ሺെ2.31%ሻ  29.6215 ሺ൅2.33%ሻ  
Bootstrap standard error 0.3622  28.9478  

statistic 138.95-ݐ 56.48
  value 0.00  0.00-݌

 

Using conventional nonlinear regression in standard statistical package, the estimation 
of standard errors was based on the assumption that the distorted composite error terms are 

݅. ݅. ݀. as normal. The row for ܴܵܧ෢  in Table 5 above shows the reported standard errors 
estimated using conventional regression procedures. The biased standard errors were above 
or below the true values. The comprehensive simulation studies presented in Section 4.1 
demonstrated that the proposed bootstrapping MVR method accounted for both 
heteroscedasticity and ݅. ݅. ݀.  random errors in standard error estimations when nonlinear 
transport models were estimated using linearly projected data. Therefore, the bootstrap 
standard errors were the best estimates. Compared with these best estimates, the reported 

standard errors of ݑො௙  and ෠݇௢  were underestimated by 2.31% and overestimated by 2.33%, 

respectively, in this case study. The t-statistics and p-values of the parameter estimates were 
evaluated according to the parameter and bootstrap standard errors. All of the parameter 
estimates were statistically significant at the 0.001 level, as their p-values were much smaller 
than 0.001. Although the magnitude of scaling factor variability differs between cases, the 
proposed method guarantees more accurate standard error estimates; therefore, it should 
always be adopted as a precaution to minimize uninformed and unnecessary risks when 
performing statistical tests. 

 

 

5. Conclusions 

In today’s era of big data, linear data projection is an important and powerful data 
scaling method that can be used to infer population traffic and transportation quantities from 
a set of samples. The method provides an unbiased estimator of unobservable traffic data, 
using data that can be collected via state of the art technology without incurring extra capital 
or operational costs, due to sensor deployment. As more and more connected vehicle (or 
probe vehicle) data become available, linear data projection is increasingly necessary to scale 
up observable traffic data for this estimation process. However, recent studies have shown 
that direct model estimations using linearly projected data may cause biased parameters, and 
definitely result in biased standard errors. Therefore, it is vitally important to develop 
methods that can remove such biases to realize the full strength of this powerful data scaling 
method. Methods of removing biases embedded in both the parameters and the standard 
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errors of linear regression models have been proposed (Wong and Wong, 2015; 2016c). For 
nonlinear transport models necessitating nonlinear regression, methods of unbiased standard 
error estimation remain unexplored, although MVR and EMVR methods have recently been 
established for unbiased parameter estimation (Wong and Wong, 2018). In the absence of 
accurate standard errors indicating the statistical significance of parameter estimates, the 
validity of application of an estimated model remains unclear. It is vital to explore methods of 
filling this research gap. 

This study was conducted to develop a method of unbiased standard error estimation 
for generic nonlinear transport models using linearly projected data. This work is new and 
important. Typically, standard error estimation is much more challenging than parameter 
estimation, as it demands attention to the variability and dispersion of parameter estimates. 
The study first presented the practical difficulties associated with the use of the traditional 
standard error estimation approach to deal with generic nonlinear transport models estimated 
using linearly projected data. Simple close-form formulae for unbiased standard error 
estimation may not exist for this type of model, or they may be too complicated to derive. As 
an alternative, a bootstrapping MVR method incorporating either the MVR or the EMVR 
method was proposed. The proposed method accounts for the complex error structure 
comprising both the heteroscedasticity induced by linear data projection and random errors 
݅. ݅. ݀ as normal.  

To evaluate the capability and robustness of the proposed method in recovering true 
parameter standard errors, a series of simulation cases with different settings was conducted 
based on the GMP function with a relaxed exponent and the multivariate exponential decay 
function, which are the most commonly used nonlinear transport models depicting traffic 
flow relationships. The simulation results showed that the proposed method substantially 
outperformed the conventional estimation method, and that it accurately estimated the 
standard errors in all of the cases considered. Thus, the proposed method was considered 
robust and flexible. The remaining minimal percentage errors in the standard error estimates 
arose from two of the approximation mechanisms used in the bootstrapping MVR method. In 
practice, these minimal errors could be further minimized by increasing the size ܰ of the 
dataset and the number of repetitions ܯ in the resampling procedures. Most importantly, the 
simulation results suggested that the proposed bootstrapping MVR method should always be 
used for accurate standard error estimations with generic nonlinear transport models using 
linearly projected data. 

To illustrate real-world situations necessitating the use of linear data projection and 
the proposed bootstrapping MVR method in standard error estimations, an MFD was 
estimated for a sampled network in Choi Hung, Hong Kong using real-world GPS and 
counting station data. All of the parameter estimates of the MFD were statistically significant 
at the 0.001 level, because the ݌-values of the parameter estimates were much smaller than 
0.001. 

Although the proposed method offers a remarkable improvement in the accuracy of 
standard error estimations, the method, in some cases, is relatively computationally 
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demanding and time-consuming. Typically, analytical approaches are much less computer-
intensive. Thus, although traditional standard error estimation has some practical difficulties, 
this approach is still worth exploring. Some interesting challenges for future research include 
deriving analytical formulae for estimating standard errors in situations of interest, and 
making comparisons between standard error estimates based on different approaches in terms 
of their level of bias, efficiency, consistency, robustness or computational cost. 
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Appendix A. Second-order approximation of the expected space-mean speed of all 
traffic, capturing the spatial heterogeneity of the traffic composition ratio 

 

Here, we provide the second-order approximation of the space-mean speed of all 
traffic during the unit sampling period ܶ. The space-mean speed of all traffic is the total 
distance traveled divided by the total time spent. It can be expressed in terms of the 
individual speeds of occupied taxis, the number of occupied taxis and the traffic composition 
ratio on each link ݅ ∈ ሾ1,݉ሿ, as shown in Eq. (A1): 
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As ∑ 1ே೟೔
௝ୀଵ ൌ ௧ܰ௜ and ∆ݐ is independent of ݅ and ݆, Eq. (A1) can be simplified to Eq. (A2): 
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As the value of each ௜݂ was unknown, it was impossible to directly evaluate the space-
mean speed using Eq. (A1) or Eq. (A2). However, the first and second moments of space-
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mean speed could be estimated using the sampled scaling factors. Therefore, the second-order 
approximation of the expected space-mean speed, which further captured the spatial 
variability of the traffic composition ratio across links, was used instead (Wong and Wong, 
2015; 2018).  

The first and second partial derivatives of ݑ .ݓ  .ݎ .ݐ  ௞݂, ∀݇ ∈ ሾ1,݉ሿ  are given by 
Eq. (A3) and Eq. (A4), respectively. 
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Thus, the second-order approximation of the expected space-mean speed of all traffic 
is given by Eq. (A5), as follows: 
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In particular, if ௧ܰଵ ൌ ௧ܰଶ ൌ ⋯ ൌ ௧ܰ௜ ൌ ⋯ ൌ ௧ܰ௠, implying that occupied taxis are 
uniformly distributed across space, or ߪ௙ ൌ 0 , implying a spatially homogeneous traffic 

composition ratio, then the second term on the right-hand side of Eq. (A5) equals zero. In 
such cases, the expected value of the space-mean speed of all traffic in the long term is 
equivalent to the expected space-mean speed of the occupied taxis, which is simply the 
arithmetic mean of all of the speeds of the occupied taxis. 
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