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We develop a folding approach to study two-dimensional symmetry-enriched topological (SET) phases with
the mirror reflection symmetry. Our folding approach significantly transforms the mirror SETs, such that their
properties can be conveniently studied through previously known tools: (i) it maps the nonlocal mirror symmetry
to an onsite Z2 layer-exchange symmetry after folding the SET along the mirror axis, so that we can gauge the
symmetry; (ii) it maps all mirror SET information into the boundary properties of the folded system, so that
they can be studied by the anyon condensation theory—a general theory for studying gapped boundaries of
topological orders; and (iii) it makes the mirror anomalies explicitly exposed in the boundary properties, i.e.,
strictly 2D SETs and those that can only live on the surface of a 3D system can be easily distinguished through
the folding approach. With the folding approach, we derive a set of physical constraints on data that describes
mirror SET, namely, mirror permutation and mirror symmetry fractionalization on the anyon excitations in the
topological order. We conjecture that these constraints may be complete, in the sense that all solutions are
realizable in physical systems. Several examples are discussed to justify this. Previously known general results
on the classification and anomalies are also reproduced through our approach.
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I. INTRODUCTION

The interplay between topology, entanglement and sym-
metry has greatly broadened our understanding of gapped
quantum phases of matter. First, in the absence of any symme-
try, there exist gapped quantum phases of matter which hold
intrinsic topological orders [1,2]. Key features of topologi-
cal orders include the existence of long-range entanglement
[3,4] and exotic excitations, known as anyons, which obey
fractional braiding statistics. Second, for systems without
intrinsic topological order but with symmetries, there are
also topological phases, known as the symmetry-protected
topological (SPT) phases [5–15]. SPT phases are short-range
entangled, and their topological distinction will disappear if
the symmetries are absent. Well-known examples of SPT
phases are topological insulators and topological supercon-
ductors. Third, when topological order and symmetries are
both present, they can intertwine in various interesting ways
and generate a rich family of gapped quantum phases, known
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as symmetry-enriched topological (SET) orders [16–27]. In
particular, anyons can carry fractional quantum numbers of
the symmetries. For example, the famous fractional quantum
Hall systems can be understood as SET phases with the U(1)
charge conservation symmetry. There, the anyon excitations
carry fractional charges of the U(1) symmetry.

While SPT and SET phases are connected in many as-
pects, here we would like to mention a particularly inter-
esting connection. It is known that some two-dimensional
(2D) SETs cannot be realized in a standalone 2D system.
Instead, they must live on the surface of a 3D SPT state
[20,24,28–36,36–45]. These SETs are said to be anomalous.
They realize symmetric and gapped surface terminations of a
nontrivial 3D SPT system. More quantitatively, one can define
an anomaly for each SET that takes values in the Abelian
group which classifies 3D SPT phases. The anomaly carries
the information of which 3D SPT supports the given SET at
its surface. For example, 3D bosonic time-reversal SPT phases
are classified by the group Z2 × Z2 [28,42,46]. Accordingly,
2D time-reversal SETs can carry three distinct anomalies,
corresponding to the three nontrivial 3D SPT phases. (The
identity in Z2 × Z2 represents that the SET is anomaly-free
and the corresponding 3D SPT state is trivial.)

A classification of 2D SETs and a comprehensive under-
standing of their anomalies is important for studying topo-
logical states of matter. Indeed, when the symmetry is onsite
and unitary, great progress has been achieved on classification
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and anomalies in the last few years, both in general formalism
and in physical pictures [20,36]. However, many symmetries
are either not onsite or not unitary, including the antiunitary
time-reversal symmetry and the mirror reflection symmetry
whose action is nonlocal. These symmetries play crucial
roles in many realistic topological phases such as topological
insulators (TI) and topological crystalline insulator (TCI)
materials [47–55]. One of the challenges for studying SETs
with these symmetries is that unlike onsite unitary symme-
tries, they cannot be studied using the standard approach of
“gauging the symmetry”: one promotes the global symmetry
to a local gauge symmetry, so that physical properties such
as symmetry fractionalization and anomalies can be deduced
from the resulting gauge theories. Since the standard approach
does not help much, people turn to other approaches for study-
ing classification and anomalies of time-reversal and mirror-
reflection SETs, including field-theoretic method and ex-
actly solvable models [20,23,25,28,30–35,42,43,56], and the
flux-fusion anomaly test approach [44], etc. However, these
approaches are not as satisfactory as the standard gauging
approach: they are neither too mathematical and physically
obscure, or computationally hard, or not easy to generalize to
non-Abelian topological orders.

In this work, we develop a folding approach for studying
2D SETs with the mirror reflection symmetry. The key idea is
very intuitive. Let us assume that mirror reflection maps (x, y)
to (−x, y). Then, we fold the mirror SET along the y axis, i.e.,
the mirror axis, after which it becomes a double-layer system
and the mirror axis becomes a gapped boundary. An important
goal that we have achieved simply by folding is that the
reflection symmetry now becomes an onsite layer-exchange
symmetry in the double-layer system. This makes the standard
approach of gauging symmetry applicable for studying mirror
SETs. Moreover, we will see later that two additional features
result immediately as well.

First, we find a way to encode all information of mirror
SETs as boundary properties of the double-layer system. This
encoding not only allows us to derive a universal description
of the bulk of the folded system independent of the mirror en-
richment, but also converts the classification of mirror SETs to
the classification of layer-exchange-symmetric gapped bound-
aries of this universal bulk. Following this unexpected connec-
tion between 2D SETs in the bulk and symmetric boundaries,
we study the classification of symmetric gapped boundaries
using a combination of techniques including gauging the
symmetry and the so-called anyon-condensation theory, and
apply the results to classify 2D mirror SETs.

Second, when our folding idea is further combined with the
dimension reduction approach proposed by Song et al. [57] for
studying 3D mirror SPTs, we find that it is almost transparent
to see the anomalies of mirror SETs after folding. More details
on the idea of the folding approach will be discussed below in
Sec. I A.

With the folding approach, we study 2D general topo-
logical orders enriched by the mirror reflection symmetry
and their anomalies. The folding approach provides a clear
physical picture on the differences between various mirror
SETs, as well as on how the anomalies can be understood
in terms of boundary properties of the double-layer system.
More practically, the folding approach, together with the

general anyon condensation theory (an approach for studying
gapped boundaries of topological orders), allow us to derive
a very strong (and perhaps complete) set of constraints on
possible mirror symmetry fractionalization. The constraints
are described in terms of the modular data of the topological
order and hence are physical quantities. These constraints
can be practically solved and lead to classification of mirror
SETs, if they are complete (which we conjecture is true). Our
results are closely related to 2D time-reversal SETs, since the
two symmetries are related by a Wick rotation. (A detailed
discussion can be found in Sec. VI A.) It is worth mentioning
that mirror-reflection and time-reversal SETs have been stud-
ied previously [20,24,25], and our results are consistent with
those. However, our approach is completely different and is
physically more transparent.

We expect that the folding approach can be generalized
to study many other SETs and understand the anomalies
there, for example, SETs with both mirror symmetry and
onsite unitary symmetries, and fermionic SETs with mirror
symmetry, etc. We shall leave them for future studies.

A. The general idea

Here, we give a more detailed description on the gen-
eral idea of the folding approach, without referring to any
technical details. As discussed above, what we want to do
is simply to fold the system along the mirror axis. Then,
several remarkable transformations on the problem follow.
Besides the obvious transformation that the nonlocal mir-
ror reflection symmetry becomes an onsite layer-exchange
symmetry, folding also turns the mirror SET properties into
the boundary properties of the double-layer system; for a
given topological order, the bulk of the double-layer system
turns out to be the same for all mirror SETs, regardless of
anomalous or anomaly-free, while the information of mirror
SETs is entirely encoded in the boundary properties of the
double layer system. Below we explain this point.

Let us first consider strict 2D SETs and use an argument
similar to the one in Ref. [57], which was originally designed
for mirror SPTs. Consider two different mirror SETs, based
on the same intrinsic topological order. Since the difference
is present only because of the mirror symmetry, we under-
stand that the two states can be smoothly connected using
local unitary transformations (LUTs) if we ignore the mirror
symmetry. Let A and B be the left- and right-hand sides of
the mirror axis respectively, as shown in Fig. 1(a). Now, we
apply LUTs in region A such that the wave functions of the
two SETs appear exactly the same in A. At the same time,
we apply the mirror image of these LUTs onto the region
B. It is obvious that, in region B, the wave fuctions of the
two SETs also become the same. Overall, the combination
of the LUTs are mirror symmetric. At this stage, we have
smoothly connected the two SETs through mirror-symmetric
LUTs in all regions except near the mirror axis. Hence, the
difference between the SETs is entirely encoded in a narrow
region near mirror axis [see Fig. 1(b)]. This argument applies
for any two SETs. Then, we fold the system along the mirror
axis. The bulk of the resulting double-layer system should
be topologically the same for all mirror SETs, and their
distinction is solely contained in the boundary properties of
the double-layer system [see Fig. 1(c)].
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FIG. 1. Mirror symmetric local unitary transformations (LUTs) and folding of mirror SETs. [(a) and (b)] Under mirror symmetric LUTs,
the wave functions of any two strictly 2D mirror SETs can be transformed into one another, such that the difference occurs only near the mirror
axis, implying that symmetry properties of mirror SETs are concentrated near the mirror axis. (c) We then fold the system, such that symmetry
properties of mirror SETs become boundary properties of the folded double-layer system. [(d) and (e)] Similar mirror symmetric LUTs can be
done for anomalous SETs, which live on the surface of a 3D mirror SPT, such that the 3D bulk is transformed into a product state, with the only
exception being near the mirror plane. The inverted T-like junction decouples from the rest of the system. In addition, the mirror symmetry
becomes onsite and protects a Z2 SPT state on the mirror plane. (f) Folding the bottom surface of the inverted T junction, symmetry properties
of the anomalous SET are transformed into boundary properties between the double-layer system and the Z2 SPT state.

The above argument can be easily adapted for anomalous
mirror SETs, if we combine it with the dimensional reduction
approach on 3D mirror SPTs from Song et al. [57]. In this
case, we have a mirror plane in the 3D bulk. Then, we apply
mirror-symmetric LUTs on both sides of the mirror plane
[Fig. 1(d)]. After that, the 3D bulk wave functions on the two
sides of the mirror plane are transformed into product states,
i.e., all the entanglement is removed. Only near the mirror
plane, there remains some short-range entanglement. Note
that the mirror symmetry becomes onsite on the mirror plane.
Hence, the remaining short-range entanglement actually de-
scribes a 2D SPT state with an onsite Z2 symmetry. LUTs
on the 2D surface work in the same way as in the strict 2D
case. Hence, after the LUTs, all (long-range and short-range)
entanglements are concentrated on the T-junction setup, as
shown in Fig. 1(e). The rest of the system is completely de-
coupled with the T junction. Such a T-junction setup was also
proposed by Lake [58]. In this T junction, the perpendicular
plane is a 2D Z2 SPT state, while the horizontal plane is
the original surface SET and which can be turned exactly
the same as those anomaly-free SETs except on the mirror
axis (i.e., the intersection line of the vertical and horizontal
planes). Finally, we fold the horizontal plane of the T junction
and produce a 2D system [Fig. 1(f)]. One side of the 2D

system is a Z2 symmetric double-layer topological order,
while the other side is a Z2 SPT state. Again, we emphasize
that the double-layer system is the same for all mirror SETs,
and the distinction between mirror SETs is entirely contained
on the gapped boundary, now between the double-layer sys-
tem and the nontrivial Z2 SPT state.

In summary, both anomaly-free and anomalous mirror
SETs are represented by Z2-symmetric gapped boundary
conditions of the same double-layer system. The anomaly-free
and anomalous SETs correspond to the trivial and nontrivial
Z2 SPT states on the other side of the boundary (mirror axis),
respectively. In the main text, we use the so-called anyon
condensation theory to study various gapped boundaries of the
double-layer system, which are eventually translated back into
different mirror SETs.

One comment is that on the mirror plane of the 3D bulk, it
does not have to be the Z2 SPT state (see Ref. [57]). Another
possibility is the so-called E8 state [59,60]. The two possi-
bilities correspond to the Z2 × Z2 classification of 3D mirror
SPTs [13,28,61]. However, the anomaly corresponding to the
E8 possibility can be easily understood (see discussions in
Appendix A). On the other hand, the anomaly corresponding
to the Z2 SPT is much harder. We only discuss the latter in
this work.
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B. Outline

The rest of the paper is organized as follows. In Sec. II, we
demonstrate the folding approach using the simplest exam-
ple of mirror SETs, the mirror-symmetric toric-code states.
Through this example, we demonstrate how one can read
out the mirror anomaly and how some nontrivial constraints
are imposed on properties of mirror SETs through anyon
condensation theory. We then apply our approach to general
mirror SETs in Sec. III, where we find very strong physi-
cal constraints on mirror symmetry fractionalization. While
such constraints are more or less understood for Abelian
topological orders, the ones that we find applies to general
non-Abelian topological orders. The constraints are poten-
tially complete and can be practically solved, giving rise to
a possible classification of mirror SETs.

Furthermore, in Sec. IV, we use the constraints to derive
two general results on mirror SETs. These results were previ-
ously discussed in different languages. In Sec. V, we solve the
constraints for several examples, to justify that our constraints
may be potentially complete. In particular, in Sec. V D, we
demonstrate that our constraints are able to rule out those
SETs that carry the so-called H3-type obstruction. Finally, we
present our conclusion and closing remarks in Sec. VI.

II. FOLDING THE TORIC CODE

We start with the toric-code topological order [62] as an
example to demonstrate the folding approach. The toric code
is the simplest topological order that is compatible with the
mirror symmetry. Through this example, we illustrate all the
essential ideas, including how to read out mirror anomaly
and how some nontrivial constraints on mirror symmetry
fractionalization are implemented. Once it is understood, we
will apply the folding approach to general 2D topological
orders in Sec. III.

A. Review on mirror-enriched toric-code states

The classification and characterization of mirror symme-
try enriched toric-code states were previously studied in
Refs. [43,57]. Here, we review some of the known results,
which our folding approach will later reproduce.

To describe a mirror SET state, one needs to specify two
sets of data: (i) the data that describe the topological order
itself and (ii) the data that describe how the mirror symmetry
enriches the topological order. The first set of data includes
the types of anyons, their fusion properties, and their braiding
properties (see Appendix A for a brief review and Refs. [2,17]
for the general algebraic theory of anyons). The toric-code
topological order contains four types of anyons: the trivial
anyon 1, two bosons e and m, and a fermion ψ . We group
them into the set C = {1, e, m, ψ}. Fusing any anyon with
1 does not change the anyon type, i.e., 1 × a = a for a =
e, m, ψ . Other fusion rules include e × e = 1, m × m = 1,
and e × m = ψ . That is, ψ is a bound state of e and m. Note
that every anyon is its own antiparticle, i.e., a = ā., in the toric
code. We denote the mutual braiding statistical phase between
a and b by Ma,b. In the toric code topological order, we have
Me,m = Me,ψ = Mm,ψ = −1.

FIG. 2. Definition of mirror-symmetry fractionalization. (a) A
pair of anyons, including an anyon a and its antiparticle ā, located
symmetrically on the two sides of the mirror axis. Mirror symmetry
M maps a to ρm(a), such that the wave function respects the
mirror symmetry only if ā = ρm(a). (b) The mirror eigenvalue of
the two-anyon wave function defines the fractional quantum number
μ(a) = ±1.

Mirror-symmetry enrichment on a topological order con-
tains two parts: anyon permutation and symmetry fraction-
alization. First, the types of anyons can be permuted under
the action of mirror symmetry. It can be described by an
automorphic map ρm : C → C. Fusion and braiding properties
of anyons must be preserved under ρm.1 In the case of toric
code, there are only two kinds of consistent permutations: the
trivial one, ρm(a) = a for every anyon a, and the nontrivial
one that exchanges e and m, described by the following map:

ρm(1)=1, ρm(e)=m, ρm(m)=e, ρm(ψ )=ψ. (1)

Second, for those anyons satisfying ρm(a) = ā, we can
further define how the mirror symmetry is “fractionalized” on
a. To define symmetry fractionalization, imagine an excited
state containing an anyon pair, a and its antiparticle ā, located
symmetrically on the two sides of the mirror axis (Fig. 2).
The pair a and ā is created from the ground state through a
string-like operator. Requiring that the state is mirror sym-
metric, we are led to the condition that ρm(a) = ā (note that
in the toric code, a = ā for every a). Now, we can ask that
what is the mirror eigenvalue, denoted by μ(a), of this state,
+1 or −1? Interestingly, as pointed out by Ref. [63], the
eigenvalue μ(a) is “topologically robust” in the sense that any
mirror symmetric local perturbations around a and ā cannot
change it. It follows from that a state containing two mirror
symmetric local excitations must have mirror eigenvalue 1.
That is, μ(1) ≡ 1. Hence, composing local excitations onto a
and ā cannot change μ(a). Different sets of mirror eigenvalues
{μ(a)}|ρm (a)=ā are refereed to as different symmetry fraction-
alization classes of the topological order with a given permu-
tation ρm. (It might look a bit unnatural to call μ(a) symmetry
fractionalization. However, if μ(a) = −1, the mirror charge
“−1” is split between a and ā, with each carrying a part. In
this sense, it is indeed a kind of fractionalization.)

1More precisely, the braiding phases should be complex conjugated
under ρm since the mirror reflection symmetry reverses spatial orien-
tation. However, it does not affect the toric code, because all braiding
phase factors are real.
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Like anyon permutation ρm, symmetry fractionalizations
{μ(a)} also satisfy certain constraints. For general non-
Abelian topological orders, the complete constraints on physi-
cal symmetry fractionalizations {μ(a)} are not known. One of
the purposes of this work is to find these constraints through
the folding approach. However, the complete constraints for
the toric code are known, which we list below. When the
permutation ρm is trivial, μ(ψ ) is determined by μ(e) and
μ(m). They satisfy the constraint

μ(ψ ) = μ(e)μ(m). (2)

It follows from the observation that a two-ψ state can be
viewed as a state with two anyons e and m on one side, and
with two other anyons e and m on the other side. Hence, there
exist four possible mirror SET states, corresponding to the
two independent assignments, μ(e) = ±1 and μ(m) = ±1.
Following the notations of Wang and Senthil [42], we denote
these four states as e1m1, eMm1, e1mM, and eMmM, where
a1 and aM denotes μ(a) = +1 and −1, respectively. For the
nontrivial anyon permutation given by Eq. (1), ψ is the only
anyon that satisfies the condition ρm(a) = ā besides the trivial
anyon 1. In this case, μ(ψ ) satisfies another constraint:

μ(ψ ) = Me,m = −1, (3)

where Me,m is the mutual braiding statistics between e and
m. According to Refs. [20,30,32,33,64], this constraint (and
its variant for time-reversal symmetry) is related to the fact
that ψ = e × m = e × ρm(e). Therefore there is only a single
SET state for the nontrivial anyon permutation (1). To sum
up, there are in total five mirror-enriched toric code states,
four associated with the trivial permutation and one for the
nontrivial permutation.

Finally, a particularly interesting phenomenon is that
among the five mirror-enriched toric code states, the eMmM is
anomalous, meaning that it cannot be realized in a standalone
2D system. Instead, it can only be realized on the surface of
a 3D mirror SPT state [28,42]. On the contrary, the other four
states are anomaly-free and can be realized in strictly 2D sys-
tems, such as exactly solvable models, tensor-product states
and Z2 spin liquids [65,66]. In what follows, we will show
that our folding approach can reproduce this classification of
mirror-enriched toric states and reveal the mirror anomaly in
the eMmM state.

B. Qualitative description of the folding approach

What makes the mirror symmetry difficult to deal with is
its nonlocal nature: it maps one side of the mirror axis to the
other side. Here, we develop a folding approach following
the general idea illustrated in the introduction (Sec. I A)
for studying mirror symmetric SETs. For simplicity, in this
and the next section, we describe the folding method in the
absence of anyon permutation. The case where the mirror
symmetry permutes e and m will be discussed in Sec. II D.

Consider a mirror-symmetric toric-code state, where the
mirror symmetry does a trivial permutation on anyons. The
mirror axis divides the system into two regions A and B, as
shown in Fig. 1. The mirror symmetry maps an anyon located
in region A to an anyon of the same type in region B, and
vice versa. We now fold region B along the mirror axis, such

that it overlaps with region A. After folding, it becomes a
double-layer system, where each layer hosts a copy of the
toric-code topological order.2 In this double-layer system, the
mirror symmetry acts as an interlayer exchange symmetry,
which can be treated as an onsite unitary Z2 symmetry. The
anomalous mirror SET that lives on the surface of a 3D SPT
state (i.e., the eMmM state) can be folded in a similar way, as
illustrated in Fig. 1.

In this section, we give a qualitative description on the bulk
and boundary properties of the doubler-layer system, and on
how these properties encode the information of the original
mirror-enriched toric-code states. In Sec. II C, we will apply
the standard method for studying onsite unitary symmetries,
the method of gauging global symmetry [67], to give a more
quantitative analysis.

1. Bulk of the double-layer system

As discussed in the introduction (Sec. I A), information
about mirror SETs is encoded only near the mirror axis.
Away from the mirror axis, all mirror SETs look alike after
appropriate mirror-symmetric local unitary transformations.
Accordingly, after folding, the bulk of the double-layer system
is the same for all mirror SETs, including both anomaly-free
and anomalous ones.

Let us describe the bulk of the double-layer system. To
begin, we introduce some notations. The double-layer system
hosts a topological order of two copies of the toric code. We
denote an anyon of type a on the top layer and the bottom layer
as (a,1) and (1, a), respectively. More generally, we denote a
composite anyon, with charge a on the top layer and b on the
bottom layer, as (a, b). Since the two layers are decoupled, the
fusion and braiding properties follow immediately as a direct
sum of those in each layer.

Generally speaking, the onsite Z2 symmetry enriched bulk
topological order are characterized at three levels: anyon
permutation by the symmetry, symmetry fractionalization,
and stacking of a Z2 SPT state [20,68]. With a trivial mirror
permutation in the original system, the Z2 interlayer sym-
metry permutes the anyons in the double-layer system in the
following form:

m: (a, b) �→ (b, a). (4)

Here, we use m to denote the interlayer Z2 symmetry in the
folded system, to distinguish it from the original mirror sym-
metry which we denote as M. Next, according to Ref. [20],
any double-layer system with a unitary Z2 interlayer exchange
symmetry that permutes the anyons in the form of Eq. (4) has
only a unique symmetry fractionalization class. Finally, the
remaining flexibility is to attach a Z2 SPT state. For onsite
Z2 symmetry, it is known that besides the trivial state, there is
only one nontrivial SPT state [13,67].

2In general, folding also reverses the spatial orientation of the
region B and correspondingly changes the nature of the topological
order therein. However, this does not occur for the simple example of
toric code, where all the self and mutual statistics among the anyons
are real. This issue will be dealt more carefully in Sec. III B, where
we generalize our folding method to a general topological order.
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We conclude that given the anyon permutation in Eq. (4),
there are two possible Z2 SETs. The bulk Z2 SET order of
the double-layer system, obtained from folding the mirror-
enriched toric-code states, should be one of the two possi-
bilities. To specify which one is the actual bulk SET order,
it is more convenient to use braiding statistics of gauge flux
excitations after we gauge the Z2 symmetry. Once the Z2

symmetry is gauged, the two possible SETs can be easily
distinguished by braiding statistics of gauge flux excitations.
So, we postpone this discussion to Sec. II C.

We remark that since the two Z2 SETs differ by stacking an
SPT state, readers may expect that they can be distinguished
by the edge mode stability: one has symmetry protected
gapless edge modes, and the other does not. However, the fact
is that both SETs have no symmetry protected gapless edges
modes. We will come back to this observation below when
discuss the boundary properties.

2. Boundary of the double-layer system

After folding, the mirror axis becomes a boundary between
the double-layer system and the vacuum (i.e., the trivial Z2

SPT state) for anomaly-free mirror SETs, or a boundary be-
tween the double-layer system and the nontrivial Z2 SPT state
for the anomalous mirror SET. In either case, the boundary is
gapped and symmetric under the onsite Z2 symmetry.3 Since
the information of mirror SETs is encoded near the mirror
axis, we expect that different mirror symmetry fractionaliza-
tion classes (e1m1, eMm1, e1mM, or eMmM) should corre-
spond to different types of gapped and Z2 symmetric bound-
aries. Below, we explain how to resolve this correspondence.

Gapped boundaries or domain walls (i.e., boundaries be-
tween two topological orders) have been widely studied in
the literature [71–83]. One way to describe them is to use
the language of “anyon condensation” [80,84–86]: a set of
self-bosonic anyons on one side of the boundary/domain wall
“condense” into the trivial anyon on the other side. In other
words, this set of self-bosons can be annihilated by local
operators once they move to the boundary/domain wall. In
the current example, the one side of the gapped boundary
is the double-layer system, which has a topological order of
two copies of the toric code, and the other side is a trivial
topological order that has no nontrivial anyons. The gapped
boundary corresponds to condensing these self-bosons: (e, e),
(m, m), (ψ,ψ ), and the trivial anyon (1,1) from the double-
layer system. To see this, we recall that in the unfolded picture,
two anyons of the same type a near the mirror axis can
annihilate each other (note that a = ā for the toric code). In the
folded picture, such an anyon pair is described as a composite
anyon (a, a). The fact that such two-anyon pair can be created
or annihilated at the mirror axis in the unfolded picture then

3The phenomenon that the double-layer system admits a gapped
and symmetric boundary with both trivial and nontrival Z2 SPT
states is not unusual for SETs; similar discussions can be found in
Refs. [69,70]. In addition, it implies that there is no stable gapless
edge modes for both possible bulk Z2 SETs: one can further fold the
trivial/nontrivial Z2 SPT state onto the double-layer system, leading
to the two bulk Z2 SETs, the edges of which are gapped.

translates to that (a, a) can be created or annihilated at the
boundary of the folded system. That is, the anyons (e, e),
(m, m), and (ψ,ψ ) can be condensed at the boundary of the
double-layer system. An consequence of such a condensate
is that it confines all other anyon charges that have nontrivial
braiding statistics with any of the anyons in the condensate.
Eventually, the condensation gives rise to a trivial vacuum
state on the other side of the boundary.

Furthermore, the gapped boundary is symmetric under the
Z2 interlayer exchange symmetry. Mirror symmetry fraction-
alization will be translated into symmetry properties of the
gapped boundary. Recall that the symmetry fractionalization
μ(a) is defined as the mirror eigenvalue of the wave function
containing a pair of the same anyon a located symmetrically
on the two sides of the mirror axis. After folding, μ(a)
becomes the Z2 eigenvalue of the double-layer wave function,
which has a single anyon (a, a) in the bulk. Accordingly, we
can view μ(a) = ±1 as the “charge” carried by (a, a) under
the Z2 symmetry: if μ(a) = +1, (a, a) is neutral; otherwise,
(a, a) carries a Z2 charge. Generally speaking, integer charge
of an anyon cannot be well defined, since there is no canonical
way to name what is +1 or −1 charge on an anyon; only
fractional charge (modulo integer charge) is well defined.
However, the current double-layer system is special. It has
a “memory” of the unfolded system—one can simply define
the Z2 charge μ(a) through the original mirror symmetry by
unfolding the system. Unfolding cannot be generally done if
interaction is introduced between the two layers, since local
interaction will be mapped to nonlocal one by unfolding.

It is important to note that the wave function containing a
single anyon (a, a) in the bulk is permitted only because of
the fact that (a, a) can be annihilated on or created out of the
gapped boundary. Hence, μ(a) should really be viewed as a
property of both the gapped boundary and the anyon (a, a).
Now, if we insist that the whole system to be even under Z2

(which will be strictly imposed once we gauge the Z2 sym-
metry), then permitting a single anyon (a, a) carrying a charge
μ(a) in the bulk translates to the property that the anyon (a, a)
carrying a charge μ(a) can be annihilated/condensed on the
boundary. Accordingly, the boundary should be viewed as a
condensate of (1,1), (e, e), (m, m) and (ψ,ψ ) which carry
Z2 charges μ(1), μ(e), μ(m), and μ(ψ ), respectively. Hence,
we have mapped the mirror symmetry fractionalization pat-
terns into boundary properties through the folding trick.

In the above discussion, we have not touched the Z2

symmetry properties of the system living on the other side
of the gapped boundary, i.e., the “anyon-condensed system.”
It supports no anyons, but it can either be a trivial or
nontrivial Z2 SPT state [13,67]. According to the picture
discussed in Sec. I A, the anomalous eMmM mirror SET
leads to a nontrivial Z2 SPT state on the other side of the
gapped boundary after folding. Therefore, if we condense
{(1,1), (e, e), (m, m), (ψ,ψ )} with μ(e) = −1 and μ(m) =
−1, it should be able to argue that, after anyon condensation,
the system must be a nontrivial Z2 SPT state. Similarly, other
anyon condensation patterns should generate a trivial Z2 SPT
state on the other side of the boundary/mirror axis. Indeed,
it can be derived through a more quantitative analysis on
anyon condensation, which will be discussed shortly in the
next section.
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In summary, different mirror symmetry fractionalization
patterns are described by different anyon-condensation pat-
terns on the mirror axis that preserve the Z2 symmetry in
the folded double-layer system. Depending on the symmetry
properties of the anyon-condensation pattern, the other side of
the mirror axis can either be trivial or nontrivial Z2 SPT states,
which correspond to anomaly-free and anomalous mirror
SETs, respectively.

C. Gauging the Z2 symmetry

In this section, we employ the method of “gauging the
symmetry” to study the double-layer system and its boundary
properties in more detail. We give a more quantitative anal-
ysis of the anyon condensation patterns on the boundary. In
particular, based on general principles of anyon condensation,
we are able to show that condensing (e, e) and (m, m) with
μ(e) = μ(m) = −1 indeed leads to a nontrivial Z2 SPT state,
while other anyon condensation patterns lead to a trivial Z2

SPT state.
To gauge the Z2 symmetry, we minimaly couple the Z2-

symmetric double-layer system to a dynamical Z2 gauge field.
General gauging procedure on lattice systems can be found in
Refs. [67,87], which however is not important for our discus-
sions here. Once the Z2 symmetry is gauged, the bulk topolog-
ical order will be enlarged. It contains those anyons that have
origins from the ungauged topological order, as well as new
anyons that carry Z2 gauge flux. Here, we provide a heuristic
description of the nature of the gauged topological order,
while a detailed derivation is given in Appendixes B and C.

The bulk topological order in the gauged double-layer
system contains 22 anyons in total, where eight are Abelian
and 14 are non-Abelian. (For experts, it is the same as the
quantum double of the group D8.) First, let us describe those
anyons that have counterparts in the ungauged system. The
original diagonal anyons (a, a), carrying Z2 eigenvalues ±1,
become Abelian anyons (a, a)+ and (a, a)− in the gauged
double-layer system, respectively. Taking a = 1, e, m, ψ , we
obtain eight Abelian anyons. In particular, the anyon (1,1)+
is the trivial anyon in the new topological order, while (1,1)−
represents the Z2 gauge charge. In gauge theories, gauge
charge excitations have to be created in pairs and thereby be-
come anyons. The off-diagonal anyons, (a, b) and (b, a) (with
a �= b), merge into one non-Abelian anyon with quantum di-
mension 2, which we denote by [a, b]. Since (a, b) and (b, a)
transform into one another under the Z2 symmetry, gauging
the symmetry enforces them to be merged. There are six of
these anyons. The braiding statistics of all these 14 anyons are
the same as their counterparts in the ungauged system, e.g.,
the topological spins are θ(a,a)± = θ2

a = 1 and θ[a,b] = θaθb

(see Appendix A for the meaning of topological spins).
In addition, there are eight anyons that carry Z2 gauge flux

and that do not have counterparts in the ungauged system,
which we call Z2 defects.4 These defects are non-Abelian

4In this manuscript, we use “defects” to name the excitations that
carry Z2 gauge flux. It is important to note that they are not extrinsic
defects, but actual excitations in the gauged system, since we treat
the Z2 gauge field as a dynamical field.

and have quantum dimension 2. We denote them by X ±
1 , X ±

e ,
X ±

m , and X ±
ψ . The meaning of this notation is as follows.

The subscript “b” of the defects X ±
b is defined by the mutual

braiding statistics between the defects and the anyons (a, a)±.
In particular, there exists a defect, which we name X +

1 , that
detects the Z2 charge carried by the diagonal anyons (a, a)±,
through the mutual braiding statistics,

MX +
1 ,(a,a)± = ±1, (5)

where the “±” signs are correlated on the two sides of the
equation. Instead, the other three flavors of defects, X +

e , X +
m

and X +
ψ , have the following mutual braiding statistics with

respect to (a, a)±:

MX +
b ,(a,a)± = ±Mb,a. (6)

where Mb,a is the mutual braiding statistics between a and b
in the original toric code. The defects X +

e , X +
m , and X +

ψ can be
obtained by attaching an anyon charge to X +

1 , as indicated by
the fusion rules,

X +
1 × [a,1] = X +

a + X −
a . (7)

On the other hand, the superscript “±” of the defect X ±
b is

conventional, in contrast to that of (a, a)±. The sign ± only
denotes a relative Z2 gauge charge difference between X +

b
and X −

b , reflected in the fusion rule X +
b × (1,1)− = X −

b . The
mutual braiding between X −

b and (a, a)± is the same as in
Eqs. (5) and (6) for X +

b .
As discussed in Sec. II B 1, there are two possible bulk Z2

SETs in the double-layer system. The two SETs give rise to
two different bulk topological orders. The above topological
properties of anyons in the gauged system do not distinguish
them. To distinguish the two SETs, we need to look at the
topological spins of the defects. We find that one of the SETs
gives rise to the topological spins

θX ±
1

= θX ±
e

= θX ±
m

= ±1, θX ±
ψ

= ±i, (8)

while the other SET has all the topological spins multiplied
by a factor i from those in Eq. (8) (see Appendix C for a
derivation). We claim that the bulk topological order obtained
from folding the original mirror-enriched toric code states
correspond to the one described by Eq. (8). As discussed
below, this bulk SET indeed reproduces the anomaly of all
symmetry fractionalization classes. Instead, the other SET
produces a completely opposite conclusion on the anomaly.
[The opposite conclusion is expected, because one can imag-
ine attaching a Z2 SPT state to both sides of the mirror axis,
in the folded setup in Fig. 1(f). This attachment changes the
bulk SET state on the left-hand-side to the other SET and flips
the SPT state on the right-hand side, while keeps the gapped
boundary unchanged.]

Next, we move on to the boundary properties of the gauged
double-layer system. As discussed in Sec. II B 2, before gaug-
ing the symmetry, the symmetry fractionalization patterns cor-
respond to condensing (e, e), (m, m), (ψ,ψ ) with Z2 eigen-
values μ(e), μ(m), μ(ψ ), respectively. In the gauged system,
this translates to condensing the anyons (e, e)μ(e), (m, m)μ(m),
and (ψ,ψ )μ(ψ ) at the boundary. The four symmetry fraction-
alization classes e1m1, e1mM, eMm1, and eMmM corre-
spond to the four independent choices of μ(e), μ(m), μ(ψ )
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that satisfy the constraint Eq. (2). One important question that
the qualitative discussion in Sec. II B does not address is that
why the choice that μ(e) = μ(m) = −1 leads to a nontrivial
Z2 SPT state after condensation, while other choices lead to a
trivial Z2 SPT state?

Here we answer this question. First, let us describe the
topological order U on the other side of the mirror axis, i.e.,
the topological order after anyon condensation. The trivial
(nontrivial) Z2 SPT state becomes the untwisted (twisted)
Z2 topological order after gauging the Z2 symmetry [67],
respectively. Both Z2 topological orders contain four anyons:
the trivial anyon, a Z2 gauge charge, and two Z2 defects
that carry gauge flux and that are related by attaching a
Z2 gauge charge. The difference is that the Z2 defects are
fermion/bosons in the untwisted Z2 topological order, while
they are semions/antisemions (topological spin being ±i) in
the twisted Z2 topological order. The untwisted Z2 topolog-
ical order is actually the same as the toric code, where e is
identified as the gauge charge and m, ψ can be identified as
the gauge flux excitations. The twisted Z2 topological order is
also called the double-semion topological order.

Accordingly, we expect that the remaining topological
order U is the double-semion topological order if (e, e)−
and (m, m)− are condensed, and U is the toric code topo-
logical order for other anyon condensation patterns. Indeed,
this expectation follows from the general principles of anyon
condensation. One consequence of anyon condensation is
confinement. Anyons which have nontrivial mutual braiding
statistics with respect to any of the anyons in the condensate
will be confined. In particular, some Z2 defects will be con-
fined after condensing (e, e)μ(e), (m, m)μ(m) and (ψ,ψ )μ(ψ ).
Using Eq. (6), one can work out the confinement of Z2 defects
in different anyon-condensation patterns, as listed in Table I.
For each anyon-condensation pattern, three of the four types
of defects are confined, and one type of defect X ±

w remain
deconfined, where w is an anyon charge. The defects X ±

w

become the Z2 gauge flux excitation in the Z2 topological
order on the other side of the boundary. According to the
values of topological spins in Eq. (8), we find that for the
first three cases in Table I, the deconfined Z2 defects are
bosons and fermions, indicating that U is an untwisted Z2

gauge theory (i.e., the toric-code topological order). The last
row in Table I, however, has semionic defects that remain
deconfined, indicating that U is the twisted Z2 gauge theory
(i.e., double-semion topological order).

TABLE I. Anyon condensation patterns. In the columns of X ±
1 ,

X ±
e , X ±

m , and X ±
ψ , the symbol “×” means that the defect is confined

and “©” means that the defect is deconfined after anyon condensa-
tion. The θX±

w
column lists the topological spins of the deconfined

defects, and the last column denotes the nature of the condensed
phase U , with “TC” being the toric code topological order and “DS”
being the double-semion topological order.

SET μ(e) μ(m) μ(ψ ) X ±
1 X ±

e X ±
m X ±

ψ θX±
w

U

e1m1 + + + © × × × ±1 TC
eMm1 − + − × × © × ±1 TC
e1mM + − − × © × × ±1 TC
eMmM − − + × × × © ±i DS

Hence, we conclude that general principles of anyon con-
densation indeed reproduce the fact that the eMmM sym-
metry fractionalization class generates a nontrivial Z2 SPT
state through the folding approach. This indicates that it is
an anomalous mirror SET, following the argument given in
Sec. I A.

D. Nontrivial anyon permutation

We have learned from Sec. II C that the folding method and
general principles of anyon condensation allow us to identify
anomaly-free and anomalous mirror SETs. Here, we demon-
strate another aspect of the power of this method, through the
mirror SET where the mirror symmetry interchanges e and
m anyons, as described by Eq. (1). We show that nontrivial
constraints on mirror symmetry fractionalization, e.g., Eq. (3),
are secretly encoded in the principles of anyon condensation.
[The constraint Eq. (2) is also encoded. However, we do not
emphasize it in Sec. II C, since that constraint can be easily
understood without referring to anyon condensation.]

When the mirror symmetry permutes e and m, folding
translates it into a Z2 interlayer symmetry, which permutes
the anyons in the double-layer system in the following way:

m: (a, b) �→ (ρm(b), ρm(a)), (9)

where ρm is given by Eq. (1). The permutation in Eq. (9) is
apparently different from the one in Eq. (4). However, they
are actually equivalent, up to relabeling of anyon types. The
equivalence can be revealed by relabeling the e anyon as m,
and vise versa, on the second layer. After this relabeling,
the Z2 symmetry permutation Eq. (9) becomes the simple
interlayer exchange in Eq. (4). Accordingly, the bulk SET
of the double-layer system is the same as that discussed in
Sec. II B 1, and the gauged topological order becomes the
same as the one discussed in Sec. II C.

What is changed by the relabeling e ↔ m on the second
layer is the description of anyon condensation pattern on
the boundary. Before the relabeling, the gapped boundary
corresponds to a condensation of anyons (1,1), (e, e), (m, m),
and (ψ,ψ ) with the bulk SET equipped with the permutation
Eq. (9). After relabeling e and m anyons on the second layer,
the boundary corresponds to a condensation of anyons (1,1),
(e, m), (m, e), and (ψ,ψ ) with the bulk SET equipped with
the permutation Eq. (4). Here, we take the latter notation so
that all discussions in Secs. II B and II C about the bulk SET
are still valid.

The condensation on the boundary is Z2 symmetric, since
(1,1) and (ψ,ψ ) are invariant, and (e, m), (m, e) trans-
form into one another. In addition, (ψ,ψ ) may carry a Z2

eigenvalue μ(ψ ) = ±1. As reviewed in Sec. II A, μ(ψ ) can
only take −1 according to the constraint Eq. (3). Below, we
would like to argue that μ(ψ ) = +1 indeed violates general
principles of anyon condensation, and only μ(ψ ) = −1 is a
valid choice.

To do that, we again gauge the Z2 symmetry. According
to Sec. II C, the anyons (e, m) and (m, e) merge into the
non-Abelian anyon [e, m], which has a quantum dimension 2.
Hence, in the gauged double-layer system, the condensed
anyons are (1,1)+, [e, m] and (ψ,ψ )μ(ψ ). This type of anyon
condensation, where non-Abelian anyons are condensed,
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requires more complicated mathematical descriptions, com-
paring to the case discussed in Sec. II C. Here, we only give
an intuitive and simplified argument, while leaving the full de-
tails to Sec. III D, where we discuss such anyon condensations
in a more general setting.

The argument is as follows. Similar to the examples in
Sec. II C, we are interested in finding which Z2 defects remain
deconfined after the condensation. First, since (ψ,ψ )μ(ψ ) is
condensed, the deconfined defects must have trivial mutual
braiding statistics with respect to (ψ,ψ )μ(ψ ). According to
Eq. (6), if (ψ,ψ )+ is condensed, only X ±

1 and X ±
ψ are possibly

deconfined; if (ψ,ψ )− is condensed, only X ±
e and X ±

m are
possibly deconfined. Second, besides confinement, another
important consequence of anyon condensation that we do
not mention in the Abelian case is identification. Intuitively,
a condensed anyon a is regarded as the trivial anyon after
the condensation. Accordingly, two distinct defects X ±

w and
X ±

w × a is identified as the same defect after the condensation.
Here, since we are condensing [e, m], the defects X ±

w and
X ±

w × [e, m] become the same Z2 defect after condensation.
For any w, we show in Appendix C that the fusion rule
is X ±

w × [e, m] = X +
w×ψ + X −

w×ψ . Therefore X ±
e and X ±

m are
identified, and X ±

1 and X ±
ψ are also identified. Finally, we

expect that any defects that are identified and deconfined
should have the same topological spin (in contrast, a confined
defect cannot be associated with a well-defined topological
spin). Combining the first and second points, we see that
condensing (ψ,ψ )+ leads to a contradiction: X ±

1 and X ±
ψ are

deconfined and identified, but they have different topological
spins according to Eq. (8). Hence, it is not a valid anyon con-
densation. This leaves condensing (ψ,ψ )− the only option.
After condensing (ψ,ψ )−, the defects X ±

e and X ±
m become

the deconfined defects. Since they are fermions/bosons, the
topological order on the other side of the boundary (mirror
axis) is the toric-code topological order, indicating that the
original mirror SET is anomaly-free.

III. GENERAL FORMULATION

We now apply the folding approach to general 2D topo-
logical orders that are enriched by the mirror symmetry. As
we learn from Sec. II, folding turns a mirror SET into a
Z2 symmetric anyon condensation pattern on the mirror axis
(i.e., the boundary of the folded system). With this mapping,
we use the consistency conditions on anyon condensation to
understand constraints on the data that describe mirror SETs.
Ideally, when the constraints are complete in the sense that
all solutions can be realized in physical systems, we obtain
a classification of mirror SETs from the solutions. We con-
jecture that the constraints that we find in this section are
complete. This conjecture is tested in many examples to be
discussed in Sec. V. Based on these constraints, we describe
practical algorithms to find possible mirror SETs for a given
topological order. In addition, it is very easy to distinguish
anomaly-free and anomalous SETs in our formulation.

A. Mirror SET states

We begin with the data that describe topological and sym-
metry properties of general mirror SET states.

1. Topological data

A general 2D topological order can be described by a
unitary modular tensor category (UMTC) [2,17]. The basic
properties of a UMTC, which we will use in this section, is
reviewed in Appendix A. Here, we give a brief summary. The
content of a UMTC C includes the anyon types, their fusion
properties and braiding properties. We denote anyons in C
using letters a, b, c, . . . , and in particular, the trivial anyon
is denoted by 1. We will abuse the notation a ∈ C to indicate
that a is an anyon in C. Two anyons can fuse into other anyons,
according to the fusion rules,

a × b =
∑
c∈C

Nab
c c, (10)

where the fusion multiplicity Nab
c is a non-negative integer.

There is an antiparticle ā of each anyon a, with Naā
1 = 1.

Each anyon a is associated with a quantum dimension da,
which is the largest eigenvalue of the matrix N̂a: (N̂a)bc =
Nab

c . Abelian anyons have da = 1, and non-Abelian anyons
have da > 1. The quantum dimensions satisfy the following
relation

dadb =
∑
c∈C

Nab
c dc. (11)

One can define the total quantum dimension DC of the topo-
logical order C:

DC =
√∑

a∈C
d2

a . (12)

Each anyon a is also associated with a topological spin θa,
which is a unitary phase factor. It is a non-Abelian general-
ization of the self-statistics of Abelian anyons. The modular S
and T matrices are defined as follows:

Ta,b = θaδa,b,

Sa,b = 1

DC

∑
c

Nab̄
c

θc

θaθb
dc. (13)

The S and T matrices essentially summarize the braiding
properties of anyons.

Throughout our discussion, we assume that Nab
c , da, θa, Sa,b

and Ta,b are all known. In addition, we assume that the chiral
central charge of the 1D conformal field theory living on the
boundary of the topological order C is zero (see Appendix A)
and that C is compatible with a mirror symmetry.

2. Symmetry data

Symmetry properties of general SETs are described by
three layers of data [20,21,68]: (1) how symmetry permutes
anyon types, (2) symmetry fractionalization, and (3) stacking
of a possible SPT state. For the mirror symmetry, the last layer
of data does not exist, because there is no nontrivial mirror
SPT state in 2D. Below we discuss the first two layers of data.

First, the mirror symmetry may permute anyon types.
Anyon permutation can be described by a group homomor-
phism ρ : ZM

2 → Aut∗(C), where ZM
2 = {1, M} is the mirror

symmetry group and Aut∗(C) is the group that contains all
autoequivalences and antiautoequivalences of C. An autoe-
quivalence is a one-to-one map from C to itself that preserves
all the fusion and braiding properties. An antiautoequivalence
is a one-to-one map from C to itself that that preserves the
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fusion rules but put a complex conjugation on the braiding
phase factors. Specifically, the image ρ(1) of the identity
1 is a (trivial) autoequivalence, while the image ρ(M) of
the mirror symmetry M is an antiautoequivalence of C. The
latter follows from the fact that mirror symmetry reverses
the spatial orientation. We will use the shorthand notation
ρm ≡ ρ(M) from now on. Under the action of the mirror
symmetry, an anyon a is sent to another anyon ρm(a). It is
required that ρm(1) = 1. To be compatible with the ZM

2 group
structure, we have ρm(ρm(a)) = a. As an antiautoequivalence,
ρm also satisfies the constraints Nρm (a)ρm (b)

ρm (c) = Nab
c and θρm (a) =

θ∗
a . From these constraints, one deduces that ρm(ā) = ρm(a).

It is convenient to define an antiautoequivalence ρ̄m, with
ρ̄m(a) = ρm(a), for later discussions.

Second, some anyons may carry mirror-symmetry fraction-
alization. As a nonlocal symmetry, the fractionalization of the
mirror symmetry on an anyon a is defined through the mirror
eigenvalue of the wave function that contains two anyons, a
and its antiparticle ā, located symmetrically on the two sides
of the mirror axis, shown in Fig. 2 [88–90]. Since Naā

1 = 1,
this is a nondegenerate state. For the wave function to be
mirror symmetric, the anyons satisfy

ρm(a) = ā. (14)

That is, a is invariant under the antiautoequivalence ρ̄m, with
ρ̄m(a) = a. Then, the wave function has a well-defined mirror
eigenvalue ±1, which we denote as μ(a). The collection
{μ(a)} defines the mirror symmetry fractionalization class
of the SET under a given anyon permutation ρm. These
quantum numbers {μ(a)} should satisfy various constraints.
For example, they should be consistent with anyon fusions,

μ(a)μ(b) = μ(c), (15)

if Nab
c �= 0 and all a, b, c satisfy Eq. (14). For another exam-

ple, if a = ρ̄m(a) and Na
bρ̄m (b) = 1, then [20]

μ(a) = θa (16)

In the case of Abelian topological order, it reduces to Eq. (3),
since θa = θbθρ̄m (b)Mb,ρ̄m (b) = Mb,ρ̄m (b), where Mb,ρ̄m (b) is the
mutual braiding statistics between b and ρ̄m(b). For Abelian
topological orders, it is generally believed that the constraints
Eqs. (15) and (16) are complete. However, for general non-
Abelian topological orders, these constraints are known to be
incomplete.

One of the main purposes of this paper is to find a stronger
and hopefully complete set of constraints on the symmetry
fractionalization {μ(a)} for a given anyon permutation ρm,
through the folding method and principles of anyon conden-
sation. In most of the following discussions, we will assume
that a valid antiautoequivalence ρm is known (however, see
an example with an invalid ρm in Sec. V D, which carries the
so-called H3-type obstruction).

B. Folded double-layer system

We now fold a general mirror SET with the topological
order C into a double-layer system, as shown in Fig. 1. The
mirror axis divides the system into region A and B. We fold
B such that it overlaps with A. When the region B is folded,
its spatial orientation is reversed, and the topological order
becomes the reverse of the original one, which we denote

as Crev. The topological spins of all anyons in Crev and their
mutual statistics are reversed, i.e., get complex conjugated.
More specifically, let arev ∈ Crev be the “reverse” of the anyon
a ∈ C. Then, θarev = θ∗

a . The bulk topological order of the
double-layer system should be described by C ⊗ Crev.

For a general UMTC C, its reverse Crev could be a different
topological order. However, if C preserves a mirror symmetry,
it must be equivalent to its reverse C � Crev. The equivalence
is naturally defined by the mirror action ρm, as an antiautoe-
quivalence of C, through the one-to-one mapping

arev ↔ ρm(a), (17)

where arev ∈ Crev and ρm(a) ∈ C. Using this mapping, we
generalize the relabeling trick first introduced in Sec. II D:
the anyon arev in Crev is relabeled as ρm(a). After this re-
labeling, we can view the double-layer system as C ⊗ C. In
this notation, anyons of the double-layer system are labeled
by the doublets (a, b), whose topological spin is given by
θ(a,b) = θaθb and quantum dimension is given by d(a,b) = dadb.
We will use this relabeled notation in the rest of the paper.

After folding, the mirror symmetry M becomes an onsite
unitary Z2 symmetry m. In the relabeled notation, it permutes
the anyons as follows:

m: (a, b) → (b, a). (18)

As discussed in Sec. II B 1, there are only two possible Z2

SETs for this type of anyon permutation, which differ from
each other by stacking a Z2 SPT state. The bulk SET order of
the double-layer system is one of the two possibilities, which
we will specify after we gauge the Z2 symmetry.

As discussed in Sec. I A, information of mirror SET states
is encoded only near the mirror axis. Different mirror SETs
are described by different anyon-condensation boundary con-
ditions of the same bulk. An anyon a in region A can move
across the mirror axis and become an anyon a in region B,
which is relabeled as the anyon ρm(a) on the second layer
in the folded picture. Hence, on the boundary, we should
identify (a, 0) with (0, ρm(a)), or equivalently, condense the
anyon (a, ρ̄m(a)). That is, the gapped boundary correspond to
a condensate of {(a, ρ̄m(a))}a∈C .

Furthermore, the gapped boundary is symmetric under
Z2 symmetry. We need to consider symmetry properties
of the condensate {(a, ρ̄m(a))}a∈C . Under the Z2 symme-
try m, (a, ρ̄m(a)) → (ρ̄m(a), a). It is obvious that both
(a, ρ̄m(a)) and (ρ̄m(a), a) are contained in the conden-
sate {(a, ρ̄m(a))}a∈C . When a satisfies a = ρ̄m(a), i.e., when
(a, ρ̄m(a)) = (ρ̄m(a), a), we can further define a Z2 symmetry
eigenvalue μ(a). The eigenvalue μ(a) is inherited from the
mirror symmetry fractionalization through folding. Similarly
to the discussion in Sec. II B 2, the gapped boundary should be
understood as a condensate of anyons (a, ρ̄m(a)) that carry Z2

eigenvalue μ(a). In this way, both the symmetry permutation
ρm and the symmetry fractionalization factors {μ(a)} are
encoded in the pattern of anyon condensation on the boundary.

C. Bulk of gauged double-layer system

To better understand the anyon condensation pattern and in
particular to derive possible constraints on {μ(a)} from prin-
ciples of anyon condensation, we promote the Z2 interlayer
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exchange symmetry to a gauge symmetry [67]. In this sec-
tion, we describe the bulk of the double-layer system after
gauging the Z2 symmetry. The gauged double-layer system
is described by another UMTC, which we denote D. The
modular data of D, including S and T matrices as well as
topological spins and fusion rules, can be deduced from C.
Details of the derivation is discussed in Appendix C. Here, we
give a summary of topological order D.

The topological order D consists of those anyon charges
that have counterparts in the ungauged double-layer system
and the Z2 defects that do not have counterparts. Let us first
list their quantum dimensions and topological spins. (1) For
each pair of different anyons a �= b from C, there is an anyon
in D, denoted by [a, b], with the quantum dimension d[a,b] =
2dadb and the topological spin θ[a,b] = θaθb. Physically, this
anyon represents one a anyon and one b anyon on each layer,
respectively, and it does not carry a well-defined Z2 charge.
(2) For each pair of identical anyon charges a = b ∈ C, there
are two anyons in D, denoted by (a, a)±, respectively. They
have the same quantum dimension d(a,a)± = d2

a and the same
topological spin θ(a,a)± = θ2

a . (3) Finally, the Z2 symmetry de-
fects are labeled by X ±

a , where a ∈ C denotes an anyon charge
that can be attached to the defect. The quantum dimension of
the defect is given by dX ±

a
= daDC , and its topological spin is

given by

θX ±
a

= ±
√

θa, (19)

where the signs ± are correlated on the two sides.
Equation (19) only describes one of the two possible Z2 SETs;
the other possible SET is associated with the topological
spin θX ±

a
= ±i

√
θa. We claim that the bulk SET order of the

double-layer system is associated with the topological spin in
Eq. (19), which will later produce the desired mirror anomaly
(see more discussions in Sec. III F). Summing over all anyons
listed above, one can compute the total quantum dimension
of D,

DD = 2D2
C . (20)

Here we make a comment on the notational signs “±” on
(a, a)± and X ±

a . First, the sign ± on X ±
a is conventional and

has no absolute meaning. It only represents that X +
a and X −

a
differ relatively by a Z2 charge (1,1)−. We use a convention
such that Eq. (19) holds. Second, the ± sign on (a, a)± can be
roughly understood as the integer Z2 symmetry charge that the
anyon carries. However, strictly speaking, the ± sign corre-
sponds to the absolute Z2 charge on (a, a) only if ρ̄m(a) = a.
Under this condition, one can define the Z2/mirror eigenvalue
of (a, a) simply through unfolding. The ± sign on (a, a)± will
finally be translated to the symmetry fractionalization μ(a)
through anyon condensation on the boundary, to be discussed
in the next section. On the other hand, if ρ̄m(a) �= a, there is no
physically transparent way to define the Z2 charge on (a, a).
However, regardless the existence of physical definitions, we
will abuse the language and call the ± sign “Z2 charge” for
both (a, a)± and X ±

a .
Next, we give a partial list of the fusion coefficients of D,

which we will use later. First, the fusion among the anyons
[a, b] and (a, a)± naturally follows the fusion in C. The
Z2 charges in (a, a)± and (b, b)± can be simply multiplied.

Second, the fusion rule between the anyon [b, c] and the defect
X ±

a is as follows:

X +
a × [b, c] = X −

a × [b, c] =
∑
d,e

Nbc
d Nda

e (X +
e + X −

e ). (21)

The rest of the fusion coefficients, however, are harder to
compute; in particular, it is not easy to determine the Z2

charges of the fusion outcomes. Fortunately, they are not
needed for our later discussion. As pointed out in Appendix C,
they can in principle be computed using the Verlinde formula
in Eq. (A7), from the S matrix of D given in Appendix C.

Finally, the S matrix of D can also be computed, using
the S and T matrices of C. In particular, using the fusion
rule in Eq. (21) and the topological spins in Eq. (19), one
immediately sees that

S(X ±
a , [b, c]) = 0. (22)

[Here, for clarity, we denote entries of the S matrix of D by
S(a, b) instead of Sa,b.] Also, as shown in Appendix C, the S
matrix entry between X ±

a and (b, b)± is determined by Sa,b in
C and the Z2 charge of (b, b)±,

S(X +
a , (b, b)±) = S(X −

a , (b, b)±) = ± 1
2 Sa,b. (23)

D. Anyon condensation on the boundary

The folding approach turns the mirror SETs, described by
ρm and {μ(a)}, into anyon condensation patterns that happen
on the boundary. We now derive a (potentially complete) set of
the constraints on the {μ(a)} for a given ρm through various
consistency conditions of anyon condensation in the gauged
double-layer system.

1. Brief review on anyon condensation

We first give a brief review on the general anyon con-
densation theory (see also Refs. [84,85] for general theories,
however, we will use the formulation from Refs. [80,86]).
In particular, we review a set of consistency conditions that
constrain possible anyon condensation patterns.

Despite of its name, anyon condensation theory describes
a gapped boundary between two topological orders. An
anyon condensation pattern is associated with three categories
(Fig. 3): a parent UMTC D and a child UMTC U that live
on the two sides of the boundary respectively, and a unitary
fusion category (UFC) T that lives on the boundary and
that does not have a well-defined braiding structure. The
UFC T should be considered as an intermediate stage of the
“condensation transition” from D to U , while U is the physical
outcome of the transition. So, people often do not care much

D U

T

FIG. 3. Anyon condensation theory describing a gapped bound-
ary T , between topological orders D and U .
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about properties of T and mainly focus on the connection
between D and U .

An anyon condensation pattern can be described in two
steps. In the first step, one needs to specify a restriction map
r : D → T . It can be encoded in a |D| × |T | matrix nα,t ,
where α ∈ D and t ∈ T , respectively, as the following:

r(α) =
∑

t

nα,t t . (24)

Each entry of this matrix nα,t must be a nonnegative integer.
Physically, the restriction map means that when it moves to
the boundary, α splits into those anyons t ∈ T with nα,t �= 0.
When nα,t > 1, α can split into multiple copies of t . At the
same time, one can define a “reverse” map of Eq. (24), called
the lifting map, which is also encoded by nα,t as follows

l (t ) =
∑

α

nα,tα. (25)

Physically, it means that for a fixed t , all α′s with nα,t �= 0
will be identified into the same anyon t on the boundary. We
will use the notation that α ∈ l (t ) to indicate that nα,t �= 0.
A special lifting is the collection of anyons in l (1) with
nα,1 �= 0, which will be referred to as “the condensed anyons”
or “the anyons in the condensate.” These anyons all become
the vacuum anyon in T .

In the second step, a subset of anyons in T will be associ-
ated with a well-defined braiding structure. These anyons are
called deconfined, and they form the UMTC U . Other anyons
in T are said to be confined. A simple criterion to distinguish
confined and deconfined anyons is that: if all anyons in the lift
l (t ) have the same topological spin, t is deconfined; otherwise,
t is confined. For deconfined anyons, θt = θα for any α ∈ l (t );
for confined anyons, there is no physical way to define their
topological spins. It is required that the vacuum anyon 1 ∈ T
must be deconfined, therefore all anyons in the condensate
l (1) are self-bosons.

We see that the matrix nα,t specifies an anyon condensation
pattern.5 In fact, for most of the discussions below, we are
mainly interested in the part of the matrix nα,t when t ∈ U ,
which describes the connection between D and U . For an
anyon condensation to be well defined, the matrix nα,t should
satisfy various constraints. Below we list two main constraints
that will be used later. Generally speaking, there may ex-
ist more independent constraints other than the following
ones.

First, the restriction map r commutes with the fusion
process: r(α) × r(β ) = r(α × β ). Expanding the fusion rules
on both sides, we are led to the following constraint on nα,t :∑

r,s∈T
nα,rnβ,sN

rs
t =

∑
γ∈D

Nαβ
γ nγ ,t , (26)

5In certain complicated cases, the matrix nα,t cannot uniquely
specify an anyon condensation pattern, i.e., the type of the gapped
domain wall, under proper definition of the latter (e.g., see Ref. [91]).
However, in this work, we neglect this subtlety and treat nα,t equiva-
lent to an “anyon condensation pattern.”

where Nrs
t is a fusion coefficient in T and Nαβ

γ is a fusion
coefficient in D. Two corollaries of this constraint are

dα =
∑

t

nα,t dt (27)

and

dt = DU
DD

∑
a

nα,t dα. (28)

See, e.g., Ref. [86] for a proof of the corollaries based on
Eq. (26).

Second, the matrix na,t commutes the modular matrices of
D and U in the following sense:

SDn = nSU , T Dn = nT U , (29)

where the superscripts of S and T denote the topological or-
ders that the matrices are associated with. The multiplications
appear in these equations are matrix multiplications. The first
equation in (29) can be more explicitly written as∑

β∈D
SD

α,βnβ,t =
∑
s∈U

nα,sS
U
s,t , t ∈ U , (30)

which will be an important constraint below. The second
equation in Eq. (29) is equivalent to the statement that for a
given t ∈ U , all α′s with nα,t �= 0 share the same topological
spin and θα = θt .

2. Application to the double-layer system

We now specialize to our double-layer system. The parent
UMTC D is the bulk topological order discussed in Sec. III C.
Also, we understand that the child UMTC U is either the toric
code or double semion topological order, i.e., the untwisted or
twisted Z2 topological order respectively.

Let us understand some aspects of the unitary fusion cat-
egory (UFC) T that lives on the boundary. Before gauging
the Z2 symmetry, it is easy to understand that those anyons
that live on the boundary are exactly those in C: when anyons
in C ⊗ C move to the boundary, the anyon from the top and
bottom layers fuse together, the outcomes of which are exactly
the anyons in C (although their braiding structure is lost when
we confine them on the boundary). When the Z2 symmetry
is gauged, T should contain anyons in U , which are two Z2

symmetry charges and two Z2 symmetry defects. Therefore
it is not hard to see that anyons in T should be labeled as
follows:

T = {a±, x±
a |a ∈ C}, (31)

where the anyons a± originate from the anyon a before gaug-
ing the symmetry and are further decorated with the Z2 charge
after gauging, and x±

a are understood as symmetry defects (we
use the little x to distinguish it from the symmetry defects in
D). Among all anyons in T , only the vacuum anyon 1+ ≡ 1,
the Z2 charge 1−, and two defects which we conventionally
denote as x±

1 are deconfined, i.e., they are free to move to
the other side of the boundary and become anyons in U . All
other anyons are confined to the boundary. One may compute
the total quantum dimension of T using the general relation
DT = √

DDDU , and find that DT = 2DC .
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To describe the anyon condensation patterns, we need to
specify the restriction/lifting maps. Let us begin with some
understanding of the restriction map. From physical picture in
the ungauged system discussed in Sec. III B, we can under-
stand that before gauging the Z2 symmetry, at the boundary,
an anyon a on one layer is identified with the anyon ρm(a) on
the other layer. Hence, two anyons a and b from each layer are
merged into a single anyon in the fusion product a × ρm(b).
This understanding makes us to assume that after gauging
the Z2 symmetry, the anyon charges [a, b] and (a, a)± are
restricted in the following way,

r([a, b]) =
∑

c

Naρm (b)
c (c+ + c−), (32)

r((a, a)+) =
∑

c

Naρm (a)
c cμ(a,ρm (a);c), (33)

r((a, a)−) =
∑

c

Naρm (a)
c c−μ(a,ρm (a);c), (34)

where μ(a, ρm(a); c) = ± is a Z2 symmetry charge, which
differs from different anyon condensation patterns. In partic-
ular, when a = ρ̄m(a), μ(a, ρm(a);1) = μ(a), which encodes
the mirror-symmetry fractionalization and is the main quantity
that we are interested in. When writing down Eqs. (32)–(34),
we have used the observation that x±

a is not contained in
r([a, b]) and r((a, a)±). On the other hand, we expect that the
restriction r(X ±

a ) should only contain defects x±
a , but none of

the anyons a±. Due to the fact that restriction map commute
with fusion, we have that

r(X −
a ) = r((1,1)−) × r(X +

a ), (35)

which follows from the fusion rule that X −
a = X +

a × (1,1)−.
Next, we describe the lifting map. In fact, we are only

interested in the lifting of U to D, i.e., l (1±) and l (x±
1 ). The

lifting of the confined anyons in T are not relevant for us
to understand mirror symmetry fractionalizations. From the
above understanding of the restriction map, we immediately
find that

l (1) =
∑

a �=ρ̄m (a)

′
[a, ρ̄m(a)] +

∑
a=ρ̄m (a)

(a, a)μ(a), (36)

where
∑′ means that only one among the two anyons, a

and ρ̄m(a), are taken in the summation (note that [a, ρ̄m(a)] =
[ρ̄m(a), a]). The condensate l (1) in Eq. (36) is what we expect
from the discussion in Sec. III B. Similarly, we have

l (1−) =
∑

a �=ρ̄m (a)

′
[a, ρ̄m(a)] +

∑
a=ρ̄m (a)

(a, a)−μ(a). (37)

One the other hand, it is not apparent to us what are the liftings
l (x±

1 ). However, we do expect that the lifting l (x+
1 ) has the

following form:

l (x+
1 ) =

∑
a∈C

waX +
a , (38)

where wa ≡ nX +
a ,x+

1
are nonnegative integers, and wa �= 0 in-

dicates that X +
a can become the deconfined Z2 defect x+

1 on
the other side of the mirror axis. The fact that the lifting of x+

1

only contains defects with the + charge is due to two reasons:
(i) all defects in l (x+

1 ) should have the same topological spin,

TABLE II. The matrix elements nα,t for α ∈ D and t ∈ U in the
gauged double-layer system.

�����α

t
1 1− x+

1 x−
1

(a, a)μ(a) δa,ρ̄m (a) 0 0 0
(a, a)−μ(a) 0 δa,ρ̄m (a) 0 0
[a, b] δb,ρ̄m (a) δb,ρ̄m (a) 0 0
X +

a 0 0 wa 0
X −

a 0 0 0 wa

and this is possible only if the defects carry the same sign due
to Eq. (19); and (ii) the sign on x±

1 is also conventional, so
we just choose the sign on x±

1 to match that of the X ′s that
are contained in the lifting. The fact that all X +

a
′s with wa �= 0

share the same topological spin implies that all a′s also share
the same topological spin. That is,

θa = θa′ , for any wa,wa′ �= 0. (39)

Since x+
1 is its own antiparticle, we always have wa = wā. It

is not hard to see that

l (x−
1 ) =

∑
a∈C

waX −
a . (40)

One compact way of expressing the coefficients wa is to define
the following superposition of anyons:

w =
∑
a∈C

waa. (41)

We will abuse the notation a ∈ w to indicate that wa �= 0. We
summarize all the matrix elements nα,t for α ∈ D and t ∈ U
in Table II.

For a given ρm, we see that the liftings l (1±) and l (x±
1 )

are specified by {μ(a)} and {wa}, where μ(a) = ±1 and
wa is a nonnegative integer. Intuitively, we expect that once
the condensate l (1) in Eq. (36) is specified, i.e., ρm and
μ(a) are given, the anyon condensation pattern should be
fully determined. That is, wa is not independent. Indeed, we
show that μ(a) and wa are mutually determined through the
following relations:

wa =
∑

b=ρ̄m (b)

Sa,bμ(b) (42)

and

μ(a) =
∑

b

Sa,bwb, (43)

where Sa,b is the S matrix of C, and the a in Eq. (43) satisfies
a = ρ̄m(a). (We will show shortly that the summation in
Eq. (42) can be extended to all b′s, and Eq. (43) can be
extended to arbitrary a, if we define μ(a) = 0 for a �= ρ̄m(a).)
Since the S matrix is unitary, different {wa}′s lead to different
symmetry fractionalization {μ(a)}. To prove the relations, we
make us of the consistency condition Eq. (30), which in the
current notation is∑

β∈D
S(α, β )nβ,t =

∑
s∈U

nα,sSs,t , (44)
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where α and t are anyons in D and U respectively, and
S(α, β ) and Ss,t are S matrices of D and U respectively. Taking
α = X +

a and t = 1 in Eq. (44), and further using nα,t listed
in Table II and the S matrices in Eqs. (22) and (23), we
immediately obtain Eq. (42). At the same time, taking α =
(a, a)+ that satisfies a = ρ̄m(a) and t = x+

1 in Eq. (44), and
further using Table II and S-matrix entries, we immediately
obtain Eq. (43).

In fact, Eq. (43) can be extended to arbitrary a, not
necessarily for those satisfying a = ρ̄m(a). This is possible
if we define μ(a) = 0 for a �= ρ̄m(a). To see that, we take
α = (a, a)+ with a �= ρ̄m(a) and t = x+

1 in Eq. (44). Since
(a, a)+ does not restrict to any anyon in U , the right-hand side
of Eq. (44) equals 0. This implies that Eq. (43) holds if we
define μ(a) = 0 for a �= ρ̄m(a). With this extension on μ(a),
the summation in Eq. (42) can also be extended to all anyons
b. Then, we see that Eqs. (42) and (43) are actually equivalent.
Indeed, from Eq. (43), we have

wa =
∑

b

S−1
a,bμ(b) =

∑
b

S∗
b,aμ(b) =

∑
b

Sa,bμ(b), (45)

where the first equality follows from that S is invertible, the
second equality follows from that S is unitary, and the last
equality follows from that S is symmetric and that both wa

and μ(a) are real. Therefore, in the rest of our paper, when
we refer to Eqs. (42) and (43), we will implicitly assume
that μ(a) = 0 for a �= ρ̄m(a) and the summations are over all
anyons in C.

Now that {μ(a)} and {wa} are equivalent, any constraint on
{wa} can be translated into that on the symmetry fractional-
ization {μ(a)}. The consistency condition Eq. (26) of anyon
condensation can be used to derive an important constraint on
wa. The constraint is

w × w =
∑
a∈C

a × ρ̄m(a). (46)

The derivation is a little involved, so we separately give it in
Appendix D. It can be more explicitly written as∑

ab

wawbNab
c =

∑
a

Naρ̄m (a)
c (47)

which holds for any c ∈ C. Applying Eq. (11) to this result,
we can show that the total quantum dimension of w is DC ,∑

a∈w
wada = DC . (48)

3. Summary of main results

We have translated the data ρm and {μ(a)} of mirror SETs
into a description of anyon condensation through the folding
approach. From the principles of anyon condensation, we
have defined a new set of data {wa}, which is equivalent to
the symmetry fractionalization {μ(a)} for a given ρm. The
equivalence follows from Eqs. (42) and (43). Using consis-
tency conditions of anyon condensation, we find that {wa}
satisfies the following constraints: (1) wa is a non-negetative
integer, (2) θa is the same for all wa �= 0, i.e., satisfying
Eq. (39), and (3) w satisfies Eq. (46), or explicitly {wa} satisfy
Eq. (47). At the same time, we summarize the constraints on
the original symmetry fractionalization data {μ(a)} here: (1)

μ(a) = ±1 for a = ρ̄m(a), (2) μ(a) satisfies Eq. (15), and (3)
μ(a) satisfies Eq. (16).

We show in Appendix F that some parts of the constraints
on {μ(a)} can be derived from those on {wa}. In the case of
Abelian topological orders, we can show that the two sets of
constraints turn out to be equivalent.

E. Finding mirror SETs

In this section, we describe how to find possible mirror
symmetry fractionalization {μ(a)} for a given ρm by solving
the constraints summarized in Sec. III D 3, which are either
directly on {μ(a)} or indirectly defined through {wa}. Ideally
when the constraints are complete, every solution should
correspond to a physical mirror SET. While we cannot prove
the completeness, all examples that we work out in Sec. V
seem to support it.

We describe two algorithms to solve the constraints. The
two algorithms treat the data {μ(a)} and {wa} in different
priorities: the first algorithm uses {μ(a)} as the primary data
and then it is supplemented with constraints of {wa}; on the
other hand, the second algorithm uses {wa} as the primary data
and then it is supplemented with constraints of {μ(a)}. Both
algorithms assume that an anyon permutation ρm is given.

In the first algorithm, we start with {μ(a) = ±1} for a =
ρ̄m(a). Without affecting any physics, we set μ(a) = 0 if
a �= ρ̄m(a). There are finitely many possible choices of the
values of {μ(a)}. Next, one picks out the combinations {μ(a)}
that satisfy Eq. (15). In addition, one can use Eq. (16) to fix
the value of μ(a) for certain anyons. After that, we insert each
picked combination {μ(a)} into Eq. (42), and obtain a set of
{wa}. Then, we test (i) whether wa are nonnegative integers,
(ii) whether θa are equal for all anyons with wa �= 0, and (iii)
whether Eq. (46) holds. Only those combinations that satisfy
all three constraints are kept and potentially describe physical
mirror SETs. This algorithm has a computational cost that
scales exponentially with numbers of independent μ(a).

The second algorithm starts with the non-negative integers
{wa}. The first step is to solve Eq. (46) or Eq. (47). This is a set
of |C| quadratic equations with |C| unknowns. We do not know
a way to systematically search for solutions to Eq. (46) or
(47), but answers can usually be guessed when the topological
order C is not too big. Moreover, Eq. (48) can often be used
to narrow down possible solutions. Among the solutions, we
only keep those in which all a′s with wa �= 0 have the same
topological spin. Next, we insert these {wa} into Eq. (43) and
obtain a set {μ(a)}. Surprisingly, we find that {μ(a)} obtained
this way automatically satisfy that (i) μ(a) = ±1 if a = ρ̄m(a)
and μ(a) = 0 otherwise, (ii) the Abelian case of Eq. (16),
and (iii) the Abelian case of Eq. (15) (see Appendix F for
proofs). Accordingly, we only need to test the non-Abelian
case of Eqs. (15) and (16). Since it tests less constraints, most
examples in Sec. V are studied under this algorithm.

Several comments are in order. First, the two algorithms
are essentially the same. One just uses the same constraints in
different orders. In fact, one does not have to stick with the
orders discussed above. Applying the constraints in a more
flexible order can often help to find the final solutions quicker.
Second, not all the constraints are independent. In particular,
as we see from Appendix F, the constraints that we have on
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wa determine many of those constraints on μ(a) through the
relation Eq. (43) (see Appendix F). Third, when the anyon a is
Abelian, computing μ(a) through Eq. (43) can be simplified.
We prove in Appendix E that

μ(a) = M∗
a,b, ∀b ∈ w, (49)

where a is an Abelian anyon and Ma,b is the mutual statistical
phase between a and b. Finally, it is possible that the con-
straints that we have are incomplete. That is, the data {μ(a)}
or {wa} found through our algorithms might not describe
physical mirror SETs. For Abelian topological orders, the
constraints on {μ(a)} are known to be complete. However,
we conjecture that the constraints on {wa} and {μ(a)} are
complete for general non-Abelian topological orders. (In fact,
a stronger conjecture is that the constraints on {wa} alone are
complete.) Evidence of the conjecture follows from the exam-
ples discussed in Sec. V. In particular, the H3-type obstruction
[25] can be ruled out by the constraints, as illustrated in the
example in Sec. V D.

F. Determining mirror anomaly

After finding mirror SETs for a given topological order, we
need to determine which ones are anomalous. It can be easily
done in our formulation. As discussed previously, the topo-
logical spin of the deconfined defect x+

1 in U determines the
anomaly: if θx+

1
= 1, U is the toric code topological order and

it corresponds to an anomaly-free mirror SET; if θx+
1

= i, U is
the double semion topological order and it corresponds to an
anomalous mirror SET. The principles of anyon condensation
asserts that θx+

1
= θX +

a
= √

θa, for any a ∈ w. Accordingly,
θa = ±1. We define

η = θa, ∀a ∈ w, (50)

which we will call anomaly indicator. Then, η = +1 indicates
that the mirror SET is anomaly-free, and η = −1 indicates
that the mirror SET is anomalous.

In all the above discussion, we have assumed that the bulk
SET order of the double-layer system is associated with the
topological spins given in Eq. (19). Instead, if we choose the
other bulk SET order where all the topological spins of the
defects X ±

a differ from Eq. (19) by a factor i, the anomaly
prediction will be opposite and accordingly incorrect.

IV. TWO GENERAL RESULTS

In this section, we prove two general results on mir-
ror SETs in our formulation, one on the mirror anomaly
and the other on solutions to the constraints summarized
in Sec. (III D 3). These results were previously discussed in
Refs. [20,24,25] in different setups or languages.

A. Anomaly indicator

The quantity η in Eq. (50), which we name anomaly indi-
cator, is defined through anyons in w. There exists an explicit
expression of η in terms of the symmetry fractionalization
{μ(a)}:

η = 1

DC

∑
a∈C

μ(a)daθa, (51)

where we have set μ(a) = 0 if a �= ρ̄m(a). The expression
was first proposed by Wang and Levin [24] in the context of
time-reversal SETs and later proved in Ref. [25] by putting
the SETs on nonorientable manifolds. In fermionic systems,
a similar anomaly indicator was discussed in Refs. [24,27].
More discussions about the connection between time-reversal
SETs and mirror SETs will be given in Sec. VI A.

To show Eq. (51), we first notice that the topological
order C is assumed to have a vanishing chiral central charge.
Accordingly, we have

1 = 1

DC

∑
a

d2
a θa. (52)

Multiplying Eqs. (51) with the complex conjugate of (52), we
rewrite η as follows:

η = 1

D2
C

∑
b,c

μ(b)dbθbd2
c θ∗

c

= 1

D2
C

∑
b,c

μ(b)θbdcθ
∗
c

∑
a

Nbc
a da

= 1

DC

∑
a,b

θ∗
a daμ(b)

(
1

DC

∑
c

θbθa

θc
dcNab̄

c

)

= 1

DC

∑
a

wadaθa, (53)

where in the second line we have used dbdc = ∑
a Nbc

a da, the
term in the parenthesis in the third line equals S∗

a,b, and in
the forth line we have used Eq. (42) and the fact that θa is
real for wa �= 0. With this rewriting, the deviration of (51)
from Eq. (50) is straightforward with the help of Eq. (48).
(This connection was hinted in Ref. [24]. However, no clear
physical interpretation of wa was given there.)

B. Symmetry fractionalization

It was shown in Ref. [25] that for an unobstructed symme-
try permutation ρm, symmetry fractionalization is classified
by a torsor group H2

ρ̄ [ZP
2 ,A], where A is the Abelian group

formed by the Abelian anyons in C under fusion. More pre-
cisely, in the language of Ref. [25], a symmetry fractional-
ization pattern is described by a set of phase factors, π (a),
defined for each a ∈ C. When a = ρ̄m(a), π (a) is believed
to be the same as μ(a) defined in this manuscript. Given a
symmetry fractionalization pattern π (1)(a), a representative
cocycle u ∈ H2

ρ̄ [ZP
2 ,A] generates another pattern as follows:

π (2)(a) = π (1)(a)M∗
a,u(P,P). (54)

In other words, the cocycle u encodes the difference between
two possible symmetry-fractionalization patterns.

Here, we show that cocycles in the torsor group u ∈
H2

ρ̄ [ZP
2 ,A] can also be used to generate new symmetry frac-

tionalization patterns in our formulation. Below we use the
data w to show this. To do that, we show two claims: First,
given a solution w(1) satisfying the constraints Eqs. (46) and
(39), the following quantity w(2) also satisfies these con-
straints:

w(2) = w(1) × u(P, P), (55)
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where u is a 2-cocycle in H2
ρ̄ (ZP

2 ,A). Second, the two solu-
tions w(1) and w(2) are identical, if u is a 2-coboundary.

Let us review a bit on the definitions of cocycles and
coboundaries. We notice that, a 2-cocycle u in H2

ρ̄ (ZP
2 ,A) is

a function ZP
2 × ZP

2 → A that satisfies the so-called cocycle
condition

ρ̄g(w(h, k)) × w(g, hk) = w(gh, k) × w(g, h), (56)

where g, h, k = 1, P are group elements of ZP
2 , and ρ̄g is a

permutation associated with g. Two cocycles are equivalent if
they are related by a coboundary

w(g, h) ∼ w(g, h) × v(g) × ρ̄g(v(h)) × v(gh), (57)

where the function v(g) × ρ̄g(v(h)) × v(gh) is called a 2-
coboundary. It is always possible to choose a representative
cocycle such that only u(P, P) is nontrivial, while u(1, 1) =
u(1, P) = u(P, 1) = 1. For simplicity, we denote u = u(P, P),
which is an Abelian anyon. In this convention, the only
nontrivial cocycle condition is given by

u = ρ̄m(u). (58)

At the same time, the coboundary equivalence becomes

u ∼ u × v × ρ̄m(v), ∀v ∈ A. (59)

First, we show that w(2) = w(1) × u also satisfies Eq. (46)
if w(1) does. We compute the square of w(2) as follows:

w(2)×w(2) = u×u×
∑

a

a×ρ̄m(a) =
∑

a

u×a×ρ̄m(u×a),

where we have used the cocycle condition in Eq. (58) in the
last step. Since u is Abelian, u × a is a unique anyon in C.
Moreover, when a goes through all anyons in C, so does u × a.
Thus the above equation can be rewritten as Eq. (46).

Next, we show that w(2) also satisfies Eq. (39), i.e., all
anyons in w(2) have the same topological spin, if w(1) does.
To see that, take any anyon a ∈ w(1). The topological spin of
a × u is given by

θa×u = θaθuM∗
a,u. (60)

Equation (50) asserts that θa = η(1) = ±1. Also, we notice
that the cocycle equation in Eq. (58) ensures that u has a
well-defined mirror symmetry fractionalization μ(1)(u) = ±1.
Hence, the relation in Eq. (49) reveals that the braiding phase
M∗

a,u = μ(1)(u), independent of a. Therefore Eq. (60) becomes

θa×u = η(1)θuμ
(1)(u), (61)

which is independent of a. This implies that all anyons
in w(2) = w(1) × u have the same topological spin. In fact,
Eq. (61) also gives the anomaly indicator of the mirror SET
state represented by w(2),

η(2) = η(1)θuμ
(1)(u). (62)

This result provides a quick way to compare the anomaly
indicators of two mirror-symmetry-fractionalization patterns.

Lastly, we show that w(1) = w(1) × u, if u = v × ρ̄m(v) is
a coboundary. More explicitly, we need to show∑

a

waa =
∑

a

waa × u =
∑

a

wa×ūa. (63)

That is, wa = wa×μ̄ for each a, if u is a coboundary. This is in-
deed true, as we show in Appendix F that any w satisfying the
constraint Eq. (46) holds the property that wa = wa×v×ρ̄m (v)

for any Abelian anyon v. Hence, we prove the claim.
We make several comments here. First, a question that

one can ask is whether all the solutions constructed from
inequivalent cocycles of H2

ρ̄ (ZP
2 ,A) are distinct. That is,

whether the equality w(1) = w(1) × u necessarily results that
u is a coboundary (what we have shown above is that u being
a coboundary is a sufficient condition). From w(1) = w(1) × u,
we have wa = wa×ū for every a. Combining this with Eq. (42)
and using the fact that u is Abelian, we are led to

Mu,b = 1 for every b = ρ̄m(b). (64)

Therefore it is equivalent to ask whether every u satisfying
Eq. (64) has to be a coboundary. It is generally believed to
be true, but we do not have a proof. For Abelian topological
orders, there is indeed a proof, which is given in Ref. [24].
In fact, for Abelian topological orders, solutions constructed
from H2

ρ̄ (ZP
2 ,A) are complete. Our second comment is that

in principle, there may exist a solution w′ which has no
connection to a given solution w through fusion of Abelian
anyons. However, we are not sure if this situation can occur
or not. Finally, in certain cases, there is even no solution
to the constraints for a given ρm. Such an example is given
in Sec. V D.

V. EXAMPLES

In this section, we find possible mirror SETs for several
specific topological orders, using the algorithms outlined in
Sec. III E.

A. Toric code

We start with revisiting the example of toric code stud-
ied in Sec. II, using the general framework developed in
Sec. III. First, we consider the trivial symmetry permutation
on anyons. With this permutation, the constraint in Eq. (46)
becomes

w × w = 1 × 1 + e × e + m × m + ψ × ψ = 41. (65)

It is not hard to see that there exist and only exist four solu-
tions to this equation: w1 = 21, w2 = 2e, w3 = 2m and w4 =
2ψ . They correspond to the e1m1, e1mM, eMm1, and eMmM
mirror SETs, respectively. Judging from the topological spins
of anyons in w, we see that the first three mirror SETs are
anomaly-free and the last one is anomalous.

Next, consider the symmetry permutation that exchanges e
and m: ρm(e) = m. With this action, the constraint in Eq. (46)
becomes

w × w = 1 × 1 + e × m + m × e + ψ × ψ = 21 + 2ψ.

(66)
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TABLE III. Quantum dimensions and topological spins (top) and fusion rules (bottom) of the quantum double D(S3). The fusion rules
between the trivial anyon A ≡ 1 and other anyons are not listed.

A B C D E F G H

da 1 1 2 3 3 2 2 2
θa 1 1 1 1 −1 1 ei2π/3 e−i2π/3

× B C D E F G H

B A C E D F G H
C C A + B + C D + E D + E G + H F + H F + G
D E D + E A + C + F + G + H B + C + F + G + H D + E D + E D + E
E D D + E B + C + F + G + H A + C + F + G + H D + E D + E D + E
F F G + H D + E D + E A + B + F C + H C + G
G G F + H D + E D + E C + H A + B + G C + F
H H F + G D + E D + E C + G C + F A + B + H

In this case, there are two possible solutions w1 = e + m and
w2 = 1 + ψ . However, not all anyons in w2 have the same
topological spin, thereby violating the second constraint on
w in Sec. III D 3. Accordingly, the only solution is w1. It is
anomaly-free, since both e and m are bosons. Also, in this
mirror SET, we see that the ψ anyon carries μ(ψ ) = −1,
according to Eq. (43).

We comment that in fact, the constraints on {wa} can
formally be solved for general Abelian topological orders.
A general solution can be found in Ref. [24], which was
presented in the context of time-reversal SETs.

B. S3 gauge theory

Now, we study our first example of non-Abelian topologi-
cal orders. It is the topological order of the deconfined gauge
theories associated with the smallest non-Abelian group S3.
The UMTC describing this topological order is the quantum
double of S3, which is often denoted as C = D(S3).

We first review how to compute the topological data of a
quantum double C = D(G) [92]. Besides this example, such
a review is also helpful for understanding a later example in
Sec. V D and Appendix B. Anyons in the quantum double
D(G) are labeled as ([g], φ), where [g] = {hgh−1|h ∈ G} de-
notes conjugacy classes of G represented by g, and φ is an
irreducible representation of the centralizer group Z ([g]) =
Zg = {h|hg = gh, h ∈ G}. These anyons are usually named
dyons. The topological spin of ([g], φ) is given by

θ([g],φ) = tr φ(g)

tr φ(1)
, (67)

and the entries of the S matrix is given by

S([g],φ),([h],ν)

= 1

|Zg||Zh|
∑

r∈G,rhr−1∈Zg

tr φ(rh−1r−1) tr ν(r−1g−1r). (68)

For a given group G, the traces appeared in Eqs. (67) and
(68) can be found in the character tables of the centralizer
groups. From the S matrix, the fusion coefficients Nab

c can be
computed, using the Verlinde formula (A7).

We now specialize to G = S3. The symmetric group S3

contains six elements, and can be presented by two gener-

ators a and r, satisfying a3 = r2 = 1 and rar = a−1. The
six elements are divided into three conjugacy classes: [1] =
{1}, [a] = {a, a2}, and [r] = {r, ra, ra2}. The centralizer of
Ref. [1] is S3 itself, which has three irreducible representa-
tions, including a trivial representation, a nontrivial 1D rep-
resentation, and a 2D representation. We follow Refs. [25,72]
and denote these representations by A, B, and C, respectively.
The centralizer of [a] is a Z3 group, generated by a. It has
three 1D irreducible representations, which can be labeled by
integers n = 0, 1, 2. The representations are φ(a) = en 2π i

3 . The
centralizer of [r] is a Z2 group generated by r. It has two
1D irreducible representations, which can be labeled by the
sign ±. The representations are associated with φ(r) = ±1,
respectively. Hence, there are in total eight anyons. Following
Refs. [25,72], we label them by letters from A through H , as
the following:

([1], A) = A, ([1], B) = B, ([1],C) = C,

([r],+) = D, ([r],−) = E ,

([a], 0) = F, ([a], 1) = G, ([a], 2) = H.

(69)

In particular, A = 1 is the trivial anyon. Using the character
tables, one can compute the S matrix, the topological spins
and the fusion rules. We summarize the quantum dimensions,
topological spins, and fusion rules in Table III. The S matrix
can be found in Refs. [25,72].

With these topological data, we now consider mirror-
symmetry enriched quantum double D(S3). First, we consider
a simple mirror-symmetry permutation, which can be canoni-
cally defined for D(G) of any G:

ρ1
m: ([a], φ) �→ ([a−1], φ). (70)

The permutation ρ1
m, mapping a conjugacy class to its inverse,

is an antilinear autoequavilence of D(G). We note that ρ1

defined here can be realized trivially in the Levin-Wen models
[62,93]. Using the fact that the dual particle of a dyon in D(G)
is

([a], φ) = ([a−1], φ∗), (71)

we conclude that the composite symmetry action ρ1
m has the

following form:

ρ1
m: ([a], φ) �→ ([a], φ∗). (72)
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As discussed in Sec. IV A, the action ρ1 can also be inter-
preted as a time-reversal symmetry action, and when inter-
preted that way, it is also realized trivially by the Levin-Wen
model.

With realizations in the Levin-Wen models, ρ1 and ρ1

represents canonical definitions of mirror and time-reversal
symmetry actions on D(G), respectively. We denote ρ1 and
ρ1 with the superscript 1, to distinguish them from other
symmetry permutations which we will discuss in the example
in Sec. V D.

Now we use the second algorithm discussed in Sec. III E to
find possible mirror symmetry fractionalization. Applying the
symmetry action in Eq. (72) to D(S3), we see that ρ1

m permutes
G and H , while other anyons are invariant. With the fusion
rules in Table III, Eq. (46) reduces to

w × w = 6A + 2B + 5C + 5F + 2G + 2H. (73)

It might be hard to spot a solution of this equation at the
first glance, but we can easily construct a solution from
the fact that the trivial symmetry fractionalization of ρ1

is realized by the Levin-Wen model. Because of this, the
symmetry fractionalization μ(A) = μ(B) = μ(C) = μ(D) =
μ(E ) = μ(F ) = +1 should be a solution. Plugging this to
Eq. (42), we get w1 = 2A + C + F . One can easily check
that this indeed is a solution of Eq. (73). Using the result of
Sec. IV B, another solution can be obtained by fusing B to w1:
w2 = w1 × B = 2B + C + F . Using Eq. (43), we see that this
solution gives the symmetry fractionalization μ(A) = μ(B) =
μ(C) = μ(F ) = +1 and μ(D) = μ(E ) = −1. Indeed, these
two solutions exhaust all possible symmetry fractionalization,
because the fusion rules C × C = A + B + C and D × D =
A + C + F + G + H fixes μ(A) = μ(B) = μ(C) = μ(F ) =
+1, while B × D = E dictates that μ(D) = μ(E ). Both of the
two symmetry-fractionalization patterns are not anomalous,
because A, B, C, and F are all bosons.

Next, we consider a more complicated mirror permutation
ρ ′

m, obtained by composing ρ1
m and a linear autoequivalence

of D(G) that exchanges C and F , while leaves other anyons
invariant. Accordingly, the dual mirror permutation ρ̄ ′

m ex-
changes C with F , and exchanges G and H , and keeps anyons
A, B, D, and E invariant. With this mirror action, Eq. (46)
becomes

w × w = 4(A + C + F + G + H ). (74)

From the fusion rules in Table III, we immediately find
two solutions to Eq. (74): w1 = 2D and w2 = 2E . Through
Eq. (43), the first solution w1 = 2D generates the symmetry
fractionalization μ(B) = μ(E ) = −1 and μ(D) = +1. This
is not anomalous, because D is a boson. On the other hand,
the second solution w2 = 2E generates μ(B) = μ(D) = −1

and μ(E ) = +1, and this state is anomalous, because E is a
fermion. We have checked that there is no other valid solutions
of symmetry fractionalization associated with ρ ′

m.

C. Gauged T-Pfaffian

In this section, we consider the gauged T-Pfaffian topo-
logical order, obtained by gauging the fermion parity of the
T-Pfaffian state, which is a fermionic topological order. The T-
Pfaffian topological order was first proposed in Refs. [32,33]
as a realization of gapped and symmetric surface state of 3D
topological insulators. For our formulation to be applicable,
we gauge the fermion parity symmetry, so that the resulting
gauged T-Pfaffian topological order is described by a UMTC.
Moreover, it is originally an SET state with time-reversal
symmetry. Here, we adapt it into a mirror SET state, as we
have seen that the time-reversal and mirror symmetries behave
quite similarly.

The topological data of the gauged T-Pfaffian topological
order can be found in Ref. [32]. It contains 18 anyons in total.
The quantum dimension and topological spin of each anyon
is listed in Table IV (we follow the notation of Ref. [25]). We
assume that the mirror symmetry permutes the anyons in a
way such that ρ̄m is the same as the time-reversal permutation
discussed in Refs. [25,32]. The permutation action ρ̄m is also
listed in Table IV. To compute the fusion product a × ρ̄m(a)
for Eq. (46), we list the relevant fusion rules as follows:

Ik × Il = Ik+l , Ik × ψl = ψk+l , ψk × ψl = Ik+l ,

σk × σl = Ik+l + ψk+l , sk × sl = Ik+l + ψk+l+4,

sσ0 × sσ2 = I2 + I6 + ψ2 + ψ6, (75)

where the sums over the subscripts are defined modulo 8. With
these information, Eq. (46) becomes

w × w =
∑

a

a × ρ̄m(a) = 8I0 + 8ψ4 + 4I2

+ 4ψ6 + 4I6 + 4ψ2. (76)

From Eq. (48), we know that
∑

a wada = 4
√

2. With this
irrational number, we understand that w should only contain
non-Abelian anyon with quantum dimension

√
2. In fact, it is

easy to check that there are only two solutions:

w1 = 2s1 + 2s7, w2 = 2s3 + 2s5. (77)

We see that w1 describes an anomaly-free mirror SET, since
s1 and s7 both have topological spins θs1 = θs7 = +1. On the
other hand, w2 corresponds to an anomalous SET since s3 and
s5 both have topological spins θs3 = θs5 = −1. Using Eq. (43),
we can compute the mirror symmetry fractionalization μ(a).
It turns out that w1 corresponds to the so-called gauged (T-
Pfaffian)+ state, which is known to be anomaly-free, and w2

TABLE IV. List of anyons in the gauged T-Pfaffian topological order, and their quantum dimensions and topological spins. The mirror
permutation ρ̄m on anyons are also listed.

I0 I2 I4 I6 ψ0 ψ2 ψ4 ψ6 σ1 σ3 σ5 σ7 s1 s3 s5 s7 sσ0 sσ2

da 1 1 1 1 1 1 1 1
√

2
√

2
√

2
√

2
√

2
√

2
√

2
√

2 2 2
θa 1 −i 1 −i −1 i −1 i 1 −1 −1 1 1 −1 −1 1 ei π

4 e−i π
4

ρ̄m(a) I0 ψ2 I4 ψ6 ψ0 I2 ψ4 I6 σ1 σ3 σ5 σ7 s7 s5 s3 s1 sσ2 sσ0
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corresponds to the so-called gauged (T-Pfaffian)− state, which
is known to be anomalous [94].

D. D16-gauge theory: an example with an H3 obstruction

Finally, we present an example of a symmetry permutation
ρm with an H3 obstruction [20,95,96]. In our language, it
means that for a seemingly valid ρm, when we apply the
algorithms in Sec. III E, we find no valid mirror symmetry
fractionalization at all. Accordingly, this ρm is actually invalid,
i.e., obstructed. This makes us conjecture that our algorithms
can correctly detect the H3 obstruction in general cases.

This example is constructed based on a gauge theory with
gauge group D16. In other words, the intrinsic topological
order is described by the quantum double C = D(D16). As
described in Sec. V B, anyons in D(D16) are dyons in the form
([g], φ). Below we describe the idea behind this example.

The group D16 contains 16 group elements, generated by
a and r satisfying a8 = 1, r2 = 1 and rar = a−1. The 16
group elements belong to seven conjugacy classes: [1], [r],
[a], [a2], [a4], [ra], and [a3]. Pairing them with the irreducible
representations of the corresponding centralizer group, we
get 46 anyons in total. The modular data of D16, including
the S and T matrices, the topological spins, and the fusion
coefficients, can be computed from Eqs. (68) and (67), using
the character tables of the centralizer groups.

Next, we consider mirror actions on the topological order
D(D16). We consider a mirror permutation ρ

f
m, induced by

a group automorphism f : G → G. For a topological order
C = D(G) and given an automorphism f , we can define a
linear autoequivalence ξ f on D(G) through the following
permutation on the dyons,

ξ f : ([g], φ) �→ ([ f (g)], φ ◦ f −1), (78)

where φ ◦ f −1 denotes a representation of the centralizer
Z f (g): φ ◦ f −1(b) = φ( f −1(b)). We notice that, if f ∈ Inn G
is an inner automorphism, ξ f actually does not permute
the anyons, because an inner automorphism f maps g to
another group element within the same conjugacy class of
g. Furthermore, if two automorphisms f and f ′ differ only
by an inner automorphism, ξ f and ξ f ′

permute anyons in
the same way. Hence, ξ f is determined by an element f
of the outer automorphism group, which is the quotient Out
G = Aut G/ Inn G.

Furthermore, composing the linear autoequivalence ξ f and
the antilinear autoequivalence ρ1

m in Eq. (70) gives the de-
manded antilinear autoequivalence ρ

f
m ≡ ρ1

m ◦ ξ f , given by

ρ
f
m: ([g], φ) �→ ([ f (g)], (φ ◦ f −1)∗). (79)

In this example, we choose the following automorphism of
D16:

f (a) = a5, f (r) = ra, (80)

which is taken from Ref. [95]. This is an order-2 element
of Out G, since f acting twice on r gives ra6, which
is in the same conjugacy class of r as ra6 = a−3ra3.
Hence, ξ f and ρ

f
m induced by f are order-2 linear and

antilinear autoequivalences, respectively. It is known that
the autoequivalence ξ f induced by this outer automorphism
f carries a nonvanishing H3 obstruction associated with an

unitary Z2 symmetry. On the other hand, it is clear that the
symmetry permutation ρ1

m is obstruction-free, because it can
be implemented in the Levin-Wen models. Therefore the
mirror permutation ρ

f
m, defined as the composition of ρ1

m and
ξ f , is expected to exhibit an H3 obstruction.

Indeed, using ρ
f
m as the input, the algorithm described

in Sec. III E generates no consistent symmetry fractionaliza-
tion. Due to the complexity of D(D16), it is easier to use
the first algorithm in Sec. III E and Eq. (42) to search for
solutions to the constraints. Using the explicit form of ρ

f
m in

Eq. (79), we find that there are only eight anyons satisfying
a = ρ̄

f
m(a), which have a well-defined μ(a). Equation (15)

further eliminates independent choices of μ(a) to just three.
Hence, there are in total 23 = 8 combinations to try. Feeding
them to Eq. (42), only two combinations generate nonnegative
integral results of {wa}. However, none of the two candidate
sets of {wa} satisfies the condition that all a′s with nonzero
wa have topological spins. Therefore we conclude that our
algorithm finds no solution for the mirror permutation ρ

f
m,

consistent with the expectation that it has an H3 obstruction.

VI. DISCUSSION AND CONCLUSION

A. Time-reversal SETs

We have mentioned in several places that time-reversal
SETs are very similar to mirror SETs. Here, we summarize
their connection. The usual argument of the similarity is based
on the assumption that the lower-energy topological quantum
field theory description of SETs is compatible with Lorentz
invariance. In the presence of Lorentz symmetry, the time-
reversal symmetry (reflection in the time direction) and mirror
symmetry (reflection in one of the spatial directions) are in-
deed of no difference. While no violation has been discovered,
there is either no rigorous argument for the assumption.

Similarly to mirror SETs, time-reversal SETs are also
described by a time-reversal permutation ρt and a set of time-
reversal symmetry fractionalization {T 2

a }. The permutation ρt

is an antiautoequivalence, satisfying ρ2
t = 1. The symmetry

fractionalization T 2
a is defined only for those anyons that are

invariant under permutation, i.e., ρt (a) = a, and take values
+1 or −1. More precisely, if a carries a Kramers singlet,
T 2

a = 1; if a carries a Kramers doublet, T 2
a = −1 (see

Ref. [74] for a precise definition). Then, descriptions of mirror
SETs and time-reversal SETs admit the same mathemati-
cal structure, if we make the identifications ρt ↔ ρ̄m and
T 2

a → μ(a). With these identifications, the formula for mir-
ror anomaly indicator (51) matches exactly the time-reversal
anomaly indicator proposed in Ref. [24]. In addition, all the
constraints on mirror SETs discovered in this work can be
translated to time-reversal SETs.

B. Interpretation of {wa}
We define {wa} as the coefficients in the restriction map

r(X +
1 ), which describes the anyon condensation patterns [see

Eq. (38)]. It is required that wa is a nonnegative integer by
the principles of anyon condensation. An alternative definition
of wa was given in Ref. [25]: wa is defined as the ground
state degeneracy of a mirror SET when it is put on a Möbius
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strip, whose boundary carries a topological charge a. In this
definition, wa must also be an integer. It is important to note
that the Möbius strip cannot host all anyons on its boundary.
For those anyons that cannot live on a Möbius strip, wa is
defined to be 0.

At the physical level, we do not know why the two def-
initions should give rise to the same quantity. However, at
the mathematical level, from both definitions, one can show
that {wa} is related to the symmetry fractionalization {μ(a)}
through Eq. (42). Moreover, in both cases, the mirror anomaly
is detected by the topological spin θa with wa �= 0. Hence, we
believe the two definitions indeed describe the same physical
quantity. Compared to Ref. [25], we derive the important
constraint Eq. (46) on {wa} through the anyon condensation
picture. We do not know how to derive the same constraint in
the language of Ref. [25].

C. Summary and outlook

To sum up, we develop a folding approach to study the
classification and anomaly of 2D SET states with the mirror
symmetry. Folding does dramatic transformations on mirror
SET systems and eventually makes it possible to tackle the
problem through previously available tools. More specifically,
folding does the following reductions on the problem. (i)
It turns an SET with the nonlocal mirror symmetry into a
double-layer system with an onsite layer-exchange Z2 sym-
metry, thereby allowing us to study the system through the
method of gauging symmetry. (ii) It turns the properties of
2D mirror SETs into properties of the 1D gapped boundary
of the double-layer system, thereby allowing us to study the
boundary properties through the anyon condensation theory.
(iii) Combining folding with the dimension reduction idea of
Song et al. [57], it allows us to easily read out the mirror
anomaly/nonanomaly associated with each SET from the
anyon condensation pattern of the gapped boundary.

Using the folding approach and anyon condensation the-
ory, we define a new set of data {wa} to describe mirror
SETs. It complements the original mirror SET data, an anyon
permutation ρm and a set of quantities {μ(a)} that describes
mirror symmetry fractionalization. The data {wa} and {μ(a)}
are equivalent and related to each other through the S matrix
of the topological order. With the help of {wa}, we find very
strong constraints on physical mirror SETs through our ap-
proach (summarized in Sec. III D 3). We conjecture that these
constraints are complete, which is justified by our examples in
Sec. V. If they are indeed complete, then we have a classifica-
tion of 2D mirror SETs.6 These constraints allow us to estab-
lish practical algorithms (see Sec. III E) to find possible mirror
SET states—at least rule out unphysical ones if the constraints
are incomplete—as well as to detect the mirror anomaly.

We expect several generalizations and applications of
the folding approach to other system, including fermionic
SET states with the mirror symmetry, and SET states with
both mirror and other onsite unitary symmetries. Folding
these systems will result a double-layer system with the

6Here, we mean all mirror SETs that are free from the H3-type
obstruction.

Z2 interlayer-exchange symmetry and additional symmetries
(such as fermion parity conservation) on each layer. We leave
these interesting generalizations to future works.
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APPENDIX A: REVIEW OF UMTC DESCRIBING
A TOPOLOGICAL ORDER

In this appendix, we briefly review some of the basic prop-
erties of a UMTC C, a mathematical object that describes a 2D
intrinsic topological order. For a more thorough introduction
on this topic, we refer the readers to Ref. [17] and the review
article Ref. [2].

One defining feature of a 2D intrinsic topological order
is the existence of fractionalized quasiparticle excitations,
known as anyons. We denote the total number of anyons in C
by |C|, which is assumed to be finite. We label the anyons us-
ing letters a, b, . . ., and we abuse the notation a ∈ C to denote
that a is an anyon in C. Among all anyons in C, the anyon 1

is special, which represents the trivial (unfractionalized) local
quasiparticles.

Two anyons can be fused together and form a linear su-
perposition of other anyons, as described by the fusion rules,

a × b =
∑
c∈C

Nab
c c, (A1)

where Nab
c are nonnegative integers, and are known as the

fusion coefficients. In a UMTC, the fusion is commutative:
a × b = b × a, or equivalently Nab

c = Nba
c . The trivial anyon

1 serves as the identity element of the fusion operation:
a × 1 = a for any anyon a. Furthermore, for any anyon a ∈ C,
there exist another anyon, known as the dual or the antiparticle
of a and denoted by ā, such that Naā

1 = 1, or a × ā = 1 + · · · .
We notice that the trivial particle 1 can only appear once in
any fusion outcomes. We always have ¯̄a = a.

In general, a system containing several anyon excitations
can have a nontrivial topologically protected degeneracy. The
information of the degeneracy is encoded in the quantum di-
mension da for each anyon a. Roughly speaking, da describes
the degeneracy contributed by the anyon a. More precisely,
da is the largest eigenvalue of the matrix N̂a: (N̂a)bc = Nab

c .
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We notice that da in general are not integers, and can even
be irrational numbers. The quantum dimension da satisfies the
following relation:

dadb =
∑
c∈C

Nab
c dc. (A2)

Using quantum dimensions da, one can define the total quan-
tum dimension DC ,

DC =
√∑

a∈C
d2

a . (A3)

If da = 1, a is called an Abelian anyon. An Abelian anyon
does not support any topologically protected degeneracy. It
can be shown that the fusion outcome of an Abelian anyon a
and another anyon b (can be non-Abelian in general) is always
unique, a × b = c. In particular, the trivial anyon 1 is Abelian.
When all anyons in C are Abelian, we say C describes an
Abelian topological order. In that case, we have DC = √|C|.
However, in general, DC � √|C|.

The fractionalized topological excitations are called
anyons, because they have anyonic statistics. The self-
statistics of an anyon a, defined as the Berry phase accu-
mulated by rotating a by 2π , is called the topological spin
of a, and denoted by θa. Notice that, in our notation, θa is
a unimodular complex number, not the phase angle of the
self-statistics. For example, a is a fermion if θa = −1 (not π ).
Using θa, one can compute the so-called chiral central charge
c modulo 8:

ei2π c
8 = 1

DC

∑
a∈C

d2
a θa. (A4)

The chiral central charge c is defined through the 1D con-
formal field theory that lives on the boundary of the 2D
topological order. More precisely, c is the deference of the
central charges associated with the holomorphic and antiholo-
morphic parts of the conformal field theory. It is obvious that
time-reversal or mirror-reflection symmetry maps c to −c.
Therefore a 2D mirror SET must have c = 0. We notice that
there is a class of anomalous 2D mirror or time-reversal SETs
which are equipped with c = 4 mod 8. They can be realized
on the surface of a 3D mirror/time-reversal SPT. The latter is
an SPT beyond the group cohomology classification and can
be realized by decorating the so-called E8 bosonic SPT state
on the mirror plane. This type of anomaly is easy to describe,
and is not the subject of our paper. Therefore, in the main text
of our paper, we always assume c = 0.

Next, we introduce the modular matrices S and T , which
describe how wave functions on a torus transform under
modular transformations. The sizes of the S and T matrices
are |C| by |C|, with each row and column labeled by one
anyon. The T matrix is diagonal and directly related to the
topological spins of the anyons, through

Ta,b = δa,bθa. (A5)

The entries of the S matrix can also be computed from the
topological spins and the fusion coefficients,

Sa,b = 1

DC

∑
c∈C

Nab
c dc

θaθb

θc
. (A6)

Reversely, given the S matrix, the fusion coefficients can be
computed using the Verlinde formula,

Nab
c =

∑
x∈C

Sa,xSb,xS∗
c,x

S1,x
. (A7)

The S matrix is unitary, i.e., S†S = 1. In addition, it satisfies
Sa,b = Sb,a = Sā,b̄ = S∗

ā,b, and S4 = 1.
The mutual braiding statistics between two anyons a and

b can be read out from the S matrix. To be precise, the
monodromy scalar component is defined as

M∗
ab = Sa,bS1,1

S1,aS1,b
= DC

dadb
Sa,b. (A8)

When a is an Abelian anyon, this equation can be simplified
as

M∗
ab = θaθb

θa×b
. (A9)

(Note that a × b is a unique anyon.) This is a unimodular
complex number, describing the Berry phase obtained by
braiding a and b. Note that the braiding phase is Abelian as
long as one of the anyons involved in the braiding process is
Abelian.

APPENDIX B: DOUBLE-LAYER TORIC-CODE THEORY

In this appendix, we discuss the structure of the topological
order D obtained by gauging the layer-exchange Z2 symmetry
of a double-layer toric code theory. This result is a special case
of the general discussion in Appendix C. Here, we separately
discuss it as a reference for Sec. II.

As shown in Ref. [20], the topological order D of the
gauged double-layer toric code theory is the same as the quan-
tum double D(D8), where D8 is the order-4 dihedral group.
A brief review of the general structure of a quantum double
D(G) can be found in Sec. V B. Anyons in D(G) are labeled by
([g], φ), where [g] is the conjugacy class of g and φ is a repre-
sentation of the centralizer Zg = {h|gh = hg}. The group D8 is
generated by two generators a and r satisfying a4 = 1, r2 = 1,
and rar = a−1. Its eight elements belong to five conjugacy
classes: [1] = {1}, [a] = {a, a3}, [a2] = {a2}, [r] = {r, ra2},
and [ra] = {ra, ra3}. The centralizer groups of [1] and [a2]
are both D8 itself, which has five irreducible representations,
denoted by A through E , respectively. A is the trivial
representation. B, C, and D are 1D representations that act on
the generators as the following: B(a) = +1 and B(r) = −1,
C(a) = −1 and C(r) = +1, and D(a) = D(r) = −1, respec-
tively. E is a 2D representation with the character tr E (1) = 2,
tr E (a2) = −2, and tr E (a) = tr E (r) = tr E (ra) = 0. The
centralizer group of [r] is a Z2 × Z2 group, generated by r
and a2. It has four 1D irreducible representations, which we
denote by a2

±r±, where the two ± signs denote the image of
a2 and r, respectively. Similarly, the centralizer group of [ra]
is also Z2 × Z2, generated by ra and ra3, whose irreducible
representations are denoted by ra±ra3

±. The centralizer group
of [a] is a Z4 group generated by a. It has four irreducible
representations, denoted by the image of a, which takes value
of +1, i, −1, and −i. Hence, there are in total 22 anyons.
We relabel them using the notation introduced in Sec. II C, as
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the following:

([1], A) = 1 = (1,1)+, ([a2], A) = (m, m)+,

([1], B) = (1,1)−, ([a2], B) = (m, m)−,

([1],C) = (e, e)+, ([a2],C) = (ψ,ψ )+,

([1], D) = (e, e)−, ([a2], D) = (ψ,ψ )−,

([1], E ) = [e,1], ([a2], E ) = [ψ, m],

([ra], ra+ra3
+) = [m,1], ([r], a2

+r+) = X +
1 , ([a],+1) = X +

m ,

([ra], ra+ra3
−) = [e, m], ([r], a2

+r−) = X −
1 , ([a],−1) = X −

m ,

([ra], ra−ra3
+) = [ψ,1], ([r], a2

−r+) = X +
e , ([a],+i) = X +

ψ ,

([ra], ra−ra3
−) = [ψ, e]; ([r], a2

−r−) = X −
e ; ([a],−i) = X −

ψ .

With this identification, the properties of D8 claimed in
Sec. II C can be derived, using Eqs. (67) and (68).

APPENDIX C: GAUGING THE LAYER EXCHANGING
Z2 SYMMETRY OF A GENERAL DOUBLE-LAYER

TOPOLOGICAL ORDER

The UMTC that describes a general (decoupled) doule-
layer system take the form of B = C ⊗ C, where C denotes the
UMTC that describes a single-layer system. By gauging the
Z2 layer exchange symmetry of the UMTC B, we can obtain
the UMTC D that describes the gauged double-layer system.
The main goal of this section is to obtain the fusion rules, the
S matrix and the T matrix of the UMTC D from those of the
single layer theory C.

Let’s clarify the notation first. For the convenience of this
section, we will use a slightly different notation from the main
text. For the single-layer theory C, we label its anyon types
as a, b, c . . . and, in particular, the trivial anyon as 1. We
denote the S matrix of the single-layer theory C as SC . The
topological spin and the quantum dimension of the anyon a
are denoted as θa and da respectively. The fusion multiplicity
for anyons a and b fusing into the anyon c is denoted as CNab

c .
The total quantum dimension and the chiral central charge of
the UMTC C are denoted as DC and cC . Given the data of the
single-layer theory C, it is easy to write down the topological
data of the double-layer theory B = C ⊗ C. The anyon types
of B are given by the pair (a, b), where a, b label the anyon
types in the single-layer theory C. The S matrix element of B
is given by SB = SC ⊗ SC . In terms of S matrix elements, we
have SB

(a,b),(c,d ) = SC
acSC

bd . The topological spin and the quan-
tum dimension of the anyon (a, b) are given by θ(a,b) = θaθb

and d(a,b) = dadb, respectively. The fusion multiplicity for
anyons (a, b) and (c, d ) fusing into the anyon (e, f ) is given
by BN (a,b)(c,d )

(e, f ) = CNac
e

CNbd
f . The total quantum dimension and

the chiral central charge of the UMTC B are simply given
by DB = D2

C and cB = 2cC . For gauged double-layer theory
D, we label its anyon types as α, β, . . . . The S matrix is
denoted as SD. The fusion multiplicity for anyons α and β

fusing into the anyon γ is denoted as DNαβ
γ . The chiral central

charge of D is identical to that of the double layer theory B,
namely, cD = cB = 2cC . In the following, we will derive the
topological data of the UMTC D using that of C and B. In fact,
in addition to the topological data of C and B, we also need to

choose an element of H3(Z2, U(1)) = Z2 when we gauge the
Z2 symmetry to obtain the UMTC D. In the following, we will
mostly concentrate on the case with cC = 0 and the choice of
the trivial element in H3(Z2, U(1)), which is directly relevant
to our discussion in the main text. Nevertheless, the approach
we will use can be directly generalized to the most general
situation.

1. Anyon contents and fusion rules of D
In this section, we will obtain the anyon contents of D and

further calculate their fusion rules. The approach to identify
the anyon types of D follows Ref. [97].

When we gauge the Z2 layer exchange symmetry in B,
the anyon (a, b) and (b, a) form a “doublet” when a �= b. In
the gauged double-layer system D, we denote this doublet
as [a, b] (with the implicit assumption that a �= b and the
identification that [a, b] = [b, a]). The anyon type (a, a) of B,
which is invariant under the Z2 layer exchange symmetry, will
be lifted to two types of anyon (a, a)+ and (a, a)− in D after
gauging. The ± signs indicate the value of Z2 charges (under
the layer exchange) in (a, a)±, where + means no charge
and − means a nontrivial Z2 charge. In particular, (1,1)+
represents the trivial anyon in D, while (1,1)− represents
the pure Z2 charge in D. The collection of anyons (a, a)±
and [a, b] forms the untwisted sector D0 of D, namely the
collection of the anyons in D that does not carry Z2 flux.
The collection of anyons carrying Z2 fluxes are denoted as the
twist sector D1. The anyons in the twist sector are labeled by
X ±

a , which represent a Z2 gauge flux decorated by an anyon a
in the single-layer theory C and a Z2 charge “±”. Unlike the
case of (a, a)±, the ± in X ±

a does not canonically correspond
to the absolute value of Z2 charges. Rather, it is a relative
notion in the sense that X +

a and X −
a differ by a Z2 charge.

Before we study their fusion rules, we quickly summarize
anyon contents of D:

(a, a)+, (a, a)−, [a, b], X +
a , and X −

a , (C1)

where the first three types belong the untwisted sector D0 and
the last two belong to the twist sector D1. The total number
of anyon types in D is |C|(|C|+7)

2 , where |C| is the number of
anyon types in the single layer UMTC C.

We first look at the fusion rules from the Z2 charge per-
spective. The “pure” Z2 charge is given by the anyon (1,1)−.
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Therefore we have the fusion rules:

(a, a)± × (1,1)− = (a, a)∓, (C2)

[a, b] × (1,1)− = [a, b], (C3)

X ±
a × (1,1)− = X ∓

a . (C4)

Similar to the Z2 charge, the Z2 flux also provide a
constraint on the fusion rules. The sector labels of the anyons
serve as a Z2 grading, which the fusion rules respect.

Now, we study the fusion rules of D from the anyon
condensation perspective. As we discussed, the theory D is
the result of gauging the layer exchange Z2 symmetry of B.
Conversely, the theory B can be obtained from D via con-
densing the anyon (1,1)−, namely the Z2 charge. Throughout
this section, we will only make use of the condensation of
the anyon (1,1)− for the purpose of obtaining the data of the
UMTC D. One should not confuse it with other types anyon
condensations studied in the main text. The condensation of
anyon (1,1)− leads to the restriction map r that satisfies

r((a, a)+) = (a, a), (C5)

r((a, a)−) = (a, a), (C6)

r([a, b]) = (a, b) + (b, a) (C7)

for the deconfined anyons in the condensate. One notice that
anyons in the untwisted sector D0 are all deconfined. On
contrary, all the anyons in the twist sector D1 = {X ±

a } are
confined due to the nontrivial braiding statistics between the
Z2 charge (1,1)− and the Z2 flux carried by the anyons in D1.
From the restriction map given above, we can immediately
obtained the quantum dimensions of the anyons (a, a)± and
[a, b]:

d(a,a)+ = d(a,a)− = d2
a , (C8)

d[a,b] = 2dadb. (C9)

The restriction map restricted to the deconfined anyons can
be encoded in by an |D| × |B| matrix nα,x (with α ∈ D and
x ∈ B) with all the nonvanishing elements given by

n(a,a)±,(a,a) = 1, (C10)

n[a,b],(a,b) = n[a,b],(b,a) = 1. (C11)

For the deconfined anyons, the restriction map has to be
consistent with the fusion rules of B and D:

r(α) × r(β ) = r(α × β ), (C12)

where α, β ∈ D. Here the fusion product α × β should be
understood as the fusion product in D, while r(α) × r(β )
should be understood as the fusion product in B. In terms of
the fusion multiplicity, we can write it as∑

x,y∈B
nαxnβy

BNxy
z =

∑
γ∈D

DNαβ
γ nγ z, (C13)

where x, y, z ∈ B and α, β, γ ∈ D.
The consistency relation r(α) × r(β ) = r(α × β ) can be

utilized to derive the fusion rules of the UMTC D from that
of the UMTC B, which is already known. We first focus on
fusion rules in the untwisted sector D0. For two anyons α

and β in the UMTC D0, we can map them to r(α), r(β ) ∈ B,
obtain r(α × β ) = r(α) × r(β ) using the fusion rules of B
and reverse engineer α × β from r(α × β ). In the D0 sector,
we have

r((a, a)±) × r((b, b)±) = (a, a) × (b, b)

=
∑

e, f ∈C

CNab
e

CNab
f (e, f ), (C14)

r((a, a)±) × r((b, b)∓) = (a, a) × (b, b)

=
∑

e, f ∈C

CNab
e

CNab
f (e, f ), (C15)

r([a, b]) × r((c, c)±) = ((a, b) + (b, a)) × (c, c)

=
∑

e, f ∈C

( CNac
e

CNbc
f + CNbc

e
CNac

f

)
(e, f ), (C16)

r([a, b]) × r([c, d]) = ((a, b) + (b, a)) × ((c, d ) + (d, c))

=
∑

e, f ∈C

( CNac
e

CNbd
f + CNbc

e
CNad

f + CNad
e

CNbc
f

+ CNbd
e

CNac
f

)
(e, f ). (C17)

On the right-hand sides of these equations, the combination
(e, f ) + ( f , e) can be naturally identify as r([e, f ]) when
e �= f . The anyon (e, e) can be identified as either r((e, e)+) or
r((e, e)−) depending on the fusion of Z2 charges in the UMTC
D. To be more specific, when we consider (a, a)+ × (b, b)+
for example, both (a, a)+ and (b, b)+ have fixed Z2 charges.
The Z2 charge of their fusion products (when applicable)
should be the sum of their Z2 charges. The same analysis
applies to all the cases of (a, a)± × (b, b)± and (a, a)± ×
(b, b)∓. Combining Eq. (C14), Eq. (C15), and the analysis on
the Z2 charges, we can conclude that

(a, a)± × (b, b)± =
∑

[e, f ]∈D

CNab
e

CNab
f [e, f ]

+
∑

(e,e)+∈D

CNab
e

CNab
e (e, e)+, (C18)

(a, a)± × (b, b)∓ =
∑

[e, f ]∈D

CNab
e

CNab
f [e, f ]

+
∑

(e,e)−∈D

CNab
e

CNab
e (e, e)−. (C19)

Although [a, b] and [c, d] do not carry fixed Z2 charges, we
still need to make sure that the fusion product is consistent
with Eq. (C3). Together with Eqs. (C16) and (C17), we can
conclude that

[a, b] × (c, c)± =
∑

[e, f ]∈D

( CNac
e

CNbc
f + CNbc

e
CNac

f

)
[e, f ]

+
∑

[e,e]+∈D

CNac
e

CNbc
e (e, e)+

+
∑

[e,e]−∈D

CNac
e

CNbc
e (e, e)−, (C20)
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[a, b] × [c, d] =
∑

[e, f ]∈D

( CNac
e

CNbd
f + CNbc

e
CNad

f

+ CNad
e

CNbc
f + CNbd

e
CNac

f

)
[e, f ]

+
∑

(e,e)+∈D

( CNac
e

CNbd
e + CNbc

e
CNad

e

)
(e, e)+

+
∑

(e,e)−∈D

( CNac
e

CNbd
e + CNbc

e
CNad

e

)
(e, e)−.

(C21)

Now, we can move on to the twist sector D1. First of
all, by the additive property of the Z2 fluxes, we know that
X ±

a × X ±
b are entirely contained in the untwisted sector D0.

Upon the condensation of (1,1)−, the twist sector D1 are
totally confined. We should view the confined anyon X ±

a as the
“Z2 genons” in the UMTC B [98], which are the end points
of layer exchange branch cuts in the double layer system.
This picture allows us to map the double-layer theory B in
the presence of Z2 genons to the single-layer theory C on
Riemann surfaces with higher genus. Using this mapping, we
can obtain

r(X ±
a × X ±

b ) = (0, a) × (0, b) ×
(∑

c∈C
(c, c̄)

)

=
∑

c,e, f ∈C

CNac̄
e

CNeb
f (c, f ), (C22)

r(X ±
a × X ∓

b ) = (0, a) × (0, b) ×
(∑

c∈C
(c, c̄)

)

=
∑

c,e, f ∈C

CNac̄
e

CNeb
f (c, f ). (C23)

At this point, we would like to reverse engineer X ±
a × X ±

b
from r(X ±

a × X ±
b ). We again encounter the ambiguity that

(c, c) can be viewed either as r((c, c)+) or r((c, c)−). This
ambiguity cannot be resolved at this point. This is because,
unlike the case of (a, a)± × (b, b)±, the “±” sign of the anyon
X ±

a does not canonically correspond to the absolute value of
Z2 charges. Now, we can only write

X ±
a × X ±

b =
∑

[c, f ]∈D

∑
e∈C

CNac̄
e

CNeb
f [c, f ]

+
∑
c∈C

∑
e∈C

CNac̄
e

CNeb
c (c, c)p(a,b,c,e) (C24)

X ±
a × X ∓

b =
∑

[c, f ]∈D

∑
e∈C

CNac̄
e

CNeb
f [c, f ]

+
∑
c∈C

∑
e∈C

CNac̄
e

CNeb
c (c, c)−p(a,b,c,e), (C25)

where the function p(a, b, c, e) depends on a, b, c, e ∈ C,
takes values ± and is yet to be determined. Once we obtain
the S matrix of the UMTC D, we can calculate this function
via the Verlinde formula. Regardless of the specific form of
the function p, the quantum dimension of the anyon X ±

a is
given by

X ±
a = DCda. (C26)

Having derived the quantum dimensions of all the anyons in
D, we obtain the total quantum dimension

DD = 2D2
C . (C27)

For the fusion product between the untwisted sector D0 and
the twist sector D1, we can also use the genon picture and
write down the fusion rules:

X ±
a × (b, b)± =

∑
d,e∈C

CNab
e

CNbe
d X q(a,b,d,e)

d , (C28)

X ±
a × (b, b)∓ =

∑
d,e∈C

CNab
e

CNbe
d X −q(a,b,d,e)

d , (C29)

X ±
a × [b, c] =

∑
d,e∈C

CNab
e

CNce
d (X +

d + X −
d ), (C30)

where the function q(a, b, d, e) depends on a, b, d, e ∈ C and
takes values ±. This function in Eqs. (C28) and (C29) is yet
to be determined by the S matrix via the Verlinde formula.
In contrast, Eq. (C30) is completely determined by the genon
picture and by the consistency with Eq. (C3).

2. T matrix TD of D
The T matrix T D of the UMTC D captures the topological

spins of the anyons in D. For the anyons in the untwisted
sector D0, since they are all deconfined in condensation of
(1,1)− that yields B, their topological spins should be the
same as their image under the restriction map r in the UMTC
B. Hence, we have

θ(a,a)± = θ2
a , (C31)

θ[a,b] = θaθb. (C32)

Now we study the twist sector D1. The topological spin
of X ±

a can be measured using the “momentum polarization”
method [99]. That is to say that we consider the topological
order described by D on a cylinder geometry with the anyon
flux of X ±

a threading the cylinder. The topological spin θX ±
a

of X ±
a is directly given by the Berry phase accumulated

when one end of the cylinder is rotated by 2π (together with
central charge correction if cD �= 0). The genon picture allows
us to map the cylinder geometry of the theory D with the
anyon flux of X ±

a to a double-layer cylinder geometry with
a layer-exchanging branch cut (see the left panel of Fig. 4).
In the presence of the branch cut, this double-layer cylinder
geometry is topologically equivalent to a single-layer cylinder
on which a single copy of UMTC C resides. The type of anyon
flux a thread the single-layer cylinder is directly given by
the anyon type X ±

a in the theory D. Another observation is
that a 2π rotation in the double-layer cylinder geometry is
equivalent to a π rotation in the effective single-layer geom-
etry. The equivalence between the double-layer geometry and
single-layer geometry guarantees that

θX ±
a

= ±θ
1
2

a . (C33)

We can see from this expression that the ±Z2 charge assigned
to X ±

a generally doesn’t have an absolute meaning (because

of the ambiguity of the square root θ
1
2

a ). In the presence of
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FIG. 4. The left panel depicts the double-layer cylinder geometry
with a layer-exchanging branch cut (dashed line). The white arrow
represents the anyon flux X ±

a threading through the cylinder. The
topological spin θX±

a
of X ±

a is equal to the Berry phase accumulated
when one end of the cylinder is rotated by 2π . The right panel
depicts a single-layer cylinder geometry carrying the topological
order described by C that is topologically equivalent to the left panel.
The anyon flux threading through the single-layer cylinder is given
by a.

nontrivial chiral central charge cC or the nontrivial ele-
ment ω ∈ H3(Z2, U(1)), there will be an extra factor of
ω

1
2 ei2π (2− 1

2 )
cC
24 in the expression of θX ±

a
. Here, we have implic-

itly used ω = 1 to denote the trivial element of H3(Z2, U(1))
and ω = −1 for nontrivial one.

3. S matrix SD of D
In this section, we will derive the S matrix SD of D. We will

separate SD into several blocks and use different technique to
obtain them.

For the anyons of D that are deconfined when the anyon
(1,1)− condenses, we can utilize the consistency condition
between the restriction map r (encoded by the D×B matrix n)
and the S matrices SD and SB:

SDn = nSB. (C34)

In addition, since the anyon (1,1)− braids trivially with the
anyons (a, a)± and [a, b], the following identities hold

SD
(a,a)+,(b,b)+ = SD

(a,a)+,(b,b)− = SD
(a,a)−,(b,b)+ = SD

(a,a)−,(b,b)− ,

(C35)

SD
[a,b]+,(c,c)+ = SD

[a,b]+,(c,c)− . (C36)

By studying different components of the matrix identity
SDn = nSB together with the relations given above, we can
directly obtain

SD
(a,a)±,(b,b)± = SD

(a,a)±,(b,b)∓ = 1
2

(
SC

ab

)2
, (C37)

SD
[a,b],(c,c)± = SC

acSC
bc, (C38)

SD
[a,b],[c,d] = SC

acSC
bd + SC

ad SC
bc. (C39)

For the matrix elements SD
X ±

a ,(c,c)± and SD
X ±

a ,(c,c)∓ , the con-
sistency with anyon condensation does not provide a lot of
information. We will use a different approach to obtain them.
Consider a topological state in the theory D on a cylinder
geometry with X ±

a anyon flux threading the cylinder. Such a
state is an eigenstate of the Wilson line operator W(c,c)+ , which
bring an anyon (c, c)+ around the cylinder for any c ∈ C. The

corresponding eigenvalue is
SD

X+
a ,(c,c)+

SD
X+

a ,(1,1)+
. The cylinder geometry

FIG. 5. The left panel depicts the double-layer cylinder geometry
with a layer-exchanging branch cut (dashed line). The white arrow
represents the anyon flux X ±

a threading through the cylinder. The
Wilson line operator W(c,c)+ is indicated by the red line. The right
panel depicts a single-layer cylinder geometry carrying the topolog-
ical order described by C that is topologically equivalent to the left
panel. The anyon flux threading through the single-layer cylinder is
given by a. The application of the Wilson line operator W(c,c)+ on
the left panel is topologically equivalent to applying the Wilson line
operator Wc on the single-layer cylinder geometry. The Wilson line
operator Wc brings an anyon c ∈ C around the cylinder.

with the X ±
a anyon flux can be viewed as a double-layer

cylinder with a layer exchanging branch cut (left panel of
Fig. 5), which is topologically equivalent to a single-layer
cylinder with the topological order described by C residing
on it and with the anyon flux a ∈ C threading through it (right
panel of Fig. 5). The application of the Wilson line operator
W(c,c)+ on the double-layer cylinder with the X ±

a anyon flux is
topologically equivalent to applying the Wilson line operator
Wc on the single-layer cylinder geometry. Here Wc is the
operator that brings the anyon c ∈ C around cylinder. The state
of the single-layer cylinder with anyon flux a is an eigenstate

of Wc with eigenvalue SC
ac

SC
a1

. Therefore we have

SD
X +

a ,(c,c)+

SD
X +

a ,(1,1)+
= SC

ac

SC
a1

. (C40)

By further noticing that SD
X +

a ,(1,1)+ = dX +
a
/DD = and SC

a1 =
da/DC , we can conclude that

SD
X +

a ,(c,c)+ = 1
2 SC

ac. (C41)

SD
X −

a ,(c,c)+ can be obtained by viewing the X −
a as the fusion

product of X +
a and (1,1)−. Since (1,1)− braids trivially with

(c, c)+, we have

SD
X −

a ,(c,c)+ = SD
X +

a ,(c,c)+ = 1
2 SC

ac. (C42)

SD
X ±

a ,(c,c)− can be obtained in a similar fashion. (c, c)− is the
fusion product of (c, c)+ and (1,1)−. Due to the braiding
statistics between the Z2 charge (1,1)− and the Z2 flux
carried by X ±

a , the matrix SD
X ±

a ,(c,c)− has an extra factor of −1:

SD
X ±

a ,(c,c)− = −SD
X ±

a ,(c,c)+ = − 1
2 SC

ac. (C43)

The elements of the S matrix element can also be expressed
in terms of the fusion multiplicities and the topological spins
of the anyons. Such a relation will be used to derive the S
matrix elements SD

X ±
a ,[c,d]:

SD
X ±

a ,[c,d] = 1

DD θX ±
a
θ[c,d]

∑
α∈D

DNX ±
a ,[c,d]

α dαθα. (C44)
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TABLE V. The matrix elements SD
αβ of the S matrix of D (with no chiral central charge, i.e., cC = 0 and with the trivial element ω = 1 ∈

H 3(Z2, U(1))).

�����α

β
(c, c)+ (c, c)− [c, d] X +

c X −
c

(a, a)+ 1
2 (SC

ac )2 1
2 (SC

ac )2 SC
acSC

ad
1
2 SC

ac
1
2 SC

ac

(a, a)− 1
2 (SC

ac )2 1
2 (SC

ac )2 SC
acSC

ad − 1
2 SC

ac − 1
2 SC

ac

[a, b] SC
acSC

bc SC
acSC

bc SC
acSC

bd + SC
bcSC

ad 0 0

X +
a

1
2 SC

ac − 1
2 SC

ac 0 1
2 (

√
T CSCT C (SC )2T CSC

√
T C )ac − 1

2 (
√

T CSCT C (SC )2T CSC
√

T C )ac

X −
a

1
2 SC

ac − 1
2 SC

ac 0 − 1
2 (

√
T CSCT C (SC )2T CSC

√
T C )ac

1
2 (

√
T CSCT C (SC )2T CSC

√
T C )ac

From Eq. (C30), we see that the fusion product of X ±
a and

[c, d] always contains equal numbers of X +
e and X −

e , which
have their opposite topological spins differ by −1, for any
e ∈ C. Therefore the summation

∑
α∈D

DNX ±
a ,[c,d]

α dαθα = 0,
which means

SD
X ±

a ,[c,d] = 0. (C45)

The same method can be used to derive SD
X ±

a ,X ±
a

and SD
X ±

a ,X ∓
a

.
For example,

SD
X +

a ,X +
b

= 1

DD θX +
a
θX +

b

∑
α∈D

DN
X +

a ,X +
b

α dαθα. (C46)

Although Eq. (C24) can only determine the fusion product of
X +

a and X +
b upto the unknown function p (that takes value ±),

the relevant topological spins θα and the quantum dimensions
dα in the fusion product are in fact independent from p.
Therefore we have

SD
X +

a ,X +
b

= 1

DD θX +
a
θX +

b

∑
α∈D

DN
X +

a ,X +
b

α dαθα

= 1

2D2
Cθ

1
2

a θ
1
2

b

∑
d,e, f ∈C

CNad̄
e

CNeb
f dd d f θdθ f ,

= 1

2θ
1
2

a θ
1
2

b

∑
e∈C

[(
1

DC

∑
d∈C

CNaē
d ddθd

)

×
⎛
⎝ 1

DC

∑
f ∈C

CNeb
f d f θ f

⎞
⎠

⎤
⎦

= 1

2θ
1
2

a θ
1
2

b

∑
e∈C

[(
θaθēSC

aē

)(
θeθbSC

eb

)]

= 1

2

(√
T CSCT C (SC )2T CSC

√
T C

)
ab. (C47)

Here, we have used the fact that CNad̄
e = CNaē

d on the third
line and the relations between the S matrix, fusion rule and
topological spins in C in deriving the fourth line. T C denotes
the T matrix of the UMTC C. Given this result, it is easy to
obtain that

SD
X ±

a ,X ±
b

= 1
2

(√
T CSCT C (SC )2T CSC

√
T C

)
ab, (C48)

SD
X ±

a ,X ∓
b

= − 1
2

(√
T CSCT C (SC )2T CSC

√
T C

)
ab. (C49)

These expressions of the SD
X ±

a ,X ±
b

and SD
X ±

a ,X ∓
b

apply to the case

with no chiral central charge cC and with the choice of trivial
element in H3(Z2, U(1)). In the most general case, there
will be an extra factor of ωe−i2πcC/8 in SD

X ±
a ,X ±

b
and SD

X ±
a ,X ∓

b
.

As a reminder, ω = 1 and ω = −1 represent the trivial and
nontrivial element in H3(Z2, U(1)), respectively. Given that
the S matrix is an symmetric matrix, we have now obtained all
the matrix element of SD. The result (for the case with cC = 0
and ω = 1) is summarized in Table V.

APPENDIX D: DERIVATION OF EQ. (46)

In this appendix, we provide a detailed derivation of
Eq. (46). As discussed in the main text, this result follows the
constraint (26) that the restriction map, describing the anyon
condensation, commutes with anyon fusion. In particular, we
shall consider the fusion between two symmetry defects X +

1 .
In this derivation, we want to keep track of the anyon charges
in C through the fusion and anyon-condensation processes,
without worrying about the Z2-symmetry charges, which do
not appear in Eq. (46). Technically, this can be achieved by
considering another anyon condensation r′, which condenses,
or forgets, the Z2 charges in T . For example, r′ further maps
both a± ∈ T to a, and both defects x±

a ∈ T to xa. Hence, the
composed restricting map r̃ = r′ ◦ r follows rules similar to
Eqs. (32)–(34), but forgets the Z2 charges of the outcomes.

In Eq. (38), wa are defined as the lifting coefficients of x+
1 :

wa ≡ nX +
a ,x+

1
. Here, we argue that the same coefficients also

describe the restriction map of X +
1 :

r̃(X +
1 ) =

∑
a∈C

waxa. (D1)

As discussed in Sec. III D 2, restriction map r̃ of the defect X +
1

only contains defects xb. Thus we can write this as a general
expression,

r̃(X +
1 ) =

∑
a∈C

ñX +
1 ,xa

xa. (D2)

We now derive the coefficient ñX +
1 ,xa

of the map r̃, using
the constraint (26) that the restriction map r̃ commutes with
anyon fusion. In particular, consider the fusion X +

1 × [a,1] =
X +

a + X −
a [see Eq. (21)]. Constraint (26) implies that r̃(X +

1 ) ×
r̃([a,1]) = r̃(X +

a ) + r̃(X −
a ). The definition wa ≡ nX +

a ,x+
1

im-
plies that, on the right-hand side, r̃(X +

a ) = wax1 + · · · . At
the same time, according to Eq. (40), r̃(X −

a ) = wax1 + · · · .
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Furthermore, Eq. (32) implies that r̃([a,1]) = 2a. Compiling
these results, we get(∑

b∈C
ñX +

1 ,xb
xb

)
× 2a = 2wax1 + · · ·

Since x1 can only be generated through the fusion xā ×
a = x1 + · · · , we conclude that ñX +

1 ,x+
a

= wā. Furthermore,
using the property that na,b = nā,b̄, we have wā = nX +

ā ,x1 =
n

X +
ā ,x1

= nX +
a ,x+

1
= wa. Hence, ñX +

1 ,xa
= wā = wa. Plugging

this in Eq. (D2) gives Eq. (D1).
Now, we are ready to prove Eq. (46), using Eq. (D1) and the

constraint (26). We consider the following fusion rule, which
is a special case of Eq. (C24),

X +
1 × X +

1 =
∑
a �=ā

′
[a, ā] +

∑
a=ā

(a, a)p(1,1,a,a), (D3)

where p(1,1, a, a) = ±1 is a Z2 symmetry charge that plays
no role in the derivation below, because it will be forgotten
after r̃ is applied. Constraint (26) implies that

r̃(X +
1 ) × r̃(X +

1 ) =
∑
a �=ā

′
r̃([a, ā]) +

∑
a=ā

r̃((a, a)p(1,1,a,a) ).

(D4)
Applying Eq. (D1) to the left-hand side, we get

r̃
(
X +
1

)×r̃
(
X +
1

)=
∑

ab

wawbxa×xb =
∑
abc

wawbNab
c c. (D5)

Applying Eqs. (33) and (34) to the right-hand side, we get∑
a �=ā

′
r̃([a, ā]) +

∑
a=ā

r̃((a, a)p(1,1,a,a) )

=
∑

a �=ā,c

′
2Naρ̄m (a)

c c +
∑
a=ā,c

Naρ̄m (a)
c c=

∑
ac

Naρ̄m (a)
c c. (D6)

Comparing Eqs. (D5) and (D6), we arrive at the result of
Eq. (47), or equivalently Eq. (46).

APPENDIX E: SIMPLIFICATION OF EQ. (43)

In this appendix, we derive a simplified form—Eq. (E3)—
of Eq. (43), when a is an Abelian anyon. In this case, the S
matrix entry Sa,b is proportional to an Abelian braiding phase,

Sa,b = db

DC
M∗

a,b, (E1)

where b can be any (non-Abelian) anyon, and Ma,b is a
braiding phase factor. Correspondingly, Eq. (43) becomes

μ(a) =
∑
b∈w

dbwb

DC
M∗

a,b. (E2)

Here, we assume that {wb} satisfies Eq. (47). Using Eq. (48),
we see that the right-hand side of this equation is a weighted
sum of phases, with the wight being dbwb

DC
and the total weights

equal to unity. Therefore the absolute value of the sum is
bounded by one:∣∣∣∣∣

∑
b∈w

dbwb

DC
M∗

a,b

∣∣∣∣∣ �
∑
b∈w

dbwb

DC
|M∗

a,b| = 1,

The bound is saturated if and only if all phases M∗
a,b are the

same. For a = ρ̄m(a), the left-hand side μ(a) = ±1 indeed
saturates this bound. Therefore we conclude that

M∗
a,b = μ(a) = ±1, ∀b ∈ w. (E3)

This relation is extensively used for Abelian topological order
in Ref. [24] for deriving anomaly indicators associated with
the time-reversal symmetry.

APPENDIX F: RELATIONS BETWEEN CONSTRAINTS

In this appendix, we show that some parts of the con-
straints on {μ(a)} can be derived from those on {wa}. More
explicitly, assuming that {μ(a)} are computed from {wa}
through Eq. (43), we show that the constraints Eqs. (46)
and (39) on {wa} can lead to the following constraints on
{μ(x)}: (i) μ(x) = ±1 if x = ρ̄m(x) and μ(x) = 0 otherwise;
(2) the Abelian case of Eq. (15), and (3) the Abelian case of
Eq. (16). We do not know how to show the non-Abelian case
of Eqs. (15) and (16).

First, let us show that μ(x) = ±1 if x = ρ̄m(x) and μ(x) =
0 otherwise. That is, μ(x)2 = δx,ρ̄m (x) for any x ∈ C. To do that,
we use the Verlinde formula

Nab
c =

∑
x

SaxSbxSc̄x

S1x
. (F1)

Note that {wa} satisfies Eq. (47). Multiplying Eq. (47) with S†
xc̄

and summing over c, we have the left-hand side of Eq. (47)
equals ∑

c

S†
xc̄

∑
a,b

wawbNab
c =

∑
a,b,c,y

S†
xc̄wawb

SaySbySc̄y

S1y

=
∑
c,y

S†
xc̄Sc̄y

μ(y)2

S1y

= μ(x)2

S1x
. (F2)

At the same time, the right-hand side of Eq. (47) becomes∑
c

S†
xc̄

∑
a

Naρ̄m (a)
c =

∑
a,c,y

S†
xc̄

SaySρ̄m (a)ySc̄y

S1y

=
∑

a

SaxSρ̄m (a)x

S1x

=
∑

a

SaxS∗
aρ̄m (x)

S1x
= δx,ρ̄m (x)

S1x
. (F3)

Combining the above two equations, we find that

μ(x)2 = δx,ρ̄m (x), (F4)

which is exactly what we want to show. Since da and wa are
non-negative, we have μ(1) = ∑

a dawa/DC = 1. This agrees
with Eq. (48).

Second, we use Eq. (F4) to show some additional proper-
ties of {wa}, which are helpful in the main text as well as for
showing other constraints on μ(x). Since Eq. (F4) comes after
Eq. (47), these properties are also consequence of Eq. (47).
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More explicitly, we show that

wa = wā = wρm (a) = wa×v×ρ̄m (v), (F5)

where v is any Abelian anyon. First of all, we notice that
Eq. (F4) implies that μ(x) is real. Accordingly, we have

μ(x̄) = μ(x̄)∗ =
∑

a

S∗
x̄,awa =

∑
a

Sx,awa = μ(x) (F6)

where we have used the property S∗
x̄,a = Sx,a. With this, we

have

wā =
∑

x

Sāxμ(x) =
∑

x

Sax̄μ(x̄) = wa. (F7)

Also, it is not hard to see that

μ(ρm(x)) = μ(x̄) = μ(x), (F8)

which holds for both x = ρ̄m(x) and x �= ρ̄m(x). Then, we find

wρm (a) =
∑

x

Sρm (a)xμ(x) =
∑

x

S∗
aρm (x)μ(x)

=
∑

x

S∗
axμ(ρm(x)) = w∗

a = wa (F9)

where in the second equality we have used the fact that
Sρm (a)x = S∗

aρm (x). Finally, consider an Abelian anyon v. Then,

we have

wa×v×ρ̄m (v) =
∑

x=ρ̄m (x)

Sa×v×ρ̄m (v),xμ(x) =
∑

x=ρm (x̄)

Sa,xμ(x) = wa

(F10)

where we have used the relation that Sa×u,x = Sa,xM∗
u,x for any

Abelian anyon u.
Third, if both x and y are Abelian and are invariant under

ρ̄m, we have μ(x)μ(y) = μ(x × y), i.e., the Abelian case of
the constraint Eq. (15). This constraint immediately follows
from Eq. (E3) and the fact that Mx,bMy,b = Mx×y,b for Abelian
anyons x and y. Note that the proof of Eq. (E3) only uses
properties of the S matrix and that w satisfies Eq. (46). We
are not able to show the general case of Eq. (15).

Finally, we show the Abelian case of the constraint
Eq. (16). To do that, we use the constraint Eq. (39), i.e., θa = η

are the same for all a ∈ w. As shown in Appendix E, for
Abelian anyon x, μ(x) = M∗

x,a for any a ∈ w. Also, we have
wa = wa×v×ρ̄m (v) for Abelian anyon v accordingly to Eq. (F5).
Then, we have

μ(v×ρ̄m(v))=M∗
v×ρ̄m (v),a = θaθv×ρ̄m (v)

θa×v×ρ̄m (v)
=θv×ρ̄m (v), (F11)

which is exactly Eq. (16).
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