1	Running head: mitogenomes Nacella limpets
2	
3	Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary
4	characteristics of mitochondrial genomes in Patellogastropoda
5	
6	Juan D. Gaitán-Espitia ^{1,2,3*} ; Claudio A. González- <u>Wevar^{4,5}</u> ; Elie <u>Poulin⁵</u> & Leyla
7	<u>Cardenas³</u>
8	
9	¹ <u>The Swire Institute of Marine Science and School of Biological Sciences, The University</u>
10	of Hong Kong, Pokfulam, Hong Kong, China
11	² CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.
12	³ Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral
13	de Chile, Casilla 567 Valdivia, Chile.
14	⁴ Facultad de Ciencias, Universidad de Magallanes, Bulnes 01890, Punta Arenas, Chile
15	⁵ Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento
16	de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425,
17	Ñuñoa, Santiago, Chile
18	
19	Corresponding author: juadiegaitan@gmail.com
20	

Keywords: mitogenomes; Patellogastropoda; Nacella; Gastropoda; gene order; phylogeny

22 Abstract

23 Mitochondrial genomes (mitogenomes) provide valuable phylogenetic information 24 and genome-level characters that are useful in resolving evolutionary relationships within 25 major lineages of gastropods. However, for more than one decade, these relationships and 26 the phylogenetic position of Patellogastropoda have been inferred based on the genomic 27 architecture as well as the nucleotide and protein sequences of a single representative, the 28 limpet Lottia digitalis. This mitogenome exhibits extensive rearrangements and several 29 repetitive units that may not represent universal features for Patellogastropoda. Here, we 30 sequenced the complete mitogenomes of three *Nacella* limpets, providing new insights into 31 the dynamics of gene order and phylogenetic relationships of Patellogastropoda. 32 Comparative analyses revealed novel gene rearrangements in Gastropoda, characterised by 33 two main translocations that affect the KARNI and the MYCWQ clusters in Nacella 34 limpets. Our phylogenetic reconstructions using combined sequence datasets of 13 35 mitochondrial protein-coding genes and two rRNAs, recovered Patellogastropoda, and Gastropoda in general, as non-monophyletic. These findings could be related to the long-36 37 branch attraction tendency of these groups, and/or taxon sampling bias. In our novel 38 mitogenome-based phylogenetic hypothesis, L. digitalis is placed in a sister position to 39 Bivalvia and Heterobranchia, whereas Nacella limpets are placed sister to a clade 40 containing Caenogastropoda + Neritimorpha and Vetigastropoda + Neomphalina. 41 42 43 44

1. Introduction

47	Patellogastropods or true limpets, are abundant and conspicuous keystone inhabitants of				
48	intertidal rocky shores throughout the world's oceans from the polar regions to the tropics				
49	(Lindberg, 2008). Due to their particular morphological characteristics, these molluscs have				
50	been considered as the most external branch of living gastropods (Ponder and Lindberg,				
51	1997). However, the phylogenetic position of the group is highly controversial. For				
52	example molecular analyses have placed patellogastropods as sister group of Gastropoda,				
53	Vetigastropoda, Noemphalina, Heterobranchia or within Caenogastropoda (Colgan et al.,				
54	2000; Harasewych and McArthur, 2000; Aktipis et al., 2008; Nakano and Sasaki, 2011;				
55	Zapata et al., 2014).				
56	The evolutionary relationships among families of true limpets are also controversial				
57	(Harasewych and McArthur, 2000; Nakano and Ozawa, 2007; Lindberg, 2008; Nakano and				
58	Sasaki, 2011). Molecular studies based on nuclear genes (18S and 28S rRNAs) have				
59	recovered the family Nacellidae as paraphyletic at the base of Patellogastropoda				
60	(Harasewych and McArthur, 2000; Nakano and Ozawa, 2007), whereas analyses based on				
61	mitochondrial genes (<i>rrnS</i> , <i>rrnL</i> and <i>cox1</i>) recovered the monophyly of this group in a				
62	close relationship with Patellidae and clearly distinguished from Lottiidae (Nakano and				
63	Ozawa, 2007; González-Wevar et al., 2017b). The general consensus is that mitochondrial				
64	genes are more informative for relationships within Patellogastropoda due to their faster				
65	and more uniform evolutionary rates among species of this order, compared to nuclear				
66	genes (Harasewych and McArthur, 2000; Nakano and Ozawa, 2007; Nakano and Sasaki,				
67	2011). Nevertheless, although more than seven thousand mitochondrial sequences of 253				
68	species of patellogastropods have been deposited in GenBank $(30/03/2018)$, most of these				
69	are partial sequences of rrnS, rrnL, cox1 and cob, and only one of them represents a				

70	complete mitochondrial genome (mitogenome) of the limpet Lottia digitalis. The genomic					
71	architecture as well as the nucleotide and protein sequences of this mitogenome have been					
72	widely used as references of Patellogastropoda to reconstruct the evolutionary history of					
73	different molluscan lineages (e.g. Grande et al., 2008; Stöger and Schrödl, 2013; Uribe et					
74	al., 2016b). Nonetheless, L. digitalis mitogenome exhibits extensive rearrangements and					
75	several repeating units (Simison et al., 2006; Grande et al., 2008) that may not represent					
76	universal features for Patellogastropoda. The aims of this study were thus: (a) to sequence					
77	the complete mitogenome of three Antarctic and sub-Antarctic Nacella limpets, a genus					
78	that is distantly related to Lottia (Nakano and Sasaki, 2011); (b) to investigate the dynamics					
79	of gene order arrangements within patellogastropods and in comparison with other					
80	gastropods; and (c) to understand the contribution of these newly sequenced mitogenomes					
81	to the phylogenetic relationships of Patellogastropoda.					
82						
83	2. Materials and Methods					
84	2.1. Species collection and mitogenome sequencing					
85	Adult limpets of Nacella concinna, N. magellanica and N. clypeater were					
86	collected from the intertidal and subtidal zones in the King George Island (62°10'S,					
87						
	58°51'W), the Strait of Magellan (53° 37'S, 70° 54'W) and La Misión, Chile (39° 46' S,					
88	58°51′W), the Strait of Magellan (53° 37′S, 70° 54′W) and La Misión, Chile (39° 46′ S, 73° 23′W), respectively. For each species, pieces of foot muscle were isolated from 15					
88 89	58°51′W), the Strait of Magellan (53° 37′S, 70° 54′W) and La Misión, Chile (39° 46′ S, 73° 23′W), respectively. For each species, pieces of foot muscle were isolated from 15 individuals for RNA and DNA sequencing. Total RNA was isolated by homogenization					
88 89 90	58°51′W), the Strait of Magellan (53° 37′S, 70° 54′W) and La Misión, Chile (39° 46′ S, 73° 23′W), respectively. For each species, pieces of foot muscle were isolated from 15 individuals for RNA and DNA sequencing. Total RNA was isolated by homogenization of each sample in a TRIzol (Invitrogen, Carlsbad, CA)/chloroform mixture, followed by a					
88 89 90 91	58°51′W), the Strait of Magellan (53° 37′S, 70° 54′W) and La Misión, Chile (39° 46′ S, 73° 23′W), respectively. For each species, pieces of foot muscle were isolated from 15 individuals for RNA and DNA sequencing. Total RNA was isolated by homogenization of each sample in a TRIzol (Invitrogen, Carlsbad, CA)/chloroform mixture, followed by a DNase treatment and cleaning with the RNeasy mini kit (Qiagen, Chatsworth, CA).					
 88 89 90 91 92 	 58°51'W), the Strait of Magellan (53° 37'S, 70° 54'W) and La Misión, Chile (39° 46' S, 73° 23'W), respectively. For each species, pieces of foot muscle were isolated from 15 individuals for RNA and DNA sequencing. Total RNA was isolated by homogenization of each sample in a TRIzol (Invitrogen, Carlsbad, CA)/chloroform mixture, followed by a DNase treatment and cleaning with the RNeasy mini kit (Qiagen, Chatsworth, CA). Purified mRNA samples were pooled for cDNA library preparation (paired-end) and 					

94	approximately 150 mg of tissue from single individuals using the Mitochondrial Isolation				
95	Kit (Thermo Scientific). The isolated mitochondrial pellet of each limpet was used for the				
96	mtDNA extraction by mean of the Mitochondrial-DNA Isolation kit (BioVision). RNA				
97	and DNA quality and quantity were analysed using an Agilent 2100 Bioanalyzer (Agilent				
98	Technologies, Palo Alto, CA). RNA and DNA library preparations and sequencing were				
99	done in the AUSTRAL-omics Core Facility (www.australomics.cl) on an Illumina Hiseq				
100	2500 and a 454 GS Junior Titanium platform (Roche), for RNA and DNA respectively.				
101					
102	2.2. Assembly and annotation				
103	Quality control of the raw data was performed using the CLC Genomics Workbench				
104	software v.8.5 (CLC bio, Denmark) by removing adapters and reads containing more than				
105	5% of ambiguous nucleotides ('N'). Additionally, sequences were trimmed with a Phred				
106	quality score \leq 40; and reads shorter than 30 bp were removed after trimming. For the 454				
107	raw reads we also used the condensation tool found in NextGENe v2.3.3 (Softgenetics,				
108	USA) for correction of homopolymer errors and other base call errors produced by the				
109	pyrosequencing process. Then, DNA reads were assembled using the software Geneious				
110	Pro 8.1(Biomatters), resulting in a single contig with uniform coverage distribution for each				
111	species. Assembly of high quality reads from Illumina sequencing (RNA-cDNA) was				
112	carried out using the Trinity software (Grabherr et al., 2013) with default settings and a				
113	minimum contig length of 200 nt.				
114	Mitochondrial DNA sequences were identified by local BLAST searches (BLASTn				
115	and BLASTx) using Geneious Pro 8.1(Biomatters). In addition, protein-coding genes				
116	(PCGs) were identified with the ORF Finder at NCBI using the invertebrate mitochondrial				

117 genetic code. The limits of both protein-coding and ribosomal RNA genes were adjusted

118	manually based on the location of adjacent genes and the presence of start and stop codons.				
119	Transfer RNA genes were located and folded by their proposed cloverleaf to confirm their				
120	secondary structures using ARWEN v.1.2 (Laslett and Canbäck, 2008) following the				
121	generalized invertebrate mitochondrial tRNA settings. Finally, our annotations were				
122	double-checked using MITOS standalone version (Bernt et al., 2013b) under the				
123	invertebrate mitochondrial code. Mitogenome sequences obtained in this work were				
124	deposited in GenBank under the accession numbers KT990124 (N. clypeater), KT990125				
125	(<i>N. magellanica</i>) and KT990126 (<i>N. concinna</i>).				
126					
127	2.3. Concatenated alignments				
128	Nucleotide sequences of the 13 mitochondrial protein-coding genes (PCGs) and two				
129	rRNAs from gastropods used in this study (Table 1) were aligned separately using the				
130	MAFFT platform implemented in TranslatorX (Abascal et al., 2010). Alignments were				
131	done using the L-INS-i option (accurate for alignment of \leq 200 sequences) and default				
132	settings. For the PCGs, the alignments were translated into amino acid sequences using the				
133	invertebrate mitochondrial genetic code. Ambiguously-aligned sites were removed using				
134	Gblocks v.0.19b implemented in TranslatorX (Abascal et al., 2010) with default settings.				

135 Phylogenetic reconstructions were conducted based on the concatenation of the deduced

amino acid sequences of the 13 PCGs and the nucleotide sequences of the two rRNAs.

137

138 2.4. Phylogenetic reconstructions

Best Partition Scheme (BPS) analyses were conducted with the program
PartitionFinder2 and PartitionFinder2 Protein (Lanfear et al., 2016), using the Akaike
information criterion (AIC) and a heuristic search algorithm. Following Uribe et al.

142	(2016b), the MtZoa model (Rota-Stabelli et al., 2009) was also tested to examine if it could				
143	provide a better fit than the models selected by PartitionFinder2. Based on the likelihood				
144	values (Supplementary Information S1), we selected the models of molecular evolution				
145	used for both Bayesian (BI) and Maximum Likelihood (ML) analyses. ML inference were				
146	performed with RAXML v.7.2.6 (Stamatakis, 2006), invoking the GTRGAMMA (less than				
147	50 taxa) and the rapid bootstrap option with 10000 replicates. In addition, a Bayesian				
148	inference (BI) MCMC analysis was conducted using MrBayes v.3.2 (Ronquist and				
149	Huelsenbeck, 2003), running six Markov chains in two simultaneous runs of 10 million				
150	generations. Trees were sampled every 1000 generations and those inferred prior to				
151	stationarity were discarded as burn-in (first 25% of the sampled trees), and the remaining				
152	trees were used to construct a 50% majority-rule consensus tree.				
153	Finally, an additional BI analysis was conducted in PhyloBayes MPI v.1.5a.				
154	(Lartillot et al., 2013) using the CAT-GTR model of evolution. This method is described as				
155	a good strategy to alleviate the long-branch attraction biases that exist between				
156	Heterobranchia and Patellogastropoda (Uribe et al., 2016b). The performance of the CAT-				
157	GTR+G model was assessed using a 10-fold cross-validation performed on subsamples of				
158	6000 non-constant positions randomly drawn from the original matrices. Convergence was				
159	assessed using tools implemented in PhyloBayes. Posterior probabilities provided branch				
160	support for BI analyses.				
161					
162	3. Results and discussion				

3.1. Mitogenomic architectures

164 Combined DNA and RNA sequencing approaches were able to recover the
165 complete mitogenomes of Antarctic (*N. concinna*) and sub-Antarctic (*N. magellanica* and

166	<i>N. clypeater</i>) limpets. The size of these mitogenomes (~16 kb) falls within the range of				
167	other gastropods but is considerably smaller than in <i>L. digitalis</i> (Table 1), for which				
168	several repeated units are distributed across two regions of the genome (rrnS-cob and				
169	nad1-nad6) (Simison et al., 2006). As for most molluscs, Nacella mitogenomes consist of				
170	a single circular chromosome with the typical set of 13 protein-coding genes (PCGs), two				
171	ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and a large AT-rich non-				
172	coding region (control region; CR) (Bernt et al., 2013a) that is implicated in the initiation				
173	of transcription and replication processes (Gaitán-Espitia et al., 2013). In these				
174	mitogenomes, genes are divided between the two strands about evenly, with the heavy				
175	strand (H) having 10 tRNAs and seven PCGs, and the light (L) strand having 12 tRNAs,				
176	six PCGs and the two rRNAs (Fig. 1). Although both strands are AT rich (65-68%), there				
177	is a compositional asymmetry favouring GT in the H-strand and AT in the L-strand				
178	(Supplementary Information S2). The cause of this asymmetry is accounted to an				
179	asymmetric mutation process that favours transitions over transversions on the H-strand,				
180	which is prone to mutations when it is single stranded (i.e., during replication and				
181	transcription) (Bernt et al., 2013a).				
182	In the 13 PCGs, three types of start codons (ATG, ATT and ATA) were registered,				
183	of which ATG started 8 genes while ATA and ATT initiated two and three genes				
184	respectively. Nine open-reading frames ended with TAA whereas four ended with TAG.				
185	The highest AT content was observed in <i>nad4L</i> (71.3%), whilst the lowest one was				
186	detected in <i>cox3</i> (61.9%) (Supplementary Information S2). For the tRNAs, our findings				
187	are consistent with those documented for other metazoans (Bernt et al., 2013a), in which				
188	most of the tRNAs have the potential to fold into the typically cloverleaf secondary				

189 structure, with the exception of tRNA- S_1 that lacks the dihydrouracil (DHU) arm 190 (Supplementary Information S3).

191	Gene arrangements in Antarctic and sub-Antarctic Nacella mitogenomes were
192	highly conserved within the genus but exhibited clearly distinctive genomic architectures
193	compared to L. digitalis (Fig. 1). Contrasting to this patellogastropod, as well as to other
194	gastropods, no duplications and/or translocations+inversions were detected in Nacella
195	limpets (Fig. 1). However, our newly sequenced mitogenomes showed similar
196	arrangements to the hypothetical ancestral gene order of Gastropoda (Uribe et al., 2016b),
197	and to some Neritomorpha and Vetigastropoda species (Fig. 1). Major differences with
198	these groups <u>could be</u> explained by two main translocations that affect the KARNI (H-
199	strand) and the MYCWQ (L-strand) clusters (Fig. 1). These translocations represent novel
200	gene rearrangements in Gastropoda (Grande et al., 2008). With the exception of <i>nad3</i> ,
201	these findings are consistent with the idea that in Gastropoda, tRNA genes are more prone
202	to switch their position than larger PCGs and rRNAs (Grande et al., 2008; Gaitán-Espitia
203	et al., 2013).

204

205 3.2. Phylogenetic analysis

206 Best Partition Scheme (BPS) analyses for combined amino acid sequences of 13 PCGs

and nucleotide sequences of the two rRNAs, revealed slightly better fit using the MtZoa

208 model than the models selected by PartitionFinder2 (Supplementary Information S1).

209 Similar results has been documented in phylogenetic studies using mitochondrial genomes

in other gastropod lineages (Stöger and Schrödl, 2013; Lee et al., 2016; Uribe et al.,

211 2016b). The MtZoa BPS was used for both Bayesian (BI) and Maximum Likelihood (ML)

212 analyses, which produced nearly identical topologies with similar branch lengths and strong

213	support of bootstraps (ML analysis) and posterior probabilities (Bayesian inference) for
214	most of the nodes (Fig. 2 and Supplementary Information S4). Both, the ML (-LnL = $-$
215	<u>143247.86</u>) and the BI (-LnL = <u>-137981.4</u>) reconstructions, recovered with high statistical
216	support the monophyly of the genus Nacella (Fig. 2). The evolutionary relationships within
217	this group of Antarctic and sub-Antarctic limpets were consistent with previous molecular
218	studies using partial sequences of mtDNA (cox1 and cob) and nDNA (28S rRNA) genes,
219	supporting the division of Nacella according to the biogeographic regions described for the
220	Southern Ocean (González-Wevar et al., 2010, 2017a). Here, our results suggest that the
221	Antarctic limpet N. concinna branched off early in this monophyletic lineage (Fig. 2). This
222	split is estimated to have occurred during late Miocene ($\sim 8 - 5.5$ Mya), parallel to climatic
223	transitions and intense thermal zonations between Antarctic and sub-Antarctic provinces
224	(González-Wevar et al., 2010, 2017a). Additionally, our results suggest that the sub-
225	Antarctic limpet N. magellanica shares a most recent common ancestor with N. clypeater
226	(Fig. 2), in which their divergence time is estimated to be approximately 6-5 Mya in the
227	transition between late Miocene and early Pliocene (González-Wevar et al., 2010).
228	In our study, the evolutionary relationships among gastropods and the phylogenetic
229	position of Patellogastropoda, were based on a taxon sampling that included representative
230	species of Cephalopoda, Scaphopoda, Polyplacophora Aplacophora, Bivalvia and
231	Monoplacophora as outgroups. Our results recovered Gastropoda and Patellogastropoda as
232	non-monophyletic (Fig. 2), probably as a result of the long-branch attraction tendency of
233	these groups (Stöger and Schrödl, 2013; Osca et al., 2014), and/or taxon sampling bias. The
234	general topology for Mollusca was highly consistent to other studies based on
235	mitochondrial genome architectures (Stöger et al., 2016) and mitogenome sequences
236	(Stöger and Schrödl, 2013; Osca et al., 2014; Li et al., 2018). Within each Gastropoda

237	order, our results are highly aligned to previous mitogenomic phylogenies of					
238	Vetigastropoda (Uribe et al., 2016b) and Neritimorpha (Uribe et al., 2016a), with some					
239	discrepancies regarding the position of Patellogastropoda, which is based only on the					
240	mitogenome of L. digitalis. Previous phylogenetic reconstructions of evolutionary					
241	relationships among gastropods have used a variety of different datasets, ranging from					
242	morphology (e.g., shell structure) to few molecular sequences (e.g., partial genes 18S, 28S,					
243	rrnS, rrnL and cox1), supermatrices of genes derived from transcriptomes, and the gene					
244	order of mitogenomes (Ponder and Lindberg, 1997; Colgan et al., 2000; Harasewych and					
245	McArthur, 2000; Aktipis et al., 2008; Grande et al., 2008; Lindberg, 2008; Zapata et al.,					
246	2014). These studies have shown contrasting results placing patellogastropods as the most					
247	external branch of Gastropoda or in a sister group relationship with Vetigastropoda,					
248	Noemphalina, Heterobranchia or within Caenogastropoda (Colgan et al., 2000; Harasewych					
249	and McArthur, 2000; Aktipis et al., 2008; Nakano and Sasaki, 2011; Zapata et al., 2014). In					
250	this study, patellogastropods were split in two groups with L. digitalis placed in a sister					
251	position to Bivalvia and Heterobranchia, whereas Nacella limpets were placed sister to a					
252	clade containing Caenogastropoda + Neritimorpha and Vetigastropoda + Neomphalina					
253	(<u>Fig. 2</u>).					
254	Our novel phylogenetic hypothesis highlights the importance of increasing taxon					
255	sampling in patellogastropods in order to ameliorate the impact of long-branch attraction					
256	artefacts and to improve our understanding of their phylogenetic relationships with other					
257	molluscan lineages. Moreover, considering that Patellogastropoda contains at least seven					
258	families (Nakano and Ozawa, 2007), a denser taxon sampling of mitogenomes of					
259	representative species from other groups such as Lepetidae, Acmaeidae, Patellidae and					
260	Nacellidae (e.g., <i>Cellana</i> , a sister genus of <i>Nacella</i>), will provide a better framework of the					

- 261 evolutionary relationships within patellogastropods and the dynamics of genome-level
- 262 <u>characters (e.g., rearranged structures) for this order.</u>
- 263

264 **Conflict of interest**

- 265 The authors declare no conflicts of interest.
- 266

267 Acknowledgments

- 268 This study was supported by the Instituto Antártico Chileno (INACH) with the grant no.
- 269 RT_27-14. JDGE was supported by a CSIRO-OCE postdoctoral fellowship. LC was
- supported by FONDAP 15150003.
- 271

272 **References**

- Abascal F., Zardoya R., Telford M., 2010. TranslatorX: multiple alignment of nucleotide
 sequences guided by amino acid translations. Nucleic Acids Res. 38, W7-13.
- Aktipis S., Giriibet G., Lindberg D., Ponder W., 2008. Gastropoda: an overview and
 analysis. Ponder W., Lindberg D.(Eds.), Phylogeny and Evolution of the Mollusca,
 University of California Press, Los Angeles, pp. 201–238.
- Bernt M., Braband A., Schierwater B., Stadler P.F., 2013a. Genetic aspects of
 mitochondrial genome evolution. Mol. Phylogenet. Evol. 69, 328–38.
- Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J.,
 Middendorf M., Stadler P.F., 2013b. MITOS: improved de novo metazoan
 mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–9.
- Colgan D.J., Ponder W.F., Eggler P.E., 2000. Gastropod evolutionary rates and
 phylogenetic relationships assessed using partial 28s rDNA and histone H3 sequences.
 Zool. Scr. 29, 29–63.
- Gaitán-Espitia J.D., Nespolo R.F., Opazo J.C., 2013. The Complete Mitochondrial Genome
 of the Land Snail *Cornu aspersum* (Helicidae: Mollusca): Intra-Specific Divergence of
 Protein-Coding Genes and Phylogenetic Considerations within Euthyneura. PLoS
 One. 8, e67299.
- González-Wevar C.A., Hüne M., Segovia N.I., Nakano T., Spencer H.G., Chown S.L.,
 Saucède T., Johnstone G., Mansilla A., Poulin E., 2017a. Following the Antarctic
 Circumpolar Current: patterns and processes in the biogeography of the limpet Nacella

293 (Mollusca: Patellogastropoda) across the Southern Ocean. J. Biogeogr. 44, 861–874. 294 González-Wevar C., Nakano T., Cañete J.I., Poulin E., 2010. Molecular phylogeny and 295 historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern 296 Ocean. Mol. Phylogenet. Evol. 56, 115-124. 297 González-Wevar C., Nakano T., Palma A., Poulin E., 2017b. Biogeography in Cellana 298 (Patellogastropoda, Nacellidae) with special emphasis on the relationships of southern 299 hemisphere oceanic island species. PLoS One. 12, 1–16. 300 Grabherr M., Haas B., Yassour M., Levin J., Thompson D., Amit I., Adiconis X., Fan L., 301 Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., 302 di Palma F., Friedman N., Regev A., 2013. Trinity: reconstructing a full-length 303 transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652. 304 Grande C., Templado J., Zardoya R., 2008. Evolution of gastropod mitochondrial genome 305 arrangements. BMC Evol. Biol. 8, 61. 306 Harasewych M., McArthur A., 2000. A molecular phylogeny of the Patellogastropoda 307 (Mollusca: Gastropoda). Mar. Biol. 137, 183-194. 308 Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B., 2016. PartitionFinder 2: 309 New Methods for Selecting Partitioned Models of Evolution for Molecular and 310 Morphological Phylogenetic Analyses. Mol. Biol. Evol. 34, 772–773. 311 Lartillot N., Rodrigue N., Stubbs D., Richer J., 2013. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Softw. Syst. 312 313 Evol. Syst. 62, 611–615. 314 Laslett D., Canbäck B., 2008. ARWEN, a program to detect tRNA genes in metazoan 315 mitochondrial nucleotide sequences. Bioinformatics. 24, 172–175. 316 Lee H., Samadi S., Puillandre N., Tsai M.H., Dai C.F., Chen W.J., 2016. Eight new mitogenomes for exploring the phylogeny and classification of Vetigastropoda. J. 317 Molluscan Stud. 82, 534–541. 318 319 Li, Q., Kong, L., Yu, H., 2018. Multiple reversals of strand asymmetry in molluscs 320 mitochondrial genomes, and consequences for phylogenetic inferences. Mol. Phylogenet, Evol. 118, 222-231. 321 322 Lindberg D., 2008. Patellogastropoda, Neritimorpha, and Cocculinoidea, the low-diversity 323 gastropod clades. Ponder W., Lindberg D.(Eds.), Phylogeny and Evolution of the Mollusca, University of California Press, Berkeley, pp. 271–296. 324 325 Nakano T., Ozawa T., 2007. Worldwide phylogeography of limpets of the order 326 Patellogastropoda: Molecular, morphological and palaeontological evidence. J. 327 Molluscan Stud. 73, 79–99. 328 Nakano T., Sasaki T., 2011. Recent advances in molecular phylogeny, systematics and evolution of patellogastropod limpets. J. Molluscan Stud. 77, 203-217. 329 Osca, D., Irisarri, I., Todt, C., Grande, C., & Zardoya, R., 2014. The complete 330 331 mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) 332 supports the Aculifera hypothesis. B BMC Evol. Biol. 14, p.197.

- Ponder W., Lindberg D., 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool. J. Linn. Soc. 119, 83–265.
 Ronquist F., Huelsenbeck J., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19, 1572–1574.
 Rota-Stabelli O., Yang Z., Telford M.J., 2009. MtZoa: A general mitochondrial amino acid
- substitutions model for animal evolutionary studies. Mol. Phylogenet. Evol. 52, 268–
 272.
- Simison W.B., Lindberg D.R., Boore J.L., 2006. Rolling circle amplification of metazoan
 mitochondrial genomes. Mol. Phylogenet. Evol. 39, 562–567.
- Stamatakis A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
 with thousands of taxa and mixed models. Bioinformatics. 22, 2688–2690.
- Stöger I., Schrödl M., 2013. Mitogenomics does not resolve deep molluscan relationships
 (yet?). Mol. Phylogenet. Evol. 69, 376–92.
- Stöger, I., Kocot, K. M., Poustka, A. J., Wilson, N. G., Ivanov, D., Halanych, K. M., &
 Schrödl, M., 2016. Monoplacophoran mitochondrial genomes: convergent gene arrangements and little phylogenetic signal. BMC Evol. Biol. 16, p. 274
- Uribe J.E., Colgan D., Castro L.R., Kano Y., Zardoya R., 2016a. Phylogenetic relationships
 among superfamilies of Neritimorpha (Mollusca: Gastropoda). Mol. Phylogenet. Evol.
 104, 21–31.
- Uribe J.E., Kano Y., Templado J., Zardoya R., 2016b. Mitogenomics of Vetigastropoda:
 insights into the evolution of pallial symmetry. Zool. Scr. 45, 145–159.
- Zapata F., Wilson N.G., Howison M., Andrade S.C.S., Jörger K.M., Goetz F.E., Giribet G.,
 Dunn C.W., Schro M., Jo K.M., 2014. Phylogenomic analyses of deep gastropod
 relationships reject Orthogastropoda. Proc. R. Soc. B Biol. Sci. 281, 20141739.
- 357

358 Figure Legends

360	Figure 1. Mitochondrial gene order of patellogastropods in comparison with other
361	gastropod lineages. Protein coding and ribosomal genes are labelled with gene names
362	and tRNAs are denoted by single-letter codes according to the amino acid they
363	represent: A, Ala; G, Gly; P, Pro; T, Thr; V, Val; S, Ser; R, Arg; L, Leu; F, Phe; N,
364	Asn; K, Lys; D, Asp; E, Glu; H, His; Q, Gln; I, Ile; M, Met; Y, Tyr; C, Cys; W, Trp.
365	Transcripts in the light strand (reverse) are represented in red and dashed boxes.
366	
367	Figure 2. Maximum likelihood (ML) tree of concatenated amino acid sequences of the 13
368	PCGs and the nucleotide sequences of the two rRNAs describing phylogenetic
369	relationships among Gastropoda. The ML bootstrap and Bayesian posterior probability
370	values for each node are indicated (black circles: bootstrap value $\ge 90\%$ and posterior
371	probability of 1; grey circles: bootstrap value < 90% and posterior probability of 1;
372	white circles: bootstrap value < 90% and posterior probability < 1). The scale bar
373	represents the number of nucleotide substitutions per site.
374	

Hypothetical Ancestral Gastropoda

Translocation	Inversion	Translocation and	Duplication	No information
	Inversion	inversion	Dupication	

