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Quadratic forms

◮ Quad. form Q: (aij ∈ Z)

Q (x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj .
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Quadratic forms

◮ Quad. form Q: (aij ∈ Z)

Q (x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj .

◮ Classes: Q ∼Z Q if ∃ isometry over Z from Q to Q.

◮ ωQ := # isometries over Z from Q to Q.

◮ Similarly: Q ∼Zp Q if ∃ isometry over Zp

◮ Genus gen(Q): Q ∈ gen(Q) iff Q ∼Zp Q for all p (finite and
infinite).
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Theta series

◮ Q quad. form, theta series (q := e2πiz)

ΘQ(z) :=
∑

x∈Zn

qQ(x).
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◮ Q quad. form, theta series (q := e2πiz)

ΘQ(z) :=
∑
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qQ(x).
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Theta series

◮ Q quad. form, theta series (q := e2πiz)

ΘQ(z) :=
∑

x∈Zn

qQ(x).

◮ ΘQ is weight n/2 modular form.

◮ Example: Q(x , y , z ,w) = x2 + y2 + z2 + w2; ΘQ in one-dim.
space =⇒ Lagrange’s 4 � Thm.

P. Guerzhoy, B. Kane The Siegel-Weil Average for binary quadratic forms



Siegel–Weil formula

◮ Define

Θgen(Q)(z) :=
1

∑

Q∈gen(Q)/∼Z
ω−1
Q

∑

Q∈gen(Q)/∼Z

ΘQ(z)

ωQ
.
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limit).

◮ Also Eisenstein series component of ΘQ is Θgen(Q).

P. Guerzhoy, B. Kane The Siegel-Weil Average for binary quadratic forms



Siegel–Weil formula

◮ Define

Θgen(Q)(z) :=
1

∑

Q∈gen(Q)/∼Z
ω−1
Q

∑

Q∈gen(Q)/∼Z

ΘQ(z)

ωQ
.

◮ Θgen(Q) counts “representations by genus”.

◮ Siegel: Coeff. is prod. local densities (p-adic integral/p-adic
limit).

◮ Also Eisenstein series component of ΘQ is Θgen(Q).
Question: Which one?
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Classical modular forms

◮ Modular form f weight k ∈ Z
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Classical modular forms

◮ Modular form f weight k ∈ Z

◮ Modularity f
∣

∣

∣

k
γ(z) := (cz + d)−k f (γz) = f for

γ =
(

a b
c d

)

∈ Γ ⊆ SL2 (Z).
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Classical modular forms

◮ Modular form f weight k ∈ Z

◮ Modularity f
∣

∣

∣

k
γ(z) := (cz + d)−k f (γz) = f for

γ =
(

a b
c d

)

∈ Γ ⊆ SL2 (Z).

◮ Holomorphicity.
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Classical modular forms

◮ Modular form f weight k ∈ Z

◮ Modularity f
∣

∣

∣

k
γ(z) := (cz + d)−k f (γz) = f for

γ =
(

a b
c d

)

∈ Γ ⊆ SL2 (Z).

◮ Holomorphicity.

◮ Bounded towards cusps.
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Modifications (Multiplier)

◮ For each γ ∈ SL2(Z), define ν(γ) with |ν(γ)| = 1.
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◮ For each γ ∈ SL2(Z), define ν(γ) with |ν(γ)| = 1.

◮ Certain consistency conditions
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Modifications (Multiplier)

◮ For each γ ∈ SL2(Z), define ν(γ) with |ν(γ)| = 1.

◮ Certain consistency conditions

◮ Set

f
∣

∣

∣

k,ν
γ(τ) := ν(γ)−1 (cτ + d)−k

f

(

aτ + b

cτ + d

)

.
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Modifications

◮ Modular form f weight k ∈ 1
2Z (half-integral weight):

◮ Modularity f
∣

∣

∣

k,ν
γ = f for γ ∈ Γ ⊆ SL2 (Z).

◮ . . .

◮ . . .
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Examples

◮ Eisenstein series (Γ∞ := {±T n : n ∈ Z}, T := ( 1 1
0 1 )):

Ek(z) :=
∑

γ∈Γ∞\SL2(Z)

1|kγ(z) =
∑

(c,d)=1

(cz + d)−k .
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Examples

◮ Eisenstein series (Γ∞ := {±T n : n ∈ Z}, T := ( 1 1
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Examples

◮ Eisenstein series (Γ∞ := {±T n : n ∈ Z}, T := ( 1 1
0 1 )):

Ek(z) :=
∑

γ∈Γ∞\SL2(Z)

1|kγ(z) =
∑

(c,d)=1

(cz + d)−k .

◮ Weight k by construction:

Ek |kγ0 =
∑

γ∈Γ∞\SL2(Z)

1|kγγ0(z) =
∑

γ∈Γ∞\SL2(Z)

1|kγ(z) = Ek .

Holomorphic because 1 is holomorphic (and good
convergence).
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Applications of Siegel–Weil formula

◮ Eisenstein series coeff. explicit.
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Applications of Siegel–Weil formula

◮ Eisenstein series coeff. explicit.

◮ mth coeff of Eis. series > 0 =⇒ at least one Q ′ ∈ gen(Q)
represents m.
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Applications of Siegel–Weil formula

◮ Eisenstein series coeff. explicit.

◮ mth coeff of Eis. series > 0 =⇒ at least one Q ′ ∈ gen(Q)
represents m.

◮ Only one class in gen(Q) =⇒ local-global.
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Applications of Siegel–Weil formula

◮ Eisenstein series coeff. explicit.

◮ mth coeff of Eis. series > 0 =⇒ at least one Q ′ ∈ gen(Q)
represents m.

◮ Only one class in gen(Q) =⇒ local-global.

◮ Coeff. grow “fast” for n ≥ 3.
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Applications of Siegel–Weil formula

◮ Eisenstein series coeff. explicit.

◮ mth coeff of Eis. series > 0 =⇒ at least one Q ′ ∈ gen(Q)
represents m.

◮ Only one class in gen(Q) =⇒ local-global.

◮ Coeff. grow “fast” for n ≥ 3.

◮ Tartakowsky (n ≥ 5): m suff. large =⇒ m repr. by Q.
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Applications of Siegel–Weil formula

◮ n = 4: some “bad” (anisotropic) primes
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Applications of Siegel–Weil formula

◮ n = 4: some “bad” (anisotropic) primes

◮ m suff. large, ordp(m) bounded, locally repr. =⇒ m repr. by
Q.
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Applications of Siegel–Weil formula

◮ n = 4: some “bad” (anisotropic) primes

◮ m suff. large, ordp(m) bounded, locally repr. =⇒ m repr. by
Q.

◮ n = 3: Duke–Schulze-Pillot: m suff. large rep. by spinor
genus containing Q =⇒ m repr. by Q.
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Dirichlet’s class number formula

◮ Binary quadratic discriminant D: QD .
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Dirichlet’s class number formula

◮ Binary quadratic discriminant D: QD .

◮ Consider sum (D < 0)

∑

Q∈QD/∼Z

rQ(n)
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Dirichlet’s class number formula

◮ Binary quadratic discriminant D: QD .

◮ Consider sum (D < 0)

∑

Q∈QD/∼Z

rQ(n)

◮ Gauss:
∑

Q∈QD/∼Z

rQ(n) = ωD

∑

t|n

(

D

t

)

.
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Dirichlet’s class number formula

◮ Binary quadratic discriminant D: QD .

◮ Consider sum (D < 0)

∑

Q∈QD/∼Z

rQ(n)

◮ Gauss:
∑

Q∈QD/∼Z

rQ(n) = ωD

∑

t|n

(

D

t

)

.

◮ For n = 0, yields Dirichlet class number formula (D < 0
fund.):

h(D) = #QD =
ωD

√

|D|

2π
L(χD , 1).

P. Guerzhoy, B. Kane The Siegel-Weil Average for binary quadratic forms



Gauss’s formula and Siegel–Weil

◮ Rewritten:

∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n)
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Gauss’s formula and Siegel–Weil

◮ Rewritten:

∑
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∑

Q∈gen(Q0)/∼Z

rQ(n) =
∑

Q∈QD/∼Z

rQ(n)
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Gauss’s formula and Siegel–Weil

◮ Rewritten:

∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) =
∑

Q∈QD/∼Z

rQ(n)

= ωD

∑

t|n

(

D

t

)

.
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Gauss’s formula and Siegel–Weil

◮ Rewritten:

∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) =
∑

Q∈QD/∼Z

rQ(n)

= ωD

∑

t|n

(

D

t

)

.

◮ Each Q has ωQ = ωD .
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Gauss’s formula and Siegel–Weil

◮ Rewritten:

∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) =
∑

Q∈QD/∼Z

rQ(n)

= ωD

∑

t|n

(

D

t

)

.

◮ Each Q has ωQ = ωD .

◮ Siegel–Weil: Some Eisenstein series. Gauss: gives which one.
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Siegel–Weil and Gauss’s composition law

◮ Gauss: binary quad. have group law.
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Siegel–Weil and Gauss’s composition law

◮ Gauss: binary quad. have group law.

◮ Principal genus: genus of identity
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Siegel–Weil and Gauss’s composition law

◮ Gauss: binary quad. have group law.

◮ Principal genus: genus of identity

◮ Genera are cosets mod princ. genus.
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Siegel–Weil and Gauss’s composition law

◮ Gauss: binary quad. have group law.

◮ Principal genus: genus of identity

◮ Genera are cosets mod princ. genus.

◮ Group = H, princ. genus = H2.
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Siegel–Weil and Gauss’s composition law

◮ Consider characters χ on H/H2.
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Siegel–Weil and Gauss’s composition law

◮ Consider characters χ on H/H2.

◮ Gives characters on genus (real because χ(Q)2 = χ(Q2) = 1).
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Siegel–Weil and Gauss’s composition law

◮ Consider characters χ on H/H2.

◮ Gives characters on genus (real because χ(Q)2 = χ(Q2) = 1).

◮ Consider sums

rχ(n) :=
∑

Q0∈QD/∼Zp

χ(Q0)
∑

Q∈gen(Q0)/∼Z

rQ(n)
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Siegel–Weil and Gauss’s composition law

◮ Consider characters χ on H/H2.

◮ Gives characters on genus (real because χ(Q)2 = χ(Q2) = 1).

◮ Consider sums

rχ(n) :=
∑

Q0∈QD/∼Zp

χ(Q0)
∑

Q∈gen(Q0)/∼Z

rQ(n)

◮ Siegel-Weil: coeff. Eis. series. Which one?
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Characters and Eisenstein series

◮ Basis wt. one Eis. Series: pairs χ1, χ2

Eχ1,χ2(z) := c0 +
∑

n≥1

∑

t|n

χ1(t)χ2

(n

t

)

qn
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Characters and Eisenstein series

◮ Basis wt. one Eis. Series: pairs χ1, χ2

Eχ1,χ2(z) := c0 +
∑

n≥1

∑

t|n

χ1(t)χ2

(n

t

)

qn

◮ Characters χ ↔ discriminants d , d ′ with D = dd ′.

P. Guerzhoy, B. Kane The Siegel-Weil Average for binary quadratic forms



Characters and Eisenstein series

◮ Basis wt. one Eis. Series: pairs χ1, χ2

Eχ1,χ2(z) := c0 +
∑

n≥1

∑

t|n

χ1(t)χ2

(n

t

)

qn

◮ Characters χ ↔ discriminants d , d ′ with D = dd ′.

◮ Can compute

χ(Q) = χd(n) =

(

d

n

)

,

where n prim. repres. by Q.
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Characters and Eisenstein series (cont.)

◮ Gives (n ≥ 1) by Gauss’s formula:

rχ(n) = χd(n)
∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n)
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Characters and Eisenstein series (cont.)

◮ Gives (n ≥ 1) by Gauss’s formula:

rχ(n) = χd(n)
∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) = χd(n)
∑

t|n

(

D

t

)
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Characters and Eisenstein series (cont.)

◮ Gives (n ≥ 1) by Gauss’s formula:

rχ(n) = χd(n)
∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) = χd(n)
∑

t|n

(

D

t

)

=
∑

t|n

χd(n)

(

dd ′

t

)
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Characters and Eisenstein series (cont.)

◮ Gives (n ≥ 1) by Gauss’s formula:

rχ(n) = χd(n)
∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) = χd(n)
∑

t|n

(

D

t

)

=
∑

t|n

χd(n)

(

dd ′

t

)

=
∑

t|n

χd

(n

t

)

χd ′(t).
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Characters and Eisenstein series (cont.)

◮ Gives (n ≥ 1) by Gauss’s formula:

rχ(n) = χd(n)
∑

Q0∈QD/∼Zp

∑

Q∈gen(Q0)/∼Z

rQ(n) = χd(n)
∑

t|n

(

D

t

)

=
∑

t|n

χd(n)

(

dd ′

t

)

=
∑

t|n

χd

(n

t

)

χd ′(t).

◮ Coeff. of Eχd ,χd′
.
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Computation of Siegel–Weil average

◮ Orthogonality of characters.
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Computation of Siegel–Weil average

◮ Orthogonality of characters.

◮ Can identify indiv. genus.
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Computation of Siegel–Weil average

◮ Orthogonality of characters.

◮ Can identify indiv. genus.

◮ Gives (for χ ↔ χd , χd ′)

Θgen(Q) =
1

#(H/H2)

∑

χ∈(H/H2)∗

χ(Q)Eχd ,χd′
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Computation of Siegel–Weil average

◮ Orthogonality of characters.

◮ Can identify indiv. genus.

◮ Gives (for χ ↔ χd , χd ′)

Θgen(Q) =
1

#(H/H2)

∑

χ∈(H/H2)∗

χ(Q)Eχd ,χd′

◮ Can plug in Eχd ,χd′
(explicit).
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Proof of Gauss’s formula

◮ Consider r1(n).
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Proof of Gauss’s formula

◮ Consider r1(n).

◮ Set

b(n) := r1(pn) +

(

D

p

)

r1(n/p).
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Proof of Gauss’s formula

◮ Consider r1(n).

◮ Set

b(n) := r1(pn) +

(

D

p

)

r1(n/p).

◮ Note: rQ(pn) +
(

D
p

)

r1(n/p) is coeff. of ΘQ |Tp.
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Proof of Gauss’s formula

◮ Consider r1(n).

◮ Set

b(n) := r1(pn) +

(

D

p

)

r1(n/p).

◮ Note: rQ(pn) +
(

D
p

)

r1(n/p) is coeff. of ΘQ |Tp.

◮ Claim that

b(n) =

(

1 +

(

∆

p

))

r1(n).
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Proof of Gauss’s formula

◮ For Q ∈ H/H2, corresponding ideal IQ gen. by α, β
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Proof of Gauss’s formula

◮ For Q ∈ H/H2, corresponding ideal IQ gen. by α, β

◮ Satisfies

Q(x , y) =
N(αx + βy)

N(IQ)
.
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Proof of Gauss’s formula

◮ For Q ∈ H/H2, corresponding ideal IQ gen. by α, β

◮ Satisfies

Q(x , y) =
N(αx + βy)

N(IQ)
.

◮ Gives
ΘIQ := ΘQ =

∑

m∈IQ

qN(m)/N(IQ)
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Proof of Gauss’s formula

◮ For Q ∈ H/H2, corresponding ideal IQ gen. by α, β

◮ Satisfies

Q(x , y) =
N(αx + βy)

N(IQ)
.

◮ Gives
ΘIQ := ΘQ =

∑

m∈IQ

qN(m)/N(IQ)

◮ Note: p | N(m)/N(IQ) iff m ∈ pIQ for p | (p).
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI +
∑

I∈Hp′

ΘI
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI +
∑

I∈Hp′

ΘI = 2
∑

I∈H

ΘI .
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI +
∑

I∈Hp′

ΘI = 2
∑

I∈H

ΘI .

◮ For p = p2 ramified:

∑

Q∈QD/∼Z

ΘIQ |Tp
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI +
∑

I∈Hp′

ΘI = 2
∑

I∈H

ΘI .

◮ For p = p2 ramified:

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI
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Proof of Gauss’s formula

◮ For p = pp′ split:

ΘIQ |Tp = ΘIQp +ΘIQp
′ .

◮ Altogether (H = Hp = Hp′)

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI +
∑

I∈Hp′

ΘI = 2
∑

I∈H

ΘI .

◮ For p = p2 ramified:

∑

Q∈QD/∼Z

ΘIQ |Tp =
∑

I∈Hp

ΘI =
∑

I∈H

ΘI .
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Proof of Gauss’s formula

◮ For p inert: I and I (p) same class in H.
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Proof of Gauss’s formula

◮ For p inert: I and I (p) same class in H.

◮ Yields

∑

m∈IQ(p)

qN(m)/(pN(IQ)) =
∑

m∈IQ(p)

qpN(m)/(N(IQ(p))).
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Proof of Gauss’s formula

◮ For p inert: I and I (p) same class in H.

◮ Yields

∑

m∈IQ(p)

qN(m)/(pN(IQ)) =
∑

m∈IQ(p)

qpN(m)/(N(IQ(p))).

◮ Implies ΘQ |Tp = 0.
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Quadratic polynomials

◮ Quadratic polynomial:

Q(x) + L(x) + c ,

Q quadratic, L linear, c constant.
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Quadratic polynomials

◮ Quadratic polynomial:

Q(x) + L(x) + c ,

Q quadratic, L linear, c constant.

◮ Example: (generalized) m-gonal numbers (x ∈ Z)

pm(x) :=
(m − 2)x2 − (m − 4)

2
.
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Quadratic polynomials

◮ Quadratic polynomial:

Q(x) + L(x) + c ,

Q quadratic, L linear, c constant.

◮ Example: (generalized) m-gonal numbers (x ∈ Z)

pm(x) :=
(m − 2)x2 − (m − 4)

2
.

◮ Question: Which n ∈ N are sums of (2, 3, 4, . . . ) m-gonal
numbers?
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Quadratic polynomials

◮ Quadratic polynomial:

Q(x) + L(x) + c ,

Q quadratic, L linear, c constant.

◮ Example: (generalized) m-gonal numbers (x ∈ Z)

pm(x) :=
(m − 2)x2 − (m − 4)

2
.

◮ Question: Which n ∈ N are sums of (2, 3, 4, . . . ) m-gonal
numbers?

◮ Can consider similar questions for these.
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Quadratic polynomials and Siegel–Weil formula

◮ Complete square → quad. form congr. cond.
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Quadratic polynomials and Siegel–Weil formula

◮ Complete square → quad. form congr. cond.

◮ Quad. form Q, lattice L and vector ν:

rL+ν(m) = #{x ∈ L+ ν : Q(x) = m}.
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Quadratic polynomials and Siegel–Weil formula

◮ Complete square → quad. form congr. cond.

◮ Quad. form Q, lattice L and vector ν:

rL+ν(m) = #{x ∈ L+ ν : Q(x) = m}.

◮ Define theta fun. ΘL+ν .
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Quadratic polynomials and Siegel–Weil formula

◮ Complete square → quad. form congr. cond.

◮ Quad. form Q, lattice L and vector ν:

rL+ν(m) = #{x ∈ L+ ν : Q(x) = m}.

◮ Define theta fun. ΘL+ν .

◮ Shimura:

1
∑

M+µ∈gen(L+ν)/∼Z
ω−1
M+µ

∑

M+µ∈gen(L+ν)/∼Z

rM+µ(n)

ω−1
M+µ

is coeff. Eis. series./prod. local densities.
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“reverse” Moonshine?

◮ Group G , graded representation V =
⊕

n∈Z Vn.
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“reverse” Moonshine?

◮ Group G , graded representation V =
⊕

n∈Z Vn.

◮ Moonshine: Take trace across Vn

Tg (z) :=
∑

n≥0

Tr (g |Vn) q
n.

Show some sort of modular form (e.g., Monstrous moonshine)
or mock modular form (e.g., umbral moonshine).
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“reverse” Moonshine?

◮ Group G , graded representation V =
⊕

n∈Z Vn.

◮ Moonshine: Take trace across Vn

Tg (z) :=
∑

n≥0

Tr (g |Vn) q
n.

Show some sort of modular form (e.g., Monstrous moonshine)
or mock modular form (e.g., umbral moonshine).

◮ ”Reverse”: Given family of maps Fn : G 7→ C, define

TF (z) :=
∑

n≥0

∑

g∈G

Fn(g)q
n
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“reverse” Moonshine?

◮ Group G , graded representation V =
⊕

n∈Z Vn.

◮ Moonshine: Take trace across Vn

Tg (z) :=
∑

n≥0

Tr (g |Vn) q
n.

Show some sort of modular form (e.g., Monstrous moonshine)
or mock modular form (e.g., umbral moonshine).

◮ ”Reverse”: Given family of maps Fn : G 7→ C, define

TF (z) :=
∑

n≥0

∑

g∈G

Fn(g)q
n

◮ Our case is Fn(Q) := ω−1
Q χ(Q)rQ(n).
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“reverse” Moonshine?

◮ Group G , graded representation V =
⊕

n∈Z Vn.

◮ Moonshine: Take trace across Vn

Tg (z) :=
∑

n≥0

Tr (g |Vn) q
n.

Show some sort of modular form (e.g., Monstrous moonshine)
or mock modular form (e.g., umbral moonshine).

◮ ”Reverse”: Given family of maps Fn : G 7→ C, define

TF (z) :=
∑

n≥0

∑

g∈G

Fn(g)q
n

◮ Our case is Fn(Q) := ω−1
Q χ(Q)rQ(n).

◮ “Natural” F for Monster group, Mathieu groups, etc.?
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Work in progress

◮ Determine explicit shape for binary quadr. forms with cong.
cond.
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Work in progress

◮ Determine explicit shape for binary quadr. forms with cong.
cond.

◮ Determine similar Siegel–Weil/”reverse Moonshine”-type
sums for other groups with p-adic/local (guess other modular
objects?)
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Work in progress

◮ Determine explicit shape for binary quadr. forms with cong.
cond.

◮ Determine similar Siegel–Weil/”reverse Moonshine”-type
sums for other groups with p-adic/local (guess other modular
objects?)

◮ Note that modularity not used (although Hecke operators
natural).
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